JP2023095727A - wiper device - Google Patents

wiper device Download PDF

Info

Publication number
JP2023095727A
JP2023095727A JP2022011862A JP2022011862A JP2023095727A JP 2023095727 A JP2023095727 A JP 2023095727A JP 2022011862 A JP2022011862 A JP 2022011862A JP 2022011862 A JP2022011862 A JP 2022011862A JP 2023095727 A JP2023095727 A JP 2023095727A
Authority
JP
Japan
Prior art keywords
lip portion
wiper
blade
contact
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022011862A
Other languages
Japanese (ja)
Inventor
雄彦 青山
Katsuhiko Aoyama
秀和 松田
Hidekazu Matsuda
勝也 児玉
Katsuya Kodama
尚 樋口
Takashi Higuchi
孝之 水沼
Takayuki Mizunuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to PCT/JP2022/047313 priority Critical patent/WO2023120633A1/en
Priority to CN202280085415.6A priority patent/CN118451011A/en
Publication of JP2023095727A publication Critical patent/JP2023095727A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a wiper device capable of exhibiting greater wiping property than before.SOLUTION: A wiper device for a windshield comprises a wiper arm, and a wiper blade fitted to the wiper arm. The wiper blade comprises a blade rubber and a blade stay for supporting the blade rubber. The blade rubber has; a base part being a fitting part to the blade stay of the blade rubber; a lip part; and a neck part for oscillatably coupling the lip part to the base part. At least a part of a tip of the lip part forms a contact part with the windshield, the wiper arm is brought into contact with a glass flat plate and is moved. In a state of stopping the wiper arm, a width of the contact part of the blade rubber and the glass flat plate is 1.0 μm or more and 20.0 μm or less, and an angle θ formed by a specific position of the lip part and the glass flat plate is 20° or more and 80° or less.SELECTED DRAWING: Figure 1

Description

本開示は、車両などのウインドシールドの表面を払拭するワイパー装置に関する。 FIELD OF THE DISCLOSURE The present disclosure relates to a wiper device for wiping the surface of a windshield of a vehicle or the like.

自動車、電車、船舶、及び航空機などでは、フロントガラスやリアガラスなどのガラス面に付着した水滴や汚れなどを払拭して操縦者の視界を確保するために清掃部材を備えている。
これらの清掃部材のうち、ガラス面と接触する部分にワイパーブレードゴムが設けられたワイパーブレードがよく知られている。このワイパーブレードゴムがガラス面に密着して動くことで、ガラス面に付着した水滴などを払拭することができる。操縦者の良好な視界確保の観点から、ワイパーブレードとして、ガラス面などの水滴や汚れなどを充分に払拭することができる払拭性に優れたものが望まれている。
2. Description of the Related Art Automobiles, trains, ships, aircraft, and the like are equipped with a cleaning member for wiping off water droplets, dirt, etc. adhering to glass surfaces such as windshields and rear windshields to secure the operator's field of vision.
Among these cleaning members, wiper blades having wiper blade rubber provided on the portion that contacts the glass surface are well known. As the wiper blade rubber moves in close contact with the glass surface, it is possible to wipe away water droplets and the like adhering to the glass surface. From the viewpoint of ensuring good visibility for the operator, wiper blades that are excellent in wiping properties that can sufficiently wipe off water droplets, stains, and the like from glass surfaces are desired.

特許文献1には、基部と、ネック部と、リップ部とで構成されたワイパーブレードを備え、リップ部が基部の当面に対し一定の隙間を有するとともに払拭方向に一定幅を有し、且つ、ウインドシールドパネルの表面を摺動するリップ先端部を有し、払拭移動時にウインドシールドパネルとリップ部とのなす角θを30度≦θ≦55度とする手段が施されたワイパー装置が開示されている。 Patent Document 1 discloses a wiper blade including a base portion, a neck portion, and a lip portion, the lip portion having a constant gap from the surface of the base portion and a constant width in the wiping direction, and Disclosed is a wiper device having a lip tip portion that slides on the surface of a windshield panel, and provided with a means to set the angle θ between the windshield panel and the lip portion during wiping movement to 30°≦θ≦55°. ing.

