JP2023098320A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2023098320A
JP2023098320A JP2021215015A JP2021215015A JP2023098320A JP 2023098320 A JP2023098320 A JP 2023098320A JP 2021215015 A JP2021215015 A JP 2021215015A JP 2021215015 A JP2021215015 A JP 2021215015A JP 2023098320 A JP2023098320 A JP 2023098320A
Authority
JP
Japan
Prior art keywords
compartment
freezer compartment
refrigerator
cooling
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021215015A
Other languages
Japanese (ja)
Inventor
達也 大木
Tatsuya Oki
芳彦 和田
Yoshihiko Wada
肇 小松
Hajime Komatsu
英夫 増田
Hideo Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aqua KK
Original Assignee
Aqua KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aqua KK filed Critical Aqua KK
Priority to JP2021215015A priority Critical patent/JP2023098320A/en
Priority to PCT/CN2022/142787 priority patent/WO2023125655A1/en
Publication of JP2023098320A publication Critical patent/JP2023098320A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

To provide a refrigerator which can alternately perform cooling of a cold room and cooling of a refrigeration room with one evaporator in an efficient manner.SOLUTION: A refrigerator 1 includes: a cold room 7 and a refrigeration room 6 disposed in the refrigerator 1; a cooling circuit having a compressor 21 and an evaporator 24; a fan 12 which causes a gas in the refrigerator 1 to flow; a cold room opening/closing unit 14 which opens or closes an area between a cooling passage 10 in which the evaporator 24 is disposed and the cold room 7; a refrigeration room opening/closing unit 13 which opens or closes an area between the cooling passage 10 and the refrigeration room 6; and a control unit which controls the compressor 21, the fan 12, the cold room opening/closing part 14, and the refrigeration room opening/closing part 13. The control unit controls so that a cold room cooling cycle and a refrigeration room cooling cycle are performed alternately. After the cold room cooling cycle ends and before the refrigeration room cooling cycle starts, the refrigerator 1 performs a pressure equilibrating process in which the compressor 21 is operated, the fan 12 is stopped, and the cold room opening/closing part 14 and the refrigeration room opening/closing part 13 are closed.SELECTED DRAWING: Figure 1

Description

本発明は、冷蔵室の冷却及び冷凍室の冷却を交互に行う冷蔵庫に関する。 The present invention relates to a refrigerator that alternately cools a refrigerating compartment and a freezing compartment.

冷蔵庫の中には、冷蔵室の冷却専用の蒸発器及び冷凍室の冷却専用の蒸発器を個々に備え、冷蔵室の冷却及び冷凍室の冷却を交互に行うものがある(例えば、特許文献1参照)。 Some refrigerators are equipped with an evaporator dedicated to cooling the refrigerating compartment and an evaporator dedicated to cooling the freezing compartment, and alternately cool the refrigerating compartment and the freezing compartment (for example, Patent Document 1 reference).

特開2004-36975号公報JP-A-2004-36975

しかしながら、蒸発器を含めた冷蔵室及び冷凍室専用の冷却ラインを個々に備える必要があるので、冷蔵庫の製造コストが上がり、庫内の収納効率も低下する。その課題を解決するためには、1つの蒸発器を備え、ダンパの切り替えで、冷蔵室の冷却及び冷凍室の冷却を交互に行うことが好ましい。しかしその場合、冷蔵室の冷却で冷蔵室側の圧力が高くなり、相対的に冷凍室側の圧力が低下する。これにより、庫外や冷蔵室から高温の気体が冷凍室内に流入する虞がある。これにより、冷凍室の温度が上昇して、冷蔵庫の冷却効率が低下する虞がある。 However, since it is necessary to provide separate cooling lines for the refrigerating compartment and the freezing compartment including the evaporator, the manufacturing cost of the refrigerator increases and the storage efficiency in the refrigerator decreases. In order to solve the problem, it is preferable to provide one evaporator and alternately cool the refrigerator compartment and the freezer compartment by switching dampers. In this case, however, the cooling of the refrigerating compartment increases the pressure on the refrigerating compartment side, and relatively decreases the pressure on the freezing compartment side. As a result, high-temperature gas may flow into the freezer compartment from outside or from the refrigerator compartment. As a result, the temperature of the freezer compartment rises, and the cooling efficiency of the refrigerator may decrease.

そこで、本発明は、1つの蒸発器で効率的に冷蔵室の冷却及び冷凍室の冷却を交互に行うことができる冷蔵庫を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a refrigerator capable of efficiently alternately cooling a refrigerating compartment and a freezing compartment with a single evaporator.

本発明の冷蔵庫は、
庫内に配置された冷蔵室及び冷凍室と、
圧縮機及び蒸発器を有する冷却回路と、
庫内の気体を流動させるファンと、
前記蒸発器が配置された冷却流路と前記冷蔵室との間を開閉する冷蔵室開閉部と、
前記冷却流路と前記冷凍室との間を開閉する冷凍室開閉部と、
前記圧縮機、前記ファン、前記冷蔵室開閉部及び前記冷凍室開閉部を制御する制御部と、
を備え、
前記制御部は、
前記圧縮機及び前記ファンを稼働し、前記冷蔵室開閉部を開にすることにより、前記ファンによる流動で前記蒸発器を通過した気体を前記冷却流路から前記冷蔵室に流入させて冷蔵室冷却サイクルを実施し、少なくとも前記冷蔵室開閉部を閉にすることにより前記冷蔵室冷却サイクルを終了し、
前記圧縮機及び前記ファンを稼働し、前記冷凍室開閉部を開にすることにより、前記ファンによる流動で前記蒸発器を通過した気体を前記冷却流路から前記冷凍室に流入させて冷凍室冷却サイクルを実施し、少なくとも前記冷凍室開閉部を閉にすることにより前記冷凍室冷却サイクルを終了し、
前記冷蔵室冷却サイクル及び前記冷凍室冷却サイクルを交互に行うように制御し、
前記冷蔵室冷却サイクルが終了した後、前記冷凍室冷却サイクルを開始する前に、前記圧縮機を稼働し、前記ファンを停止し、前記冷蔵室開閉部及び前記冷凍室開閉部を閉にした圧力平衡化処理を行うことを特徴とする。
The refrigerator of the present invention is
a refrigerating compartment and a freezing compartment arranged in the refrigerator;
a cooling circuit having a compressor and an evaporator;
a fan for circulating gas in the refrigerator;
a refrigerating compartment opening/closing unit for opening and closing between the cooling channel in which the evaporator is arranged and the refrigerating compartment;
a freezer compartment opening/closing part that opens and closes between the cooling channel and the freezer compartment;
a control unit that controls the compressor, the fan, the refrigerator compartment opening/closing unit, and the freezer compartment opening/closing unit;
with
The control unit
By operating the compressor and the fan and opening the refrigerating compartment opening/closing section, the gas that has passed through the evaporator due to the flow by the fan flows into the refrigerating compartment through the cooling channel to cool the refrigerating compartment. terminating the refrigerating compartment cooling cycle by performing a cycle and closing at least the refrigerating compartment opening and closing;
By operating the compressor and the fan and opening the freezer compartment opening/closing part, the gas that has passed through the evaporator due to the flow by the fan flows into the freezer compartment from the cooling channel to cool the freezer compartment. terminating the freezer compartment cooling cycle by performing a cycle and closing at least the freezer compartment opening and closing part;
controlling the refrigerating compartment cooling cycle and the freezer compartment cooling cycle to be performed alternately;
After the refrigerating compartment cooling cycle is completed and before the freezer compartment cooling cycle is started, the compressor is operated, the fan is stopped, and the refrigerating compartment opening and closing parts are closed. It is characterized by performing a balancing process.

冷蔵室冷却サイクル及び冷凍室冷却サイクルを交互に行う場合、冷蔵室冷却サイクルにより冷蔵室側の圧力が高くなり、相対的に冷凍室側の圧力が低下する。これにより、庫外や冷蔵室から高温の気体が冷凍室内に流入して、冷凍室の温度が上昇する虞がある。しかし、本発明では、冷凍室冷却サイクルを開始する前に、ファンを停止し、冷蔵室開閉部及び冷凍室開閉部を閉にした圧力平衡化処理を行うことにより、冷蔵室側の圧力と冷凍室側の圧力とが平衡化される。これにより、冷凍室の圧力の相対的な低下を抑制でき、庫外や冷蔵室から高温の気体が冷凍室内に流入するのを抑制して、冷凍室の温度が上昇するのを抑制することができる。 When the refrigerating compartment cooling cycle and the freezing compartment cooling cycle are alternately performed, the refrigerating compartment cooling cycle increases the pressure on the refrigerating compartment side and relatively decreases the pressure on the freezing compartment side. As a result, high-temperature gas may flow into the freezer compartment from outside the freezer or from the refrigerator compartment, and the temperature of the freezer compartment may rise. However, in the present invention, before the freezer compartment cooling cycle is started, the fan is stopped and the refrigerating compartment opening/closing part and the freezer compartment opening/closing part are closed to perform pressure equalization processing. The pressure on the chamber side is equilibrated. As a result, a relative decrease in the pressure in the freezer compartment can be suppressed, high-temperature gas can be suppressed from flowing into the freezer compartment from the outside or the refrigerator compartment, and an increase in the temperature of the freezer compartment can be suppressed. can.

更に、圧力平衡化処理では、圧縮機を稼働して蒸発器を冷却しているので、冷却流路内の気体や冷蔵室側の気体が冷却される。これにより、冷蔵室側の圧力及び冷凍室側の圧力の平衡化が促進されるとともに、冷凍室冷却サイクルを開始するとき、十分に温度の下がった気体を冷凍室に供給することができる。これにより、1つの蒸発器を用いて、効率的に冷蔵室の冷却及び冷凍室の冷却を交互に行うことができる冷蔵庫を提供することができる。 Furthermore, in the pressure balancing process, the compressor is operated to cool the evaporator, so the gas in the cooling channel and the gas in the refrigerator compartment are cooled. As a result, the pressure on the side of the refrigerator compartment and the pressure on the side of the freezer compartment are promoted to be equilibrated, and when the freezer compartment cooling cycle is started, sufficiently cooled gas can be supplied to the freezer compartment. Accordingly, it is possible to provide a refrigerator that can efficiently alternately cool the refrigerating compartment and the freezing compartment using one evaporator.

また、本発明の冷蔵庫では、
前記冷凍室と前記蒸発器の入側との間に、開のとき、前記冷凍室と前記蒸発器の入側との間が連通し、閉のとき、前記冷凍室と前記蒸発器の入側との間が遮断される冷凍室吸込開閉部を備え、
前記制御部が、
前記冷蔵室冷却サイクルのとき、前記冷凍室吸込開閉部を閉にし、
前記圧力平衡化処理のとき、前記冷凍室吸込開閉部を閉にし、
前記冷凍室冷却サイクルのとき、前記冷凍室吸込開閉部を開にすることを特徴とする。
Moreover, in the refrigerator of the present invention,
Between the freezing chamber and the entrance side of the evaporator, when open, the freezing chamber and the entrance side of the evaporator are communicated, and when closed, the freezing chamber and the entrance side of the evaporator are communicated. Equipped with a freezer compartment suction opening and closing part that cuts off between
The control unit
During the refrigerator compartment cooling cycle, the freezer compartment intake opening/closing section is closed;
During the pressure equalization process, the freezer compartment suction opening/closing unit is closed;
The freezer compartment suction switch is opened during the freezer compartment cooling cycle.

本発明によれば、冷蔵室冷却サイクル及び圧力平衡化処理のとき、冷凍室吸込開閉部が閉となるので、冷凍室と蒸発器の入側との間が遮断される。よって、冷蔵室から蒸発器の入側に入った高温、高圧の気体が、冷凍室に流入するのを防ぐことができる。これにより、冷凍室の温度上昇を抑えて、より効率的に冷凍室の冷却を行うことができる。 According to the present invention, the freezer compartment suction opening/closing section is closed during the refrigerator compartment cooling cycle and the pressure equalization process, thereby blocking the connection between the freezer compartment and the inlet side of the evaporator. Therefore, it is possible to prevent the high-temperature, high-pressure gas that has entered the inlet side of the evaporator from the refrigerator compartment from flowing into the freezer compartment. Thereby, the temperature rise of the freezer compartment can be suppressed, and the freezer compartment can be cooled more efficiently.

