JP2023098879A - Fan silencing system - Google Patents

Fan silencing system Download PDF

Info

Publication number
JP2023098879A
JP2023098879A JP2023039597A JP2023039597A JP2023098879A JP 2023098879 A JP2023098879 A JP 2023098879A JP 2023039597 A JP2023039597 A JP 2023039597A JP 2023039597 A JP2023039597 A JP 2023039597A JP 2023098879 A JP2023098879 A JP 2023098879A
Authority
JP
Japan
Prior art keywords
fan
resonance structure
membrane
sound
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023039597A
Other languages
Japanese (ja)
Inventor
真也 白田
Shinya Hakuta
暁彦 大津
Akihiko Otsu
昇吾 山添
Shogo Yamazoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2023098879A publication Critical patent/JP2023098879A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/665Sound attenuation by means of resonance chambers or interference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/161Methods or devices for protecting against, or for damping, noise or other acoustic waves in general in systems with fluid flow
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

To provide a fan silencing system capable of muffling discrete, multiple-frequency, narrow-band sounds generated by a fan while maintaining the fan's airflow.SOLUTION: An embodiment of the present invention comprises a fan and an acoustic resonance structure, and the acoustic resonance structure is located within a near-field region of a sound generated by the fan.SELECTED DRAWING: Figure 1

Description

本発明は、ファン消音システムに関する。 The present invention relates to a fan silencer system.

ファンはその羽根枚数と回転数に応じた周波数に、非常に狭帯域で、かつ、強い音を発生することが知られており、騒音として問題になっている。このような騒音を低減するために、ファンが発生する空気流(風)の通路に消音器を配置することが提案されている。 Fans are known to generate a very narrow band and strong sound at frequencies corresponding to the number of blades and the number of revolutions of the fan, which poses a problem as noise. In order to reduce such noise, it has been proposed to place a muffler in the path of the air flow (wind) generated by the fan.

例えば、特許文献1には、光源ランプユニット等の熱源と、熱源の排熱用の排気ファンとを備えた機器における消音装置であって、排気ファンの排気空気の導風部材を、排気ファンの空気流出側から機器外部にわたり密閉配置し、導風部材の通風路に面する周壁部には排気ファンより発生する音波により振動自在な弾性膜体を、排気空気の流れに少なくとも衝突しかつ排気方向の空気の流れを封鎖させない位置に配置し、弾性膜体の背後側には空気室を形成した消音装置が記載されている。この特許文献1に記載される消音装置は、ファンが発生する空気流(風)を弾性膜体に当てて弾性膜体を振動させることで音エネルギーを振動エネルギーに変えて消音するものである。 For example, Patent Literature 1 discloses a noise reduction device for a device that includes a heat source such as a light source lamp unit and an exhaust fan for exhausting heat from the heat source, wherein a member for guiding the exhaust air of the exhaust fan is It is sealed from the air outflow side to the outside of the equipment, and on the peripheral wall facing the ventilation path of the air guide member, an elastic membrane that can be vibrated by the sound wave generated by the exhaust fan is placed so as to at least collide with the exhaust air flow and in the exhaust direction. describes a muffler in which an air chamber is formed behind the elastic membrane body and arranged at a position where the air flow is not blocked. The noise reduction device described in Patent Document 1 converts sound energy into vibration energy by applying an air flow (wind) generated by a fan to an elastic membrane to vibrate the elastic membrane, thereby muting the sound.

また、狭帯域な騒音を低減するために、共鳴型の消音器を用いることが提案されている。
例えば、特許文献2には、複数のブレードを有するインペラと、インペラの周囲に配置された複数の静翼を有するエアガイドと、インペラが固定された回転軸を駆動する電動機と、インペラに気流を流入させる吸気口を中央に有し側面に排気口を備えインペラとエアガイドを内包する状態で電動機に固定された略円筒形のファンケースと、排気口を有し電動機全体を内包する状態でファンケースと気密に固定された防音筒と、所定の幅と深さを有する凹部を円周上に有し電動機表面の所定場所に設けた略円筒形の消音手段と、消音手段の凹部の開口端面に設けた柔軟性を有する薄膜部とを備えた電動送風機が記載されている。この特許文献2には、凹部の深さに応じて決まる特定周波数の音が共鳴することで消音することが記載されている。
Also, in order to reduce narrow-band noise, it has been proposed to use a resonance muffler.
For example, Patent Document 2 discloses an impeller having a plurality of blades, an air guide having a plurality of stationary blades arranged around the impeller, an electric motor driving a rotating shaft to which the impeller is fixed, and an airflow to the impeller. A substantially cylindrical fan case with an intake port in the center and an exhaust port on the side, which contains the impeller and the air guide and is fixed to the motor, and a fan with an exhaust port that encloses the entire motor. A soundproof cylinder airtightly fixed to the case, a substantially cylindrical sound-absorbing means having a recess having a predetermined width and depth on the circumference and provided at a predetermined place on the surface of the motor, and an open end face of the recess of the sound-absorbing means. An electric blower is described that includes a flexible membrane portion provided on the . This patent document 2 describes that the sound of a specific frequency determined according to the depth of the concave portion resonates to muffle the sound.

特開2001-142148号Japanese Patent Application Laid-Open No. 2001-142148 特開2008-036065号Japanese Patent Application Laid-Open No. 2008-036065

特許文献1のように、ファンが発生する空気流(風)を弾性膜体に当てて弾性膜体を振動させることで消音する構成の場合には、弾性膜体を強く振動させるために弾性膜体に直接、風がぶつかるように配置する必要があるため、ファンが発生する空気流の風路を一部塞ぐように配置する。そのため、ファンの大きな圧力損失をもたらし、風量が小さくなってしまうという問題があった。
また、特許文献1では弾性膜体に風圧を大きくかけるため、ファンの風量および風圧が変わると弾性膜体の特性が変化する。よって、弾性膜体の特性と背面空気層によって形成される共鳴効果を用いることはできない。よって、ファンが回転することで発生する特定周波数の音を狙って大きく消音する効果は得られないため、ファンに対する大きな消音効果を得ることは難しい。
As in Japanese Patent Laid-Open No. 2002-100000, in the case of a configuration in which air flow (wind) generated by a fan is applied to an elastic membrane to vibrate the elastic membrane to muffle noise, an elastic membrane is used to strongly vibrate the elastic membrane. Since it is necessary to place the fan so that the wind directly hits the body, it should be placed so as to partially block the airflow path generated by the fan. Therefore, there is a problem that a large pressure loss is caused in the fan and the air volume is reduced.
Further, in Patent Document 1, since a large wind pressure is applied to the elastic membrane, the characteristics of the elastic membrane change when the air volume and wind pressure of the fan change. Therefore, the resonance effect formed by the properties of the elastic membrane and the back air layer cannot be used. Therefore, it is difficult to obtain a large noise reduction effect for the fan because it is not possible to obtain a large noise reduction effect by targeting the sound of a specific frequency generated by the rotation of the fan.

ファンの騒音は、羽根枚数と回転数に応じた複数の周波数で離散的に生じることが知られている。特許文献2のような共鳴型消音器は、共鳴型消音器の共鳴周波数と一致する単一の周波数の音を消音するものであり、他の周波数帯域の音に対しては消音の効果は低い。そのため、離散的に生じる複数の周波数の音を消音することは難しいという問題があった。 Fan noise is known to occur discretely at a plurality of frequencies depending on the number of blades and the number of revolutions. A resonance muffler such as that of Patent Document 2 muffles sounds of a single frequency that matches the resonance frequency of the resonance muffler, and has a low muffling effect on sounds in other frequency bands. . Therefore, there is a problem that it is difficult to silence sounds of a plurality of frequencies that occur discretely.

本発明の課題は、上記従来技術の問題点を解消し、ファンの風量を確保しつつ、ファンが発生する離散的な複数の周波数の、狭帯域の音を消音することができるファン消音システムを提供することを課題とする。 An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a fan silencing system that is capable of silencing narrow-band sounds of a plurality of discrete frequencies generated by the fan while ensuring the air volume of the fan. The task is to provide

本発明は、以下の構成によって課題を解決する。 The present invention solves the problems with the following configurations.

[1] ファン、および、音響共鳴構造を有し、
音響共鳴構造はファンが発生する音の近接場領域内に配置されているファン消音システム。
[2] 音響共鳴構造の共鳴周波数が、ファンの羽根の回転に起因する離散周波数音の少なくとも1つの周波数に一致する[1]に記載のファン消音システム。
[3] ファンの送風口に垂直な方向から見た際に、音響共鳴構造が送風口と重複する面積が、送風口の面積に対して50%以下である[1]または[2]に記載のファン消音システム。
[4] 音響共鳴構造は、ファンに接続される通風路の壁面の一部を構成している[1]~[3]のいずれかに記載のファン消音システム。
[5] 音響共鳴構造の振動体を備える面は、ファンの送風口に垂直な軸に平行に配置されている[1]~[4]のいずれかに記載のファン消音システム。
[6] 音響共鳴構造の、振動体を備える面側に音を透過する防風部材を有する[1]~[5]のいずれかに記載のファン消音システム。
[7] 音響共鳴構造は、ファンに接している[1]~[6]のいずれかに記載のファン消音システム。
[8] 音響共鳴構造は、防振部材を介してファンに接している[7]に記載のファン消音システム。
[9] 異なる共鳴周波数を有する複数の音響共鳴構造を有し、
共鳴周波数の高い音響共鳴構造が、共鳴周波数の低い音響共鳴構造よりもファンに近い位置に配置されている[1]~[8]のいずれかに記載のファン消音システム。
[10] ファンによる送風方向において、音響共鳴構造がファンの下流側のみに配置されている[1]~[9]のいずれかに記載のファン消音システム。
[11] ファンによる送風方向において、音響共鳴構造がファンの上流側および下流側に配置されている[1]~[9]のいずれかに記載のファン消音システム。
[12] 音響共鳴構造は、周縁部が固定され膜振動可能に支持されている膜と、膜の一方の面側に形成される背面空間とを有している、膜型共鳴構造である[1]~[11]のいずれかに記載のファン消音システム。
[13] 膜型共鳴構造は、背面空間と外部とを連通する貫通孔を有する[12]に記載のファン消音システム。
[14] ファンが軸流ファンである[1]~[13]のいずれかに記載のファン消音システム。
[1] having a fan and an acoustic resonance structure,
A fan noise reduction system in which the acoustic resonance structure is placed in the near-field area of the sound generated by the fan.
[2] The fan muffling system according to [1], wherein the resonance frequency of the acoustic resonance structure matches at least one frequency of discrete frequency sound caused by rotation of fan blades.
[3] Described in [1] or [2], wherein the area where the acoustic resonance structure overlaps the air outlet when viewed from the direction perpendicular to the air outlet of the fan is 50% or less of the area of the air outlet. fan silencer system.
[4] The fan muffling system according to any one of [1] to [3], wherein the acoustic resonance structure constitutes a part of the wall surface of the ventilation passage connected to the fan.
[5] The fan muffling system according to any one of [1] to [4], wherein the surface of the acoustic resonance structure having the vibrator is arranged parallel to the axis perpendicular to the air outlet of the fan.
[6] The fan muffling system according to any one of [1] to [5], which has a sound-transmitting windbreak member on the surface of the acoustic resonance structure provided with the vibrating body.
[7] The fan muffling system according to any one of [1] to [6], wherein the acoustic resonance structure is in contact with the fan.
[8] The fan muffling system according to [7], wherein the acoustic resonance structure is in contact with the fan via a vibration isolating member.
[9] having a plurality of acoustic resonance structures with different resonance frequencies;
The fan muffling system according to any one of [1] to [8], wherein the acoustic resonance structure with a high resonance frequency is arranged closer to the fan than the acoustic resonance structure with a low resonance frequency.
[10] The fan muffling system according to any one of [1] to [9], in which the acoustic resonance structure is arranged only downstream of the fan in the blowing direction of the fan.
[11] The fan muffling system according to any one of [1] to [9], wherein the acoustic resonance structures are arranged upstream and downstream of the fan in the air blowing direction of the fan.
[12] The acoustic resonance structure is a membrane-type resonance structure having a membrane with a fixed peripheral edge and supported so that the membrane can vibrate, and a back space formed on one side of the membrane [ 1] The fan muffling system according to any one of [11].
[13] The fan muffling system according to [12], wherein the membrane-type resonance structure has a through hole that communicates the back space with the outside.
[14] The fan noise reduction system according to any one of [1] to [13], wherein the fan is an axial fan.

本発明によれば、ファンの風量を確保しつつ、ファンが発生する離散的な複数の周波数の、狭帯域の音を消音することができるファン消音システムを提供することができる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a fan silencing system capable of silencing narrow-band sounds of a plurality of discrete frequencies generated by a fan while ensuring the air volume of the fan.

本発明のファン消音システムの一例を模式的に示す斜視図である。1 is a perspective view schematically showing an example of a fan noise reduction system of the present invention; FIG. 図1のファン消音システムをA方向から見た図である。FIG. 2 is a view of the fan muffling system of FIG. 1 viewed from direction A; 図2の断面図である。3 is a cross-sectional view of FIG. 2; FIG. 本発明のファン消音システムの他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the fan noise reduction system of the present invention; 本発明のファン消音システムの他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the fan noise reduction system of the present invention; 本発明のファン消音システムの他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the fan noise reduction system of the present invention; 本発明のファン消音システムの他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the fan noise reduction system of the present invention; 本発明のファン消音システムの他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the fan noise reduction system of the present invention; 本発明のファン消音システムの他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the fan noise reduction system of the present invention; 本発明のファン消音システムの他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the fan noise reduction system of the present invention; 本発明のファン消音システムの他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the fan noise reduction system of the present invention; 本発明のファン消音システムの他の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing another example of the fan noise reduction system of the present invention; 比較例1の構成を模式的に示す図である。3 is a diagram schematically showing the configuration of Comparative Example 1. FIG. 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 比較例2の構成を模式的に示す図である。FIG. 10 is a diagram schematically showing the configuration of Comparative Example 2; 周波数と消音量との関係を表すグラフである。It is a graph showing the relationship between frequency and silencing volume. 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 周波数と消音量との関係を表すグラフである。It is a graph showing the relationship between frequency and silencing volume. 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 電流と風速との関係を表すグラフである。It is a graph showing the relationship between current and wind speed. 実施例5の構成を模式的に示す図である。FIG. 11 is a diagram schematically showing the configuration of Example 5; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume; 比較例7の構成を模式的に示す図である。FIG. 11 is a diagram schematically showing the configuration of Comparative Example 7; 実施例9の構成を模式的に示す図である。FIG. 12 is a diagram schematically showing the configuration of Example 9; 周波数と測定音量との関係を表すグラフである。4 is a graph showing the relationship between frequency and measured sound volume;

以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、本明細書において、「直交」、「平行」および「垂直」とは、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、「平行」とは、厳密な直交に対して±10°未満の範囲内であることなどを意味し、厳密な直交に対しての誤差は、3°以下であることが好ましい。また、角度についても厳密な角度に対して±10°未満の範囲内であることを意味する。
本明細書において、「同じ」、「一致」は、技術分野で一般的に許容される誤差範囲を含むものとする。
The present invention will be described in detail below.
The description of the constituent elements described below is based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
Further, in this specification, the terms "perpendicular", "parallel" and "perpendicular" shall include the range of error that is permissible in the technical field to which the present invention belongs. For example, "parallel" means within a range of less than ±10° with respect to strict orthogonality, and the error with respect to strict orthogonality is preferably 3° or less. In addition, it means that the angle is within a range of less than ±10° with respect to the exact angle.
As used herein, the terms “same” and “match” shall include the margin of error generally accepted in the technical field.

[ファン消音システム]
本発明のファン消音システムは、
ファン、および、音響共鳴構造を有し、
音響共鳴構造は前記ファンが発生する音の近接場領域内に配置されているファン消音システムである。
[Fan silence system]
The fan silencer system of the present invention is
having a fan and an acoustic resonance structure;
An acoustic resonance structure is a fan muffling system located within the near-field region of the sound generated by the fan.

ファンが発生する音の近接場領域とは、音波が近接場の状態である領域である。音波が近接場の状態とは、以下のようなものである。
音源から発生した音波はいずれ、波の波数ごとの減衰の違いや、空間の制約(ダクト壁、流路の曲がりなど)によって伝搬する方向と強度が決まる。しかしながら、音源から発生した音波は、音波発生直後では上記の減衰や制約の影響に支配されず、遠方まで伝搬できない高波数成分も含めて、広い波数範囲にわたって振幅を有する。この音波がある距離以上、伝播してから平面波的になり方向性が決定される。この音源から音波が発生する直後の状態を「近接場」の状態という。したがって、上記条件を満たす音源近傍の領域を近接場領域とする。
この領域は、波動理論としてはλ/4程度伝搬するうちに、遠方に伝搬できない波数成分は伝搬できなくなることが知られている。
よって、本発明において音源であるファンは、ファンの羽根部分から音が発生するため、ファンの羽根部分からλ/4未満の距離の領域が近接場領域である。なお、ファンが流路中に配置されている場合は、流路に沿ったファンからの距離がλ/4未満の領域が近接場領域である。
The near-field region of the sound generated by the fan is the region where the sound waves are in the near-field state. The state in which the sound wave is in the near field is as follows.
The propagation direction and strength of sound waves generated from a sound source will eventually be determined by differences in attenuation for each wavenumber and spatial constraints (duct walls, curvature of flow paths, etc.). However, a sound wave generated from a sound source is not subject to the effects of the above attenuation and restrictions immediately after the sound wave is generated, and has amplitude over a wide range of wavenumbers, including high wavenumber components that cannot propagate over long distances. After this sound wave propagates over a certain distance, it becomes like a plane wave and its directionality is determined. The state immediately after sound waves are generated from the sound source is called the "near field" state. Therefore, the area near the sound source that satisfies the above conditions is defined as the near-field area.
It is known from the wave theory that wave number components that cannot propagate farther cannot propagate in this region after about λ/4 is propagated.
Therefore, in the present invention, the fan, which is the sound source, generates sound from the blades of the fan, so the near-field region is the region at a distance of less than λ/4 from the blades of the fan. Note that when the fan is arranged in the flow channel, the near-field region is a region along the flow channel whose distance from the fan is less than λ/4.

近接場の状態の音(以下、近接場音ともいう)は、音源から発せられる音の中で、伝搬音波の波数よりも高い波数であり遠くには伝搬できない音(音速c、周波数fとしたとき、波数k>2π×f/cとなる波数。)まで含めて、音源に空間的にまとわりつくように存在する。具体的には、音響伝搬が従う波動方程式では、k>2π×f/cとなる高い波数の音成分は波の振幅が距離に対して指数関数的に減衰するため、音源より遠くに伝搬することができないが、近接場領域においては、減衰の影響が小さいために、音源と混然一体となってこのような高い波数の音が音源周辺にのみ近接場音として局在している。 The sound in the near-field state (hereinafter also referred to as the near-field sound) is the sound emitted from the sound source that has a higher wave number than the propagating sound wave and cannot propagate far (sound speed c, frequency f When the wavenumber k>2π×f/c), it exists so as to spatially cling to the sound source. Specifically, in the wave equation that acoustic propagation follows, sound components with high wavenumbers where k>2π×f/c propagate farther than the sound source because the wave amplitude decays exponentially with distance. However, since the influence of attenuation is small in the near-field region, such high-wavenumber sound is localized only around the sound source as near-field sound, being mixed with the sound source.