特開平07-246916号公報JP-A-07-246916

上記特許文献1に開示されているように、ワイパーブレードのリップと被清掃部材の表面との、接触角を30~50度に制御した場合であっても、払拭後の水膜の厚さが安定しない、又は拭きムラが発生してしまう場合があった。
本開示の一態様は、従来よりもさらに高い払拭性を発揮し得るワイパー装置の提供に向けたものである。
As disclosed in Patent Document 1, even when the contact angle between the lip of the wiper blade and the surface of the member to be cleaned is controlled to 30 to 50 degrees, the thickness of the water film after wiping is In some cases, it was not stable, or uneven wiping occurred.
One aspect of the present disclosure is directed to providing a wiper device capable of exhibiting higher wiping performance than ever before.

本開示の一態様は、ウインドシールドのワイパー装置であって、
該ワイパー装置は、ワイパーアームと該ワイパーアームに装着されたワイパーブレードとを具備し、
該ワイパーブレードは、ブレードラバーと該ブレードラバーを支持するブレードステーを有し、
該ブレードラバーは、該ブレードラバーの該ブレードステーへの取り付け部である基部と、リップ部と、該リップ部を該基部に揺動可能に連結しているネック部と、を有し、
該リップ部の先端の少なくとも一部は該ウインドシールドとの接触部を構成し、
該ワイパーアームのアーム押さえ力を18N/mとして、該ワイパーブレードの該リップ部をガラス平板の第1の表面に当接させ、該ワイパーブレードを速度1.65m/秒にて、該ガラス平板の該第1の表面の第1の地点P1から第2の地点P2に向かうA方向に、該ブレードラバーの長手方向と直交する方向に50cm移動させ、停止させた状態において、
該リップ部と該ガラス平板との接触部を該ガラス平板の該第1の表面とは反対側の第2の表面側から観察し、該接触部の該ブレードラバーの長手方向と直交する方向の幅を当接
幅Aとしたとき、該当接幅Aが、1.0μm以上20.0μm以下であり、かつ、
該ブレードラバーを該ブレードラバーの長手方向の側面から光学顕微鏡を用いて倍率200倍で観察したとき、
該リップ部と該ガラス平板との該接触部のうち、該P1から最も遠い部位を点Q1とし、該点Q1から該A方向に向かって200μmの位置において該ガラス平板の該第1の表面に対して垂線をひき、該垂線の、該リップ部との最初の交点を点Q2としたとき、該点Q1と該点Q2とを結ぶ直線と該ガラス平板の該第1の表面とがなす角θが、20°以上80°以下であるワイパー装置に向けたものである。
One aspect of the present disclosure is a windshield wiper device comprising:
The wiper device comprises a wiper arm and a wiper blade attached to the wiper arm,
The wiper blade has a blade rubber and a blade stay that supports the blade rubber,
The blade rubber has a base portion, which is an attachment portion of the blade rubber to the blade stay, a lip portion, and a neck portion which pivotally connects the lip portion to the base portion,
at least a portion of the tip of the lip portion forms a contact portion with the windshield;
With the arm pressing force of the wiper arm set to 18 N/m, the lip portion of the wiper blade is brought into contact with the first surface of the glass plate, and the wiper blade is moved at a speed of 1.65 m/sec to remove the glass plate. In the A direction from the first point P1 to the second point P2 on the first surface, the blade rubber is moved 50 cm in a direction perpendicular to the longitudinal direction of the blade rubber and stopped.
The contact portion between the lip portion and the glass plate is observed from the second surface side opposite to the first surface of the glass plate, and the direction perpendicular to the longitudinal direction of the blade rubber of the contact portion is observed. When the width is the contact width A, the contact width A is 1.0 μm or more and 20.0 μm or less, and
When the blade rubber was observed from the longitudinal side of the blade rubber using an optical microscope at a magnification of 200 times,
In the contact portion between the lip portion and the glass flat plate, the farthest portion from the P1 is defined as a point Q1, and at a position 200 μm from the point Q1 toward the A direction, the first surface of the glass flat plate When a perpendicular line is drawn against the glass flat plate and the first intersection point of the perpendicular line with the lip portion is a point Q2, the angle formed by the straight line connecting the point Q1 and the point Q2 and the first surface of the glass flat plate It is intended for a wiper device in which θ is 20° or more and 80° or less.

本開示の一態様によれば、従来よりもさらに高い払拭性を発揮し得るワイパー装置が提供できる。 According to one aspect of the present disclosure, it is possible to provide a wiper device capable of exhibiting higher wiping performance than ever before.