また、本発明の冷蔵庫では、
前記圧力平衡化処理のとき、前記制御部が、前記冷蔵室冷却サイクルを行うときよりも高い回転数で前記圧縮機を稼働することを特徴とする。
Moreover, in the refrigerator of the present invention,
During the pressure equalization process, the control unit operates the compressor at a higher rotational speed than during the cold storage cooling cycle.

本発明によれば、圧力平衡化処理のとき、冷蔵室冷却サイクルを行うときよりも高い回転数で圧縮機を稼働するので、蒸発器の温度を冷蔵室冷却サイクル実施時より低くすることができる。これにより、冷蔵室側と冷凍室側との圧力平衡化が更に促進されるとともに、冷凍室冷却サイクル開始時には、確実に冷凍室の冷却に適した温度の気体を冷凍室に供給することができる。 According to the present invention, during the pressure equalization process, the compressor is operated at a higher rotational speed than during the cold room cooling cycle, so the evaporator temperature can be lower than during the cold room cooling cycle. . This further promotes pressure equalization between the refrigerator compartment side and the freezer compartment side, and at the start of the freezer compartment cooling cycle, it is possible to reliably supply gas having a temperature suitable for cooling the freezer compartment to the freezer compartment. .

また、本発明の冷蔵庫では、
前記圧力平衡化処理を開始した後、霜取センサが検出した前記蒸発器の温度が所定の温度より低くなったとき、制御部が、前記圧力平衡化処理を終了して、前記冷凍室冷却サイクルを開始することを特徴とする。
Moreover, in the refrigerator of the present invention,
After starting the pressure balancing process, when the temperature of the evaporator detected by the defrosting sensor becomes lower than a predetermined temperature, the control unit terminates the pressure balancing process and the freezer compartment cooling cycle. is characterized by starting

本発明によれば、圧力平衡化処理を開始した後、蒸発器の温度が所定の温度より低くなったとき、つまり、冷凍室冷却サイクル開始時に冷凍室に供給される気体の温度が冷凍室の冷却に適した温度まで下がったと判断されるとき、圧力平衡化処理を終了して冷凍室冷却サイクルを開始する。これにより、冷凍室の温度上昇を抑えて、効率的な冷凍室の冷却を実現できる。 According to the present invention, when the temperature of the evaporator becomes lower than the predetermined temperature after the pressure equalization process is started, that is, when the freezing compartment cooling cycle is started, the temperature of the gas supplied to the freezer compartment changes to that of the freezer compartment. When it is determined that the temperature has decreased to a temperature suitable for cooling, the pressure equalization process is terminated and the freezer compartment cooling cycle is initiated. Thereby, the temperature rise of the freezer compartment can be suppressed, and efficient cooling of the freezer compartment can be realized.

また、本発明の冷蔵庫では、
前記冷凍室開閉部が、前記ファンの外側を覆うように配置されたファンカバーを備え、前記ファンカバーが開の位置にあるとき、前記ファンから吐出された気体が前記冷凍室に流入し、前記ファンカバーが閉の位置にあるとき、前記ファンから吐出された気体が前記冷凍室に流入しないようになる遮蔽装置で構成されることを特徴とする。
Moreover, in the refrigerator of the present invention,
The freezer compartment opening/closing unit includes a fan cover arranged to cover the outside of the fan, and when the fan cover is in the open position, the gas discharged from the fan flows into the freezer compartment, and the It is characterized by comprising a shielding device that prevents gas discharged from the fan from flowing into the freezer compartment when the fan cover is in the closed position.

本発明によれば、ファンの外側を覆うように配置されたファンカバーを備えた遮蔽装置により、省スペースでありながら、確実に気体の流れの切り替えを行うことができる冷凍室開閉部を提供できる。 According to the present invention, it is possible to provide a freezer compartment opening/closing unit that can reliably switch the gas flow while saving space by using a shielding device that includes a fan cover arranged to cover the outside of the fan. .

本発明によれば、1つの蒸発器で効率的に冷蔵室の冷却及び冷凍室の冷却を交互に行うことができる冷蔵庫を提供する提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the refrigerator which can alternately cool a refrigerator compartment and a freezer compartment efficiently with one evaporator can be provided.

本発明の1つの実施形態に係る冷蔵庫を模式的示す側面断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is side sectional drawing which shows typically the refrigerator which concerns on one Embodiment of this invention. 冷凍室ダンパ及び冷蔵室ダンパを備えた第1の実施形態に係る冷却流路を模式的に示す側面断面図である。FIG. 3 is a side cross-sectional view schematically showing a cooling channel according to the first embodiment having a freezer compartment damper and a refrigerator compartment damper. 冷凍室ダンパ、冷蔵室ダンパ及び冷凍室吸込ダンパを備えた第2の実施形態に係る冷却流路を模式的に示す側面断面図である。FIG. 7 is a side cross-sectional view schematically showing a cooling channel according to a second embodiment having a freezer compartment damper, a refrigerator compartment damper, and a freezer compartment suction damper. 遮蔽装置及び冷蔵室ダンパを備えた第3の実施形態に係る冷却流路を模式的に示す側面断面図である。FIG. 11 is a side cross-sectional view schematically showing a cooling channel according to a third embodiment provided with a shielding device and a refrigerating compartment damper; 遮蔽装置、冷蔵室ダンパ及び冷凍室吸込ダンパを備えた第4の実施形態に係る冷却流路を模式的に示す側面断面図である。FIG. 11 is a side cross-sectional view schematically showing a cooling channel according to a fourth embodiment provided with a shielding device, a refrigerator compartment damper and a freezer compartment suction damper; 本発明の1つの実施形態に係る冷蔵庫の庫内冷却に関する制御システムを示す線図である。1 is a diagrammatic view of a control system for internal cooling of a refrigerator according to one embodiment of the present invention; FIG. 第4の実施形態に係る冷却流路において、冷蔵室冷却サイクルを行う場合を模式的に示す側面断面図である。FIG. 11 is a side cross-sectional view schematically showing a case where a refrigerating compartment cooling cycle is performed in the cooling channel according to the fourth embodiment. 第4の実施形態に係る冷却流路において、圧力平衡化処理を行う場合を模式的に示す側面断面図である。FIG. 11 is a side cross-sectional view schematically showing a case where pressure equalization processing is performed in the cooling channel according to the fourth embodiment; 第4の実施形態に係る冷却流路において、冷凍室冷却サイクルを行う場合を模式的に示す側面断面図である。FIG. 11 is a side cross-sectional view schematically showing a case where a freezer compartment cooling cycle is performed in the cooling channel according to the fourth embodiment. 冷蔵室冷却サイクル、圧力平衡化処理及び冷凍室冷却サイクルを行う制御の一例を示すタイムチャートである。4 is a time chart showing an example of control for performing a refrigerator compartment cooling cycle, a pressure equalization process, and a freezer compartment cooling cycle; 冷蔵室冷却サイクル、圧力平衡化処理及び冷凍室冷却サイクルを行う制御の一例を示すフローチャートである。4 is a flow chart showing an example of control for performing a refrigerator compartment cooling cycle, a pressure equalization process, and a freezer compartment cooling cycle.

以下、図面を参照しながら、本発明を実施するための実施形態を説明する。以下に説明する冷蔵庫は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。各図面中、同一の機能を有する部材には、同一符号を付している場合がある。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示す場合があるが、異なる実施形態で示した構成の部分的な置換または組み合わせは可能である。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張して示している場合もある。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The refrigerator described below is for embodying the technical idea of the present invention, and unless there is a specific description, the present invention is not limited to the following. In each drawing, members having the same function may be given the same reference numerals. In consideration of the explanation of the main points or the ease of understanding, the embodiments may be shown separately for the sake of convenience, but partial replacement or combination of the configurations shown in different embodiments is possible. The sizes and positional relationships of members shown in each drawing may be exaggerated for clarity of explanation.

図1は、本発明の1つの実施形態に係る冷蔵庫1を模式的示す側面断面図である。はじめに図1を参照しながら、本発明の1つの実施形態に係る冷蔵庫1の概要を説明する。 FIG. 1 is a side sectional view schematically showing a refrigerator 1 according to one embodiment of the invention. First, an outline of a refrigerator 1 according to one embodiment of the present invention will be described with reference to FIG.

冷蔵庫1は筐体2を有し、水平な床面に載置された状態において、筐体2の前方部分に回転可能に取り付けられた上扉3及び下扉4を備える。筐体2の内部(以下、「庫内」と称する)には、冷凍室6及び冷蔵室7が配置されている。筐体2の内面と冷凍室6、冷蔵室7の外面との間には、断熱材が配置されている。 A refrigerator 1 has a housing 2 and includes an upper door 3 and a lower door 4 rotatably attached to the front portion of the housing 2 when placed on a horizontal floor surface. A freezer compartment 6 and a refrigerator compartment 7 are arranged inside the housing 2 (hereinafter referred to as “inside”). A heat insulating material is arranged between the inner surface of the housing 2 and the outer surfaces of the freezer compartment 6 and the refrigerator compartment 7 .

<冷却流路>
図1に示すように、冷凍室6及び冷蔵室7の後方には、それぞれ仕切板11A,11Bで仕切られた下側冷却流路10A及び上側冷却流路10Bで構成された冷却流路10が設けられている。冷却流路10(詳細に述べれば下側冷却流路10A)には、蒸発器(エバポレータ)24が配置されている。蒸発器24は、冷蔵庫1の冷却回路の一部を構成する。
<Cooling channel>
As shown in FIG. 1, behind the freezer compartment 6 and the refrigerator compartment 7, there is a cooling channel 10 composed of a lower cooling channel 10A and an upper cooling channel 10B partitioned by partition plates 11A and 11B, respectively. is provided. An evaporator 24 is arranged in the cooling channel 10 (more specifically, the lower cooling channel 10A). Evaporator 24 constitutes a part of the cooling circuit of refrigerator 1 .

冷却回路は、圧縮機(コンプレッサ)21と、凝縮器(コンデンサ)と、キャピラリチューブと、蒸発器24とを備える。冷却回路の各構成要素間は、配管によって上記の順で流体的に接続されており、冷却回路内で冷媒が循環することにより、蒸発器24が冷却される。圧縮機21の回転数が可変になっており、圧縮機21の回転数が高くなると、より多くの冷媒が循環して蒸発器24の冷却を強めることができる。 The cooling circuit includes a compressor (compressor) 21 , a condenser (condenser), a capillary tube, and an evaporator 24 . The components of the cooling circuit are fluidly connected by piping in the order described above, and the evaporator 24 is cooled by the refrigerant circulating in the cooling circuit. The rotation speed of the compressor 21 is variable, and when the rotation speed of the compressor 21 increases, more refrigerant circulates and the cooling of the evaporator 24 can be strengthened.

冷却流路10内の蒸発器24の上方には、ファン12が配置されている。ファン12により、庫内の気体を流動させることができ、蒸発器24のフィンの間を通過して冷却された気体を、冷却流路10から冷凍室6や冷蔵室7に供給することができる。 A fan 12 is arranged above the evaporator 24 in the cooling channel 10 . The fan 12 allows the gas in the refrigerator to flow, and the gas that has been cooled by passing through the fins of the evaporator 24 can be supplied from the cooling channel 10 to the freezer compartment 6 and the refrigerator compartment 7. .

下側仕切り板11Aの上側の開口には、冷凍室ダンパ13が配置されている。冷凍室ダンパ13が開の状態では、蒸発器24を通過した気体が、冷却流路10(下側冷却流路10A)から冷凍室6に流れる。一方、冷凍室ダンパ13が閉の状態では、蒸発器24を通過した気体が、冷却流路10(下側冷却流路10A)から冷凍室6に流れないようになる。図1では、冷凍室ダンパ13が閉の状態を示す。 A freezer compartment damper 13 is arranged in the upper opening of the lower partition plate 11A. When the freezer compartment damper 13 is open, the gas that has passed through the evaporator 24 flows from the cooling channel 10 (lower cooling channel 10A) to the freezer compartment 6 . On the other hand, when the freezer compartment damper 13 is closed, the gas that has passed through the evaporator 24 does not flow from the cooling channel 10 (lower cooling channel 10A) to the freezer compartment 6 . FIG. 1 shows a state in which the freezer compartment damper 13 is closed.