本発明のファン消音システムでは、音響共鳴構造を近接場領域内に配置することで、近接場領域内で近接場音に対して以下の二つの相互作用を発生させて消音効果が得られていると考えられる。
一つ目の相互作用のメカニズムは、以下のようなものである。
近接場音の高い波数の音波は、空間的な波のサイズ(波数の逆数)が小さいことを特徴とする。そのため、音源の近くに配置された音響共鳴構造に対して、空間的に局所的な相互作用をすることができる。具体的には、音響共鳴構造のごく一部だけに音圧が局所的にかかるなどである。このような、通常の遠方まで伝搬する波数の音波では困難である局所的な相互作用を音響共鳴構造に生じさせることによって、音響共鳴構造に非線形効果を生じさせやすい。一つ目の相互作用のメカニズムは、この非線形効果によって音響共鳴構造の狙いの消音周波数(共鳴周波数)以外の周波数の音に対しても消音効果が作用していると推測される。
In the fan noise reduction system of the present invention, by arranging the acoustic resonance structure in the near-field region, the following two interactions are generated with respect to the near-field sound within the near-field region, thereby obtaining a noise reduction effect. it is conceivable that.
The first interaction mechanism is as follows.
High-wavenumber sound waves of near-field sound are characterized by a small spatial wave size (reciprocal of wavenumber). As such, spatially local interaction can be achieved for acoustic resonant structures located near the sound source. Specifically, the sound pressure is locally applied only to a small portion of the acoustic resonance structure. A nonlinear effect is likely to occur in the acoustic resonance structure by causing such a local interaction in the acoustic resonance structure, which is difficult for sound waves of a wavenumber that propagates over a long distance. As for the first interaction mechanism, it is presumed that this non-linear effect also acts on sounds of frequencies other than the targeted silencing frequency (resonance frequency) of the acoustic resonance structure.

二つ目の相互作用のメカニズムは、音響共鳴構造によって反射されて音源位置まで戻る音によって、音源からの音波の生成が抑制される効果であると推測できる。
ファンが回転する際に羽根が空気を切ることで、羽根周囲の空気に微小な流体渦が生成される。この渦が羽根のエッジ部等で変形することによって音が発生することが、ファンによる音(空力音)の発生メカニズムである。音響共鳴構造を音源の近傍に配置することで、音源から発生した音が音響共鳴構造によって反射され、その反射音が音源に伝播して音源から発生する音と干渉する。この干渉の結果、音源位置での音圧を小さくする。
この時の効果として、まず音源位置での音圧が下がることによって、音源からの音の放射量が低減する。これによって、放射音量が大きく下がる。
さらに、音源から音が出るプロセスだけではなく、音源自体の生成、今回のファンにおいては微小渦自体の生成が抑制できている可能性が高い。近接場領域に配置された音響共鳴構造では、音源から発せられる遠方まで伝搬する音波だけでなく、高い波数を有して音源近傍に留まる近接場音とも相互作用する。この近接場音について音響共鳴構造と強く相互作することで、音響渦から発する音の波数モードが、遠方に伝搬しない音である近接場音に偏り、また、その相互作用による反射で音源位置の音圧が近接場においても小さくなり、音源となる微小渦の生成量が極めて強く抑えられる。
一方で遠方場に配置された音響共鳴構造では、近接場波数では音源位置音圧が下がっていないため、音源となる微小渦の生成自体はあまり抑えることができない。よって、音波の波数を低波数から近接場音の波数までカバーできる近接場領域に音響共鳴構造が配置された場合に、音源となる微小渦の生成量が極めて小さくなる。
音源となる微小渦の生成量が下がることで、音響共鳴構造の周波数だけではなく、他の周波数の空力音にわたって低減させることができる。特に、ファンのピーク音は各羽根からの微小渦から出る音の位相が揃っていることで強め合いの干渉効果を生じて強い音を発している。このとき、音源の個数の二乗に比例したエネルギーとなるため、音源である微小渦の数が少なくなった場合に、その二乗にしたがって発する音のエネルギーが小さくなる。よって、微小渦の生成量が少なくなった場合の音の低減効果の影響を大きく受けやすい。よって、複数のピーク音に対して選択的な消音効果が現れる。本発明での複数の離散周波数音抑制効果は、この二つ目のメカニズムによる音源数の低減とそれに伴うピーク音抑制効果を主要な寄与として生じていると考えられる。
なお、ファンピーク音以外の広帯域騒音(乱流騒音)と呼ばれる騒音は、羽根のそれぞれの音源の位相がばらばらで強め合いと打ち消しあいが複雑に起こった後に生じているため、音源数が低減しても騒音量があまり低減しないと考えられ、ピーク音のみが選択的に抑制される結果となる。
The second interaction mechanism can be presumed to be the effect of suppressing the generation of sound waves from the sound source by the sound reflected by the acoustic resonance structure and returning to the sound source position.
As the fan rotates, the blades cut through the air, creating microfluidic vortices in the air around the blades. The sound generated by the deformation of the vortex at the edge of the blade is the mechanism by which the sound (aerodynamic sound) generated by the fan is generated. By arranging the acoustic resonance structure near the sound source, the sound generated from the sound source is reflected by the acoustic resonance structure, the reflected sound propagates to the sound source, and interferes with the sound generated from the sound source. As a result of this interference, the sound pressure at the sound source location is reduced.
As an effect at this time, the sound pressure at the position of the sound source is lowered, and the amount of sound emitted from the sound source is reduced. This greatly reduces the radiated sound volume.
Furthermore, it is highly possible that not only the process of producing sound from the sound source, but also the generation of the sound source itself, and in the case of this fan, the generation of the micro-vortices themselves can be suppressed. Acoustic resonant structures located in the near-field region interact not only with far-propagating sound waves emanating from a sound source, but also with near-field sounds that have a high wave number and remain near the source. By strongly interacting with the acoustic resonance structure for this near-field sound, the wave number mode of the sound emitted from the acoustic vortex is biased toward the near-field sound, which is sound that does not propagate far, and the reflection due to this interaction causes the position of the sound source to change. The sound pressure is reduced even in the near field, and the amount of generation of micro vortices that act as a sound source is extremely suppressed.
On the other hand, in the acoustic resonance structure arranged in the far field, since the sound pressure at the sound source position does not decrease at the near-field wavenumber, the generation of the micro vortex that becomes the sound source itself cannot be suppressed much. Therefore, when the acoustic resonance structure is arranged in a near-field region capable of covering the wavenumbers of sound waves from low wavenumbers to near-field sound wavenumbers, the amount of generation of minute vortices that serve as sound sources is extremely small.
By reducing the amount of micro-vortices that generate a sound source, it is possible to reduce not only the frequency of the acoustic resonance structure, but also the aerodynamic noise of other frequencies. In particular, the peak sound of the fan emits a strong sound because the phases of the sound emitted from the minute vortices from each blade are aligned, creating a constructive interference effect. At this time, since the energy is proportional to the square of the number of sound sources, when the number of minute eddies, which are sound sources, decreases, the energy of the emitted sound decreases in accordance with the square. Therefore, it is likely to be greatly affected by the effect of reducing sound when the amount of minute eddies generated is reduced. Therefore, a selective silencing effect appears for a plurality of peak sounds. The effect of suppressing a plurality of discrete frequency sounds in the present invention is considered to be caused mainly by the reduction in the number of sound sources by the second mechanism and the associated peak sound suppression effect.
In addition, the noise called broadband noise (turbulent flow noise) other than the fan peak noise is generated after the phases of the sound sources of the blades are different and the phases of each sound source are different, and the number of sound sources is reduced. However, it is thought that the amount of noise is not significantly reduced, resulting in selective suppression of only the peak sound.

このような効果は、光学分野では例えばJR Lakowicz et. al., "Radiative Decay Engineering: 2. Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer" Analytical Biochemistry, 301, 261-277 (2002).に、金属粒子と蛍光粒子の距離と、発光強度やその光源の寿命、生成率について示されている。同様のことが音波や音源についても生じていると考えられる。
音響共鳴構造が近接場領域にあるときには、音源との距離が最大でもλ/4未満であるため、伝搬による音波の位相変化は小さい。一方、音響共鳴構造によって反射されることにより音波の位相は反転(πの位相変化)する。そのため、音源から発生している音と、音響共鳴構造によって反射されて音源に戻った音は、その位相ずれがほぼ位相反転状態となっているため逆位相で干渉する。よって、二つの音同士が音源位置で打ち消し合って、音源位置での消音効果を発生する。
Such an effect is known in the field of optics, for example, JR Lakowicz et. ) shows the distance between the metal particle and the fluorescent particle, the emission intensity, the lifetime of the light source, and the production rate. It is conceivable that the same thing occurs with sound waves and sound sources.
When the acoustic resonance structure is in the near-field region, the distance to the sound source is less than λ/4 at maximum, so the phase change of the sound wave due to propagation is small. On the other hand, the phase of the sound wave is inverted (phase change of π) by being reflected by the acoustic resonance structure. Therefore, the sound generated from the sound source and the sound reflected by the acoustic resonance structure and returned to the sound source interfere with each other in opposite phases because their phase shifts are almost reversed. Therefore, the two sounds cancel each other out at the sound source position, producing a silencing effect at the sound source position.

以上のとおり、本発明のファン消音システムは、音響共鳴構造を近接場領域に配置することで、近接場音特有の空間的に局在した音響によって、局所的な相互作用による非線形効果が現れるメカニズムと、音源位置における音圧を小さくすることで、音源である流体渦の生成を抑制するメカニズムとによって、音響共鳴構造の共鳴周波数によらず、広い周波数帯域で消音効果を得ることができる。そのため、ファンが発生する離散的な複数の周波数の音(以下、離散周波数音ともいう)に対して消音効果が得られる。 As described above, in the fan noise reduction system of the present invention, by placing the acoustic resonance structure in the near-field region, the spatially localized sound peculiar to the near-field sound produces a nonlinear effect due to local interaction. and a mechanism that suppresses the generation of fluid eddies, which are the sound source, by reducing the sound pressure at the sound source position. Thus, the silencing effect can be obtained in a wide frequency band regardless of the resonance frequency of the acoustic resonance structure. Therefore, a silencing effect can be obtained for sounds of a plurality of discrete frequencies (hereinafter also referred to as discrete frequency sounds) generated by the fan.

また、上記2つの相互作用のメカニズムは、近接場領域に音響共鳴構造を配置したことによる音源(音波)と音響共鳴構造との相互作用による効果である。よって、風の流れは無関係であるため、音響共鳴構造を、音響共鳴構造に直接、風がぶつかるように配置する必要がない。すなわち、音響共鳴構造を、ファンが発生する空気流の風路を一部塞ぐように配置する必要がない。そのため、ファンの風量を確保しつつ、ファンが発生する音を消音することができる。 Also, the mechanism of the above two interactions is the effect of the interaction between the sound source (sound wave) and the acoustic resonance structure, which are caused by arranging the acoustic resonance structure in the near-field region. Thus, the wind flow is irrelevant, so there is no need to position the acoustic resonance structure in such a way that the wind directly impinges on the acoustic resonance structure. That is, it is not necessary to arrange the acoustic resonance structure so as to partially block the airflow path of the airflow generated by the fan. Therefore, it is possible to suppress the noise generated by the fan while ensuring the air volume of the fan.

ここで、前述のとおり、音源からの距離がλ/4未満の領域が近接場領域である。したがって、音波の波長(周波数)によって近接場領域の大きさは異なる。
本発明においては音響共鳴構造の共鳴周波数fr(複数の共鳴がある場合は、その最低次数)とした場合に、その波長をλとして、ファン音源部からλ/4未満の領域を近接場領域とする。
Here, as described above, the near-field region is the region whose distance from the sound source is less than λ/4. Therefore, the size of the near-field region differs depending on the wavelength (frequency) of the sound wave.
In the present invention, when the resonance frequency of the acoustic resonance structure is fr (the lowest order if there are multiple resonances), the wavelength is λ, and the region less than λ/4 from the fan sound source is the near-field region. do.

なお、消音効果をより高くできる点で、音響共鳴構造は少なくとも一部が、ファン(音源)からλ/6の距離の領域に配置されるのが好ましく、λ/8の距離の領域に配置されるのがより好ましい。音源と音響共鳴構造との距離が近いほど、上述した二つ目のメカニズムにおいて、音響共鳴構造で反射されて音源に戻る過程での位相変化が小さくなるため、反射音と音源からの音の干渉による消音効果がより高くなる。 Note that at least a part of the acoustic resonance structure is preferably arranged in a region with a distance of λ/6 from the fan (sound source), and is arranged in a region with a distance of λ/8 from the fan (sound source) in order to improve the silencing effect. is more preferable. In the second mechanism described above, the closer the distance between the sound source and the acoustic resonance structure, the smaller the phase change in the process of being reflected by the acoustic resonance structure and returning to the sound source. The silencing effect due to is higher.

本発明において、音響共鳴構造は、その共鳴周波数において音波と共鳴して消音効果を生じるものである。共鳴現象が生じる構造であれば様々に選択することができるが、例えば、音響共鳴構造は、膜型共鳴構造、ヘルムホルツ共鳴構造、および、気柱共鳴構造を代表的な構造として挙げることができる。各音響共鳴構造については後に詳述する。 In the present invention, the acoustic resonance structure is one that resonates with sound waves at its resonance frequency to produce a silencing effect. Various structures can be selected as long as they cause a resonance phenomenon. For example, typical acoustic resonance structures include a membrane-type resonance structure, a Helmholtz resonance structure, and an air column resonance structure. Each acoustic resonance structure will be described in detail later.

本発明のファン消音システムの構成について、図面を用いて説明する。
図1は、本発明のファン消音システムの好適な実施態様の一例を示す模式的な斜視図である。図2は、図1をA方向から見た正面図である。図3は、図2の断面図である。なお、図2において、音響共鳴構造は断面で示している。なお、図2および図3において、ファンの回転子等の図示は省略し、外形および送風口のみを示している。
The configuration of the fan noise reduction system of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view showing an example of a preferred embodiment of the fan noise reduction system of the present invention. FIG. 2 is a front view of FIG. 1 viewed from direction A. FIG. 3 is a cross-sectional view of FIG. 2. FIG. In addition, in FIG. 2, the acoustic resonance structure is shown in cross section. 2 and 3, illustration of the rotor of the fan and the like is omitted, and only the outer shape and the blower port are shown.

図1~図3に示すファン消音システム10は、軸流ファン12a、および、膜型共鳴構造30aを有する。 The fan muffling system 10 shown in FIGS. 1-3 has an axial fan 12a and a membrane resonance structure 30a.

軸流ファン12aは、基本的に公知の軸流ファンであり、複数の羽根を有する回転子を回転させて気体に運動エネルギーを与えて気体を軸方向に送風する。
具体的には、軸流ファン12aは、ケーシング16、ケーシング16に取り付けられたモーター(図示せず)、ならびに、モーターに取り付けられ回転される軸部20および軸部20の径方向外側に突出して形成された羽根22を備える回転子18を有する。
なお、以下の説明では、軸部20(回転子18)の回転軸を単に「回転軸」といい、軸部20(回転子18)の径方向を単に「径方向」という。
The axial fan 12a is basically a well-known axial fan, and rotates a rotor having a plurality of blades to give kinetic energy to the gas and blow the gas in the axial direction.
Specifically, the axial fan 12a includes a casing 16, a motor (not shown) attached to the casing 16, and a shaft portion 20 attached to and rotated by the motor, and protrudes radially outward of the shaft portion 20. It has a rotor 18 with vanes 22 formed therein.
In the following description, the rotation axis of shaft portion 20 (rotor 18) is simply referred to as "rotation shaft", and the radial direction of shaft portion 20 (rotor 18) is simply referred to as "radial direction".

モーターは一般的な電動モーターであり、回転子18を回転させるものである。 The motor is a general electric motor, and rotates the rotor 18 .

回転子18の軸部20は、略円柱状で一方の底面側をモーターの回転軸に取り付けられており、モーターによって回転される。
羽根22は、軸部20の周面に、周面から径方向の外側に突出するように形成されている。また、回転子18は、複数の羽根22を有しており、複数の羽根22は、軸部20の周面の周方向に配列されている。図1に示す例では、回転子18は、4枚の羽根22を有する構成としたがこれに限定はされず、複数枚の羽根22を有していればよい。また、ケーシング16のフレームも図面では4本になっているが、これにも限定されない。
また、羽根22の形状は、従来公知の軸流ファンで用いられている各種の形状とすることができる。
A shaft portion 20 of the rotor 18 has a substantially cylindrical shape, and one bottom side thereof is attached to the rotating shaft of the motor, and is rotated by the motor.
The blades 22 are formed on the peripheral surface of the shaft portion 20 so as to protrude radially outward from the peripheral surface. Also, the rotor 18 has a plurality of blades 22 , and the plurality of blades 22 are arranged in the circumferential direction of the peripheral surface of the shaft portion 20 . In the example shown in FIG. 1, the rotor 18 is configured to have four blades 22, but is not limited to this, and may have a plurality of blades 22. FIG. Also, although the number of frames of the casing 16 is four in the drawing, the number of frames is not limited to this.
Further, the shape of the blades 22 can be various shapes used in conventionally known axial fans.

軸流ファン12aは、羽根22を有する回転子18がモーターによって回転することで、回転軸方向に気流(風)を発生させる。気流の流れ方向には限定はなく、回転軸方向においてモーター側からモーターとは反対方向に流れるものであってもよく、モーターとは反対側からモーター側に流れるものであってもよい。 The axial fan 12a generates an air current (wind) in the rotation axis direction by rotating a rotor 18 having blades 22 by a motor. The flow direction of the airflow is not limited, and the airflow may flow from the side of the motor in the direction opposite to the motor, or may flow from the side opposite to the motor in the direction of the rotation shaft.

ケーシング16は、モーターが固定され、また、回転可能な回転子18(羽根22)の径方向の周囲を囲むものである。
回転軸方向におけるケーシング16の厚みは、回転子18を外部から保護できように、羽根22および軸部20の厚みよりも厚い。
The casing 16 has a fixed motor and radially surrounds a rotatable rotor 18 (blades 22).
The thickness of the casing 16 in the rotation axis direction is thicker than the thickness of the blades 22 and the shaft portion 20 so as to protect the rotor 18 from the outside.

ケーシング16は、回転軸方向に開口する送風口16aを有しており、送風口16a内に回転子18が配置されている。羽根22を有する回転子18が回転すると、送風口16aの一方の開口面側から吸気し、他方の開口面側から送気する。すなわち、回転子18が回転することで発生する気流(風)を回転軸方向に送気する。 The casing 16 has a blower opening 16a that opens in the direction of the rotation axis, and a rotor 18 is arranged in the blower opening 16a. When the rotor 18 having the blades 22 rotates, the air is sucked from one opening side of the blower port 16a and air is sent from the other opening side. That is, the airflow (wind) generated by the rotation of the rotor 18 is sent in the rotation axis direction.

ケーシング16の厚みは、回転子18を外部から保護し、回転子18の回転によって発生する空気の流れのうち、径方向への空気の流れを抑制して回転軸方向への風量を増やすことができればよく、羽根22および/または軸部20の厚みに対して、1.01倍~3.00倍程度の厚みであればよい。 The thickness of the casing 16 protects the rotor 18 from the outside, suppresses the flow of air in the radial direction among the air flows generated by the rotation of the rotor 18, and increases the air volume in the direction of the rotation axis. If possible, the thickness should be about 1.01 to 3.00 times the thickness of the blades 22 and/or the shaft portion 20 .

軸流ファン12aは、さらに、公知の軸流ファンが有する各種の構成を有していてもよい。
例えば、図1に示す例では、軸流ファン12aは、軸流ファン12aを各種機器に固定する際にねじなどの締結部材を挿入する孔を有する。
The axial fan 12a may further have various configurations of known axial fans.
For example, in the example shown in FIG. 1, the axial fan 12a has holes into which fastening members such as screws are inserted when fixing the axial fan 12a to various devices.