従来のワイパーブレードと被清掃部材との当接の例Example of contact between conventional wiper blade and member to be cleaned ワイパー装置の概略図Schematic diagram of wiper device ワイパーブレードの断面の概略図Schematic diagram of a cross section of a wiper blade 図4(a)及び(b)はブレードラバーの清掃過程での状態を示す説明図FIGS. 4(a) and 4(b) are explanatory diagrams showing the state during the cleaning process of the blade rubber. ワイパー装置の当接・移動試験を説明する図Diagram explaining the contact/movement test of the wiper device ブレードラバー先端の角度を説明する図Diagram explaining the angle of the tip of the blade rubber 第1のエッジ近傍の拡大図Enlarged view near the first edge 第1の線分近傍の拡大図Enlarged view near the first line segment P0を重心とする観察領域12近傍の拡大図Enlarged view of the vicinity of the observation area 12 with P0 as the center of gravity 試験機の概略図Schematic diagram of the testing machine 払拭性能試験の説明図Explanatory drawing of wiping performance test ワイパーブレードの被清掃部材との接触部近傍の模式図Schematic diagram of the vicinity of the contact portion of the wiper blade with the member to be cleaned 本開示における当接幅A及び当接幅Bの説明図である。FIG. 4 is an explanatory diagram of contact width A and contact width B in the present disclosure;

本開示において、数値範囲を表す「XX以上YY以下」や「XX~YY」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。 In the present disclosure, the descriptions of “XX or more and YY or less” or “XX to YY” representing numerical ranges mean numerical ranges including the lower and upper limits, which are endpoints, unless otherwise specified. When numerical ranges are stated stepwise, the upper and lower limits of each numerical range can be combined arbitrarily.

本発明者らは、特許文献1に係るワイパーブレードによるウインドシールドの表面の払拭状態をより詳細に観察した。特に、ワイパーブレードのリップ部のウインドシールドとの接触部分をミクロに観察した。
その結果、当該ワイパーブレードのリップ部の極先端部分は、ガラス101の表面(以降、「ガラス面」ともいう)との摩擦によって湾曲してしまっていた。図1に示すように、ワイパーブレードを進行方向Pに動かした場合、特許文献1で規定されている角度よりも、リップの先端部分におけるガラスとの当接角度θpは、より小さくなっていた。また、リップの先端部分がガラス面との摩擦によって引き伸ばされ、当該先端部分とガラス面との当接部分の幅(ニップ幅)も大きくなっていた。
The present inventors observed in more detail how the wiper blade according to Patent Document 1 wiped the surface of the windshield. In particular, a microscopic observation was made of the contact portion of the lip of the wiper blade with the windshield.
As a result, the extreme tip portion of the lip portion of the wiper blade was curved due to friction with the surface of the glass 101 (hereinafter also referred to as "glass surface"). As shown in FIG. 1, when the wiper blade is moved in the traveling direction P, the contact angle θp of the tip portion of the lip with the glass is smaller than the angle defined in Patent Document 1. In addition, the tip portion of the lip is stretched by friction with the glass surface, and the width of the contact portion between the tip portion and the glass surface (nip width) is also increased.

そのため、ワイパーブレードをガラス面に対して押し付ける圧力(矢印A参照)が、意図しているような高い値となっていないと考えられる。加えて、リップの先端部分の当接角度が小さくなっていることで、図1に示すように、当該先端部分には、当該先端部分とガラス面との間に溜まった水によって、ワイパーブレードをガラス面から持ち上げる方向Bに力が加わる。その結果、ワイパーブレードの当接圧力はより弱まっていると考えられる。これらの現象により、当該ワイパーブレードにおいては、拭きムラが生じるものと考
えられる。
これらの知見から、より一層の払拭性能の向上を図るためには、これまで議論されてこなかった、ブレードの極先端部分の被清掃部材の表面との接触状態の制御が必要であるとの認識を得るに至った。
Therefore, it is considered that the pressure (see arrow A) that presses the wiper blade against the glass surface is not as high as intended. In addition, since the contact angle of the tip portion of the lip is small, as shown in FIG. A force is applied in a lifting direction B from the glass surface. As a result, it is believed that the contact pressure of the wiper blade is weakened. These phenomena are considered to cause uneven wiping in the wiper blade.
Based on these findings, it is recognized that in order to further improve the wiping performance, it is necessary to control the contact state of the extreme tip portion of the blade with the surface of the member to be cleaned, which has not been discussed so far. I got