ファン12が稼働し、冷凍室ダンパ13が開の場合には、冷却流路10(下側冷却流路10A)から冷凍室6に流入した気体は、冷凍室6内を循環して、下側仕切板11Aの下側の開口から、冷却流路10(下側冷却流路10A)の蒸発器24の入側に戻る。これにより、気体は再び蒸発器24を通過して冷却され、同様な流動サイクルを繰り返す。これを冷凍室冷却サイクルと称する。冷凍室冷却サイクルで蒸発器24を通過した気体が冷凍室6内を循環する間に、冷凍室6内の貯蔵物を冷却することができる。 When the fan 12 is in operation and the freezer compartment damper 13 is open, the gas that has flowed into the freezer compartment 6 from the cooling channel 10 (lower cooling channel 10A) circulates through the freezer compartment 6 and moves to the lower side. From the lower opening of the partition plate 11A, it returns to the entry side of the evaporator 24 of the cooling channel 10 (lower cooling channel 10A). This causes the gas to pass through the evaporator 24 again and be cooled, repeating a similar flow cycle. This is called a freezer compartment cooling cycle. While the gas that has passed through the evaporator 24 in the freezer compartment cooling cycle circulates through the freezer compartment 6 , it can cool the stored items in the freezer compartment 6 .

ただし、冷凍室6への気体を流入させるか否かの切り替えは、冷凍室ダンパ13を用いる場合に限られるものではない。例えば、図2C、図2Dを用いて後述するように、ファン12の外側を覆う可動式のファンカバー17Aを有する遮蔽装置17を用いることもできる。ファンカバー17Aが開の場合には、ファン12から吐出された気体が冷凍室6に流入し、ファンカバー17Aが閉の場合には、ファン12から吐出された気体が冷凍室6に流入しないようにすることができる。 However, the switching of whether to flow the gas into the freezer compartment 6 is not limited to the use of the freezer compartment damper 13 . For example, as will be described later with reference to FIGS. 2C and 2D, a shielding device 17 having a movable fan cover 17A that covers the outside of the fan 12 can be used. When the fan cover 17A is open, the gas discharged from the fan 12 flows into the freezer compartment 6. When the fan cover 17A is closed, the air discharged from the fan 12 is prevented from flowing into the freezer compartment 6. can be

更に、下側冷却流路10A及び上側冷却流路10Bの間には、冷蔵室ダンパ14が配置されている。冷蔵室ダンパ14が開の状態では、蒸発器24を通過した気体が、下側冷却流路10Aから上側冷却流路10Bに流れる。更に、上側冷却流路10Bに流入した気体は、複数の高さ位置に設けられた各開口を介して、冷却流路10(上側冷却流路10B)から冷蔵室7に流入する。一方、冷蔵室ダンパ14が閉の状態では、蒸発器24を通過した気体が、下側冷却流路10Aから上側冷却流路10Bに流れないようになる。図1では、冷蔵室ダンパ14が開の状態を示し、そのときの気体の流れを点線の矢印で模式的に示す。 Furthermore, a refrigerator compartment damper 14 is arranged between the lower cooling channel 10A and the upper cooling channel 10B. When the refrigerator compartment damper 14 is open, the gas that has passed through the evaporator 24 flows from the lower cooling channel 10A to the upper cooling channel 10B. Furthermore, the gas that has flowed into the upper cooling flow path 10B flows into the refrigerator compartment 7 from the cooling flow path 10 (upper cooling flow path 10B) through openings provided at a plurality of height positions. On the other hand, when the refrigerator compartment damper 14 is closed, the gas that has passed through the evaporator 24 does not flow from the lower cooling channel 10A to the upper cooling channel 10B. In FIG. 1, the refrigerating compartment damper 14 is shown in an open state, and the flow of gas at that time is schematically shown by dotted arrows.

ファン12が稼働し、冷蔵室ダンパ14が開の場合には、冷却流路10(上側冷却流路10B)から冷蔵室7に流入した気体は、冷蔵室7内を循環して、冷蔵室7の下側に開口した戻り流路15の入口15Aへ流入する。 When the fan 12 is in operation and the refrigerating chamber damper 14 is open, the gas that has flowed into the refrigerating chamber 7 from the cooling flow path 10 (upper cooling flow path 10B) circulates in the refrigerating chamber 7 and reaches the refrigerating chamber 7. flows into the inlet 15A of the return channel 15 that opens downward.

(戻り流路)
戻り流路15は、冷蔵室7を循環した気体が、冷凍室6内を流れることなく、冷却流路10(下側冷却流路10A)の下側に流入するようにする流路である。戻り流路15は、冷却流路10から仕切られて配置されている。冷却流路10(上側冷却流路10B)から冷蔵室7に流入し、冷蔵室7内を循環した気体は、入口15Aから戻り流路15に流入する。そして、流入した気体は、戻り流路15内を流れて、下側の出口15Bから、冷却流路10(下側冷却流路10A)の下側に流入し、蒸発器24の入側に戻る。これにより、気体は再び蒸発器24を通過して冷却され、同様な流動サイクルを繰り返す。これを冷蔵室冷却サイクルと称する。冷蔵室冷却サイクルで蒸発器24を通過した気体が冷蔵室7内を循環する間に、冷凍室6の貯蔵物を冷却することができる。
(return channel)
The return flow path 15 is a flow path through which the gas that has circulated in the refrigerator compartment 7 flows into the lower side of the cooling flow path 10 (lower cooling flow path 10A) without flowing inside the freezer compartment 6 . The return channel 15 is arranged to be separated from the cooling channel 10 . The gas that has flowed into the refrigerator compartment 7 from the cooling channel 10 (upper cooling channel 10B) and circulated in the refrigerator compartment 7 flows into the return channel 15 from the inlet 15A. Then, the inflowing gas flows through the return channel 15, flows into the lower side of the cooling channel 10 (lower cooling channel 10A) from the lower outlet 15B, and returns to the inlet side of the evaporator 24. . This causes the gas to pass through the evaporator 24 again and be cooled, repeating a similar flow cycle. This is called the cold room cooling cycle. During the refrigeration compartment cooling cycle, the gas that has passed through the evaporator 24 is circulating through the refrigeration compartment 7, allowing the contents of the freezer compartment 6 to be cooled.

筐体2の後方かつ下部には、機械室40が配置され、圧縮機21、凝縮器(図示せず)、蒸発皿(図示せず)等が配置されている。 A machine room 40 is arranged in the rear and lower part of the housing 2, and a compressor 21, a condenser (not shown), an evaporating dish (not shown) and the like are arranged.

冷凍室6には、冷凍室6内の温度を検出する冷凍室温度センサ30が配置され、冷蔵室7には、冷蔵室7内の温度を検出する冷蔵室温度センサ32が配置されている。また、蒸発器24には、蒸発器24の温度を検出する霜取センサ34が取り付けられている。 A freezer compartment temperature sensor 30 for detecting the temperature in the freezer compartment 6 is arranged in the freezer compartment 6 , and a refrigerating compartment temperature sensor 32 for detecting the temperature in the refrigerating compartment 7 is arranged in the refrigerating compartment 7 . A defrosting sensor 34 for detecting the temperature of the evaporator 24 is attached to the evaporator 24 .

(第1の実施形態に係る冷却流路)
図2Aは、冷凍室ダンパ13及び冷蔵室ダンパ14を備えた第1の実施形態に係る冷却流路10を模式的に示す側面断面図である。この第1の実施形態に係る冷却流路10は、図1に示す冷却流路10と同一である。蒸発器24を通過した気体が冷凍室6に流入するか否かを切り替える冷凍室ダンパ13と、蒸発器24を通過した気体が冷蔵室7に流入するか否かを切り替えるより冷蔵室ダンパ14とを備える。蒸発器24の入側となる下側仕切板11Aの下側には、ダンパ等は備えず開口している。
(Cooling channel according to the first embodiment)
FIG. 2A is a side cross-sectional view schematically showing the cooling channel 10 according to the first embodiment provided with the freezer compartment damper 13 and the refrigerator compartment damper 14. FIG. The cooling channel 10 according to the first embodiment is the same as the cooling channel 10 shown in FIG. A freezer compartment damper 13 that switches whether the gas that has passed through the evaporator 24 flows into the freezer compartment 6, and a refrigerator compartment damper 14 that switches whether the gas that has passed through the evaporator 24 flows into the refrigerator compartment 7. Prepare. The lower side of the lower partition plate 11A, which is the entry side of the evaporator 24, is open without a damper or the like.

(第2の実施形態に係る冷却流路)
図2Bは、冷凍室ダンパ13、冷蔵室ダンパ14及び冷凍室吸込ダンパ16を備えた第2の実施形態に係る冷却流路10を模式的に示す側面断面図である。第2の実施形態に係る冷却流路10も、蒸発器24を通過した気体が冷凍室6に流入するか否かを切り替える冷凍室ダンパ13と、蒸発器24を通過した気体が冷蔵室7に流入するか否かを切り替えるより冷蔵室ダンパ14とを備える。
(Cooling channel according to the second embodiment)
FIG. 2B is a side cross-sectional view schematically showing the cooling channel 10 according to the second embodiment provided with the freezer compartment damper 13, the refrigerator compartment damper 14, and the freezer compartment suction damper 16. FIG. The cooling flow path 10 according to the second embodiment also includes a freezer compartment damper 13 that switches whether or not the gas that has passed through the evaporator 24 flows into the freezer compartment 6, and the gas that has passed through the evaporator 24 flows into the refrigerator compartment 7. A refrigerator compartment damper 14 is provided for switching whether or not to flow in. - 特許庁

更に、第2の実施形態に係る冷却流路10は、蒸発器24の入側となる下側仕切板11Aの下側に冷凍室吸込ダンパ16を備える。冷凍室吸込ダンパ16は、開のとき、冷凍室6と蒸発器24の入側との間が連通し、閉のとき、冷凍室6と蒸発器24の入側との間が遮断されるようになる。 Furthermore, the cooling channel 10 according to the second embodiment includes a freezer compartment intake damper 16 below the lower partition plate 11A on the entrance side of the evaporator 24 . The freezer compartment suction damper 16 communicates between the freezer compartment 6 and the inlet side of the evaporator 24 when it is open, and blocks the link between the freezer compartment 6 and the inlet side of the evaporator 24 when it is closed. become.

(第3の実施形態に係る冷却流路)
図2Cは、遮蔽装置17及び冷蔵室ダンパ14を備えた第3の実施形態に係る冷却流路10を模式的に示す側面断面図である。第2の実施形態に係る冷却流路10は、冷凍室ダンパ13の代わりに、遮蔽装置17を備える。また、蒸発器24を通過した気体が冷蔵室7に流入するか否かを切り替えるより冷蔵室ダンパ14を備える。下側仕切板11Aの下側には、ダンパ等は備えず開口している。
(Cooling channel according to the third embodiment)
FIG. 2C is a side sectional view schematically showing the cooling channel 10 according to the third embodiment provided with the shielding device 17 and the cold storage damper 14. FIG. The cooling channel 10 according to the second embodiment includes a shielding device 17 instead of the freezer compartment damper 13 . Further, a refrigerator compartment damper 14 is provided for switching whether or not the gas that has passed through the evaporator 24 flows into the refrigerator compartment 7 . The lower side of the lower partition plate 11A is open without a damper or the like.