膜型共鳴構造30aは、軸流ファン12aが発生する離散周波数音を消音するものである。
膜型共鳴構造30aは、枠体32と、膜34とを有し、枠体32および膜34に囲まれる背面空間35を形成した構成を有しており、枠体32に振動可能に支持された膜34が膜振動することで共鳴する。
The membrane-type resonance structure 30a dampens discrete frequency sounds generated by the axial fan 12a.
The membrane-type resonance structure 30a has a frame 32 and a membrane 34, and has a back space 35 surrounded by the frame 32 and the membrane 34. The membrane-type resonance structure 30a is supported by the frame 32 so as to vibrate. Resonance occurs when the membrane 34 vibrates.

図1~図3に示す例では、枠体32は、直方体形状で一面に底面を有する開口部が形成された形状である。すなわち、枠体32は一面が開放された有底の四角筒形状である。
膜34は膜状の部材であり、枠体32の、開口部が形成された開口面を覆って周縁部を枠体32に固定されて振動可能に支持されている。
また、膜34の背面側(枠体32側)には、枠体32と膜34とに囲まれた背面空間35が形成されている。図1~図3に示す例では、背面空間は、閉じられた閉空間である。
In the example shown in FIGS. 1 to 3, the frame 32 has a rectangular parallelepiped shape with an opening having a bottom surface on one side. That is, the frame 32 has a bottomed square cylinder shape with one side open.
The film 34 is a film-like member that covers the opening surface of the frame 32 where the opening is formed, and has its peripheral portion fixed to the frame 32 so that it can vibrate.
A rear space 35 surrounded by the frame 32 and the film 34 is formed on the rear side of the film 34 (the side of the frame 32 ). In the examples shown in FIGS. 1-3, the back space is a closed closed space.

図1~図3に示す例では、膜型共鳴構造30aは、軸流ファン12aの送風方向の下流側に配置されている。また、膜型共鳴構造30aは、軸流ファン12aによる送風(送風口16a)を塞がない位置に、具体的には、軸流ファン12aによる送風される風の風路となる領域の周囲に配置されている。また、膜型共鳴構造30aは、膜34が軸流ファン12aの回転軸方向(図3中X方向)と平行となり、かつ、膜34が回転軸側を向いて配置されている。 In the examples shown in FIGS. 1 to 3, the membrane resonance structure 30a is arranged downstream of the axial flow fan 12a in the blowing direction. Further, the membrane-type resonance structure 30a is positioned so as not to block the air blown by the axial fan 12a (air blow port 16a). are placed. The membrane resonance structure 30a is arranged such that the membrane 34 is parallel to the rotation axis direction (the X direction in FIG. 3) of the axial flow fan 12a and the membrane 34 faces the rotation axis side.

ここで、従来、膜型共鳴構造等の音響共鳴構造を消音に用いる場合には、音響共鳴構造の共鳴周波数を消音対象の音の周波数に合わせて共鳴現象を利用することで、この周波数の音を消音する。そのため、他の周波数帯域の音に対しては消音の効果は低く、複数の離散周波数音を消音することは難しいという問題があった。 Here, conventionally, when an acoustic resonance structure such as a membrane type resonance structure is used for muffling, the resonance frequency of the acoustic resonance structure is matched with the frequency of the sound to be muffled, and the resonance phenomenon is used to suppress the sound of this frequency. mute the Therefore, there is a problem that the effect of silencing sounds in other frequency bands is low, and it is difficult to silence a plurality of discrete frequency sounds.

これに対して、本発明のファン消音システムでは、膜型共鳴構造30aをファンが発生する音の近接場領域内に配置することで、上述した2つの相互作用のメカニズムを発生させて、軸流ファン12aが発生した複数の離散周波数音を消音することができる。
このとき、膜34の振動可能部の少なくとも一部が近接場領域内に存在することが必要であり、より望ましくは膜34の振動可能部の重心位置が近接場領域内に存在することが必要となる。
On the other hand, in the fan noise reduction system of the present invention, the film-type resonance structure 30a is arranged in the near-field region of the sound generated by the fan, thereby generating the above-mentioned two interaction mechanisms and A plurality of discrete frequency sounds generated by the fan 12a can be silenced.
At this time, at least part of the vibratable portion of the membrane 34 needs to exist within the near-field region, and more preferably, the position of the center of gravity of the vibratable portion of the membrane 34 needs to exist within the near-field region. becomes.

ここで、本発明のファン消音システムにおいて、膜型共鳴構造30a(音響共鳴構造)の共鳴周波数には特に制限はない。
また、音響共鳴構造の元々の共鳴による消音効果を効果的に活用するため、音響共鳴構造の共鳴周波数は可聴域内(20-20000Hz)の中にあることが望ましく、100-16000Hzの範囲にあることがより望ましい。
膜型共鳴構造30a(音響共鳴構造)の共鳴周波数はファンの羽根の回転に起因する離散周波数音の少なくとも1つの周波数に一致するのが好ましい。これにより、離散周波数音のうち、音響共鳴構造の共鳴周波数に一致する周波数における消音効果をより高くすることができる。
例えば、音響共鳴構造の共鳴周波数は、離散周波数音のうち、音圧の大きさ、より具体的にはA特性音圧レベルが最も大きい離散周波数音に一致するのが好ましい。これによって、ファンの騒音に対する寄与度の大きな離散周波数音を効果的に消音することができる。
また、音響共鳴構造の共鳴周波数は、複数の離散周波数音の中で最も低周波側の音に一致することも好ましい。一般の消音材では低周波ほど消音が難しいため、共鳴効果で低周波音を選択的に消音したうえで、他の消音材料と組み合わせることができる。
なお、本発明において、音響共鳴構造の共鳴周波数とファンの離散周波数音のうちの1つの周波数とが一致するとは、音響共鳴構造の共鳴周波数が、ファンの離散周波数音のうちの1つの周波数の±10%以内の範囲であるものとする。
Here, in the fan noise reduction system of the present invention, there is no particular limitation on the resonance frequency of the membrane-type resonance structure 30a (acoustic resonance structure).
In addition, in order to effectively utilize the silencing effect of the original resonance of the acoustic resonance structure, the resonance frequency of the acoustic resonance structure is desirably within the audible range (20-20000 Hz), and should be in the range of 100-16000 Hz. is more desirable.
The resonant frequency of the membrane-type resonant structure 30a (acoustic resonant structure) preferably corresponds to at least one frequency of discrete frequency sounds caused by the rotation of the fan blades. As a result, among discrete frequency sounds, the silencing effect can be enhanced at frequencies that match the resonance frequency of the acoustic resonance structure.
For example, the resonance frequency of the acoustic resonance structure preferably corresponds to the discrete frequency sound having the highest sound pressure level, more specifically, the highest A-weighted sound pressure level among the discrete frequency sounds. As a result, it is possible to effectively muffle the discrete frequency sound that contributes greatly to the noise of the fan.
Further, it is also preferable that the resonance frequency of the acoustic resonance structure matches the sound on the lowest frequency side among the plurality of discrete frequency sounds. Since it is difficult to muffle low-frequency sounds with ordinary sound-deadening materials, it is possible to selectively muffle low-frequency sounds by using resonance effects and then combine them with other sound-deadening materials.
In the present invention, the expression that the resonance frequency of the acoustic resonance structure matches one of the discrete frequency sounds of the fan means that the resonance frequency of the acoustic resonance structure is one of the discrete frequency sounds of the fan. The range shall be within ±10%.

なお、軸流ファンの場合には、回転数をz(rps)とし、羽枚数をNとすると、m×N×z(Hz)(mは1以上の整数)の周波数に強く音(離散周波数音)が発生する。
また、膜型共鳴構造の共鳴周波数は、膜34の大きさ(振動面の大きさ、すなわち、枠体32の開口部の大きさ)、厚み、硬さ等によって決まる。従って、膜34の大きさ、厚み、硬さ等を調整することで、膜型共鳴構造の共鳴周波数を適宜設定することができる。
In the case of an axial fan, if the number of rotations is z (rps) and the number of blades is N, a strong sound (discrete frequency sound) is generated.
The resonance frequency of the membrane-type resonance structure is determined by the size of the membrane 34 (the size of the vibration surface, that is, the size of the opening of the frame 32), thickness, hardness, and the like. Therefore, by adjusting the size, thickness, hardness, etc. of the film 34, the resonance frequency of the film-type resonance structure can be appropriately set.

また、上述のとおり、膜型共鳴構造30aは、膜34の背面側に背面空間35を有する。背面空間35は閉じられているため、膜振動と背面空間との相互作用によって吸音が生じる。
具体的には、膜振動には、膜の条件(厚み、硬さ、大きさ、固定方法等)によって決定される基本振動モードと高次振動モードの周波数帯があり、どのモードによる周波数が強く励起されて吸音に寄与するかが背面空間の厚み等によって決定される。背面空間の厚みが薄いと、定性的には背面空間が固くなる効果などが生じるため、膜振動の高次振動モードを励起しやすくなる。
Further, as described above, the membrane-type resonance structure 30 a has the back space 35 on the back side of the membrane 34 . Since the back space 35 is closed, sound absorption occurs due to interaction between membrane vibration and the back space.
Specifically, membrane vibration has a frequency band of fundamental vibration mode and higher-order vibration mode, which are determined by the conditions of the membrane (thickness, hardness, size, fixing method, etc.). The thickness of the back space or the like determines whether it is excited and contributes to sound absorption. When the thickness of the back space is thin, qualitatively, the effect of hardening the back space is produced, so that higher-order vibration modes of membrane vibration are likely to be excited.

また、図1~図3に示す例では、膜型共鳴構造30aの背面空間35は、枠体32と膜34とに完全に囲まれた閉空間としたが、これに限定はされず、空気の流れが阻害されるように空間がほぼ仕切られていればよく、完全な閉空間の他に、膜34、あるいは、枠体32に一部開口を有していても良い。このような一部に開口を有する形態は、温度変化により背面空間内の気体が膨張あるいは収縮して膜34に張力が付加されて膜34の硬さが変化することで吸音特性が変化することを防ぐことができる点で好ましい。
膜34に貫通孔を形成することで、空気伝搬音による伝搬が生じる。これによって膜34の音響インピーダンスが変化する。また、貫通孔によって膜34の質量が減少する。これらによって、膜型共鳴構造30aの共鳴周波数をコントロールすることができる。
貫通孔が形成される位置については特に限定はない。
In addition, in the examples shown in FIGS. 1 to 3, the back space 35 of the membrane-type resonance structure 30a is a closed space completely surrounded by the frame 32 and the membrane 34, but is not limited to this. It is sufficient if the space is substantially partitioned so that the flow of air is blocked, and the membrane 34 or the frame 32 may have a partial opening in addition to the completely closed space. In such a form having an opening in a part, the gas in the back space expands or contracts due to temperature change, tension is applied to the film 34, and the hardness of the film 34 changes, resulting in a change in sound absorption characteristics. It is preferable in that it can prevent
By forming a through hole in the membrane 34, airborne sound propagation occurs. This changes the acoustic impedance of membrane 34 . Also, the through holes reduce the mass of the membrane 34 . These can control the resonance frequency of the membrane-type resonance structure 30a.
There is no particular limitation on the positions where the through holes are formed.

膜34の厚みは、100μm未満が好ましく、70μm以下がより好ましく、50μm以下がさらに好ましい。なお、膜34の厚みが一様でない場合には、平均値が上記範囲であればよい。
一方で、膜の厚みが薄すぎると取り扱いが難しくなる。膜厚は1μm以上であることが好ましく、5μm以上であることがより好ましい。
膜34のヤング率は、1000Pa~1000GPaであることが好ましく、10000Pa~500GPaであることがより好ましく、1MPa~300GPaであることが最も好ましい。
膜34の密度は、10kg/m3~30000kg/m3であることが好ましく、100kg/m3~20000kg/m3であることがより好ましく、500kg/m3~10000kg/m3であることが最も好ましい。
The thickness of the membrane 34 is preferably less than 100 μm, more preferably 70 μm or less, even more preferably 50 μm or less. In addition, when the thickness of the film 34 is not uniform, the average value may be within the above range.
On the other hand, if the thickness of the film is too thin, it becomes difficult to handle. The film thickness is preferably 1 μm or more, more preferably 5 μm or more.
The Young's modulus of the membrane 34 is preferably 1000 Pa to 1000 GPa, more preferably 10000 Pa to 500 GPa, and most preferably 1 MPa to 300 GPa.
The density of membrane 34 is preferably between 10 kg/m 3 and 30,000 kg/m 3 , more preferably between 100 kg/m 3 and 20,000 kg/m 3 , and most preferably between 500 kg/m 3 and 10,000 kg/m 3 .

また、背面空間35の厚み(膜34の表面に垂直な方向の厚み)は、10mm以下が好ましく、5mm以下がより好ましく、3mm以下がさらに好ましい。
なお、背面空間35の厚みが一様でない場合には、平均値が上記範囲であればよい。
The thickness of the back space 35 (the thickness in the direction perpendicular to the surface of the film 34) is preferably 10 mm or less, more preferably 5 mm or less, and even more preferably 3 mm or less.
In addition, when the thickness of the back space 35 is not uniform, the average value may be within the above range.

また、図1~図3に示す例では、膜34の表面に垂直な方向から見た膜型共鳴構造30aの形状、すなわち、膜34の振動領域の形状は四角形状としたが、これに限定はされず、円形状であってもよく、あるいは、三角形状等の多角形状、楕円形状等であってもよい。 In addition, in the examples shown in FIGS. 1 to 3, the shape of the membrane-type resonance structure 30a seen from the direction perpendicular to the surface of the membrane 34, that is, the shape of the vibration region of the membrane 34 is square, but is limited to this. It may have a circular shape, a polygonal shape such as a triangular shape, an elliptical shape, or the like.

本発明のファン消音システムでは、上述のとおり、近接場領域に音響共鳴構造を配置したことによる音源(音波)と音響共鳴構造との相互作用による効果であるため、音響共鳴構造を、音響共鳴構造に直接、風がぶつかるように配置しなくても消音の効果が得られる。ファンの風量を確保する観点から、音響共鳴構造は、ファンが発生する空気流の風路を塞がないように配置されることが好ましい。
具体的には、ファンの送風口に垂直な方向から見た際に、音響共鳴構造と送風口とが重複する面積が、送風口の面積に対して50%以下であることが好ましく、10%以下であることがより好ましく、図2に示すように、0%、すなわち、重複しないことがさらに好ましい。
また、音響共鳴構造と送風口が重複する場合には、スロープ状の構造を取り付けるなど、風をスムーズに流しつつ風切り音の発生を抑制する構造があることが望ましい。
In the fan silencer system of the present invention, as described above, the effect is due to the interaction between the sound source (sound wave) and the acoustic resonance structure due to the placement of the acoustic resonance structure in the near-field region. The effect of silencing can be obtained even if it is not arranged so that the wind hits directly. From the viewpoint of securing the air volume of the fan, the acoustic resonance structure is preferably arranged so as not to block the airflow path of the airflow generated by the fan.
Specifically, the overlapping area of the acoustic resonance structure and the air outlet when viewed from the direction perpendicular to the air outlet of the fan is preferably 50% or less, preferably 10%, of the area of the air outlet. is more preferably less than or equal to, and even more preferably 0%, ie no overlap, as shown in FIG.
Moreover, when the acoustic resonance structure and the air blowing port overlap, it is desirable to have a structure such as attaching a slope-like structure to smoothly flow the air and suppress the generation of wind noise.

また、音響共鳴構造の振動体を備える面は、ファンの送風口に垂直な軸に平行に配置されていることが好ましい。
図2に示す例では、膜34が膜型共鳴構造30aの振動体であり、膜型共鳴構造30aの膜34が配置された面が軸流ファン12aの送風口16aに垂直な軸に平行に配置されている。
なお、音響共鳴構造がヘルムホルツ共鳴構造あるいは気柱共鳴構造の場合には、共鳴構造の貫通孔内の空気が振動体であり、貫通孔が形成された面が振動体を備える面である。
Moreover, it is preferable that the surface of the acoustic resonance structure having the vibrator is arranged parallel to the axis perpendicular to the air outlet of the fan.
In the example shown in FIG. 2, the membrane 34 is the vibrating body of the membrane resonance structure 30a, and the plane of the membrane resonance structure 30a on which the membrane 34 is arranged is parallel to the axis perpendicular to the air outlet 16a of the axial fan 12a. are placed.
When the acoustic resonance structure is a Helmholtz resonance structure or an air column resonance structure, the air in the through holes of the resonance structure is the vibrating body, and the surface in which the through holes are formed is the plane having the vibrating body.

ファンの風は非定常流体現象であって、非定常の風が膜型共鳴構造の膜にぶつかり膜を揺らすと、膜には風による振動が生じる。膜に生じた振動は広い周波数スペクトルを含むが、その中で膜型共鳴構造の共鳴として設計した周波数においては、膜面に共鳴振動現象が生じる。この共鳴振動において、膜に生じた振動は長く残りやすく、ファンの風が流れ続ける中ではその共鳴振動が増幅しやすい。これによって、その共鳴振動をしている膜からスピーカーのように音が発信されてしまう場合がある。特にファンから強い風量が生じている条件において、ファンからの風が膜型共鳴構造の膜面にぶつかるように共鳴構造を配置した場合には、膜型共鳴構造の共鳴周波数付近では音が増幅してしまうために、消音効果が得られない場合がある。
したがって、音響共鳴構造の振動体を備える面が、ファンの送風口に垂直な軸に平行に配置された構成とすることで、ファンが発生する空気流が音響共鳴構造の振動体を備える面にぶつかって膜を揺らすことを抑制して、風によって消音効果が低減することを抑制できる。
The fan wind is an unsteady fluid phenomenon, and when the unsteady wind collides with the membrane of the membrane-type resonance structure and shakes the membrane, the membrane is vibrated by the wind. The vibration generated in the membrane includes a wide frequency spectrum, and the resonance vibration phenomenon occurs on the membrane surface at the frequency designed as the resonance of the membrane-type resonance structure. In this resonance vibration, the vibration generated in the membrane tends to remain for a long time, and the resonance vibration tends to be amplified while the wind of the fan continues to flow. As a result, sound may be emitted like a speaker from the membrane that is vibrating in resonance. In particular, under conditions where the fan generates a large amount of air, if the resonance structure is arranged so that the air from the fan collides with the membrane surface of the membrane-type resonance structure, the sound will be amplified near the resonance frequency of the membrane-type resonance structure. In some cases, the silencing effect cannot be obtained because the
Therefore, by arranging the surface having the vibrator of the acoustic resonance structure parallel to the axis perpendicular to the blower port of the fan, the airflow generated by the fan can be directed to the surface having the vibrator of the acoustic resonance structure. It is possible to suppress the shaking of the membrane due to collision, and suppress the reduction of the silencing effect due to the wind.

ここで、図1に示す例では、ファン消音システムは、1つの膜型共鳴構造30a(音響共鳴構造)を有する構成としたが、これに限定はされず、2以上の音響共鳴構造を有する構成としてもよい。
例えば、図4に示す例のように、2つの膜型共鳴構造30aを、軸流ファン12aの送風方向の下流側の、送風(送風口16a)を塞がない位置に配置する構成としてもよい。
図4において2つの膜型共鳴構造30aは、膜34が軸流ファン12aの回転軸方向と平行となり、かつ、膜34が回転軸側を向き、かつ、2つの膜型共鳴構造30aの膜34側の面が対面するように配置されている。
Here, in the example shown in FIG. 1, the fan muffling system is configured to have one membrane-type resonance structure 30a (acoustic resonance structure), but is not limited to this, and is configured to have two or more acoustic resonance structures. may be
For example, as in the example shown in FIG. 4, two membrane-type resonance structures 30a may be arranged at positions downstream of the axial flow fan 12a in the direction of airflow, where the airflow (airflow port 16a) is not blocked. .
In FIG. 4, the two membrane-type resonance structures 30a have the membranes 34 parallel to the rotation axis direction of the axial flow fan 12a, the membranes 34 facing the rotation axis side, and the membranes 34 of the two membrane-type resonance structures 30a. They are arranged so that the side faces face each other.