<車両用のワイパーブレードの構成>
本開示の一態様に係るワイパー装置は、自動車に代表されるような車両、飛行機、船舶などの輸送機器、建設機械などの産業機械機器といった機器に使用することができる。これらの輸送機器、産業機械機器を包括して車両という。本開示は車両のウインドシールドのワイパー装置に関する。ウインドシールドは、フロントウィンドウに限られず、サイドウィンドウやリアウィンドウも含む。
<Configuration of Wiper Blade for Vehicle>
A wiper device according to an aspect of the present disclosure can be used for equipment such as vehicles typified by automobiles, transportation equipment such as airplanes and ships, and industrial equipment such as construction equipment. These transport equipment and industrial machinery are collectively called vehicles. The present disclosure relates to a vehicle windshield wiper device. The windshield is not limited to the front window, and includes side windows and rear windows.

例えば、図2に示すように、ワイパー装置は、ワイパーアーム300とワイパーアーム300に装着されたワイパーブレード200とを具備する。そしてワイパーブレード200は、ブレードラバー100とブレードラバー100を支持するブレードステー210を有する。 For example, as shown in FIG. 2, the wiper system comprises a wiper arm 300 and a wiper blade 200 attached to the wiper arm 300 . The wiper blade 200 has a blade rubber 100 and a blade stay 210 supporting the blade rubber 100 .

ブレードラバー100は、図3に示すように、ブレードラバー100のブレードステー210への取り付け部である基部1と、基部1にネック部2を介して揺動可能に連結されてなるリップ部3と、を具備する。該ワイパーブレードは、長手方向に略一様な断面形状に形成されている。
ワイパーブレードの長手方向に直交する方向の断面において、リップ部3は、リップ部3のネック部側の端部に、ネック部よりも側方に伸び出した肩部31を備える。さらに、ワイパーブレードの当接姿勢安定性のために、基部1に近い側から該基部1から離れる方向に向かう幅が漸減するテーパー部4を有していてもよい。また、テーパー部4の幅の漸減の程度は段階的に変化させてもよい。例えば、リップ部3は、リップ部の基部1から離れた先端に近い側に、テーパー部の幅の漸減の程度が小さくなったリップ先端部を有してもよい。また、リップ先端部には、基部1に近い側から先端に向けて幅が同一又は略同一な部分があってもよい。図3に示したワイパーブレードは、リップ部3の先端側に、テーパー部4に連なって板状の部分を有する。
The blade rubber 100, as shown in FIG. , The wiper blade is formed to have a substantially uniform cross-sectional shape in the longitudinal direction.
In a cross section perpendicular to the longitudinal direction of the wiper blade, the lip portion 3 has a shoulder portion 31 extending laterally from the neck portion at the neck portion side end portion of the lip portion 3 . Further, the wiper blade may have a tapered portion 4 whose width gradually decreases in the direction away from the base portion 1 from the side close to the base portion 1 for the stability of the contact posture of the wiper blade. Also, the degree of gradual reduction of the width of the taper portion 4 may be changed stepwise. For example, the lip portion 3 may have a lip tip portion in which the width of the tapered portion tapers to a lesser extent on the side of the lip portion closer to the tip remote from the base portion 1 . Also, the tip of the lip may have a portion with the same or substantially the same width from the side near the base 1 toward the tip. The wiper blade shown in FIG. 3 has a plate-like portion connected to the tapered portion 4 on the tip side of the lip portion 3 .