遮蔽装置17は、ファン12の外側を覆う可動式のファンカバー17Aを有する。ファンカバー17Aは、モータ等のアクチュエータの駆動により、開の位置と閉の位置の間を移動する。ファンカバー17Aが開の場合には、ファン12から吐出された気体が冷凍室6に流入し、ファンカバー17Aが閉の場合には、ファン12から吐出された気体が冷凍室6に流入しないようになる。ファンカバー17Aが閉の場合には、ファン12から吐出された気体は、ファン12の周囲に設けられた開口から冷却流路10の上方へ流れるようになっている。よって、冷蔵室ダンパ14が開の場合には、ファン12から吐出された気体は、上側冷却流路10Bを介して、冷蔵室7内に流れ込むようになっている。 The shielding device 17 has a movable fan cover 17A that covers the outside of the fan 12 . The fan cover 17A is moved between an open position and a closed position by driving an actuator such as a motor. When the fan cover 17A is open, the gas discharged from the fan 12 flows into the freezer compartment 6. When the fan cover 17A is closed, the air discharged from the fan 12 is prevented from flowing into the freezer compartment 6. become. When the fan cover 17A is closed, the gas discharged from the fan 12 flows upward through the cooling channel 10 through openings provided around the fan 12 . Therefore, when the refrigerator compartment damper 14 is open, the gas discharged from the fan 12 flows into the refrigerator compartment 7 via the upper cooling flow path 10B.

このように、ファン12の外側を覆うように配置されたファンカバー17Aを備えた遮蔽装置17により、省スペースでありながら、確実に気体の流れの切り替えを行うことができる。 In this manner, the shielding device 17 having the fan cover 17A arranged so as to cover the outside of the fan 12 can reliably switch the gas flow while saving space.

(第4の実施形態に係る冷却流路)
図2Dは、遮蔽装置17、冷蔵室ダンパ14及び冷凍室吸込ダンパ16を備えた第4の実施形態に係る冷却流路10を模式的に示す側面断面図である。第4の実施形態に係る冷却流路は、ファンカバー17Aの移動で、蒸発器24を通過した気体が冷凍室6に流入するか否かを切り替える遮蔽装置17と、蒸発器24を通過した気体が冷蔵室7に流入するか否かを切り替えるより冷蔵室ダンパ14とを備える。更に、蒸発器24の入側となる下側仕切板11Aの下側に、冷蔵室6と蒸発器24の入側とが連通するか否かを切り替える冷凍室吸込ダンパ16を備える。
(Cooling channel according to the fourth embodiment)
FIG. 2D is a side cross-sectional view schematically showing the cooling channel 10 according to the fourth embodiment provided with the shielding device 17, the refrigerator compartment damper 14 and the freezer compartment suction damper 16. FIG. The cooling channel according to the fourth embodiment includes a shielding device 17 that switches whether or not the gas that has passed through the evaporator 24 flows into the freezer compartment 6 by movement of the fan cover 17A, and the gas that has passed through the evaporator 24. and a refrigerating chamber damper 14 for switching whether or not to flow into the refrigerating chamber 7. - 特許庁Further, a freezer compartment intake damper 16 for switching whether or not the refrigerator compartment 6 and the entrance side of the evaporator 24 are communicated is provided on the lower side of the lower partition plate 11A, which is the entrance side of the evaporator 24.例文帳に追加

上記では、ダンパ13,14,16または遮蔽装置17で流路の開閉を行っているが、これに限られるものではない。例えば、自動弁をはじめとするそのたの任意の装置を用いることもできる。よって、これらの流路の開閉の実施手段を総称して、冷凍室開閉部13,17、冷蔵室開閉部14、冷凍室吸込開閉部16と称することもできる。 In the above description, the dampers 13, 14, 16 or the shielding device 17 are used to open and close the flow path, but the present invention is not limited to this. For example, any other device, including automatic valves, may be used. Therefore, these means for opening and closing the flow path can be collectively referred to as the freezer compartment opening/closing units 13 and 17, the refrigerator compartment opening/closing unit 14, and the freezer compartment intake opening/closing unit 16.

(庫内冷却のための制御システム)
図3は、本発明の1つの実施形態に係る冷蔵庫1の庫内冷却に関する制御システムを示す線図である。次に、図3を参照しながら、冷蔵庫1の庫内冷却を行うための制御システムの説明を行う。
(Control system for internal cooling)
FIG. 3 is a diagram showing a control system for cooling inside the refrigerator 1 according to one embodiment of the present invention. Next, a control system for cooling the interior of the refrigerator 1 will be described with reference to FIG.

制御システムを構成する制御部100は、冷凍室6に配置された冷凍室温度センサ30と電気的に繋がり、冷凍室6の温度の検出データ(信号)を受けるようになっている。また、制御部100は、冷蔵室7に配置された冷蔵室温度センサ32と電気的に繋がり、冷蔵室7の温度の検出データ(信号)を受けるようになっている。制御部100は、蒸発器24に取り付けられた霜取センサ34と電気的に繋がり、蒸発器24の温度の検出データ(信号)を受けるようになっている。 A control unit 100 constituting a control system is electrically connected to a freezer compartment temperature sensor 30 arranged in the freezer compartment 6 to receive detection data (signal) of the temperature of the freezer compartment 6 . The control unit 100 is also electrically connected to a refrigerating compartment temperature sensor 32 arranged in the refrigerating compartment 7 to receive detection data (signal) of the temperature of the refrigerating compartment 7 . The control unit 100 is electrically connected to a defrosting sensor 34 attached to the evaporator 24 and receives temperature detection data (signal) of the evaporator 24 .

制御部100は、制御信号を送信して、圧縮機21及びファン12の稼働を制御することができる。圧縮機21の回転数は可変であり、制御部100は、圧縮機21の回転数を変更することができる。より低い温度の気体を供給する必要のある冷凍室冷却サイクルでは、制御部100は、通常の冷蔵室冷却サイクルよりも高い回転数で圧縮機21を稼働するように制御する。 The control unit 100 can transmit control signals to control the operations of the compressor 21 and the fan 12 . The rotation speed of the compressor 21 is variable, and the controller 100 can change the rotation speed of the compressor 21 . In the freezer compartment cooling cycle in which it is necessary to supply gas at a lower temperature, the controller 100 controls the compressor 21 to operate at a higher rotational speed than in the normal refrigerator compartment cooling cycle.

また、制御部100は、遮蔽装置17(または冷凍室ダンパ13)、冷蔵室ダンパ14に制御信号を送信して、開閉を制御することができる。更に、冷蔵庫1が冷凍室吸込ダンパ16を備える場合には、制御部100は、冷凍室吸込ダンパ16に制御信号を送信して、開閉を制御することができる。 In addition, the control unit 100 can transmit control signals to the shielding device 17 (or the freezer compartment damper 13) and the refrigerator compartment damper 14 to control opening and closing. Furthermore, when the refrigerator 1 is provided with the freezer compartment suction damper 16, the control part 100 can transmit a control signal to the freezer compartment suction damper 16, and can control opening and closing.

(庫内冷却の制御処理)
図4Aは、第4の実施形態に係る冷却流路10において、冷蔵室冷却サイクルを行う場合を模式的に示す側面断面図である。図4Bは、第4の実施形態に係る冷却流路10において、圧力平衡化処理を行う場合を模式的に示す側面断面図である。図4Cは、第4の実施形態に係る冷却流路10において、冷凍室冷却サイクルを行う場合を模式的に示す側面断面図である。図5は、冷蔵室冷却サイクル、圧力平衡化処理及び冷凍室冷却サイクルを行う制御の一例を示すタイムチャートである。
(Control processing for internal cooling)
FIG. 4A is a side cross-sectional view schematically showing a case where a refrigerating compartment cooling cycle is performed in the cooling channel 10 according to the fourth embodiment. FIG. 4B is a side cross-sectional view schematically showing a case where pressure equalization processing is performed in the cooling channel 10 according to the fourth embodiment. FIG. 4C is a side sectional view schematically showing a case where a freezer compartment cooling cycle is performed in the cooling channel 10 according to the fourth embodiment. FIG. 5 is a time chart showing an example of control for performing a refrigerator compartment cooling cycle, a pressure equalization process, and a freezer compartment cooling cycle.

図4Aから図4Cでは、気体の流れを点線の矢印で示す。圧縮機21及びファン12は、稼働していない場合には無着色で示され、低速回転している場合には薄く着色されて示され、高速回転している場合には濃く着色されて示されている。 In Figures 4A-4C, gas flow is indicated by dashed arrows. The compressor 21 and the fan 12 are shown uncolored when not operating, lightly colored when rotating at low speed, and darkly colored when rotating at high speed. ing.

次に、図4Aから図5を参照しながら、庫内冷却の具体的な制御処理の内容を説明する。ここでは、遮蔽装置17及び冷凍室吸込ダンパ16を備えた第4の実施形態を例にとって庫内を冷却するための制御処理を説明するが、冷凍室ダンパ13を用いる場合や、冷凍室吸込ダンパ16を備えない場合も、基本的に制御処理は同様である。 Next, specific contents of control processing for cooling inside the refrigerator will be described with reference to FIGS. 4A to 5 . Here, the control processing for cooling the inside of the refrigerator will be described by taking as an example the fourth embodiment provided with the shielding device 17 and the freezer compartment suction damper 16. 16 is not provided, the control process is basically the same.

本実施形態に係る冷蔵庫1では、制御部100が、冷蔵室冷却サイクル及び冷凍室冷却サイクルを交互に行うように制御する。冷蔵室冷却サイクルでは、ファン12による流動で蒸発器24を通過した気体が、冷却流路10(上側冷却流路10B)から冷蔵室7に流入し、冷蔵室7内を循環した気体が再び蒸発器24の入側に戻る。冷凍室冷却サイクルでは、ファン12による流動で蒸発器24を通過した気体が、冷却流路10(下側冷却流路10A)から冷凍室6に流入し、冷凍室6内を循環した気体が再び蒸発器24の入側に戻る。 In the refrigerator 1 according to this embodiment, the control unit 100 controls to alternately perform the refrigerator compartment cooling cycle and the freezer compartment cooling cycle. In the refrigerating compartment cooling cycle, the gas that has passed through the evaporator 24 due to the flow by the fan 12 flows into the refrigerating compartment 7 from the cooling channel 10 (upper cooling channel 10B), and the gas that has circulated in the refrigerating compartment 7 evaporates again. Return to the entry side of vessel 24 . In the freezer compartment cooling cycle, the gas that has passed through the evaporator 24 due to the flow by the fan 12 flows into the freezer compartment 6 from the cooling channel 10 (lower cooling channel 10A), and the gas that has circulated in the freezer compartment 6 is again Return to the inlet side of the evaporator 24 .

多くの冷蔵庫では、蒸発器を通過した気体が冷凍室に供給されるとともに、冷蔵室にも気体の一部が供給され、冷凍室と冷蔵室とが同時に冷却される。その場合、常に冷凍室の冷却に対応した高い回転数で圧縮機を稼働する必要があるので、高いエネルギ消費が継続する。一方、本実施形態のように、冷蔵室冷却サイクル及び冷凍室冷却サイクルを交互に行う場合には、冷蔵室冷却サイクルを行うとき、冷蔵室7の冷却に対応した低い回転数で圧縮機21を稼働できるので、上記に比べてエネルギ消費を低減できる。 In many refrigerators, the gas that has passed through the evaporator is supplied to the freezer compartment, and part of the gas is also supplied to the refrigerator compartment, so that the freezer compartment and the refrigerator compartment are cooled at the same time. In that case, it is necessary to always operate the compressor at a high rotation speed corresponding to cooling of the freezer compartment, so high energy consumption continues. On the other hand, when the refrigerating compartment cooling cycle and the freezing compartment cooling cycle are alternately performed as in the present embodiment, the compressor 21 is operated at a low rotational speed corresponding to the cooling of the refrigerating compartment 7 when performing the refrigerating compartment cooling cycle. Since it can be operated, energy consumption can be reduced compared to the above.

更に、冷蔵室冷却専用の蒸発器と冷蔵室冷却専用の蒸発器とを備えて、冷蔵室冷却サイクル及び冷凍室冷却サイクルを交互に行う冷蔵庫もある。しかし、そのような冷蔵庫では、製造コストも上がり、収納効率も低下する。本実施形態では、1つの蒸発器24を用いて、冷蔵室冷却サイクル及び冷凍室冷却サイクルを交互に行うことができるので、冷蔵庫1の製造コストも抑えられ、庫内の収納効率の低下も抑制できるとともに、エネルギ消費を低減できる。 Furthermore, some refrigerators are equipped with an evaporator dedicated to cooling the refrigerator compartment and an evaporator dedicated to cooling the refrigerator compartment, and alternate between the refrigerator compartment cooling cycle and the freezer compartment cooling cycle. However, such refrigerators also increase manufacturing costs and reduce storage efficiency. In this embodiment, one evaporator 24 can be used to alternately perform the refrigerating compartment cooling cycle and the freezing compartment cooling cycle, so that the manufacturing cost of the refrigerator 1 can be suppressed, and the deterioration of the storage efficiency inside the refrigerator can be suppressed. and energy consumption can be reduced.