また、図4に示す例では、2つの膜型共鳴構造30aは対面するように配置される構成としたが、これに限定はされず、図5に示す例の、図5中右側の2つの膜型共鳴構造30a、上側の2つの膜型共鳴構造30a、および、左側の2つの膜型共鳴構造30aのそれぞれのように、膜型共鳴構造30aが膜面を面一にして同じ向きに配置されるようにしてもよい。なお、図5は、ファン消音システムを軸流ファン12aの回転軸方向から見た図であり、軸流ファン12aの図示は省略している。 In addition, in the example shown in FIG. 4, the two membrane-type resonance structures 30a are configured to face each other, but this is not a limitation, and in the example shown in FIG. The membrane-type resonance structures 30a are arranged in the same direction with the membrane surfaces flush with each other, such as the membrane-type resonance structure 30a, the upper two membrane-type resonance structures 30a, and the two left-side membrane-type resonance structures 30a. may be made. Note that FIG. 5 is a view of the fan noise reduction system viewed from the direction of the rotation axis of the axial fan 12a, and the illustration of the axial fan 12a is omitted.

また、ファンが通風路に接続されている場合には、図4および図5に示す例のように、膜型共鳴構造30a(音響共鳴構造)は、ファンに接続される通風路の壁面(管路26)の一部を構成するものとしてもよい。これにより、膜型共鳴構造30aは、送風(送風口16a)を塞がない位置に配置された構成とすることができる。 When the fan is connected to the air passage, the membrane resonance structure 30a (acoustic resonance structure) is connected to the wall surface (pipe It may form part of the path 26). Thereby, the membrane-type resonance structure 30a can be arranged at a position that does not block the airflow (airflow port 16a).

また、図1等に示す例では、膜型共鳴構造30a(音響共鳴構造)は、軸流ファン12a(ファン)に直接接する位置に配置される構成としたが、ファンが発生する音の近接場領域内に配置されていればファンとは離間した位置に配置されていてもよい。 In addition, in the example shown in FIG. 1 and the like, the membrane-type resonance structure 30a (acoustic resonance structure) is arranged at a position directly in contact with the axial flow fan 12a (fan). It may be arranged at a position separated from the fan as long as it is arranged within the area.

例えば、図6に示す例では、膜型共鳴構造30bは軸流ファン12aから離間した位置に配置されており、膜型共鳴構造30bと軸流ファン12aとの間には、管路26が配置されている。すなわち、図6に示す例では、軸流ファン12aの下流側に、軸流ファン12aが発生する風の通路を形成する管路26が接続されており、管路26の出口側の端部に膜型共鳴構造30bが配置されている。 For example, in the example shown in FIG. 6, the membrane resonance structure 30b is arranged at a position spaced apart from the axial fan 12a, and the conduit 26 is arranged between the membrane resonance structure 30b and the axial fan 12a. It is That is, in the example shown in FIG. 6, a pipe 26 forming a passage of air generated by the axial fan 12a is connected to the downstream side of the axial fan 12a. A membrane-type resonant structure 30b is arranged.

音響共鳴構造をファンが発生する音の近接場領域内に配置する観点から、音響共鳴構造はファンに接して、またはファンケーシングの外周に沿って配置されるのが好ましい。音響共鳴構造が膜型共鳴構造の場合には膜型共鳴構造の枠体がファンのケーシングに接しているのが好ましい。音響共鳴構造とファンとは直接ネジ等で固定される構成でもよいし、ワッシャーを介して固定される構成でもよいし、接着剤または粘着剤を介して固定される構成でもよい。 From the viewpoint of arranging the acoustic resonance structure in the near-field region of the sound generated by the fan, the acoustic resonance structure is preferably arranged in contact with the fan or along the outer periphery of the fan casing. When the acoustic resonance structure is a membrane-type resonance structure, it is preferable that the frame of the membrane-type resonance structure is in contact with the casing of the fan. The acoustic resonance structure and the fan may be fixed directly with a screw or the like, fixed via a washer, or fixed via an adhesive or adhesive.

あるいは、音響共鳴構造は防振部材を介してファンに接して配置されるのが好ましい。
図7に示す例では、膜型共鳴構造30aの枠体32の側面が、軸流ファン12aに防振部材36を介して接している。膜型共鳴構造30aが、防振部材36を介して軸流ファン12aに接している構成とすることで、軸流ファン12aの振動が膜型共鳴構造30aに伝達するのを抑制して、軸流ファン12aの振動によって膜型共鳴構造30aの膜が振動して音を発生すること、および、軸流ファン12aと膜型共鳴構造30aが一体となった共振をすることを防止できる。
Alternatively, the acoustic resonance structure is preferably placed in contact with the fan via a vibration isolation member.
In the example shown in FIG. 7, the side surface of the frame 32 of the membrane resonance structure 30a is in contact with the axial fan 12a via the vibration isolating member 36. In the example shown in FIG. The membrane resonance structure 30a is in contact with the axial fan 12a via the vibration isolating member 36, thereby suppressing transmission of the vibration of the axial fan 12a to the membrane resonance structure 30a. It is possible to prevent the membranes of the membrane resonance structure 30a from vibrating due to the vibration of the flow fan 12a to generate sound, and to prevent the axial fan 12a and the membrane resonance structure 30a from resonating together.

防振部材36としては、ゴム、スポンジ、発泡体等からなる、一般的に防振部材として用いられている部材を用いることができる。また、防振部材が吸音材、例えば多孔質吸音材を兼ねることで、高周波における広帯域吸音効果と、共鳴構造への振動の伝達抑制を共に持たせることができる。具体的には、イノアック社製のカームフレックスF2などの発泡系吸音体を用いることができる。 As the vibration isolating member 36, a member generally used as a vibration isolating member, such as rubber, sponge, or foam, can be used. Further, by using the vibration-isolating member also as a sound-absorbing material, for example, a porous sound-absorbing material, it is possible to obtain both a broadband sound-absorbing effect at high frequencies and suppression of transmission of vibrations to the resonance structure. Specifically, a foamed sound absorber such as Calmflex F2 manufactured by INOAC can be used.

また、ファン消音システムが、複数の音響共鳴構造を有する場合には、異なる共鳴周波数を有する音響共鳴構造を有するのが好ましい。ファン消音システムが、共鳴周波数が異なる音響共鳴構造を有することで、複数の離散周波数音に対してより高い消音効果を得られる。
例えば、図8に示す例では、ファン消音システムは、膜型共鳴構造30aと膜型共鳴構造30bとを有する。膜型共鳴構造30aの共鳴周波数と膜型共鳴構造30bの共鳴周波数とは異なっている。
Also, when the fan muffling system has a plurality of acoustic resonance structures, it is preferable to have acoustic resonance structures with different resonance frequencies. Since the fan noise reduction system has an acoustic resonance structure with different resonance frequencies, a higher noise reduction effect can be obtained for a plurality of discrete frequency sounds.
For example, in the example shown in FIG. 8, the fan muffling system has a membrane-type resonance structure 30a and a membrane-type resonance structure 30b. The resonance frequency of the membrane-type resonance structure 30a and the resonance frequency of the membrane-type resonance structure 30b are different.

ここで、ファン消音システムが、共鳴周波数が異なる音響共鳴構造を有する場合には、共鳴周波数の高い音響共鳴構造が、共鳴周波数の低い音響共鳴構造よりもファンに近い位置に配置されていることが好ましい。
図8に示す例では、軸流ファン12aに近い側に配置される膜型共鳴構造30aの共鳴周波数は、軸流ファン12aから遠い側に配置される膜型共鳴構造30bの共鳴周波数よりも高い。これにより、複数の離散周波数音を大きく消音することができる。
Here, when the fan muffling system has acoustic resonance structures with different resonance frequencies, the acoustic resonance structure with a higher resonance frequency is arranged closer to the fan than the acoustic resonance structure with a lower resonance frequency. preferable.
In the example shown in FIG. 8, the resonance frequency of the membrane resonance structure 30a arranged closer to the axial fan 12a is higher than the resonance frequency of the membrane resonance structure 30b arranged farther from the axial fan 12a. . As a result, a plurality of discrete frequency sounds can be largely muted.

また、図1等に示す例では、ファンによる送風方向において、音響共鳴構造はファンの下流側のみに配置されている構成としたがこれに限定はされず、音響共鳴構造がファンの上流側に配置される構成としてもよいし、図9に示す例のように、音響共鳴構造がファンの上流側および下流側に配置される構成としてもよい。サーバーファンを含む大半の機器では、人が聴く騒音を小さくするために、ファンと機器ケースの間のスペースに音響共鳴構造が配置できることが望ましい。
より高い消音効果を得られる観点から音響共鳴構造は少なくともファンの下流側に配置されるのが好ましく、ファンの上流側および下流側に配置されるのがより好ましい。
音響共鳴構造をファンの上流側および下流側に配置する構成とする場合には、上流側の音響共鳴構造の共鳴周波数と下流側の音響共鳴構造の共鳴周波数とは同じでも異なっていてもよい。
In the example shown in FIG. 1, etc., the acoustic resonance structure is arranged only on the downstream side of the fan in the air blowing direction of the fan. Alternatively, as in the example shown in FIG. 9, the acoustic resonance structures may be arranged upstream and downstream of the fan. In most equipment, including server fans, it is desirable to be able to place an acoustically resonant structure in the space between the fan and equipment case to reduce noise heard by humans.
From the viewpoint of obtaining a higher silencing effect, the acoustic resonance structure is preferably arranged at least downstream of the fan, and more preferably arranged upstream and downstream of the fan.
When the acoustic resonance structures are arranged upstream and downstream of the fan, the resonance frequency of the upstream acoustic resonance structure and the resonance frequency of the downstream acoustic resonance structure may be the same or different.

また、音響共鳴構造の、振動体を備える面側に音を透過する防風部材を有する構成としてもよい。
具体的には、図10に示す例では、ファン消音システムは、音響共鳴構造として膜型共鳴構造30aを有し、膜型共鳴構造30aの振動体である膜34の表面上に膜34を覆って配置される防風部材48を有する。
防風部材48は、音は通し、風の侵入を抑制する部材である。膜34の表面に防風部材48を配置することにより、ファンが発生する空気流が膜型共鳴構造の振動体である膜に風圧をかけて膜を揺らすことを抑制して、風によって消音効果が低減することを抑制できる。
Further, the acoustic resonance structure may be configured to have a sound-transmitting windbreak member on the surface side provided with the vibrating body.
Specifically, in the example shown in FIG. 10, the fan muffling system has a membrane-type resonance structure 30a as the acoustic resonance structure, and the surface of the membrane 34, which is the vibrating body of the membrane-type resonance structure 30a, is covered with the membrane 34. It has a windbreak member 48 that is positioned at the bottom.
The windbreak member 48 is a member that allows sound to pass through and prevents wind from entering. By arranging the windbreak member 48 on the surface of the membrane 34, the air current generated by the fan exerts wind pressure on the membrane, which is the vibrating body of the membrane type resonance structure, and suppresses the shaking of the membrane, so that the wind has a silencing effect. reduction can be suppressed.

防風部材48としては、スポンジ等の発泡体、特に連続気泡発泡体、布、不織布等の繊維体などの多孔質構造を用いることができる。また、ヤング率が極端に小さいシリコーンゴム膜などのゴム材料膜、ラップフィルムのような厚み10μm程度の薄いプラスチック膜等で、これらの膜材料はピンと張らずに弛めて固定されることを特徴とする膜を用いることができる。これらは、膜型共鳴構造の膜34とは厚み、硬さおよび固定のされ方が極端に異なるために、可聴域に強い共鳴を持たずに音が通過する。 As the windbreak member 48, a porous structure such as a foam such as a sponge, particularly an open-cell foam, a cloth, a fiber such as a non-woven fabric, or the like can be used. In addition, a rubber material film such as a silicone rubber film with an extremely small Young's modulus, a thin plastic film with a thickness of about 10 μm such as a wrap film, and the like are characterized in that these film materials are loosened and fixed without being tight. can be used. Since these are extremely different in thickness, hardness, and fixing method from the membrane 34 of the membrane-type resonance structure, sound passes through without strong resonance in the audible range.

また、図1~図3に示す例では、ファン消音システムは、膜型共鳴構造30aのみを有する構成としたが、これに限定はされず、ファン消音システムはさらに多孔質吸音材を有する構成としてもよい。
例えば、膜型共鳴構造30aの枠体32と膜34とに囲まれた空間内、すなわち、背面空間35内に多孔質吸音材を有する構成としてもよい。あるいは、膜型共鳴構造30aの膜34の表面上に多孔質吸音材を有する構成としてもよい。
ファン消音システムが多孔質吸音材を有する構成とすることで、共鳴器が選択的に消音する卓越音以外の周波数の音を広帯域に消音することができる。また、多孔質吸音材を防風部材として用いてもよい。
In addition, in the examples shown in FIGS. 1 to 3, the fan muffling system is configured to have only the membrane-type resonance structure 30a, but is not limited to this, and the fan muffling system may further include a porous sound absorbing material. good too.
For example, a porous sound absorbing material may be provided in the space surrounded by the frame 32 and the film 34 of the membrane-type resonance structure 30a, that is, in the back space 35 . Alternatively, a configuration having a porous sound absorbing material on the surface of the membrane 34 of the membrane resonance structure 30a may be employed.
By configuring the fan muffling system with a porous sound absorbing material, it is possible to muffle sounds of frequencies other than the dominant sound selectively muffled by the resonator in a wide band. Moreover, you may use a porous sound-absorbing material as a windbreak member.

多孔質吸音材としては特に限定はなく、公知の多孔質吸音材を適宜利用することが可能である。例えば、発泡ウレタン、軟質ウレタンフォーム、木材、セラミックス粒子焼結材、フェノールフォーム等の発泡材料及び微小な空気を含む材料;グラスウール、ロックウール、マイクロファイバー(3M社製シンサレートなど)、フロアマット、絨毯、メルトブローン不織布、金属不織布、ポリエステル不織布、金属ウール、フェルト、インシュレーションボード並びにガラス不織布等のファイバー及び不織布類材料、木毛セメント板、シリカナノファイバーなどのナノファイバー系材料、石膏ボードなど、種々の公知の多孔質吸音材が利用可能である。 The porous sound absorbing material is not particularly limited, and known porous sound absorbing materials can be appropriately used. For example, urethane foam, soft urethane foam, wood, sintered ceramic particles, phenolic foam, and other foam materials and materials containing microscopic air; glass wool, rock wool, microfiber (thinsulate manufactured by 3M, etc.), floor mats, carpets , meltblown nonwoven fabrics, metal nonwoven fabrics, polyester nonwoven fabrics, metal wool, felt, insulation boards, glass nonwoven fabrics and other fiber and nonwoven fabric materials, wood wool cement boards, nanofiber materials such as silica nanofibers, gypsum boards, etc. of porous sound absorbing materials are available.

また、多孔質吸音材の流れ抵抗には特に限定はないが、1000~100000(Pa・s/m2)が好ましく、3000~80000(Pa・s/m2)がより好ましく、5000~50000(Pa・s/m2)がさらに好ましい。
多孔質吸音材の流れ抵抗は、1cm厚の多孔質吸音材の垂直入射吸音率を測定し、Mikiモデル(J. Acoust. Soc. Jpn., 11(1) pp.19-24 (1990))でフィッティングすることで評価することができる。または「ISO 9053」に従って評価してもよい。
また、異なる流れ抵抗の多孔質吸音材が複数積層されていてもよい。
The flow resistance of the porous sound absorbing material is not particularly limited, but is preferably 1,000 to 100,000 (Pa·s/m), more preferably 3,000 to 80,000 (Pa·s/m), and more preferably 5,000 to 50,000 (Pa·s/m). s/m2) is more preferred.
The flow resistance of the porous sound absorbing material was obtained by measuring the normal incident sound absorption coefficient of a 1 cm thick porous sound absorbing material and using the Miki model (J. Acoust. Soc. Jpn., 11 (1) pp. 19-24 (1990)). can be evaluated by fitting with Or you may evaluate according to "ISO 9053".
Also, a plurality of porous sound absorbing materials having different flow resistances may be laminated.

ここで、図1~図3に示す例では、ファン消音システムは、音響共鳴構造として膜型共鳴構造30aを有する構成としたが、これに限定はされない。ファン消音システムは、音響共鳴構造としてヘルムホルツ共鳴構造および/または気柱共鳴構造を有していてもよい。 Here, in the examples shown in FIGS. 1 to 3, the fan noise reduction system is configured to have the membrane-type resonance structure 30a as the acoustic resonance structure, but is not limited to this. The fan muffling system may have a Helmholtz resonance structure and/or an air column resonance structure as the acoustic resonance structure.

図11に、ヘルムホルツ共鳴構造40を有する構成のファン消音システムの一例の模式的断面図を示す。図11に示すファン消音システムは、音響共鳴構造として膜型共鳴構造30aに代えてヘルムホルツ共鳴構造40を有する以外は図4に示すファン消音システムと同様の構成を有する。 FIG. 11 shows a schematic cross-sectional view of an example of a fan noise reduction system having a Helmholtz resonance structure 40. As shown in FIG. The fan silencer system shown in FIG. 11 has the same configuration as the fan silencer system shown in FIG. 4 except that it has a Helmholtz resonance structure 40 instead of the membrane resonance structure 30a as the acoustic resonance structure.

図11に示す例では、音響共鳴構造は、ヘルムホルツ共鳴構造40である。ヘルムホルツ共鳴構造40は、角柱形状で一面に底面を有する開口部が形成された形状の枠体42と、枠体32の開口部が形成された開口面を覆って周縁部を枠体32に固定される、貫通孔46を有する板状の蓋部44とを有する。ヘルムホルツ共鳴構造40は、枠体42と蓋部44とに囲まれた内部空間43にある空気がバネとしての役割を果たし、蓋部44に形成された貫通孔46内の空気が質量(マス)としての役割を果たし、マスバネの共鳴をし、貫通孔46の壁近傍部での熱粘性摩擦により吸音する構造である。 In the example shown in FIG. 11 the acoustic resonance structure is a Helmholtz resonance structure 40 . The Helmholtz resonance structure 40 includes a prismatic frame 42 having an opening with a bottom surface on one side, and a peripheral edge portion that covers the opening of the frame 32 and is fixed to the frame 32 . and a plate-like lid portion 44 having a through hole 46 . In the Helmholtz resonance structure 40, the air in the internal space 43 surrounded by the frame 42 and the lid 44 acts as a spring, and the air in the through hole 46 formed in the lid 44 acts as a mass. , the mass spring resonates, and the thermal-viscous friction in the vicinity of the wall of the through-hole 46 absorbs sound.

図11に示す例では、貫通孔46を有する蓋部44が軸流ファン12aの回転軸方向と平行となり、かつ、蓋部44が回転軸側を向いて配置されている。 In the example shown in FIG. 11, the lid portion 44 having the through hole 46 is arranged parallel to the rotation axis direction of the axial fan 12a, and the lid portion 44 faces the rotation axis side.