<冷蔵室冷却サイクル>
図4A及び図5に示すように、制御部100は、冷蔵室冷却サイクルを実施するための制御処理を行う。具体的には、制御部100は、冷蔵室7の温度に対応した回転数で圧縮機21を稼働する。冷蔵室冷却サイクルにおける圧縮機21の回転数は、冷凍室冷却サイクルにおける圧縮機21の回転数より低くなっている。制御部100は、遮蔽装置17を閉にし、冷蔵室ダンパ14を開にし、冷凍室吸込ダンパ16を閉にする。遮蔽装置17の代わりに冷凍室ダンパ13を備える場合には、冷凍室ダンパ13を閉にする。そして、制御部100は、冷蔵室7の冷却に対応した回転数でファン12を稼働する。冷蔵室冷却サイクルにおけるファン12の回転数は、冷凍室冷却サイクルにおけるファン12の回転数より低くなっている。
<Refrigerator cooling cycle>
As shown in FIGS. 4A and 5, the control unit 100 performs control processing for implementing the refrigerator compartment cooling cycle. Specifically, the controller 100 operates the compressor 21 at a rotational speed corresponding to the temperature of the refrigerator compartment 7 . The rotation speed of the compressor 21 in the refrigerator compartment cooling cycle is lower than the rotation speed of the compressor 21 in the freezer compartment cooling cycle. The control unit 100 closes the shielding device 17 , opens the refrigerator compartment damper 14 , and closes the freezer compartment suction damper 16 . When the freezer compartment damper 13 is provided instead of the shielding device 17, the freezer compartment damper 13 is closed. Then, the control unit 100 operates the fan 12 at a rotation speed corresponding to the cooling of the refrigerator compartment 7 . The rotation speed of the fan 12 in the refrigerator compartment cooling cycle is lower than the rotation speed of the fan 12 in the freezer compartment cooling cycle.

このような制御により、ファン12による流動で、下側冷却流路10A内に配置された蒸発器24を通過して冷却された気体が、冷蔵室ダンパ14を通過して、上側冷却流路10Bに流入し、上側冷却流路10Bから冷蔵室7に流入する。冷蔵室7を循環した気体は、戻り流路15を介して、冷凍室6内を通ることなく、下側冷却流路10Aの下側に流入し、蒸発器24の入り側に戻る。このような気体の循環を継続することにより、冷蔵室7内の貯蔵物を冷却することができる。このとき、遮蔽装置17(冷凍室ダンパ13)及び冷凍室吸込ダンパ16が閉の状態なので、冷却流路10(下側冷却流路10A)から冷凍室6に気体が流入することがない。そして、冷蔵室温度センサ32が検出した冷蔵室7の温度が、冷蔵室7の目標温度T1を下回ったときに、冷蔵室冷却サイクルを終了する。 Due to such control, the gas that has been cooled by the flow of the fan 12 through the evaporator 24 arranged in the lower cooling flow path 10A passes through the cold storage damper 14 and passes through the upper cooling flow path 10B. , and flows into the refrigerator compartment 7 from the upper cooling channel 10B. The gas that has circulated in the refrigerator compartment 7 flows through the return channel 15 to the lower side of the lower cooling channel 10A without passing through the freezer compartment 6 and returns to the entry side of the evaporator 24 . By continuing such gas circulation, the stored items in the refrigerator compartment 7 can be cooled. At this time, since the shielding device 17 (the freezer compartment damper 13) and the freezer compartment intake damper 16 are closed, no gas flows into the freezer compartment 6 from the cooling flow path 10 (lower cooling flow path 10A). When the temperature of the refrigerating chamber 7 detected by the refrigerating chamber temperature sensor 32 falls below the target temperature T1 of the refrigerating chamber 7, the refrigerating chamber cooling cycle is terminated.

<圧力平衡化処理>
次に、制御部100は、冷蔵室冷却サイクル及び冷凍室冷却サイクルの間に実施する圧力平衡化処理のための制御処理を行う。具体的には、図4B及び図5に示すように、制御部100は、冷蔵室冷却サイクルよりも高い回転数で圧縮機21を稼働する。基本的には、冷凍室冷却サイクルにおける回転数と同じ回転数で稼働するが、冷蔵室冷却サイクルにおける回転数及び冷凍室冷却サイクルにおける回転数の間の回転数で、圧縮機21を稼働することもできる。
<Pressure equalization process>
Next, the control unit 100 performs control processing for pressure equalization processing performed between the refrigerator compartment cooling cycle and the freezer compartment cooling cycle. Specifically, as shown in FIGS. 4B and 5, the controller 100 operates the compressor 21 at a higher rotational speed than the refrigerator compartment cooling cycle. Basically, it operates at the same number of rotations as the number of rotations in the freezer compartment cooling cycle, but the compressor 21 can be operated at a number of rotations between the number of rotations in the refrigerator compartment cooling cycle and the number of rotations in the freezer compartment cooling cycle. can also

そして、制御部100は、遮蔽装置17を閉にし、冷蔵室ダンパ14を閉にし、冷凍室吸込ダンパ16を閉にする。遮蔽装置17の代わりに冷凍室ダンパ13を備える場合には、冷凍室ダンパ13を閉にする。制御部100は、ファン12の稼働も停止する。 Then, the control unit 100 closes the shielding device 17, closes the refrigerator compartment damper 14, and closes the freezer compartment suction damper 16. When the freezer compartment damper 13 is provided instead of the shielding device 17, the freezer compartment damper 13 is closed. The control unit 100 also stops the operation of the fan 12 .

冷蔵室冷却サイクルを行うとき、冷蔵室7側の圧力が高くなり、相対的に冷凍室6側の圧力が低下する。このときに冷凍室冷却サイクルを開始すると、霜取り蒸発器24から落下した液体を排出するドレン孔から高温の外気が冷凍室6内に流入したり、冷蔵室7から高温の気体が冷凍室6内に流入したりして、冷凍室6の温度が上昇する虞がある。しかし、本実施形態では、冷凍室冷却サイクルを開始する前に、ファン12を停止し、冷蔵室開閉部14及び冷凍室開閉部17(13)を閉にした圧力平衡化処理を行うことにより、冷蔵室7側の圧力と冷凍室6側の圧力とが平衡化される。これにより、冷凍室冷却サイクル時に庫外や冷蔵室7から高温の気体が冷凍室6内に流入して、冷凍室6の温度が上昇するのを効果的に抑制することができる。 When the refrigerator compartment cooling cycle is performed, the pressure on the refrigerator compartment 7 side increases, and the pressure on the freezer compartment 6 side relatively decreases. At this time, when the freezer compartment cooling cycle is started, high temperature outside air flows into the freezer compartment 6 from the drain hole that discharges liquid that has fallen from the defrosting evaporator 24, or high temperature gas from the refrigerator compartment 7 flows into the freezer compartment 6. , and the temperature of the freezer compartment 6 may rise. However, in this embodiment, before starting the freezer compartment cooling cycle, the fan 12 is stopped and the refrigerator compartment opening/closing part 14 and the freezer compartment opening/closing part 17 (13) are closed to perform pressure equalization processing. The pressure on the side of the refrigerator compartment 7 and the pressure on the side of the freezer compartment 6 are balanced. As a result, it is possible to effectively prevent the temperature of the freezer compartment 6 from rising due to high-temperature gas flowing into the freezer compartment 6 from the outside of the freezer compartment or from the refrigerator compartment 7 during the freezer compartment cooling cycle.

更に、圧力平衡化処理では、圧縮機21を稼働して蒸発器24を冷却しているので、冷却流路10内の気体や冷蔵室7側の気体が冷却される。これにより、冷蔵室7側及び冷凍室6側の圧力の平衡化が促進されるとともに、冷凍室冷却サイクルを開始するとき、十分に温度の下がった気体を冷凍室6に供給することができる。 Furthermore, in the pressure balancing process, the compressor 21 is operated to cool the evaporator 24, so the gas in the cooling channel 10 and the gas in the refrigerator compartment 7 are cooled. This promotes the equalization of the pressures on the refrigerating compartment 7 side and the freezing compartment 6 side, and can supply sufficiently cooled gas to the freezing compartment 6 when starting the freezing compartment cooling cycle.

特に、蒸発器24が冷蔵室冷却サイクルのときよりも強く冷却されているので、冷蔵室7側及び冷凍室6側の圧力の平衡化が更に促進されるとともに、冷却流路10(下側冷却流路10A)内の気体の温度を、確実に冷凍室6の冷却に適した温度まで下げることができる。これにより、冷凍室冷却サイクルの開始時に遮蔽装置17(冷凍室ダンパ13)を開にしたとき、確実に冷凍室6の冷却に適した低温の気体を冷凍室6に流入させることができる。 In particular, since the evaporator 24 is cooled more strongly than in the refrigerator compartment cooling cycle, the pressures on the refrigerator compartment 7 side and the freezer compartment 6 side are further balanced, and the cooling channel 10 (lower cooling The temperature of the gas in the flow path 10A) can be reliably lowered to a temperature suitable for cooling the freezer compartment 6. As a result, when the shielding device 17 (the freezer compartment damper 13) is opened at the start of the freezer compartment cooling cycle, low-temperature gas suitable for cooling the freezer compartment 6 can flow into the freezer compartment 6 without fail.

更に、冷蔵庫1が冷凍室吸込ダンパ16を備える場合には、冷凍室吸込ダンパ16を閉にすることにより、冷蔵室6から蒸発器24の入側に戻った気体が冷凍室6に流入するのを防ぐことができる。これにより、冷凍室7の温度が上昇するのをより効果的に抑制できる。 Furthermore, when the refrigerator 1 is provided with the freezer compartment suction damper 16, closing the freezer compartment suction damper 16 prevents the gas returning from the refrigerator compartment 6 to the inlet side of the evaporator 24 to flow into the freezer compartment 6. can be prevented. Thereby, it can suppress more effectively that the temperature of the freezer compartment 7 rises.

<圧力平衡化処理を終了するタイミング>
圧力平衡化処理を終了するタイミングについては、以下のような制御処理が考えられる。
1つは、圧力平衡化処理を開始後、所定の時間が経過したときに圧力平衡化処理を終了することが考えられる。この所定の時間として、実証試験等により、冷蔵室7側の圧力と冷凍室6側の圧力とが平衡化されて、冷凍室冷却サイクル開始時に冷凍室6に供給される気体の温度が、冷凍室6の冷却に適した温度まで下がることが実証された時間を定めるのが好ましい。
<Timing of Ending Pressure Balancing Processing>
The following control process can be considered for the timing of ending the pressure equalization process.
One conceivable method is to end the pressure equalization process when a predetermined period of time has elapsed after the start of the pressure equalization process. As this predetermined time, the pressure on the side of the refrigerator compartment 7 and the pressure on the side of the freezer compartment 6 are balanced by a verification test or the like, and the temperature of the gas supplied to the freezer compartment 6 at the start of the freezer compartment cooling cycle is equal to the temperature of the freezer compartment. It is preferable to define a time period during which it has been demonstrated that the temperature of the chamber 6 has decreased to a temperature suitable for cooling.

圧力平衡化処理を終了する制御処理として、更に、霜取センサ34が検出した蒸発器24の温度に基づいて、圧力平衡化処理を終了する制御処理も考えられる。霜取センサ34が検出した蒸発器24の温度が、所定の温度T2を下回ったときに、圧力平衡化処理を終了するように制御することができる。所定の温度T2の値としては、蒸発器24の周囲の気体が冷凍室6の冷却に十分な温度まで下がったと判断される温度を設定するのが好ましい。 As the control process for ending the pressure equalization process, a control process for ending the pressure equalization process based on the temperature of the evaporator 24 detected by the defrosting sensor 34 is also conceivable. When the temperature of the evaporator 24 detected by the defrosting sensor 34 falls below a predetermined temperature T2, the pressure balancing process can be controlled to end. As the value of the predetermined temperature T2, it is preferable to set a temperature at which it is determined that the gas around the evaporator 24 has decreased to a temperature sufficient to cool the freezer compartment 6.

このように、圧力平衡化処理を開始した後、蒸発器24の温度が所定の温度T2より低くなったとき、つまり、冷凍室冷却サイクル開始時に冷凍室6に供給される気体の温度が冷凍室6の冷却に適した温度まで下がったと判断されるとき、圧力平衡化処理を終了して冷凍室冷却サイクルを開始する。これにより、冷凍室6の温度上昇を抑えて、効率的な冷凍室6の冷却を実現できる。 In this way, when the temperature of the evaporator 24 becomes lower than the predetermined temperature T2 after the pressure equalization process is started, that is, at the start of the freezer compartment cooling cycle, the temperature of the gas supplied to the freezer compartment 6 reaches the freezer compartment temperature. When it is determined that the temperature has decreased to the temperature suitable for cooling in step 6, the pressure equalization process is terminated and the freezer compartment cooling cycle is started. Thereby, the temperature rise of the freezer compartment 6 can be suppressed and the efficient cooling of the freezer compartment 6 can be implement|achieved.

<冷凍室冷却サイクル>
圧力平衡化処理が終了後、図4C及び図5に示すように、制御部100は、冷凍室冷却サイクルを実施するための制御処理を行う。具体的には、制御部100は、冷凍室6の温度に対応した回転数で圧縮機21を稼働する。冷凍室冷却サイクルにおける圧縮機21の回転数は、冷蔵室冷却サイクルにおける圧縮機21の回転数より高くなっている。そして、制御部100は、遮蔽装置17を開にし、冷蔵室ダンパ14を閉にし、冷凍室吸込ダンパ16を開にする。遮蔽装置17の代わりに冷凍室ダンパ13を備える場合には、冷凍室ダンパ13を開にする。そして、制御部100は、冷凍室6の冷却に対応した回転数でファン12を稼働する。冷凍室冷却サイクルにおけるファン12の回転数は、冷蔵室冷却サイクルにおけるファン12の回転数より高くなっている。
<Freezer cooling cycle>
After the pressure equalization process is completed, as shown in FIGS. 4C and 5, the control unit 100 performs a control process for implementing the freezer compartment cooling cycle. Specifically, the controller 100 operates the compressor 21 at a rotational speed corresponding to the temperature of the freezer compartment 6 . The rotation speed of the compressor 21 in the freezer compartment cooling cycle is higher than the rotation speed of the compressor 21 in the refrigerator compartment cooling cycle. Then, the control unit 100 opens the shielding device 17 , closes the refrigerator compartment damper 14 , and opens the freezer compartment suction damper 16 . When the freezer compartment damper 13 is provided instead of the shielding device 17, the freezer compartment damper 13 is opened. Then, the control unit 100 operates the fan 12 at a rotation speed corresponding to cooling of the freezer compartment 6 . The rotation speed of the fan 12 in the freezer compartment cooling cycle is higher than the rotation speed of the fan 12 in the refrigerator compartment cooling cycle.

このような制御により、ファン12による流動で、下側冷却流路10A内に配置された蒸発器24を通過して冷却された気体が、遮蔽装置17(冷凍室ダンパ13)を通過して、下側冷却流路10Aから冷凍室6に流入する。上記のように、圧力平衡化処理により、冷凍室冷却サイクルの開始時から、十分に冷却された気体が冷凍室6に流入する。 With such control, the gas that has been cooled by the flow of the fan 12 through the evaporator 24 arranged in the lower cooling flow path 10A passes through the shielding device 17 (the freezer compartment damper 13), It flows into the freezer compartment 6 from the lower cooling flow path 10A. As described above, the pressure equalization process allows sufficiently cooled gas to flow into the freezer compartment 6 from the beginning of the freezer compartment cooling cycle.

冷凍室6を循環した気体は、冷凍室吸込ダンパ16を通過して、下側冷却流路10Aの下側に流入し、蒸発器24の入り側に戻る。このような気体の循環を継続することにより、冷凍室6内の貯蔵物を冷却することができる。このとき、冷蔵室ダンパ14が閉の状態なので、冷蔵室7に気体が流入することがない。そして、冷凍室温度センサ30が検出した冷凍室6の温度が、冷凍室6の目標温度T3を下回ったとき、冷凍室冷却サイクルを終了する。 The gas that has circulated through the freezer compartment 6 passes through the freezer compartment intake damper 16 , flows into the lower side of the lower cooling flow path 10A, and returns to the entry side of the evaporator 24 . By continuing such gas circulation, the stored items in the freezer compartment 6 can be cooled. At this time, since the refrigerating compartment damper 14 is closed, no gas flows into the refrigerating compartment 7 . When the temperature of the freezer compartment 6 detected by the freezer compartment temperature sensor 30 falls below the target temperature T3 of the freezer compartment 6, the freezer compartment cooling cycle is terminated.

<冷却休止処理>
冷凍室冷却サイクルの終了後、図5に示すように、制御部100は、冷却休止処理を実施する。具体的には、制御部100は、圧縮機21の稼働を停止する。そして、制御部100は、遮蔽装置17を閉にし、冷蔵室ダンパ14を閉にし、冷凍室吸込ダンパ16を閉にする。冷蔵庫1が遮蔽装置17の代わりに冷凍室ダンパ13を備える場合には、冷凍室ダンパ13を閉にする。そして、制御部100は、ファン12の稼働を停止する。
<Cooling pause processing>
After the freezer compartment cooling cycle ends, as shown in FIG. 5, the control unit 100 performs cooling suspension processing. Specifically, the control unit 100 stops the operation of the compressor 21 . Then, the control unit 100 closes the shielding device 17, closes the refrigerator compartment damper 14, and closes the freezer compartment suction damper 16. If the refrigerator 1 is provided with the freezer compartment damper 13 instead of the shielding device 17, the freezer compartment damper 13 is closed. Then, the control unit 100 stops operating the fan 12 .

このような制御により、全ての冷却が停止した冷却休止処理が実施される。これにより、エネルギ消費を抑えることができる。冷却が行われないので、先に冷却サイクルが終了した冷蔵室7の温度がより顕著に上昇する。よって、冷蔵室温度センサ32が検出した冷蔵室温度が、予め定められた冷蔵室冷却サイクル開始温度T4を上回ったとき、図4A、図5に示すような冷蔵室冷却サイクルを開始する。その後、上記のように、圧力平衡化処理、冷凍室冷却サイクルの順に実施して、再び冷却休止処理に戻る。 Through such control, the cooling suspension process in which all cooling is stopped is performed. Thereby, energy consumption can be suppressed. Since cooling is not performed, the temperature of the refrigerating compartment 7, which has previously completed the cooling cycle, rises more remarkably. Therefore, when the refrigerating compartment temperature detected by refrigerating compartment temperature sensor 32 exceeds a predetermined refrigerating compartment cooling cycle start temperature T4, the refrigerating compartment cooling cycle shown in FIGS. 4A and 5 is started. Thereafter, as described above, the pressure equalization process and the freezer compartment cooling cycle are performed in this order, and the cooling suspension process is resumed.

(フローチャート)
図6は、冷蔵室冷却サイクル、圧力平衡化処理及び冷凍室冷却サイクルを行う制御の一例を示すフローチャートである。次に、図6を参照しながら、上記の冷蔵室冷却サイクル、圧力平衡化処理及び冷凍室冷却サイクルを行う場合の制御フローを説明する。
(flowchart)
FIG. 6 is a flow chart showing an example of control for performing a refrigerator compartment cooling cycle, a pressure equalization process, and a freezer compartment cooling cycle. Next, with reference to FIG. 6, the control flow for performing the refrigerator compartment cooling cycle, the pressure balancing process, and the freezer compartment cooling cycle will be described.

はじめに、制御部100は、冷蔵室冷却サイクルを実施するための制御処理を行う。具体的には、制御部100は、圧縮機21を冷蔵室7の温度に対応した回転数で稼働し、遮蔽装置17(冷凍室ダンパ13)を閉にし、冷蔵室ダンパ14を開にし、冷凍室吸込ダンパ16を閉にし、ファン12を冷蔵室の冷却に対応した回転数で稼働する(ステップS2)。次に、冷蔵室温度センサ32で検出した冷蔵室7の温度が、冷蔵室7の目標温度T1を下回ったか否か判断する(ステップS4)。 First, the control unit 100 performs control processing for implementing the refrigerator compartment cooling cycle. Specifically, the control unit 100 operates the compressor 21 at a rotation speed corresponding to the temperature of the refrigerator compartment 7, closes the shielding device 17 (freezer compartment damper 13), opens the refrigerator compartment damper 14, and The room suction damper 16 is closed, and the fan 12 is operated at a rotation speed corresponding to cooling of the refrigerator compartment (step S2). Next, it is determined whether or not the temperature of the refrigerator compartment 7 detected by the refrigerator compartment temperature sensor 32 is lower than the target temperature T1 of the refrigerator compartment 7 (step S4).

この判断で、もし、冷蔵室7の温度が冷蔵室7の目標温度T1以上である(NO)と判別したときには、この判断処理を繰り返す待機状態となる。ステップS4の判断で、もし、冷蔵室7の温度が冷蔵室7の目標温度T1を下回った(YES)と判別したときには、制御部100は、冷蔵室冷却サイクルを終了し、圧力平衡化処理を開始する制御処理を行う。具体的には、制御部100は、冷蔵室冷却サイクルよりも高い回転数で圧縮機21を稼働し、遮蔽装置17を閉にし、冷蔵室ダンパ14を閉にし、冷凍室吸込ダンパ16を閉にし、ファン12の稼働を停止する(ステップS6)。 In this determination, if it is determined that the temperature of the refrigerating chamber 7 is equal to or higher than the target temperature T1 of the refrigerating chamber 7 (NO), a standby state is entered in which this determination process is repeated. If it is determined in step S4 that the temperature of the refrigerating chamber 7 has fallen below the target temperature T1 of the refrigerating chamber 7 (YES), the control unit 100 terminates the refrigerating chamber cooling cycle and performs pressure equalization processing. Perform control processing to start. Specifically, the control unit 100 operates the compressor 21 at a higher rotation speed than the refrigerator compartment cooling cycle, closes the shielding device 17, closes the refrigerator compartment damper 14, and closes the freezer compartment intake damper 16. , the operation of the fan 12 is stopped (step S6).

次に、霜取センサ34で検出した蒸発器24の温度が目標温度T2を下回ったか否か、または圧力平衡化処理を開始後、所定の時間が経過したか否か判断する(ステップS8)。ステップS8では、この2つの判断のうちの1つの判断を行う。この判断で、もし、蒸発器24の温度が目標温度T2以上である、または圧力平衡化処理を開始後、所定の時間が経過していない(NO)と判別したときには、この判断処理を繰り返す待機状態となる。ステップS8の判断で、もし、蒸発器24の温度が目標温度T2を下回った、または圧力平衡化処理を開始後、所定の時間が経過した(YES)と判別したときには、制御部100は、圧力平衡化処理を終了し、冷蔵室冷却サイクルを開始する制御処理を行う。 Next, it is determined whether or not the temperature of the evaporator 24 detected by the defrost sensor 34 has fallen below the target temperature T2, or whether or not a predetermined time has elapsed since the pressure balancing process was started (step S8). In step S8, one of these two judgments is made. In this determination, if it is determined that the temperature of the evaporator 24 is equal to or higher than the target temperature T2, or that the predetermined time has not elapsed since the start of the pressure equalization process (NO), this determination process is repeated. state. If it is determined in step S8 that the temperature of the evaporator 24 has fallen below the target temperature T2, or that a predetermined time has passed since the start of the pressure equalization process (YES), the control unit 100 controls the pressure A control process is performed to terminate the equilibration process and initiate the refrigerator compartment cooling cycle.