従来、ヘルムホルツ共鳴構造を消音に用いる場合には、ヘルムホルツ共鳴構造の共鳴周波数を消音したい音の周波数に合わせることで、その周波数の音を消音するものであった。そのため、共鳴周波数以外の周波数帯域の音に対しては消音の効果は低く、ファンが発生する複数の離散周波数音を消音することは難しいという問題があった。 Conventionally, when a Helmholtz resonance structure is used for silencing, the resonance frequency of the Helmholtz resonance structure is adjusted to the frequency of the sound to be muted, thereby muting the sound at that frequency. Therefore, there is a problem that the effect of silencing is low for sounds in frequency bands other than the resonance frequency, and it is difficult to silencing a plurality of discrete frequency sounds generated by the fan.

これに対して、本発明のファン消音システムでは、ヘルムホルツ共鳴構造40をファンが発生する音の近接場領域内に配置することで、上述した2つの相互作用のメカニズムを発生させて、ファンが発生した複数の離散周波数音を消音することができる。 On the other hand, in the fan noise reduction system of the present invention, the Helmholtz resonance structure 40 is arranged in the near-field region of the sound generated by the fan, thereby generating the two interaction mechanisms described above, and the fan generates Multiple discrete frequency sounds can be silenced.

音響共鳴構造としてヘルムホルツ共鳴構造40を用いる場合にも、ヘルムホルツ共鳴の共鳴周波数が、軸流ファン12aが発生する離散周波数音のいずれか1つの周波数と一致することが好ましい。
ヘルムホルツ共鳴の共鳴周波数は、枠体42および蓋部44に囲まれる内部空間の容積および貫通孔46の面積、長さ等によって決まる。従って、ヘルムホルツ共鳴構造40の枠体42および蓋部44に囲まれる内部空間の容積および貫通孔46の面積、長さ等を調整することで、共鳴周波数を適宜設定することができる。
Even when the Helmholtz resonance structure 40 is used as the acoustic resonance structure, it is preferable that the resonance frequency of the Helmholtz resonance matches any one frequency of the discrete frequency sounds generated by the axial flow fan 12a.
The resonance frequency of the Helmholtz resonance is determined by the volume of the internal space surrounded by the frame 42 and the lid 44 and the area, length, etc. of the through-hole 46 . Therefore, by adjusting the volume of the internal space surrounded by the frame 42 and the lid 44 of the Helmholtz resonance structure 40 and the area, length, etc. of the through hole 46, the resonance frequency can be appropriately set.

ここで、図11に示す例では、蓋部44に貫通孔46が形成された構成としたが、これに限定はされず、枠体42に貫通孔46が形成されていてもよい。ただし、この時貫通穴の出入り口は軸流ファン12aが発生する離散周波数音が伝搬する方向、図11ではファンの流路方向を向いている必要がある。
また、図11に示す例では、ヘルムホルツ共鳴構造40は枠体42および蓋部44が別体となる構成としたが枠体42および蓋部44が一体的に形成されていてもよい。
Here, in the example shown in FIG. 11 , the through hole 46 is formed in the lid portion 44 , but the configuration is not limited to this, and the through hole 46 may be formed in the frame 42 . However, at this time, the inlet/outlet of the through-hole must face the direction in which the discrete frequency sound generated by the axial fan 12a propagates, which is the flow direction of the fan in FIG.
In the example shown in FIG. 11, the Helmholtz resonance structure 40 has the frame body 42 and the lid part 44 which are separate bodies, but the frame body 42 and the lid part 44 may be integrally formed.

ヘルムホルツ共鳴構造40においては、貫通孔46内の空気が振動体であり、貫通孔46を有する蓋部44の表面が振動体を備える面である。したがって、貫通孔46を有する蓋部44の表面が送風口に垂直な軸に平行に配置されていることが好ましい。また、蓋部44の表面に防風部材を配置してもよい。 In the Helmholtz resonance structure 40, the air in the through-hole 46 is the vibrating body, and the surface of the lid portion 44 having the through-hole 46 is the surface on which the vibrating body is provided. Therefore, it is preferable that the surface of the lid portion 44 having the through hole 46 is arranged parallel to the axis perpendicular to the blower port. Also, a windbreak member may be arranged on the surface of the lid portion 44 .

また、蓋部44の表面に垂直な方向から見たヘルムホルツ共鳴構造40の形状は四角形状であってもよく、あるいは、三角形状等の多角形状、円形状、楕円形状等であってもよい。 Further, the shape of the Helmholtz resonance structure 40 viewed from the direction perpendicular to the surface of the lid portion 44 may be square, polygonal such as triangular, circular, elliptical, or the like.

図11に示す例では、ファン消音システムがヘルムホルツ共鳴構造40を2つ有する構成としたが、これに限定はされず、1つのヘルムホルツ共鳴構造を有する構成としてもよく、3以上のヘルムホルツ共鳴構造を有する構成としてもよい。複数のヘルムホルツ共鳴構造を有する構成の場合には、各ヘルムホルツ共鳴構造の枠体が一体的に形成されていてもよいし、さらに、内部空間を共通にしてもよい。
また、複数のヘルムホルツ共鳴構造を有する構成の場合には、共鳴周波数の異なるヘルムホルツ共鳴構造を有する構成としてもよい。
In the example shown in FIG. 11, the fan silencer system has two Helmholtz resonance structures 40, but is not limited to this, and may have one Helmholtz resonance structure, or three or more Helmholtz resonance structures. It is good also as a structure which has. In the case of a configuration having a plurality of Helmholtz resonance structures, the frame of each Helmholtz resonance structure may be integrally formed, or the internal space may be shared.
Moreover, in the case of a configuration having a plurality of Helmholtz resonance structures, a configuration having Helmholtz resonance structures with different resonance frequencies may be used.

また、本発明において、消音器が有する共鳴器は気柱共鳴構造であってもよい。
気柱共鳴構造は、開口を有する共鳴管内に定在波が生じることで共鳴が起こる。
Further, in the present invention, the resonator of the muffler may have an air column resonance structure.
In the air column resonance structure, resonance occurs when a standing wave is generated in a resonance tube having an opening.

従来、気柱共鳴構造を消音に用いる場合には、気柱共鳴構造の共鳴周波数を消音したい音の周波数に合わせることで、その周波数の音を消音するものであった。そのため、共鳴周波数以外の周波数帯域の音に対しては消音の効果は低く、ファンが発生する複数の離散周波数音を消音することは難しいという問題があった。 Conventionally, when an air column resonance structure is used for silencing, the resonance frequency of the air column resonance structure is adjusted to the frequency of the sound to be muted, thereby muting the sound of that frequency. Therefore, there is a problem that the effect of silencing is low for sounds in frequency bands other than the resonance frequency, and it is difficult to silencing a plurality of discrete frequency sounds generated by the fan.

これに対して、本発明のファン消音システムでは、気柱共鳴構造をファンが発生する音の近接場領域内に配置することで、上述した2つの相互作用のメカニズムを発生させて、ファンが発生した複数の離散周波数音を消音することができる。 On the other hand, in the fan noise reduction system of the present invention, by placing the air column resonance structure in the near-field region of the sound generated by the fan, the two interaction mechanisms described above are generated, and the fan generates Multiple discrete frequency sounds can be silenced.

音響共鳴構造として気柱共鳴構造を用いる場合にも、気柱共鳴の共鳴周波数が、ファンが発生する離散周波数音のいずれか1つの周波数と一致することが好ましい。
気柱共鳴の共鳴周波数は、共鳴管の長さ等によって決まる。従って、共鳴管の深さ、開口の大きさ等を調整することで、共鳴する音の周波数を適宜設定することができる。
Even when an air column resonance structure is used as the acoustic resonance structure, it is preferable that the resonance frequency of the air column resonance matches any one of discrete frequency sounds generated by the fan.
The resonance frequency of air column resonance is determined by the length of the resonance tube and the like. Therefore, by adjusting the depth of the resonance tube, the size of the opening, etc., it is possible to appropriately set the frequency of the sound that resonates.

なお、音響共鳴構造を、内部空間と、内部空間と外部とを連通する貫通孔(開口部)を有する構成とした場合に、気柱共鳴が生じる共鳴構造となるか、ヘルムホルツ共鳴が生じる共鳴構造となるかは、貫通孔の大きさ、位置、内部空間の大きさ等によって決まる。従って、これらを適宜調整することで、気柱共鳴とヘルムホルツ共鳴のいずれの共鳴構造とするかを選択できる。
気柱共鳴構造の場合は、開口部が狭いと音波が開口部で反射して内部空間内に音波が侵入し難くなるため、開口部がある程度広いことが好ましい。具体的には、開口部が長方形状の場合には、短辺の長さが1mm以上であるのが好ましく、3mm以上であるのがより好ましく、5mm以上であるのがさらに好ましい。開口部が円形状の場合には、直径が上記範囲であるのが好ましい。
一方、ヘルムホルツ共鳴の場合は、貫通孔において熱粘性摩擦を生じる必要があるため、ある程度狭いことが好ましい。具体的には、貫通孔が長方形状の場合には、短辺の長さが0.5mm以上20mmが好ましく、1mm以上15mm以下がより好ましく、2mm以上10mm以下がさらに好ましい。貫通孔が円形状の場合には、直径が上記範囲であるのが好ましい。
When the acoustic resonance structure has an internal space and a through hole (opening) that communicates the internal space with the outside, the resonance structure causes air column resonance or the resonance structure causes Helmholtz resonance. It is determined by the size and position of the through hole, the size of the internal space, and the like. Therefore, by appropriately adjusting these, it is possible to select either the air column resonance or the Helmholtz resonance structure.
In the case of the air column resonance structure, if the opening is narrow, the sound wave will be reflected by the opening, making it difficult for the sound wave to enter the internal space. Specifically, when the opening is rectangular, the length of the short side is preferably 1 mm or more, more preferably 3 mm or more, and even more preferably 5 mm or more. When the opening is circular, the diameter is preferably within the above range.
On the other hand, in the case of Helmholtz resonance, since it is necessary to generate thermoviscous friction in the through-hole, it is preferable that the through-hole be narrow to some extent. Specifically, when the through hole has a rectangular shape, the length of the short side is preferably 0.5 mm or more and 20 mm or less, more preferably 1 mm or more and 15 mm or less, and even more preferably 2 mm or more and 10 mm or less. When the through hole is circular, the diameter is preferably within the above range.

なお、本発明のファン消音システムは、異なる種類の音響共鳴構造を有する構成としてもよい。例えば、ヘルムホルツ共鳴構造と膜型共鳴構造とを有する構成であってもよい。
ここで、小型化薄型化等の観点から音響共鳴構造として膜型共鳴構造を用いるのが好ましい。
Note that the fan noise reduction system of the present invention may be configured to have different types of acoustic resonance structures. For example, a configuration having a Helmholtz resonance structure and a membrane-type resonance structure may be used.
Here, it is preferable to use a film-type resonance structure as the acoustic resonance structure from the viewpoint of miniaturization and thinning.

膜型共鳴構造、ヘルムホルツ共鳴構造および気柱共鳴構造の枠体および蓋部の材料(以下、まとめて「枠材料」という)としては、金属材料、樹脂材料、強化プラスチック材料、および、カーボンファイバ等を挙げることができる。金属材料としては、例えば、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、銅および、これらの合金等の金属材料を挙げることができる。また、樹脂材料としては、例えば、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイミド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリイミド、ABS樹脂(アクリロニトリル(Acrylonitrile)、ブタジエン(Butadiene)、スチレン(Styrene)共重合合成樹脂)、ポリプロピレン、および、トリアセチルセルロース等の樹脂材料を挙げることができる。また、強化プラスチック材料としては、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)、および、ガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)を挙げることができる。また、天然ゴム、クロロプレンゴム、ブチルゴム、EPDM(エチレン・プロピレン・ジエンゴム)、シリコーンゴム等ならびにこれらの架橋構造体を含むゴム類を挙げることができる。
また、枠材料として各種ハニカムコア材料を用いることもできる。ハニカムコア材料は軽量で高剛性材料として用いられているため、既製品の入手が容易である。アルミハニカムコア、FRPハニカムコア、ペーパーハニカムコア(新日本フエザーコア株式会社製、昭和飛行機工業株式会社製など)、熱可塑性樹脂(PP,PET,PE,PCなど)ハニカムコア(岐阜プラスチック工業株式会社製TECCELLなど)など様々な素材で形成されたハニカムコア材料を枠体として使用することが可能である。
また、枠材料として、空気を含む構造体、すなわち、発泡材料、中空材料、多孔質材料等を用いることもできる。多数の共鳴器を用いる場合に各セル間で通気しないためにはたとえば独立気泡の発泡材料などを用いて枠体を形成することができる。例えば、独立気泡ポリウレタン、独立気泡ポリスチレン、独立気泡ポリプロピレン、独立気泡ポリエチレン、独立気泡ゴムスポンジなど様々な素材を選ぶことができる。独立気泡体を用いることで、連続気泡体と比較すると音、水、気体等を通さず、また構造強度が大きいため、枠材料として用いるには適している。また、上述した多孔質吸音体が十分な支持性を有する場合は、枠体を多孔質吸音体のみで形成しても良く、多孔質吸音体と枠体の材料として挙げたものを、例えば混合、混錬等により組み合わせて用いても良い。このように、内部に空気を含む材料系を用いることでデバイスを軽量化することができる。また、断熱性を付与することができる。
Materials for the frame and lid of the membrane resonance structure, Helmholtz resonance structure, and air column resonance structure (hereinafter collectively referred to as "frame materials") include metal materials, resin materials, reinforced plastic materials, carbon fibers, and the like. can be mentioned. Examples of metal materials include metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, copper, and alloys thereof. Examples of resin materials include acrylic resin, polymethyl methacrylate, polycarbonate, polyamideimide, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyimide, Resin materials such as ABS resin (acrylonitrile, butadiene, styrene copolymer synthetic resin), polypropylene, and triacetyl cellulose can be mentioned. Examples of reinforced plastic materials include carbon fiber reinforced plastics (CFRP) and glass fiber reinforced plastics (GFRP). Also included are natural rubber, chloroprene rubber, butyl rubber, EPDM (ethylene-propylene-diene rubber), silicone rubber, and rubbers containing these crosslinked structures.
Various honeycomb core materials can also be used as the frame material. Since the honeycomb core material is lightweight and used as a high-rigidity material, ready-made products are readily available. Aluminum honeycomb core, FRP honeycomb core, paper honeycomb core (manufactured by Shinnihon Feather Core Co., Ltd., Showa Aircraft Industry Co., Ltd., etc.), thermoplastic resin (PP, PET, PE, PC, etc.) honeycomb core (manufactured by Gifu Plastic Industry Co., Ltd.) A honeycomb core material formed of various materials such as TECCELL, etc.) can be used as the frame.
A structure containing air, that is, a foam material, a hollow material, a porous material, or the like can also be used as the frame material. In the case of using a large number of resonators, the frame can be formed using, for example, closed-cell foam material in order to prevent ventilation between the cells. For example, a variety of materials can be selected such as closed-cell polyurethane, closed-cell polystyrene, closed-cell polypropylene, closed-cell polyethylene, and closed-cell rubber sponge. By using a closed-cell body, it is suitable for use as a frame material because it is impervious to sound, water, gas, etc. and has a high structural strength compared to an open-cell body. In addition, when the porous sound absorbing body described above has sufficient supportability, the frame may be formed of only the porous sound absorbing body, and the porous sound absorbing body and the material of the frame may be mixed, for example. , may be used in combination by kneading or the like. In this way, the weight of the device can be reduced by using a material system containing air inside. In addition, heat insulation can be imparted.

ここで、枠材料は、高温となる位置に配置可能な点から、難燃材料より耐熱性の高い材料からなることが好ましい。耐熱性は、例えば、建築基準法施行令の第百八条の二各号を満たす時間で定義することができる。建築基準法施行令の第百八条の二各号を満たす時間が5分間以上10分間未満の場合が難燃材料であり、10分間以上20分間未満の場合が準不燃材料であり、20分間以上の場合が不燃材料である。ただし耐熱性は各分野ごとで定義されることが多い。そのため、ファン消音システムを利用する分野に合わせて、枠材料を、その分野で定義される難燃性相当以上の耐熱性を有する材料からなるものとすればよい。 Here, the frame material is preferably made of a material having higher heat resistance than the flame-retardant material, because it can be placed in a high-temperature position. Heat resistance can be defined, for example, by the time that satisfies each item of Article 108-2 of the Enforcement Ordinance of the Building Standards Law. If the time satisfying each item of Article 108-2 of the Building Standards Law Enforcement Ordinance is 5 minutes or more and less than 10 minutes, it is a flame-retardant material. The above cases are noncombustible materials. However, heat resistance is often defined for each field. Therefore, in accordance with the field in which the fan noise reduction system is used, the frame material may be made of a material having heat resistance equivalent to or higher than the flame retardancy defined in the field.

枠体および蓋部の肉厚(フレーム厚み)も、特に制限的ではなく、例えば、枠体の開口断面の大きさ等に応じて設定することができる。 The thickness of the frame and lid (frame thickness) is also not particularly limited, and can be set according to, for example, the size of the cross section of the opening of the frame.

膜34の材料としては、アルミニウム、チタン、ニッケル、パーマロイ、42アロイ、コバール、ニクロム、銅、ベリリウム、リン青銅、黄銅、洋白、錫、亜鉛、鉄、タンタル、ニオブ、モリブデン、ジルコニウム、金、銀、白金、パラジウム、鋼鉄、タングステン、鉛、および、イリジウム等の各種金属;PET(ポリエチレンテレフタレート)、TAC(トリアセチルセルロース)、PVDC(ポリ塩化ビニリデン)、PE(ポリエチレン)、PVC(ポリ塩化ビニル)、PMP(ポリメチルペンテン)、COP(シクロオレフィンポリマー)、ゼオノア、ポリカーボネート、PEN(ポリエチレンナフタレート)、PP(ポリプロピレン)、PS(ポリスチレン)、PAR(ポリアリレート)、アラミド、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルフォン)、ナイロン、PEs(ポリエステル)、COC(環状オレフィン・コポリマー)、ジアセチルセルロース、ニトロセルロース、セルロース誘導体、ポリアミド、ポリアミドイミド、POM(ポリオキシメチレン)、PEI(ポリエーテルイミド)、ポリロタキサン(スライドリングマテリアルなど)および、ポリイミド等の樹脂材料等が利用可能である。さらに、薄膜ガラスなどのガラス材料、CFRP(炭素繊維強化プラスチック)およびGFRP(ガラス繊維強化プラスチック)のような繊維強化プラスチック材料を用いることもできる。また、天然ゴム、クロロプレンゴム、ブチルゴム、EPDM、シリコーンゴム等ならびにこれらの架橋構造体を含むゴム類を用いることができる。または、それらを組合せたものでもよい。
また、金属材料を用いる場合には、錆びの抑制等の観点から、表面に金属めっきを施してもよい。
Materials for the film 34 include aluminum, titanium, nickel, permalloy, 42 alloy, kovar, nichrome, copper, beryllium, phosphor bronze, brass, nickel silver, tin, zinc, iron, tantalum, niobium, molybdenum, zirconium, gold, Various metals such as silver, platinum, palladium, steel, tungsten, lead, and iridium; PET (polyethylene terephthalate), TAC (triacetylcellulose), PVDC (polyvinylidene chloride), PE (polyethylene), PVC (polyvinyl chloride ), PMP (polymethylpentene), COP (cycloolefin polymer), Zeonor, polycarbonate, PEN (polyethylene naphthalate), PP (polypropylene), PS (polystyrene), PAR (polyarylate), aramid, PPS (polyphenylene sulfide) , PES (polyethersulfone), nylon, PEs (polyester), COC (cyclic olefin copolymer), diacetylcellulose, nitrocellulose, cellulose derivatives, polyamide, polyamideimide, POM (polyoxymethylene), PEI (polyetherimide) ), polyrotaxane (slide ring material, etc.), and resin materials such as polyimide. Furthermore, glass materials such as thin film glass, and fiber-reinforced plastic materials such as CFRP (carbon fiber reinforced plastic) and GFRP (glass fiber reinforced plastic) can also be used. In addition, natural rubber, chloroprene rubber, butyl rubber, EPDM, silicone rubber, etc. and rubbers containing these crosslinked structures can be used. Alternatively, a combination thereof may be used.
Moreover, when a metal material is used, the surface may be plated with a metal from the viewpoint of suppressing rust.