具体的には、制御部100は、圧縮機21を冷凍室6の温度に対応した回転数で稼働し、遮蔽装置17(冷凍室ダンパ13)を開にし、冷蔵室ダンパ14を閉にし、冷凍室吸込ダンパ16を開にし、ファン12を冷凍室7の冷却に対応した回転数で稼働する(ステップS10)。次に、冷凍室温度センサ30で検出した冷凍室6の温度が、冷凍室6の目標温度T3を下回ったか否か判断する(ステップS12)。 Specifically, the control unit 100 operates the compressor 21 at a rotation speed corresponding to the temperature of the freezer compartment 6, opens the shield device 17 (freezer compartment damper 13), closes the refrigerator compartment damper 14, and closes the freezer compartment damper 14. The room suction damper 16 is opened, and the fan 12 is operated at a rotation speed corresponding to cooling of the freezer compartment 7 (step S10). Next, it is determined whether or not the temperature of the freezer compartment 6 detected by the freezer compartment temperature sensor 30 is lower than the target temperature T3 of the freezer compartment 6 (step S12).

この判断で、もし、冷凍室6の温度が冷凍室6の目標温度T3以上である(NO)と判別したときには、この判断処理を繰り返す待機状態となる。ステップS12の判断で、もし、冷凍室6の温度が冷凍室6の目標温度T3を下回った(YES)と判別したときには、制御部100は、冷凍室冷却サイクルを終了し、冷却休止処理を開始する(ステップS14)。 In this determination, if it is determined that the temperature of the freezer compartment 6 is equal to or higher than the target temperature T3 of the freezer compartment 6 (NO), a standby state is entered in which this determination process is repeated. If it is determined in step S12 that the temperature of the freezer compartment 6 has fallen below the target temperature T3 of the freezer compartment 6 (YES), the controller 100 terminates the freezer compartment cooling cycle and starts the cooling suspension process. (step S14).

具体的には、制御部100は、圧縮機21の稼働を停止し、遮蔽装置17(冷凍室ダンパ13)を閉にし、冷蔵室ダンパ14を閉にし、冷凍室吸込ダンパ16を閉にし、ファン12の稼働を停止する(ステップS14)。次に、冷蔵室温度センサ32で検出した冷蔵室7の温度が、冷蔵室冷却サイクル開始温度T4を上回ったか否か判断する(ステップS16)。この判断で、もし、冷蔵室7の温度が冷蔵室冷却サイクル開始温度T4以下である(NO)と判別したときには、この判断処理を繰り返す待機状態となる。 Specifically, the control unit 100 stops the operation of the compressor 21, closes the shielding device 17 (freezer compartment damper 13), closes the refrigerator compartment damper 14, closes the freezer compartment suction damper 16, closes the fan 12 is stopped (step S14). Next, it is determined whether or not the temperature of the refrigerator compartment 7 detected by the refrigerator compartment temperature sensor 32 has exceeded the refrigerator compartment cooling cycle start temperature T4 (step S16). In this determination, if it is determined that the temperature of the refrigerator compartment 7 is equal to or lower than the refrigerator compartment cooling cycle start temperature T4 (NO), a standby state is entered in which this determination process is repeated.

ステップS16の判断で、もし、冷蔵室7の温度が冷蔵室冷却サイクル開始温度T4を上回った(YES)と判別したときには、制御部100は、ステップS2に戻り、冷蔵室冷却サイクルを実施するための制御処理を開始する。このようにして、制御部100は、冷蔵室冷却サイクル、圧力平衡化処理、冷凍室冷却サイクル、冷却停止処理の順に行う一連のサイクルを繰り返す。このような制御処理により、冷蔵室7及び冷凍室6を効率的に冷却することができる。 If it is determined in step S16 that the temperature of the refrigerating compartment 7 has exceeded the refrigerating compartment cooling cycle start temperature T4 (YES), the control section 100 returns to step S2 to perform the refrigerating compartment cooling cycle. start control processing. In this manner, the control unit 100 repeats a series of cycles in which the refrigerator compartment cooling cycle, pressure equalization process, freezer compartment cooling cycle, and cooling stop process are performed in this order. Through such control processing, the refrigerator compartment 7 and the freezer compartment 6 can be efficiently cooled.

以上のように、本実施形態に係る冷蔵庫1は、庫内に配置された冷蔵室7及び冷凍室6と、圧縮機21及び蒸発器24を有する冷却回路と、庫内の気体を流動させるファン12と、蒸発器24が配置された冷却流路10と冷蔵室7との間を開閉する冷蔵室開閉部14と、冷却流路10と冷凍室6との間を開閉する冷凍室開閉部17(13)と、圧縮機21、ファン12、冷蔵室開閉部14及び冷凍室開閉部17(13)を制御する制御部100と、を備え、制御部100は、圧縮機21及びファン12を稼働し、冷蔵室開閉部14を開にすることにより、ファン12による流動で蒸発器24を通過した気体を冷却流路10から冷蔵室7に流入させて冷蔵室冷却サイクルを実施し、少なくとも冷蔵室開閉部14を閉にすることにより冷蔵室冷却サイクルを終了し、圧縮機21及びファン12を稼働し、冷凍室開閉部17(13)を開にすることにより、ファン12による流動で蒸発器24を通過した気体を冷却流路10から冷凍室6に流入させて冷凍室冷却サイクルを実施し、少なくとも冷凍室開閉部17(13)を閉にすることにより冷凍室冷却サイクルを終了し、冷蔵室冷却サイクル及び冷凍室冷却サイクルを交互に行うように制御し、冷蔵室冷却サイクルが終了した後、冷凍室冷却サイクルを開始する前に、圧縮機21を稼働し、ファン12を停止し、冷蔵室開閉部14及び冷凍室開閉部17(13)を閉にした圧力平衡化処理を行うようになっている。 As described above, the refrigerator 1 according to the present embodiment includes the refrigerating chamber 7 and the freezing chamber 6 arranged inside the refrigerator, the cooling circuit having the compressor 21 and the evaporator 24, and the fan for causing the gas in the refrigerator to flow. 12, a refrigerator compartment opening/closing part 14 for opening and closing between the cooling channel 10 in which the evaporator 24 is arranged and the refrigerator compartment 7, and a freezer compartment opening/closing part 17 for opening and closing between the cooling channel 10 and the freezer compartment 6. (13), and a controller 100 that controls the compressor 21, the fan 12, the refrigerator compartment opening/closing unit 14, and the freezer compartment opening/closing unit 17 (13), and the controller 100 operates the compressor 21 and the fan 12 Then, by opening the refrigerator compartment opening/closing part 14, the gas that has passed through the evaporator 24 due to the flow by the fan 12 is allowed to flow into the refrigerator compartment 7 from the cooling channel 10, thereby performing the refrigerator compartment cooling cycle. By closing the opening/closing part 14, the refrigerating compartment cooling cycle is terminated, the compressor 21 and the fan 12 are operated, and by opening the freezing compartment opening/closing part 17 (13), the flow by the fan 12 causes the evaporator 24 The gas that has passed through flows into the freezer compartment 6 from the cooling channel 10 to perform the freezer compartment cooling cycle, and at least the freezer compartment opening/closing part 17 (13) is closed to end the freezer compartment cooling cycle. Control is performed so that the cooling cycle and the freezer compartment cooling cycle are alternately performed, and after the end of the refrigerating compartment cooling cycle and before the freezer compartment cooling cycle is started, the compressor 21 is operated, the fan 12 is stopped, and the refrigerating compartment cooling cycle is performed. The opening/closing part 14 and the freezer compartment opening/closing part 17 (13) are closed to perform pressure equalization processing.

開閉部17(13)、14の切り替えで冷蔵室冷却サイクル及び冷凍室冷却サイクルを交互に行う場合、冷蔵室冷却サイクルを行うとき、冷蔵室7側の圧力が高くなり、相対的に冷凍室6側の圧力が低下する。このときに冷凍室冷却サイクルを開始すると、庫外や冷蔵室7から高温の気体が冷凍室6内に流入して、冷凍室6の温度が上昇する虞がある。しかし、本実施形態では、冷凍室冷却サイクルを開始する前に、ファン12を停止し、冷蔵室開閉部14及び冷凍室開閉部17(13)を閉にした圧力平衡化処理を行うことにより、冷蔵室7側の圧力と冷凍室6側の圧力とが平衡化される。これにより、冷凍室6の圧力の相対的な低下を抑制でき、庫外や冷蔵室7から高温の気体が冷凍室6内に流入して、冷凍室6の温度が上昇するのを効果的に抑制することができる。 When the refrigerating compartment cooling cycle and the freezing compartment cooling cycle are alternately performed by switching the opening/closing parts 17 (13) and 14, the pressure on the refrigerating compartment 7 side increases during the refrigerating compartment cooling cycle. side pressure drops. If the freezer compartment cooling cycle is started at this time, high-temperature gas may flow into the freezer compartment 6 from the outside or the refrigerator compartment 7 and the temperature of the freezer compartment 6 may rise. However, in this embodiment, before starting the freezer compartment cooling cycle, the fan 12 is stopped and the refrigerator compartment opening/closing part 14 and the freezer compartment opening/closing part 17 (13) are closed to perform pressure equalization processing. The pressure on the side of the refrigerator compartment 7 and the pressure on the side of the freezer compartment 6 are balanced. As a result, a relative decrease in the pressure in the freezer compartment 6 can be suppressed, and high-temperature gas flows into the freezer compartment 6 from the outside or the refrigerator compartment 7, effectively preventing the temperature rise in the freezer compartment 6. can be suppressed.

更に、圧力平衡化処理では、圧縮機21を稼働して蒸発器24を冷却しているので、冷却流路10内の気体や冷蔵室7側の気体が冷却される。これにより、冷蔵室7側の圧力及び冷凍室6側の圧力の平衡化が促進されるとともに、冷凍室冷却サイクルを開始するとき、十分に温度の下がった気体を冷凍室6に供給することができる。これにより、1つの蒸発器24を用いて、効率的に冷蔵室7の冷却及び冷凍室6の冷却を交互に行うことができる冷蔵庫1を提供することができる。 Furthermore, in the pressure balancing process, the compressor 21 is operated to cool the evaporator 24, so the gas in the cooling channel 10 and the gas in the refrigerator compartment 7 are cooled. As a result, the pressure on the side of the refrigerator compartment 7 and the pressure on the side of the freezer compartment 6 are promoted to equilibrate, and at the start of the freezer compartment cooling cycle, it is possible to supply sufficiently cooled gas to the freezer compartment 6. can. Thus, it is possible to provide the refrigerator 1 that can efficiently alternately cool the refrigerating compartment 7 and the freezing compartment 6 using one evaporator 24 .

また、本実施形態では、圧力平衡化処理のとき、制御部100が、冷蔵室冷却サイクルを行うときよりも高い回転数で圧縮機21を稼働するので、蒸発器24の温度を冷蔵室冷却サイクル実施時より低くすることができる。これにより、冷蔵室7側と冷凍室6側との圧力平衡化が更に促進され、冷凍室冷却サイクル開始時には、確実に冷凍室6の冷却に適した温度の気体を冷凍室6に供給することができる。 In addition, in the present embodiment, during the pressure balancing process, the control unit 100 operates the compressor 21 at a higher rotational speed than when performing the refrigerator compartment cooling cycle, so the temperature of the evaporator 24 is adjusted to that of the refrigerator compartment cooling cycle. Can be lower than in practice. This further promotes pressure equalization between the refrigerating chamber 7 side and the freezing chamber 6 side, and reliably supplies gas having a temperature suitable for cooling the freezing chamber 6 to the freezing chamber 6 at the start of the freezing chamber cooling cycle. can be done.