熱、紫外線、外部振動等に対する耐久性が優れている観点から、耐久性を要求される用途においては膜34の材料として金属材料を用いることが好ましい。 From the viewpoint of excellent durability against heat, ultraviolet rays, external vibration, etc., it is preferable to use a metal material as the material of the film 34 in applications where durability is required.

また、枠体への膜または蓋部の固定方法は特に制限的ではなく、両面テープまたは接着剤を用いる方法、ネジ止め等の機械的固定方法、圧着等が適宜利用可能である。固定方法についても、枠材料および膜と同様に耐熱、耐久性、耐水性の観点から選択することができる。例えば、接着剤としては、セメダイン社「スーパーX」シリーズ、スリーボンド社「3700シリーズ(耐熱)」、太陽金網株式会社製耐熱エポキシ系接着剤「Duralcoシリーズ」などを選択することができる。また、両面テープとしては、スリーエム製高耐熱両面粘着テープ9077などを選択することができる。このように、要求する特性に対して様々な固定方法を選択することができる。 The method of fixing the film or lid to the frame is not particularly limited, and a method using double-sided tape or an adhesive, a mechanical fixing method such as screwing, crimping, or the like can be used as appropriate. The fixing method can also be selected from the viewpoint of heat resistance, durability, and water resistance in the same manner as the frame material and membrane. For example, the adhesive can be selected from Cemedine "Super X" series, ThreeBond "3700 series (heat resistant)", and heat-resistant epoxy adhesive "Duralco series" manufactured by Taiyo Wire Net Co., Ltd. As the double-sided tape, 3M's highly heat-resistant double-sided adhesive tape 9077 or the like can be selected. In this way, various fixation methods can be selected for the required properties.

ここで、図1等に示す例では、ファン消音システムは、ファンとして軸流ファン12aを有し、軸流ファン(プロペラファン)の騒音を抑制する構成としたがこれに限定はされず、シロッコファン、ターボファン、遠心ファン、ラインフローファン等の従来公知のファンに適用することができる。
シロッコファンは羽根を有する回転子の回転軸方向から吸気し、回転軸に垂直な方向に送気するものであり、側面に送風口を有する。そのため、例えば、図12に示すように、ファンがシロッコファン12bである場合には、膜型共鳴構造30a(音響共鳴構造)は、送風口38に接するように配置されている。膜型共鳴構造30aの構成は図1等に示す例と同様である。
Here, in the example shown in FIG. 1 and the like, the fan silencing system has an axial fan 12a as a fan, and is configured to suppress the noise of the axial fan (propeller fan), but it is not limited to this, and Sirocco It can be applied to conventionally known fans such as fans, turbo fans, centrifugal fans, and line flow fans.
A sirocco fan takes in air from the direction of the rotation axis of a rotor having blades and sends air in a direction perpendicular to the rotation axis, and has an air outlet on the side surface. Therefore, for example, as shown in FIG. 12, when the fan is a sirocco fan 12b, the membrane-type resonance structure 30a (acoustic resonance structure) is arranged so as to be in contact with the blower port . The configuration of the membrane-type resonance structure 30a is the same as the example shown in FIG.

図12に示す例では、膜型共鳴構造30aは、シロッコファン12bの送風口を塞がない位置に配置されている。また、膜型共鳴構造30aは、膜34がシロッコファン12bの送風口に垂直な方向と平行となり、かつ、膜34が送風口側を向いて配置されている。 In the example shown in FIG. 12, the membrane-type resonance structure 30a is arranged at a position that does not block the air outlet of the sirocco fan 12b. Further, the membrane-type resonance structure 30a is arranged such that the membrane 34 is parallel to the direction perpendicular to the blower port of the sirocco fan 12b and the membrane 34 faces the blower port side.

このようにシロッコファンの場合でもファンの羽根部分から音が発生するため、ファンの羽根部分からλ/4未満の距離の領域が近接場領域である。したがって、音響共鳴構造を近接場領域内に配置することで、近接場領域内で上述した2つの相互作用を発生させて消音効果を得ることができる。 In this way, even in the case of the sirocco fan, since sound is generated from the blades of the fan, the near-field region is a region at a distance of less than λ/4 from the blades of the fan. Therefore, by arranging the acoustic resonance structure within the near-field region, it is possible to generate the above-described two interactions within the near-field region and obtain a silencing effect.

以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. The materials, amounts used, proportions, treatment details, treatment procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the examples shown below.

[比較例1]
ファンとして軸流ファン(山洋電気株式会社製 Model:109P0612K701)を用いた。この軸流ファンは外径60mm×60mm、厚み15mmである。ファンの排気方向側にはケーシングがついているため、送風口前面端部から回転子の羽根まで距離は5mm程度ある。
ファンからの固体振動の影響を抑えるため、ファンの下部に厚み5mmの防振ゴムを配置した。また、ファンの側方から固体振動として出る音を抑制するために、ファンのケーシングの側面を厚み5mmのアクリルで囲った。
[Comparative Example 1]
An axial flow fan (Model: 109P0612K701 manufactured by Sanyo Denki Co., Ltd.) was used as the fan. This axial fan has an outer diameter of 60 mm×60 mm and a thickness of 15 mm. Since the casing is attached to the exhaust side of the fan, the distance from the front end of the blower port to the blades of the rotor is about 5 mm.
In order to suppress the influence of solid vibration from the fan, a 5 mm thick anti-vibration rubber was placed under the fan. In addition, in order to suppress the sound emitted from the side of the fan as solid vibration, the side of the fan casing was surrounded by acrylic with a thickness of 5 mm.

アクリル板厚み5mmを用いて、短辺30mm長さの長方形板を切り出して組み合わせることで、ファンの外径に等しい60mm角の内径を有し、ダクト方向長さが30mmである正方形ダクトを作製した。アクリル板の加工はレーザーカッターを用いて行った。
このダクトを、ファンの送風口側の表面に、ファンの風路とダクトの断面と一致させて配置した。ファンのケーシングを囲む枠と、ダクトの外側をテープでつなげて閉じ切ることで、図13に示すようにダクトがファンに密着した構造を作製した。
A square duct with an inner diameter of 60 mm square equal to the outer diameter of the fan and a length in the duct direction of 30 mm was produced by cutting and combining rectangular plates with a short side length of 30 mm using an acrylic plate with a thickness of 5 mm. . The acrylic plate was processed using a laser cutter.
This duct was placed on the surface of the fan on the air outlet side, matching the cross section of the fan's air passage and the duct. By connecting the frame surrounding the casing of the fan and the outside of the duct with tape to completely close it, a structure in which the duct is in close contact with the fan as shown in FIG. 13 was produced.

<測定>
作製した構造を用いて、ファンを駆動して音量を測定した。
音の測定は、ファン中心位置から軸方向に距離200mm離した位置で、風の影響を避けるために水平方向垂直方向ともに中心軸から50mmずらした点にマイクロフォン(アコー製1/2inchマイク 4152)を配置した。マイクロフォンは排気側および給気側の両方に配置した。
ファンの駆動は直流安定化電源を用いて行った。ファンの駆動条件は12V、0.25Aとした。
<Measurement>
Using the fabricated structure, the fan was driven and the sound volume was measured.
The sound was measured at a position 200 mm away from the center of the fan in the axial direction, and a microphone (Accor 1/2 inch microphone 4152) was placed at a point offset by 50 mm from the center axis in both horizontal and vertical directions to avoid the effect of wind. placed. Microphones were placed on both the exhaust and supply sides.
The fan was driven using a DC stabilized power supply. The driving conditions of the fan were set to 12V and 0.25A.

排気側マイクロフォンで測定した結果を図14に示す。図14に示すグラフの横軸は対数表示としている。図14から羽根が回転するファンの特徴である、大きなピーク音(狭帯域音)が複数の周波数で現れているのがわかる。すなわち、離散周波数音が発生していることがわかる。その中で大きなピークは整数倍の関係になっている。特に、1.1kHzと2.2kHzの音量が大きい。 FIG. 14 shows the results of measurement with the exhaust-side microphone. The horizontal axis of the graph shown in FIG. 14 is represented logarithmically. From FIG. 14, it can be seen that a large peak sound (narrow band sound), which is characteristic of a fan with rotating blades, appears at multiple frequencies. That is, it can be seen that a discrete frequency sound is generated. Among them, a large peak has a relationship of integral multiples. In particular, the volume of 1.1 kHz and 2.2 kHz is large.

また、ダクトの出口側端部での風速を、風速計を用いて測定したところ、3.1m/sの風速であった。以下、実施例3まで風速に変化は見られなかった。 Further, when the wind speed at the end of the duct on the exit side was measured using an anemometer, it was 3.1 m/s. No change was observed in the wind speed up to Example 3.

[実施例1]
ダクトの内壁を以下のようにして作製した膜型共鳴構造とした以外は比較例1と同様にして、ファン消音システムを作製した。膜型共鳴構造の共鳴周波数は2.2kHzとした。
[Example 1]
A fan noise reduction system was produced in the same manner as in Comparative Example 1, except that the inner wall of the duct was made to have a membrane-type resonance structure produced as follows. The resonance frequency of the membrane-type resonance structure was set to 2.2 kHz.

<膜型共鳴構造の設計>
有限要素法による音響構造連成計算をCOMSOL MULTIPHYSICS(COMSOL Inc.製)を用いて行い、膜型共鳴構造を設計した。膜の材料をPETとし、厚みを75μmとして、サイズと背面距離を変えて設計を行った。膜の振動部である内径が24mmの円形の枠体で、背面距離が6mmである膜型共鳴構造で2.2kHzに共鳴を有して高い吸収を持つことが分かった。
背面距離の6mmとは、2.2kHzの波長λに対して、0.038×λの距離に相当し、非常に薄い構造で共鳴を実現できることがわかる。通常の片側閉管の気柱共鳴構造の場合には必要な長さは0.25×λであるので、気柱共鳴構造に対して厚みを約15%のサイズまで小さくすることができることがわかる。
<Design of membrane-type resonance structure>
Acoustic-structure interaction calculation by the finite element method was performed using COMSOL MULTIPHYSICS (manufactured by COMSOL Inc.) to design a membrane-type resonance structure. The material of the membrane was PET, the thickness was 75 μm, and the design was performed by changing the size and the back distance. It was found that a membrane-type resonance structure having a circular frame with an inner diameter of 24 mm and a back surface distance of 6 mm, which is the vibrating portion of the membrane, has resonance at 2.2 kHz and high absorption.
The back surface distance of 6 mm corresponds to a distance of 0.038×λ with respect to the wavelength λ of 2.2 kHz, and it can be seen that resonance can be achieved with a very thin structure. Since the required length is 0.25×λ in the case of a normal one-side closed air column resonance structure, it can be seen that the thickness can be reduced to about 15% of the size of the air column resonance structure.

<膜型共鳴構造の作製>
アクリル板をレーザーカッターで加工することで、上記で設計した構造を作製した。具体的には、厚み3mmのアクリル板を加工して、外形が30mmの正方形で、その中に24mm直径の開口部を有する有孔板部材を2枚と、外形が30mmの正方形の板部材を作製した。2枚の有孔板部材、および、板部材をこの順に重ね合わせて、両面テープ(アスクル製現場のチカラ)で貼り合わせて枠体を作製した。
<Fabrication of membrane-type resonance structure>
The structure designed above was produced by processing an acrylic plate with a laser cutter. Specifically, by processing an acrylic plate with a thickness of 3 mm, two perforated plate members having a square shape with an outer shape of 30 mm and an opening with a diameter of 24 mm in the perforated plate member, and a square plate member with an outer shape of 30 mm. made. Two perforated plate members and a plate member were superimposed in this order and adhered with a double-faced tape (Chikara of ASKUL Co., Ltd.) to produce a frame.

枠体の開口面に厚み75μmのPET膜(東レ製ルミラー)を両面テープで貼り合わせた。枠体の外形に合わせてPET膜を切り取ることで、外形状が30mm角正方形で、枠体の内形24mm、PET膜の厚み75μm、背面距離6mmの膜型共鳴構造を作製した。
この膜型共鳴構造を6つ作製し、ダクトの4面中3面がそれぞれ2つの膜型共鳴構造となっているダクト(長さ30mm)を作製した(図5参照)。
A PET film (Lumirror manufactured by Toray Industries, Inc.) having a thickness of 75 μm was adhered to the opening surface of the frame with a double-sided tape. By cutting the PET film according to the outer shape of the frame, a film-type resonance structure having an outer shape of 30 mm square, an inner diameter of the frame of 24 mm, a thickness of the PET film of 75 μm, and a back-to-back distance of 6 mm was produced.
Six such membrane-type resonance structures were produced, and a duct (30 mm in length) having two membrane-type resonance structures on each of three of the four surfaces of the duct was produced (see FIG. 5).

<測定>
作製したファン消音システムのファンを駆動して比較例1と同様に排気側および吸気側で音量を測定した。
排気側の測定結果を図15に示し、吸気側の測定結果を図16に示す。図15および図16には比較例1の結果も示す。
<Measurement>
The fan of the manufactured fan muffling system was driven, and the sound volume was measured on the exhaust side and the intake side in the same manner as in Comparative Example 1.
FIG. 15 shows the measurement results on the exhaust side, and FIG. 16 shows the measurement results on the intake side. 15 and 16 also show the results of Comparative Example 1. FIG.

図15から、膜型共鳴構造の共鳴周波数2.2kHzにおいて約20dBの大きな消音効果を得られることがわかる。さらに、図15に矢印で示した、ファン回転によって発生する、周波数の異なる複数の離散周波数音に対しても消音効果が得られることがわかる。すなわち、膜型共鳴構造の共鳴周波数以外の周波数においても消音効果が得られることがわかる。このように、本発明のファン消音システムは、ファンが発生する音の近接場領域内に音響共鳴構造を配置することで、音響共鳴構造の共鳴周波数以外の周波数の音を消音できるため、ファン回転によって発生する周波数の異なる複数の離散周波数音を消音できることがわかる。
また、膜型共鳴構造の共鳴周波数を、ファン回転によって発生する周波数の異なる複数本の離散周波数音のうちの1つの周波数に合わせることで、その周波数での消音効果をより高くすることができることがわかる。
From FIG. 15, it can be seen that a large silencing effect of about 20 dB can be obtained at the resonance frequency of 2.2 kHz of the membrane type resonance structure. Furthermore, it can be seen that the noise reduction effect can also be obtained for a plurality of discrete frequency sounds with different frequencies generated by the rotation of the fan, as indicated by the arrows in FIG. That is, it can be seen that the silencing effect can be obtained even at frequencies other than the resonance frequency of the membrane-type resonance structure. In this way, the fan noise reduction system of the present invention can silence the sound of frequencies other than the resonance frequency of the acoustic resonance structure by arranging the acoustic resonance structure in the near-field region of the sound generated by the fan. It can be seen that a plurality of discrete frequency sounds with different frequencies generated by are muted.
Further, by matching the resonance frequency of the membrane-type resonance structure to one frequency among a plurality of discrete frequency sounds with different frequencies generated by the fan rotation, it is possible to further enhance the silencing effect at that frequency. Recognize.

また、図16から、吸気側でも、膜型共鳴構造の共鳴周波数、および、他の周波数において音量が低減していることがわかる。すなわち、排気側での消音効果は、音を反射して吸気側に出しているのではなく、排気側および吸気側ともに消音していることがわかる。この効果は、膜型共鳴構造による膜振動による音の吸収と、膜型共鳴構造によって反射された音と、音源と干渉することによって音源から音が発する現象を抑え込んだことによると考えられる。 Also, from FIG. 16, it can be seen that the sound volume is reduced at the resonance frequency of the membrane-type resonance structure and other frequencies on the intake side as well. That is, it can be seen that the silencing effect on the exhaust side is not that the sound is reflected and output to the intake side, but that the noise is muted on both the exhaust side and the intake side. This effect is thought to be due to the absorption of sound by membrane vibration by the membrane-type resonance structure, the sound reflected by the membrane-type resonance structure, and the interference with the sound source, thereby suppressing the phenomenon of sound emitted from the sound source.

実施例1のファン消音システムにおいて、ファンの音源部分(羽根)と膜型共鳴構造の膜振動部の中央までの距離は「ファンの羽根前面から送風口前面までの距離5mm」+「膜型共鳴構造の膜の中心位置からファンの送風口前面までの距離15mm」=20mmである。周波数2.2kHzの波長/4は39mmであるので、膜型共鳴構造は近接場領域内に配置されていることがわかる。 In the fan noise reduction system of Example 1, the distance between the sound source portion (blade) of the fan and the center of the membrane vibrating portion of the membrane resonance structure is "5 mm distance from the front surface of the fan blade to the front surface of the blowing port" + "membrane resonance The distance from the center position of the membrane of the structure to the front face of the fan's air outlet is 15 mm'=20 mm. Since the wavelength/4 of the frequency of 2.2 kHz is 39 mm, it can be seen that the film-type resonance structure is arranged within the near-field region.

[比較例2]
比較例2は図17に示すように、膜型共鳴構造30aを軸流ファン12aから離間して配置し、膜型共鳴構造30aと軸流ファン12aとの間にダクト100を配置した構成とした。膜型共鳴構造30aは実施例1の膜型共鳴構造と同じものを使用した。ダクト100は、長さは60mmである以外は比較例1のダクトと同様とした。
この構成において、ファンの音源部分(羽根)と膜型共鳴構造との距離は、80mmである。したがって、膜型共鳴構造30aは近接場領域の外側に配置されている構成である。
[Comparative Example 2]
In Comparative Example 2, as shown in FIG. 17, the membrane resonance structure 30a is arranged apart from the axial fan 12a, and the duct 100 is arranged between the membrane resonance structure 30a and the axial fan 12a. . The membrane-type resonance structure 30a used was the same as the membrane-type resonance structure of the first embodiment. The duct 100 was similar to the duct of Comparative Example 1 except that the length was 60 mm.
In this configuration, the distance between the sound source portion (blades) of the fan and the membrane-type resonance structure is 80 mm. Therefore, the membrane-type resonance structure 30a is arranged outside the near-field region.

<測定>
比較例2のファン消音システムのファンを駆動して比較例1と同様に排気側および吸気側で音量を測定した。なお、比較例2において、それぞれ膜型共鳴構造30aの部分をダクトに置き換えた場合の音量の測定結果と比較し、差分から消音量を求めた。
結果を図18に示す。
また、図19に比較例3と比較例3の膜型共鳴構造30aの部分をダクトに置き換えた場合(単純ダクト)の音量の測定結果を示す。
<Measurement>
The fan of the fan silencer system of Comparative Example 2 was driven, and the sound volume was measured on the exhaust side and the intake side in the same manner as in Comparative Example 1. In Comparative Example 2, the sound volume measurement results were compared with those obtained when the membrane-type resonance structure 30a was replaced with a duct, and the silencing volume was obtained from the difference.
The results are shown in FIG.
FIG. 19 shows the sound volume measurement results of Comparative Example 3 and the case where the portion of the membrane-type resonance structure 30a of Comparative Example 3 is replaced with a duct (simple duct).

図18から、比較例2では、膜型共鳴構造30aの共鳴周波数で消音できることがわかる。
しかしながら、より周波数範囲を広げた図19から、比較例3の構造では、膜型共鳴構造30aの共鳴周波数以外の周波数で消音効果が得られないことがわかる。
比較例2では膜型共鳴構造と音源がλ/2離れているため、通常の音の波動としての干渉効果(遠方場干渉)で消音効果が現れている。一方で、上述の近接場領域におけるメカニズムは生じていないと考えられるため、膜型共鳴構造の共鳴周波数以外の消音に寄与していないことは自然なことである。
From FIG. 18, it can be seen that in Comparative Example 2, noise can be silenced at the resonance frequency of the membrane-type resonance structure 30a.
However, from FIG. 19 showing a wider frequency range, it can be seen that in the structure of Comparative Example 3, the silencing effect cannot be obtained at frequencies other than the resonance frequency of the membrane-type resonance structure 30a.
In Comparative Example 2, since the membrane-type resonance structure and the sound source are separated from each other by λ/2, the interference effect (far-field interference) of normal sound waves produces a silencing effect. On the other hand, it is considered that the mechanism in the above-mentioned near-field region does not occur, so it is natural that it does not contribute to silencing other than the resonance frequency of the membrane-type resonance structure.

これに対して、実施例1のように膜型共鳴構造を近接場領域に配置している場合には、膜型共鳴構造と音源の相互作用を一体化して取り扱い、さらに遠方まで伝搬しない高い波数の近接場音の相互作用も考える必要がある。この場合、上述のメカニズムによって、膜型共鳴構造の共鳴周波数以外の周波数の音の放出量にも寄与したと考えられる。よって、近接場領域では広い周波数帯域の音に消音効果をもたらすことができる。 On the other hand, when the membrane-type resonance structure is placed in the near-field region as in Example 1, the interaction between the membrane-type resonance structure and the sound source is treated as an integrated unit, and furthermore, a high wave number that does not propagate far It is also necessary to consider the interaction of the near-field sound of In this case, it is considered that the above-described mechanism contributed to the amount of sound emitted at frequencies other than the resonance frequency of the membrane-type resonance structure. Therefore, in the near-field region, a silencing effect can be provided for sounds in a wide frequency band.

以上の結果より、本発明の実施例1のように、近接場領域に膜型共鳴構造を配置することで、ファンが発生する複数の離散周波数音を消音することができることがわかる。また、膜型共鳴構造の共鳴周波数を離散周波数音の1つの周波数と一致させることでこの周波数でより高い消音効果が得られることがわかる。また、風路を塞ぐことなく、ファン騒音を消音することができることがわかる。 From the above results, it can be seen that a plurality of discrete frequency sounds generated by the fan can be silenced by arranging the film-type resonance structure in the near-field region as in Example 1 of the present invention. It is also found that by matching the resonance frequency of the membrane-type resonance structure with one frequency of the discrete frequency sound, a higher noise reduction effect can be obtained at this frequency. Also, it can be seen that the fan noise can be silenced without blocking the air passage.

[実施例2]
実施例2と同じ膜型共鳴構造を用いて、ファンの種類を変えてピーク音周波数を変えた検討を行った。山洋電気製DC軸流ファン「9GA0612G9001」(フレームサイズ60mm、厚み10mm)を用いた。このファンを実施例1と同様に固定し、その排気側に実施例1と同じ膜型共鳴構造を取り付けた場合(実施例2)と、同じ位置に共鳴構造ではなく、同じダクト長さとなる長さ30mmのダクトを取り付けた場合(比較例3)をそれぞれ測定した。
[Example 2]
Using the same film-type resonance structure as in Example 2, a study was conducted in which the type of fan was changed to change the peak sound frequency. A Sanyo Denki DC axial flow fan "9GA0612G9001" (frame size 60 mm, thickness 10 mm) was used. When this fan is fixed in the same manner as in Example 1, and the same membrane type resonance structure as in Example 1 is attached to the exhaust side (Example 2), there is no resonance structure at the same position, but the length of the duct is the same. Each measurement was performed when a duct with a height of 30 mm was attached (Comparative Example 3).

図20に測定結果を示した。本ファンの場合、ピーク音の周波数は膜型共鳴構造の共鳴周波数とずれた周波数に現れる。膜型共鳴構造の共鳴周波数である2.2kHz付近では8dB程度の消音が比較的広く現れている。一方で、ファンのピーク音周波数(1.2kHz、2.4kHz、3.6kHz)において、それぞれ膜型共鳴構造が近接場領域にある場合に、元のピーク音量より消音できていることがわかる。
このように、膜型共鳴構造の共鳴周波数とずれたファンのピーク音周波数に対しても、近接場領域内の共鳴構造によってピーク音を消音することができることがわかる。
なお、ピーク音の消音量については、共鳴周波数をファンピーク音周波数に合わせた実施例1の場合の方が、共鳴周波数がファンピーク音周波数とずれている本実施例のような場合よりも、消音量が大きく好ましいことがわかる。
FIG. 20 shows the measurement results. In the case of this fan, the peak sound frequency appears at a frequency shifted from the resonance frequency of the membrane-type resonance structure. Around 2.2 kHz, which is the resonance frequency of the membrane-type resonance structure, a relatively wide silencing of about 8 dB appears. On the other hand, at the fan peak sound frequencies (1.2 kHz, 2.4 kHz, and 3.6 kHz), when the film-type resonance structure is in the near-field region, the original peak sound volume can be reduced.
As described above, it can be seen that the resonance structure in the near-field region can muffle the peak sound frequency of the fan that deviates from the resonance frequency of the membrane-type resonance structure.
Regarding the amount of peak noise reduction, the case of the first embodiment in which the resonance frequency is matched with the fan peak sound frequency is higher than the case of the present embodiment in which the resonance frequency is shifted from the fan peak sound frequency. It can be seen that the silencing volume is large and preferable.

[実施例3]
膜型共鳴構造の共鳴周波数を1.1kHzとした以外は実施例1と同様にして膜型共鳴構造を作製した。
[Example 3]
A membrane-type resonance structure was fabricated in the same manner as in Example 1, except that the resonance frequency of the membrane-type resonance structure was 1.1 kHz.

<膜型共鳴構造の作製>
COMSOL MULTIPHYSICSを用いて有限要素法による設計を行ったところ、実施例1の膜型共鳴構造の背面距離を6mmから15mmとすることで、共鳴周波数が1.1kHzとなることがわかった。アクリル板をレーザーカッターで加工して、実施例1と同様の手法でこの膜型共鳴構造を作製した。
<Fabrication of membrane-type resonance structure>
Designing by the finite element method using COMSOL MULTIPHYSICS revealed that the resonance frequency was 1.1 kHz by changing the back surface distance of the membrane-type resonance structure of Example 1 from 6 mm to 15 mm. This film-type resonance structure was fabricated in the same manner as in Example 1 by processing an acrylic plate with a laser cutter.

作製した膜型共鳴構造をファンの送風口の表面から30mm離間した位置に配置した。膜型共鳴構造とファンとの間にはダクト(管路)を接続した(図6参照)。膜型共鳴構造中心から、ファン音源部分(羽根)の距離は50mmである。一方、周波数1.1kHzの波長/4は78mmであるので、膜型共鳴構造は近接場領域内に配置されていることがわかる。 The manufactured membrane-type resonance structure was arranged at a position separated by 30 mm from the surface of the blower port of the fan. A duct was connected between the membrane resonance structure and the fan (see FIG. 6). The distance from the center of the membrane-type resonance structure to the fan sound source portion (blade) is 50 mm. On the other hand, since the wavelength/4 of the frequency of 1.1 kHz is 78 mm, it can be seen that the film-type resonance structure is arranged within the near-field region.

<測定>
作製したファン消音システムのファンを駆動して実施例1と同様に排気側および吸気側で音量を測定した。
結果を図21に示す。また、図21には、実施例3の膜型共鳴構造をダクトに置き換えた場合(単純ダクト)の音量の測定結果も示す。
<Measurement>
The fan of the manufactured fan silencer system was driven and the sound volume was measured on the exhaust side and the intake side in the same manner as in Example 1.
The results are shown in FIG. FIG. 21 also shows the sound volume measurement results when the membrane-type resonance structure of Example 3 is replaced with a duct (simple duct).

図21から、膜型共鳴構造の共鳴周波数1.1kHzにおいて10dB程度の大きな消音効果を得られることがわかる。さらに、ファンが発生する複数の離散周波数音に対し居ても消音効果が得られることがわかる。 From FIG. 21, it can be seen that a large noise reduction effect of about 10 dB can be obtained at the resonance frequency of 1.1 kHz of the membrane type resonance structure. Furthermore, it can be seen that the silencing effect can be obtained even with respect to a plurality of discrete frequency sounds generated by the fan.

[実施例4]
実施例1のファン消音システムの膜型共鳴構造の下流側に、実施例3で作製した膜型共鳴構造を配置した構成(図8参照)とした以外は実施例1と同様にしてファン消音システムを作製した。
結果を図22に示す。また、図22には、実施例4の膜型共鳴構造をダクトに置き換えた場合(単純ダクト)の音量の測定結果も示す。
[Example 4]
A fan muffling system in the same manner as in Example 1 except that the membrane-type resonance structure produced in Example 3 is arranged downstream of the membrane-type resonance structure of the fan muffling system of Example 1 (see FIG. 8). was made.
The results are shown in FIG. FIG. 22 also shows the sound volume measurement results when the membrane-type resonance structure of Example 4 is replaced with a duct (simple duct).

膜型共鳴構造それぞれの共鳴周波数1.1kHzおよび2.2kHzで15dB程度の大きな消音効果を得られることがわかる。すなわち、膜型共鳴構造を直列に配置してもそれぞれの消音効果は機能することがわかる。
また、図22に矢印で示した、ファンが発生する複数の離散周波数音に対しても消音効果が得られることがわかる。すなわち、膜型共鳴構造の共鳴周波数以外の周波数においても消音効果が得られることがわかる。
It can be seen that a large silencing effect of about 15 dB can be obtained at resonance frequencies of 1.1 kHz and 2.2 kHz for each of the membrane-type resonance structures. In other words, it can be seen that even if the membrane-type resonance structures are arranged in series, each of the silencing effects functions.
Moreover, it can be seen that the noise reduction effect can be obtained for a plurality of discrete frequency sounds generated by the fan as indicated by the arrows in FIG. That is, it can be seen that the silencing effect can be obtained even at frequencies other than the resonance frequency of the membrane-type resonance structure.

図22の二つのデータの差分をとって、消音量として図23に示した。1.1kHz付近、および、2.2kHz付近では、ファンの騒音ピークを15dB以上消音するとともに、それ以外の周波数帯域でも消音効果が得られていることがわかる。 The difference between the two data in FIG. 22 is taken and shown in FIG. 23 as the muting volume. In the vicinity of 1.1 kHz and in the vicinity of 2.2 kHz, the noise peak of the fan is reduced by 15 dB or more, and the noise reduction effect is also obtained in other frequency bands.

実施例4のファン消音システムに関して耳で聞いた騒音の大きさを評価するために、オクターブバンド評価と全体の騒音量評価を示した。図24に1/3オクターブバンドごとに評価し、また音量を人の耳の感度を考慮した補正であるA特性評価(単位dBA)とした結果を示した。1.1kHz、2.2kHz、また他の周波数の騒音ピークを消音することで、周波数を広く平均化して評価する1/3オクターブバンド評価であっても全体に音が低減していることがわかる。また、周波数可聴域全帯域に対してA特性補正を行って積分し、騒音レベルの計算をした。単純ダクトの場合81.9(dBA)であった騒音が、実施例4のファン消音システムでは74.9(dBA)まで騒音レベルを下げることができた。騒音レベルが3dBAの差を持つと、一般人が十分に検知できるとされるので、この7dBAの消音効果は体感でも十分に静かになったとわかるレベルである。
このように、ファンから発生する離散周波数音を抑制するための検討を行い、音響共鳴構造を近接場領域内に配置することで、共鳴周波数だけではなくファンが発生する離散周波数音全体を消音して、大きな消音効果を得ることができることを示した。
To evaluate the perceived loudness of the fan silencer system of Example 4, an octave band rating and an overall noise volume rating were presented. FIG. 24 shows the result of evaluation for each 1/3 octave band and the A characteristic evaluation (unit: dBA) that is correction considering the sensitivity of the human ear. By eliminating the noise peaks at 1.1 kHz, 2.2 kHz, and other frequencies, it can be seen that the overall sound is reduced even in the 1/3 octave band evaluation, which evaluates by averaging the frequencies widely. . In addition, A-characteristic correction was performed for the entire audible frequency band and integrated to calculate the noise level. The noise level, which was 81.9 (dBA) in the simple duct, was reduced to 74.9 (dBA) in the fan silencer system of Example 4. When the noise level has a difference of 3 dBA, it is said that ordinary people can sufficiently detect it.
In this way, we conducted a study to suppress the discrete frequency sound generated by the fan, and by placing the acoustic resonance structure in the near-field region, not only the resonance frequency but also the entire discrete frequency sound generated by the fan were silenced. It was shown that a large noise reduction effect can be obtained by

[実施例5]
実施例1~実施例4よりも強風の条件での測定を行うため、ファンの種類を変更した。山洋電気製の9GA0612P1J03(厚み38mm)ファンを用いた。図25に、このファンに供給する電流量を変化させた場合の風速を示した。電流量を大きくすることで、高風速高風量を得ることができる。
[Example 5]
In order to perform measurements under stronger wind conditions than in Examples 1 to 4, the type of fan was changed. A 9GA0612P1J03 (thickness: 38 mm) fan manufactured by Sanyo Denki was used. FIG. 25 shows the wind speed when the amount of current supplied to this fan is changed. By increasing the amount of current, a high air velocity and high air volume can be obtained.

このファンの排気側に、実施例2と同じ構成の膜型共鳴構造を配置した。ただし、膜型共鳴構造の膜面を、実施例2より外周側に5mm下げた形とした(図26参照)。これは、後の実施例6で防風部材を配置するためである。 A film-type resonance structure having the same configuration as that of the second embodiment was arranged on the exhaust side of this fan. However, the film surface of the film-type resonance structure was lowered by 5 mm to the outer peripheral side from that of Example 2 (see FIG. 26). This is for arranging a windbreak member in Example 6 which will be described later.

<測定>
作製したファン消音システムのファンを駆動して比較例1と同様に排気側および吸気側で音量を測定した。
排気側の測定結果を図27に示す。また、比較例4として実施例5の膜型共鳴構造をダクトに代えた場合の測定結果も同時に示す。実施例5と比較例4は流路方向の構造長さはともに30mmであり等しい。
また、実施例4および比較例4の出口側端部での風速を、風速計を用いて測定した。その結果、ともに14.5m/sであり、膜型共鳴構造を取り付けた場合と、筒構造とで風速が変化していないことを確認した。
<Measurement>
The fan of the manufactured fan muffling system was driven, and the sound volume was measured on the exhaust side and the intake side in the same manner as in Comparative Example 1.
FIG. 27 shows the measurement results on the exhaust side. In addition, as Comparative Example 4, measurement results obtained when the membrane-type resonance structure of Example 5 is replaced with a duct are also shown. Example 5 and Comparative Example 4 have the same structural length of 30 mm in the flow direction.
In addition, the wind speed at the outlet side end of Example 4 and Comparative Example 4 was measured using an anemometer. As a result, both were 14.5 m/s, and it was confirmed that the wind speed did not change between the case where the membrane type resonance structure was attached and the case where the cylinder structure was installed.

図27から、膜型共鳴構造の共鳴周波数以外の周波数のピークは図27に矢印で示した通り、消音効果を得られることがわかる。しかし、共鳴周波数である1.1kHz付近のピークに関しては、その周辺の周波数で音が増幅している効果があり、ピーク消音効果をほとんど得られていないことがわかる。
実施例5では、ファンの風量が大きく、かつ回転するファンであるために風が非定常となっている。この風が膜面に風圧をかけることで、膜面には風による振動が生じる。膜に生じた振動は広い周波数スペクトルを含むが、その中で膜型共鳴構造の設計で共鳴として設計した周波数、すなわち消音を狙った周波数とその周辺において共鳴現象が生じる。この共鳴周波数において、膜面に生じた振動が長く残りやすく、ファンが稼働し続けている状態ではその振幅も増幅しやすい。そのため、そこからまるでスピーカーのように音が発信される。このようにして、ファンの極近傍でかつ強い風量が生じている場合に、共鳴周波数付近では音が増幅してしまい、狙いの消音効果がほとんど得られなかったと考えられる。
It can be seen from FIG. 27 that the peaks of frequencies other than the resonance frequency of the membrane-type resonance structure can obtain the noise reduction effect as indicated by the arrows in FIG. However, with respect to the peak around 1.1 kHz, which is the resonance frequency, there is an effect that the sound is amplified in the surrounding frequencies, and it can be seen that the peak silencing effect is hardly obtained.
In Example 5, since the fan has a large air volume and is a rotating fan, the air flow is unsteady. The wind exerts wind pressure on the film surface, causing the film surface to vibrate due to the wind. The vibration generated in the membrane includes a wide frequency spectrum, among which the resonance phenomenon occurs at and around the frequency designed as resonance in the design of the membrane-type resonance structure, that is, the frequency aimed at silencing. At this resonance frequency, the vibration generated on the film surface tends to remain for a long time, and its amplitude tends to be amplified while the fan continues to operate. Therefore, the sound is emitted from there like a speaker. In this way, when a strong air volume is generated in the very vicinity of the fan, the sound is amplified in the vicinity of the resonance frequency, and it is considered that the desired noise reduction effect could hardly be obtained.

[実施例6]
実施例5のファン消音システムにおいて、膜型共鳴構造の膜の表面に防風部材を配置した以外は実施例5と同様にしてファン消音システムを作製した(図10参照)。
防風部材としてウレタンスポンジ(厚み5mm)を用いた。膜の振動に対する影響をできるだけ防ぐために、スポンジの膜側の面には両面テープ等は用いず、スポンジの空気側面の一部(スポンジ下部の膜型共鳴構造の枠部分に当たる位置)にスコッチテープを用いて、膜型共鳴構造の側壁部に取り付け、スポンジが膜型共鳴構造からずれないようにした。
[Example 6]
A fan noise reduction system of Example 5 was produced in the same manner as in Example 5, except that a windbreak member was arranged on the surface of the membrane of the membrane type resonance structure (see FIG. 10).
A urethane sponge (thickness: 5 mm) was used as a windbreak member. In order to prevent the influence of the vibration of the membrane as much as possible, do not use double-sided tape or the like on the membrane side of the sponge, but put scotch tape on a part of the air side of the sponge (the position that hits the frame of the membrane-type resonance structure at the bottom of the sponge). was used to attach the sponge to the side wall of the membrane-type resonance structure so that the sponge would not be displaced from the membrane-type resonance structure.

<測定>
作製したファン消音システムのファンを駆動して比較例1と同様に排気側および吸気側で音量を測定した。
排気側の測定結果を図28に示す。また、比較例4の測定結果も同時に示す。
また、実施例6の出口側端部での風速を、風速計を用いて測定した。その結果、14.5m/sであり、風速が変化していないことを確認した。
<Measurement>
The fan of the manufactured fan muffling system was driven, and the sound volume was measured on the exhaust side and the intake side in the same manner as in Comparative Example 1.
FIG. 28 shows the measurement results on the exhaust side. The measurement results of Comparative Example 4 are also shown at the same time.
In addition, the wind speed at the outlet side end of Example 6 was measured using an anemometer. As a result, it was 14.5 m/s, and it was confirmed that the wind speed did not change.