更に、冷凍室6と蒸発器24の入側との間に、開のとき、冷凍室6と蒸発器24の入側との間が連通し、閉のとき、冷凍室6と蒸発器24の入側との間が遮断される冷凍室吸込開閉部16を備えることもできる。その場合、制御部100は、冷蔵室冷却サイクルのとき、冷凍室吸込開閉部16を閉にし、圧力平衡化処理のとき、冷凍室吸込開閉部16を閉にし、冷凍室冷却サイクルのとき、冷凍室吸込開閉部16を開にする。 Furthermore, between the freezer compartment 6 and the entrance side of the evaporator 24, the freezer compartment 6 and the entrance side of the evaporator 24 are communicated when open, and the freezer compartment 6 and the evaporator 24 are communicated when closed. It is also possible to provide a freezer compartment suction opening/closing part 16 that blocks communication with the entrance side. In that case, the control unit 100 closes the freezer compartment intake opening/closing part 16 during the refrigerator compartment cooling cycle, closes the freezer compartment intake opening/closing part 16 during the pressure equalization process, and closes the freezer compartment intake opening/closing part 16 during the freezer compartment cooling cycle. The chamber suction opening/closing unit 16 is opened.

冷蔵室冷却サイクル及び圧力平衡化処理のとき、冷凍室吸込開閉部16が閉となるので、冷凍室6と蒸発器24の入側との間が遮断される。これにより、冷蔵室7から蒸発器24の入側に入った高温、高圧の気体が、冷凍室6に流入するのを防ぐことができる。これにより、冷凍室6の温度上昇を抑えて、より効率的に冷凍室6の冷却を行うことができる。 During the refrigerator compartment cooling cycle and pressure equalization process, the freezer compartment intake switch 16 is closed, so that the connection between the freezer compartment 6 and the inlet side of the evaporator 24 is cut off. As a result, the high-temperature, high-pressure gas that has entered the inlet side of the evaporator 24 from the refrigerator compartment 7 can be prevented from flowing into the freezer compartment 6 . Thereby, the temperature rise of the freezer compartment 6 can be suppressed and the freezer compartment 6 can be cooled more efficiently.

本発明の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施態様における要素の組合せや順序の変化等は請求された本発明の範囲及び思想を逸脱することなく実現し得るものである。 Although embodiments and implementations of the present invention have been described, the disclosure may vary in details of construction, combinations of elements in the embodiments, implementations, changes in order, etc. It can be implemented without departing from the scope and spirit.

1 冷蔵庫
2 筐体
3 上扉
4 下扉
6 冷凍室
7 冷蔵室
10 冷却流路
10A 下側冷却流路
10B 上側冷却流路
11A 下側仕切板
11B 上側仕切板
12 ファン
13 冷凍室ダンパ(冷凍室開閉部)
14 冷蔵室ダンパ(冷蔵室開閉部)
15 戻り流路
15A 入口
15B 出口
16 冷凍室吸込ダンパ
17 遮蔽装置(冷凍室開閉部)
17A ファンカバー
21 圧縮機
30 冷凍室温度センサ
32 冷蔵室温度センサ
34 霜取センサ
40 機械室
100 制御部
1 refrigerator 2 housing 3 upper door 4 lower door 6 freezer compartment 7 refrigerator compartment 10 cooling channel 10A lower cooling channel 10B upper cooling channel 11A lower partition plate 11B upper partition plate 12 fan 13 freezer compartment damper (freezer compartment opening/closing part)
14 Refrigerating compartment damper (refrigerating compartment opening/closing part)
15 Return channel 15A Inlet 15B Outlet 16 Freezer compartment suction damper 17 Shielding device (freezer compartment opening/closing part)
17A fan cover 21 compressor 30 freezer compartment temperature sensor 32 refrigerator compartment temperature sensor 34 defrosting sensor 40 machine room 100 control unit

Claims (5)

庫内に配置された冷蔵室及び冷凍室と、
圧縮機及び蒸発器を有する冷却回路と、
庫内の気体を流動させるファンと、
前記蒸発器が配置された冷却流路と前記冷蔵室との間を開閉する冷蔵室開閉部と、
前記冷却流路と前記冷凍室との間を開閉する冷凍室開閉部と、
前記圧縮機、前記ファン、前記冷蔵室開閉部及び前記冷凍室開閉部を制御する制御部と、
を備え、
前記制御部は、
前記圧縮機及び前記ファンを稼働し、前記冷蔵室開閉部を開にすることにより、前記ファンによる流動で前記蒸発器を通過した気体を前記冷却流路から前記冷蔵室に流入させて冷蔵室冷却サイクルを実施し、少なくとも前記冷蔵室開閉部を閉にすることにより前記冷蔵室冷却サイクルを終了し、
前記圧縮機及び前記ファンを稼働し、前記冷凍室開閉部を開にすることにより、前記ファンによる流動で前記蒸発器を通過した気体を前記冷却流路から前記冷凍室に流入させて冷凍室冷却サイクルを実施し、少なくとも前記冷凍室開閉部を閉にすることにより前記冷凍室冷却サイクルを終了し、
前記冷蔵室冷却サイクル及び前記冷凍室冷却サイクルを交互に行うように制御し、
前記冷蔵室冷却サイクルが終了した後、前記冷凍室冷却サイクルを開始する前に、前記圧縮機を稼働し、前記ファンを停止し、前記冷蔵室開閉部及び前記冷凍室開閉部を閉にした圧力平衡化処理を行うことを特徴とする冷蔵庫。
a refrigerating compartment and a freezing compartment arranged in the refrigerator;
a cooling circuit having a compressor and an evaporator;
a fan for circulating gas in the refrigerator;
a refrigerating compartment opening/closing unit for opening and closing between the cooling channel in which the evaporator is arranged and the refrigerating compartment;
a freezer compartment opening/closing part that opens and closes between the cooling channel and the freezer compartment;
a control unit that controls the compressor, the fan, the refrigerator compartment opening/closing unit, and the freezer compartment opening/closing unit;
with
The control unit
By operating the compressor and the fan and opening the refrigerating compartment opening/closing section, the gas that has passed through the evaporator due to the flow by the fan flows into the refrigerating compartment through the cooling channel to cool the refrigerating compartment. terminating the refrigerating compartment cooling cycle by performing a cycle and closing at least the refrigerating compartment opening and closing;
By operating the compressor and the fan and opening the freezer compartment opening/closing part, the gas that has passed through the evaporator due to the flow by the fan flows into the freezer compartment from the cooling channel to cool the freezer compartment. terminating the freezer compartment cooling cycle by performing a cycle and closing at least the freezer compartment opening and closing part;
controlling the refrigerating compartment cooling cycle and the freezer compartment cooling cycle to be performed alternately;
After the refrigerating compartment cooling cycle ends and before starting the freezing compartment cooling cycle, the compressor is activated, the fan is stopped, and the refrigerating compartment opening and closing parts are closed. A refrigerator characterized by performing an equilibration process.
前記冷凍室と前記蒸発器の入側との間に、開のとき、前記冷凍室と前記蒸発器の入側との間が連通し、閉のとき、前記冷凍室と前記蒸発器の入側との間が遮断される冷凍室吸込開閉部を備え、
前記制御部は、
前記冷蔵室冷却サイクルのとき、前記冷凍室吸込開閉部を閉にし、
前記圧力平衡化処理のとき、前記冷凍室吸込開閉部を閉にし、
前記冷凍室冷却サイクルのとき、前記冷凍室吸込開閉部を開にすることを特徴とする請求項1に記載の冷蔵庫。
Between the freezing chamber and the entrance side of the evaporator, when open, the freezing chamber and the entrance side of the evaporator are communicated, and when closed, the freezing chamber and the entrance side of the evaporator are communicated. Equipped with a freezer compartment suction opening and closing part that cuts off between
The control unit
During the refrigerator compartment cooling cycle, the freezer compartment intake opening/closing section is closed;
During the pressure equalization process, the freezer compartment suction opening/closing unit is closed;
2. The refrigerator according to claim 1, wherein said freezer compartment suction switch is opened during said freezer compartment cooling cycle.
前記圧力平衡化処理のとき、前記制御部は、前記冷蔵室冷却サイクルを行うときよりも高い回転数で前記圧縮機を稼働することを特徴とする請求項1または2に記載の冷蔵庫。 3. The refrigerator according to claim 1, wherein during the pressure equalization process, the control unit operates the compressor at a higher rotational speed than during the refrigerator compartment cooling cycle. 前記圧力平衡化処理を開始した後、霜取センサが検出した前記蒸発器の温度が所定の温度より低くなったとき、制御部は、前記圧力平衡化処理を終了して、前記冷凍室冷却サイクルを開始することを特徴とする請求項1から3の何れか1項に記載の冷蔵庫。 After the pressure equalization process is started, when the temperature of the evaporator detected by the defrosting sensor becomes lower than a predetermined temperature, the control unit terminates the pressure equalization process and 4. The refrigerator according to any one of claims 1 to 3, characterized in that it starts the 前記冷凍室開閉部は、前記ファンの外側を覆うように配置されたファンカバーを備え、前記ファンカバーが開の位置にあるとき、前記ファンから吐出された気体が前記冷凍室に流入し、前記ファンカバーが閉の位置にあるとき、前記ファンから吐出された気体が前記冷凍室に流入しないようになる遮蔽装置で構成されることを特徴とする請求項1から4の何れか1項に記載の冷蔵庫。 The freezer compartment opening/closing unit includes a fan cover arranged to cover the outside of the fan, and when the fan cover is in the open position, the gas discharged from the fan flows into the freezer compartment, and the 5. A shielding device according to any one of claims 1 to 4, characterized in that, when the fan cover is in the closed position, it comprises a shielding device that prevents the gas discharged from the fan from flowing into the freezer compartment. refrigerator.
JP2021215015A 2021-12-28 2021-12-28 refrigerator Pending JP2023098320A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021215015A JP2023098320A (en) 2021-12-28 2021-12-28 refrigerator
PCT/CN2022/142787 WO2023125655A1 (en) 2021-12-28 2022-12-28 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021215015A JP2023098320A (en) 2021-12-28 2021-12-28 refrigerator

Publications (1)

Publication Number Publication Date
JP2023098320A true JP2023098320A (en) 2023-07-10

Family

ID=86997985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021215015A Pending JP2023098320A (en) 2021-12-28 2021-12-28 refrigerator

Country Status (2)

Country Link
JP (1) JP2023098320A (en)
WO (1) WO2023125655A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017340B2 (en) * 2009-09-09 2012-09-05 日立アプライアンス株式会社 refrigerator
US8682527B2 (en) * 2011-03-30 2014-03-25 Denso International America, Inc. Cooling system compressor with variable operating range
CN103913041B (en) * 2013-01-08 2016-09-07 株式会社东芝 Refrigerator
JP2015222131A (en) * 2014-05-22 2015-12-10 ハイアールアジア株式会社 refrigerator
CN106247741A (en) * 2016-07-12 2016-12-21 青岛海尔股份有限公司 A kind of refrigerator
CN106610173B (en) * 2016-12-26 2019-12-06 青岛海尔股份有限公司 Air-cooled refrigerator and operation control method thereof
CN111121383A (en) * 2019-12-30 2020-05-08 青岛海尔电冰箱有限公司 Defrosting control method of single-system refrigerator, electronic device and refrigerator

Also Published As

Publication number Publication date
WO2023125655A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
KR101095554B1 (en) Method for control operating of refrigerator
JP5903552B2 (en) refrigerator
KR100870540B1 (en) Controlling process for Refrigerator
KR101916727B1 (en) Refrigerator and controlling method thereof
US9772130B2 (en) Refrigerator and method for controlling a refrigerator
KR20100059442A (en) Refrigerator and a control method of the same
EP3674631B1 (en) Refrigerator and method for controlling the same
KR101721771B1 (en) Colntrol method for refrigerator
KR101770467B1 (en) Refrigerator and colntrol method for refrigerator
CN111094880A (en) Refrigerating machine
KR102383607B1 (en) Refrigerator
JP3611447B2 (en) refrigerator
JP5417397B2 (en) refrigerator
JP2023098320A (en) refrigerator
JP2005180719A (en) Refrigerator
KR100846114B1 (en) Controlling process for refrigerator
KR101723284B1 (en) A refrigerator and a method for controlling the same
JP2002206840A (en) Refrigerator
JP2012082984A (en) Refrigerator
JP2011153788A (en) Refrigerator
KR20210069360A (en) Refrigerator and method for controlling the same
JPH085172A (en) Cooler for refrigerator with deep freezer
JP2002213852A (en) Refrigerator and method for controlling the same
JP2020091045A (en) refrigerator
KR102422100B1 (en) Refrigerator and control method thereof