図28から、実施例5で生じていた共鳴周波数(1.1kHz)付近での音の増幅が大幅に抑制できることがわかる。また、図28に矢印で示すとおり、共鳴周波数以外の周波数のピーク音を低減する効果も得られることがわかる。また、図28では5.4kHz以上の高周波領域で広帯域に消音できていることがわかる。これは膜面に配置したスポンジによる吸音効果である。
以上の結果から、膜の表面に防風部材を配置することで、ファンの極近傍に膜型共鳴構造を配置した際に、共鳴周波数付近で音が鳴ってしまう現象を大幅に抑制することができることがわかる。また、防風部材として多孔質吸音材を用いることで、多孔質吸音材の消音効果と膜型共鳴構造による消音効果を両立できることがわかる。
From FIG. 28, it can be seen that the amplification of sound near the resonance frequency (1.1 kHz) that occurred in Example 5 can be greatly suppressed. In addition, as indicated by arrows in FIG. 28, it can be seen that the effect of reducing peak sounds of frequencies other than the resonance frequency is also obtained. In addition, it can be seen from FIG. 28 that noise can be eliminated over a wide band in the high frequency range of 5.4 kHz or higher. This is the sound absorbing effect of the sponge placed on the film surface.
From the above results, by placing the windbreak member on the surface of the membrane, it is possible to greatly suppress the phenomenon of sound in the vicinity of the resonance frequency when the membrane-type resonance structure is arranged very close to the fan. I understand. It is also found that the use of the porous sound absorbing material as the windbreak member achieves both the sound damping effect of the porous sound absorbing material and the sound damping effect of the membrane-type resonance structure.

[実施例7]
音響共鳴構造としてヘルムホルツ共鳴構造を用いた以外は実施例5と同様にしてファン消音システムを作製した。
共鳴周波数が1.1kHzとなるヘルムホルツ共鳴構造を設計したところ、貫通穴長さ3mm、貫通穴直径4mm、内部空間厚み12mm、内部空間直径24mmであった。
このような構成となるようにアクリル板をレーザーカッターで加工してヘルムホルツ共鳴構造を作製した。ヘルムホルツ共鳴構造6セルがダクト壁面を構成するように実施例5と同様にしてファン消音システムを作製した。
[Example 7]
A fan muffling system was produced in the same manner as in Example 5, except that a Helmholtz resonance structure was used as the acoustic resonance structure.
When a Helmholtz resonance structure with a resonance frequency of 1.1 kHz was designed, the length of the through hole was 3 mm, the diameter of the through hole was 4 mm, the thickness of the internal space was 12 mm, and the diameter of the internal space was 24 mm.
A Helmholtz resonance structure was produced by processing an acrylic plate with a laser cutter so as to have such a configuration. A fan noise reduction system was produced in the same manner as in Example 5 so that the 6-cell Helmholtz resonance structure constituted the duct wall surface.

ファンに供給する電流量が0.3Aの場合の測定結果を図29に示す。また、ヘルムホルツ共鳴構造の代わりに同じ長さのダクトを取り付けた場合の測定結果も示した(比較例5)。このとき風速は5.5m/sであった。 FIG. 29 shows the measurement results when the amount of current supplied to the fan is 0.3A. Also shown is the measurement result when a duct of the same length was attached instead of the Helmholtz resonance structure (Comparative Example 5). At this time, the wind speed was 5.5 m/s.

図29から、音響共鳴構造としてヘルムホルツ共鳴構造を用いた場合も、共鳴周波数以外の周波数のピーク音に対する消音効果を得ることができることがわかる。一方で、共鳴周波数である1.1kHzのピークに関しての消音量は若干であり、その周辺に音の増幅が生じている。これは、ヘルムホルツ共鳴構造の貫通孔部で生じた風切り音の中で、共鳴構造の共鳴周波数において共鳴が生じて音が増幅し、音が鳴った効果である。 From FIG. 29, it can be seen that even when the Helmholtz resonance structure is used as the acoustic resonance structure, a silencing effect can be obtained for peak sounds of frequencies other than the resonance frequency. On the other hand, the 1.1 kHz peak, which is the resonance frequency, is slightly muted, and the sound is amplified around it. This is the effect that, in the wind noise generated in the through-hole portion of the Helmholtz resonance structure, resonance occurs at the resonance frequency of the resonance structure, the sound is amplified, and the sound is produced.

[実施例8]
ファンに供給する電流量を1.3Aとした以外は実施例7と同様にして音量を測定した。測定結果を図30に示す。また、ヘルムホルツ共鳴構造の代わりに同じ長さのダクトを取り付けた場合の測定結果も示した(比較例6)。また、風速は15.1m/sであった。
[Example 8]
The sound volume was measured in the same manner as in Example 7 except that the current supplied to the fan was 1.3A. FIG. 30 shows the measurement results. Also shown is the measurement result when a duct of the same length was attached instead of the Helmholtz resonance structure (Comparative Example 6). Also, the wind speed was 15.1 m/s.

図30から、共鳴周波数以外の周波数の複数のピーク音を消音する効果は高風量下でのヘルムホルツ共鳴構造でも得ることができることがわかる。一方で、共鳴で増幅された風切り音は、高風速となることでより大きくなり、共鳴周波数付近のピーク音については増幅が生じていることがわかる。
以上から、共鳴構造によって複数の離散周波数音を消音することができる効果は膜型共鳴器に限らず一般的であることがわかる。また、このヘルムホルツ共鳴の風切り音による増幅効果は、膜型共鳴構造が鳴る現象と比べても増幅量が大きいため、特に強風下で用いる場合には膜型共鳴構造の方が望ましいと考えられる。
From FIG. 30, it can be seen that the effect of silencing a plurality of peak sounds of frequencies other than the resonance frequency can be obtained even with the Helmholtz resonance structure under high air volume. On the other hand, it can be seen that the wind noise amplified by resonance becomes louder as the wind speed increases, and the peak sound near the resonance frequency is amplified.
From the above, it can be seen that the effect that a plurality of discrete frequency sounds can be silenced by the resonance structure is not limited to the membrane type resonator and is general. In addition, the amplification effect of this Helmholtz resonance due to wind noise is greater than the phenomenon of ringing with a membrane-type resonance structure.

[比較例7]
軸流ファン以外のファンへの適用を検討するため、ブロワ用シロッコファンへの適用を検討した。山洋電気製のブロア9BMC12P2G001を用いた。このブロアファンを厚み10mmの防振ゴムの上に配置し、上部から取り入れた空気を水平方向に排出する構成とした。 送風口から30mm離れた位置に、送風口と同じ大きさの開口(約30mm×52mmの開口部)を有する厚み5mmのアクリル板をついたて102として配置し、その先に風が直接当たらない配置で計測用マイクロフォンMPを配置して実験を行った。この時のついたて102の開口部で測定した風速は、7.7m/sであった。
[Comparative Example 7]
In order to study the application to fans other than axial fans, we examined the application to sirocco fans for blowers. A blower 9BMC12P2G001 manufactured by Sanyo Denki was used. This blower fan was placed on a vibration isolator with a thickness of 10 mm, and the air taken in from above was discharged horizontally. At a position 30 mm away from the air outlet, an acrylic plate 102 with a thickness of 5 mm having an opening of the same size as the air outlet (an opening of about 30 mm × 52 mm) was placed as a screen 102, and the position was such that the wind did not hit directly on the tip. An experiment was conducted by arranging a measurement microphone MP. The wind speed measured at the opening of the screen 102 at this time was 7.7 m/s.

送風口とついたて102の開口部の間を、厚み5mmのアクリル板で作製したダクト100でつなげた状態での測定を行った。模式図を図31に示す。 Measurement was performed in a state in which the air outlet and the opening of the screen 102 were connected by a duct 100 made of an acrylic plate having a thickness of 5 mm. A schematic diagram is shown in FIG.

[実施例9]
送風口とついたて102の開口部の間に、実施例4の膜型共鳴構造30aを4つ、ダクト状に配置した以外は比較例7と同様にしてファン消音システムを作製した(図32参照)。
膜型共鳴構造30aとシロッコファンの羽根の距離は、最小で24mmであり、膜型共鳴構造30aは近接場領域内に配置されている。
[Example 9]
A fan muffling system was produced in the same manner as in Comparative Example 7, except that four membrane-type resonance structures 30a of Example 4 were arranged in a duct shape between the air outlet and the opening of the screen 102 (see FIG. 32). .
The minimum distance between the membrane-type resonance structure 30a and the blades of the sirocco fan is 24 mm, and the membrane-type resonance structure 30a is arranged in the near-field region.

<測定>
実施例9および比較例7において、ファンを駆動して計測用マイクロフォンMPで音量を測定した。
測定結果を図33に示す。
<Measurement>
In Example 9 and Comparative Example 7, the fan was driven and the sound volume was measured with the measurement microphone MP.
The measurement results are shown in FIG.

図33に示す結果から、実施例9の構成は、共鳴周波数付近でピーク音を低減することができるとともに、他の周波数に現れるピーク音についても消音効果が現れることがわかる。この結果から、シロッコファンであっても軸流ファンの場合と同様に、音響共鳴構造を近接場領域内に配置することで、複数の離散周波数音の消音効果が得られることを示している。
以上の結果より本発明の効果は明らかである。
From the results shown in FIG. 33, it can be seen that the configuration of Example 9 can reduce the peak sound in the vicinity of the resonance frequency, and that the peak sound appearing at other frequencies also has a silencing effect. From this result, it is shown that even in the sirocco fan, as in the case of the axial fan, by arranging the acoustic resonance structure in the near-field region, it is possible to obtain the effect of silencing a plurality of discrete frequency sounds.
From the above results, the effect of the present invention is clear.

10 ファン消音システム
12a 軸流ファン
12b シロッコファン
16 ケーシング
16a 送風口
18 回転子
20 軸部
22 羽根
26 管路
30a、30b 膜型共鳴構造
32、42 枠体
34 膜
35 背面空間
36 防振部材
38 送風口
40 ヘルムホルツ共鳴構造
43 内部空間
44 蓋部
46 貫通孔
48 防風部材
100 ダクト
102 ついたて
MP マイクロフォン
REFERENCE SIGNS LIST 10 Fan noise reduction system 12a Axial fan 12b Sirocco fan 16 Casing 16a Blower port 18 Rotor 20 Shaft 22 Blades 26 Pipe 30a, 30b Membrane resonance structure 32, 42 Frame 34 Membrane 35 Back space 36 Anti-vibration member 38 Blower Mouth 40 Helmholtz resonance structure 43 Internal space 44 Lid 46 Through hole 48 Windbreak member 100 Duct 102 Screen MP Microphone

Claims (13)

ファン、および、音響共鳴構造を有し、
前記音響共鳴構造は前記ファンが発生する音の近接場領域内に配置されており、
前記音響共鳴構造の振動体を備える面は、前記ファンの送風口に垂直な軸と平行であり、かつ、前記ファンの回転軸方向と平行に配置されているファン消音システム。
having a fan and an acoustic resonance structure;
wherein the acoustic resonance structure is positioned within a near-field region of sound generated by the fan;
A fan muffling system according to claim 1, wherein a surface of said acoustic resonance structure having a vibrating body is arranged parallel to an axis perpendicular to an air outlet of said fan and parallel to a rotation axis direction of said fan.
前記音響共鳴構造の共鳴周波数が、前記ファンの羽根の回転に起因する離散周波数音の少なくとも1つの周波数に一致する請求項1に記載のファン消音システム。 2. The fan muffling system of claim 1, wherein a resonant frequency of said acoustic resonance structure matches at least one frequency of discrete frequency sound caused by rotation of said fan blades. 前記ファンの前記送風口に垂直な方向から見た際に、前記音響共鳴構造が前記送風口と重複する面積が、前記送風口の面積に対して50%以下である請求項1または2に記載のファン消音システム。 3. The claim 1 or 2, wherein when viewed from a direction perpendicular to the blower opening of the fan, an area where the acoustic resonance structure overlaps with the blower opening is 50% or less of the area of the blower opening. fan silence system. 前記音響共鳴構造は、前記ファンに接続される通風路の壁面の一部を構成している請求項1~3のいずれか一項に記載のファン消音システム。 The fan noise reduction system according to any one of claims 1 to 3, wherein the acoustic resonance structure constitutes a part of a wall surface of an air passage connected to the fan. 前記音響共鳴構造の前記振動体を備える面側に音を透過する防風部材を有する請求項1~4のいずれか一項に記載のファン消音システム。 The fan muffling system according to any one of claims 1 to 4, further comprising a sound-transmitting windbreak member on the side of the acoustic resonance structure having the vibrator. 前記音響共鳴構造は、前記ファンに接している請求項1~5のいずれか一項に記載のファン消音システム。 The fan muffling system according to any one of claims 1 to 5, wherein the acoustic resonance structure is in contact with the fan. 前記音響共鳴構造は、防振部材を介して前記ファンに接している請求項6に記載のファン消音システム。 7. The fan muffling system according to claim 6, wherein said acoustic resonance structure is in contact with said fan through a vibration isolating member. 異なる共鳴周波数を有する複数の前記音響共鳴構造を有し、
共鳴周波数の高い前記音響共鳴構造が、共鳴周波数の低い前記音響共鳴構造よりも前記ファンに近い位置に配置されている請求項1~7のいずれか一項に記載のファン消音システム。
having a plurality of said acoustic resonance structures with different resonance frequencies;
The fan muffling system according to any one of claims 1 to 7, wherein the acoustic resonance structure with a higher resonance frequency is arranged closer to the fan than the acoustic resonance structure with a lower resonance frequency.
前記ファンによる送風方向において、前記音響共鳴構造が前記ファンの下流側のみに配置されている請求項1~8のいずれか一項に記載のファン消音システム。 The fan muffling system according to any one of claims 1 to 8, wherein the acoustic resonance structure is arranged only on the downstream side of the fan in the air blowing direction of the fan. 前記ファンによる送風方向において、前記音響共鳴構造が前記ファンの上流側および下流側に配置されている請求項1~8のいずれか一項に記載のファン消音システム。 The fan muffling system according to any one of claims 1 to 8, wherein the acoustic resonance structures are arranged upstream and downstream of the fan in the air blowing direction of the fan. 前記音響共鳴構造は、周縁部が固定され膜振動可能に支持されている膜と、前記膜の一方の面側に形成される背面空間とを有している、膜型共鳴構造である請求項1~10のいずれか一項に記載のファン消音システム。 3. The acoustic resonance structure is a membrane-type resonance structure comprising a membrane having a fixed peripheral portion and supported so as to be able to vibrate the membrane, and a back space formed on one side of the membrane. 11. The fan muffling system according to any one of 1 to 10. 前記膜型共鳴構造は、前記背面空間と外部とを連通する貫通孔を有する請求項11に記載のファン消音システム。 12. The fan muffling system according to claim 11, wherein the membrane-type resonance structure has a through-hole that communicates the back space with the outside. 前記ファンが軸流ファンである請求項1~12のいずれか一項に記載のファン消音システム。 The fan noise reduction system according to any one of claims 1 to 12, wherein the fan is an axial fan.
JP2023039597A 2019-04-24 2023-03-14 Fan silencing system Pending JP2023098879A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019082635 2019-04-24
JP2019082635 2019-04-24
JP2021515888A JPWO2020217819A1 (en) 2019-04-24 2020-03-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021515888A Division JPWO2020217819A1 (en) 2019-04-24 2020-03-24

Publications (1)

Publication Number Publication Date
JP2023098879A true JP2023098879A (en) 2023-07-11

Family

ID=72942230

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021515888A Pending JPWO2020217819A1 (en) 2019-04-24 2020-03-24
JP2023039597A Pending JP2023098879A (en) 2019-04-24 2023-03-14 Fan silencing system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021515888A Pending JPWO2020217819A1 (en) 2019-04-24 2020-03-24

Country Status (5)

Country Link
US (1) US20220018363A1 (en)
EP (1) EP3961046A4 (en)
JP (2) JPWO2020217819A1 (en)
CN (1) CN113646541B (en)
WO (1) WO2020217819A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11568845B1 (en) * 2018-08-20 2023-01-31 Board of Regents for the Oklahoma Agricultural & Mechanical Colleges Method of designing an acoustic liner
WO2020080112A1 (en) * 2018-10-19 2020-04-23 富士フイルム株式会社 Acoustic system
JP7046238B1 (en) 2021-01-14 2022-04-01 レノボ・シンガポール・プライベート・リミテッド Electronics
TWI806407B (en) * 2022-02-08 2023-06-21 宏碁股份有限公司 Electronic system with heat dissipation and noise reduction function and related acoustic filter
JP7249474B1 (en) * 2022-03-22 2023-03-30 富士フイルム株式会社 Air channel with silencer
WO2023181520A1 (en) * 2022-03-22 2023-09-28 富士フイルム株式会社 Air duct with silencer
WO2023181519A1 (en) * 2022-03-22 2023-09-28 富士フイルム株式会社 Air duct with silencer
WO2024070160A1 (en) * 2022-09-28 2024-04-04 富士フイルム株式会社 Ventilation-type silencer
CN117759569A (en) * 2023-12-29 2024-03-26 哈尔滨工程大学 Intake bypass recirculation structure capable of silencing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10103728A (en) * 1996-09-26 1998-04-21 Matsushita Seiko Co Ltd Silencer
AU5457199A (en) * 1999-08-11 2001-03-05 Turk Elektrik Endustrisi A.S. Perforated acoustic silencer for electrical motors
JP2001142148A (en) 1999-11-17 2001-05-25 Matsushita Electric Ind Co Ltd Silencer
US20050161280A1 (en) * 2002-12-26 2005-07-28 Fujitsu Limited Silencer and electronic equipment
US20060169532A1 (en) * 2005-02-03 2006-08-03 Patrick William P Acoustic liner with nonuniform impedance
JP4768428B2 (en) * 2005-12-12 2011-09-07 Necディスプレイソリューションズ株式会社 Silencer, electronic equipment
EP1808594A1 (en) * 2006-01-13 2007-07-18 Denso Corporation Intake muffler
JP4752665B2 (en) 2006-08-04 2011-08-17 パナソニック株式会社 Electric blower and electric vacuum cleaner using the same
JP4215790B2 (en) * 2006-08-29 2009-01-28 Necディスプレイソリューションズ株式会社 Silencer, electronic device, and method for controlling silencing characteristics
US7992674B2 (en) * 2008-06-13 2011-08-09 The Penn State Research Foundation Dipole flow driven resonators for fan noise mitigation
DE202014102144U1 (en) * 2014-05-08 2014-05-15 Yu-Pei Chen Silencer for a blower
US20150369514A1 (en) * 2014-06-18 2015-12-24 Trane International Inc. Adjustable Noise Attenuation Device for Use in Blow Through Air Handler/Furnace with Mixed Flow Blower Wheel
US10876479B2 (en) * 2017-02-24 2020-12-29 Mra Systems, Llc. Acoustic liner having multiple layers

Also Published As

Publication number Publication date
JPWO2020217819A1 (en) 2020-10-29
CN113646541B (en) 2024-03-26
EP3961046A4 (en) 2022-06-08
EP3961046A1 (en) 2022-03-02
WO2020217819A1 (en) 2020-10-29
CN113646541A (en) 2021-11-12
US20220018363A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
WO2020217819A1 (en) Fan muffling system
JP7440617B2 (en) Blower with silencer and moving object with propeller
JP7053877B2 (en) Soundproof system
JP2023112189A (en) Blower with silencer
JP7074878B2 (en) Soundproof structure
EP4113027A1 (en) Muffling device and air blower system
US11869470B2 (en) Acoustic system
JP7141473B2 (en) Silencer for electric vehicles
JP2019056516A (en) Noise suppression system
US12006953B2 (en) Blower with silencer
WO2022201692A1 (en) Soundproofed air passage
JP2023179506A (en) Silencer for ventilation passage
CN117859172A (en) Muffler for ventilation channel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240723