ワイパー装置は、ガラス面に代表される、被清掃部材であるウインドシールドの表面に、リップ部3の先端の少なくとも一部分を当接させて、被清掃部材の表面を清掃する。これにより、リップ部3の先端の少なくとも一部はウインドシールドとの接触部を構成する。
例えば、ワイパーブレードの長手方向に直交する方向の断面において、ネック部2は基部1やリップ部3に対して幅が狭くなる態様とすることが挙げられる。これにより、図4(a)及び図4(b)に示すように、リップ部3は払拭方向に傾き、リップ部3におけるテーパー部に連なる一方の側の面、すなわち、側面5または側面6の先端の少なくとも一部が、被清掃部材の表面に当接する。
The wiper device cleans the surface of a member to be cleaned, such as a glass surface, by bringing at least a portion of the tip of the lip portion 3 into contact with the surface of the windshield, which is the member to be cleaned. As a result, at least a portion of the tip of the lip portion 3 forms a contact portion with the windshield.
For example, the width of the neck portion 2 may be narrower than that of the base portion 1 and the lip portion 3 in a cross section perpendicular to the longitudinal direction of the wiper blade. As a result, as shown in FIGS. 4A and 4B, the lip portion 3 is inclined in the wiping direction, and one side of the lip portion 3 connected to the tapered portion, that is, the side surface 5 or the side surface 6 is inclined. At least part of the tip contacts the surface of the member to be cleaned.

図4(a)及び図4(b)は、ワイパーブレードの清掃過程での状態を示す説明図である。
図4(a)では、ワイパーブレードのリップ部3は、該テーパー部4を有する。また、リップ部3は、テーパー部4から連なる第1の側面5及び第1の側面5とは反対側の第2の側面6と、該第1の側面5及び該第2の側面6と共に、該リップ部3の基部1から最も離れた側に第1のエッジ8及び第2のエッジ9を構成する先端面7と、を有する(第1のエッジ、第2のエッジ及び先端面については図3及び図7を参照)。
図4(b)では、ワイパーブレードのリップ部3は、被清掃部材10と当接する該テーパー部4から連なる第2の側面6及び第2の側面6とは反対側の第1の側面5と、該第1
の側面5及び該第2の側面6と共に、該リップ部3の基部1から最も離れた側(先端側)に第1のエッジ8及び第2のエッジ9を構成する先端面7と、を有する(第1のエッジ、第2のエッジ及び先端面については図3及び図7を参照)。
矢印Rはワイパーブレードの清掃方向を示す。清掃方向が、図4(a)の矢印Rの方向から図4(b)の矢印Rの方向に反転することで、リップ部3の被清掃部材と当接する側面が、第1の側面5側の先端から第2の側面6側の先端に切り替わる。
FIGS. 4(a) and 4(b) are explanatory diagrams showing states during the cleaning process of the wiper blade.
In FIG. 4( a ) the lip 3 of the wiper blade has said taper 4 . In addition, the lip portion 3 includes a first side surface 5 continuing from the taper portion 4, a second side surface 6 opposite to the first side surface 5, the first side surface 5 and the second side surface 6, A tip surface 7 forming a first edge 8 and a second edge 9 is provided on the farthest side from the base portion 1 of the lip portion 3 (the first edge, the second edge and the tip surface are shown in the figure). 3 and FIG. 7).
In FIG. 4(b), the lip portion 3 of the wiper blade has a second side surface 6 continuing from the tapered portion 4 in contact with the member to be cleaned 10, and a first side surface 5 opposite to the second side surface 6. , the first
along with the side surface 5 and the second side surface 6 of the lip portion 3, a tip surface 7 that forms a first edge 8 and a second edge 9 on the farthest side (tip side) from the base portion 1 of the lip portion 3 (See FIGS. 3 and 7 for first edge, second edge and tip face).
Arrow R indicates the cleaning direction of the wiper blade. By reversing the direction of cleaning from the direction of arrow R in FIG. 4A to the direction of arrow R in FIG. , to the tip on the second side 6 side.

本開示では、以下の条件で、被清掃部材とワイパー装置との当接状態を観察する。概要を図5に示す。まず、ワイパーアームのアーム押さえ力を18N/mとして、ワイパーブレードのリップ部をガラス平板の第1の表面に当接させる。そして、ワイパーブレードを速度1.65m/秒にて、ガラス平板の第1の表面の第1の地点P1から第2の地点P2に向かうA方向に、ブレードラバーの長手方向と直交する方向に50cm移動させ、停止させた状態において、観察する。
18N/mというアーム押さえ力は、JIS D 5710:1998に示される試験条件において、ブレードの長さ当たりの押さえ力が最も高い条件である。したがって、払拭により特にリップ部が強く押し付けられ、当接角度が小さくなりやすく、当接幅も大きくなりやすい条件となる。また、1.65m/秒という速度は、日本国で流通している実際の自動車におけるワイパーブレードの中央部(JIS D 5710:1998におけるMゾーン)で測定した速度のうち、中間的な速度に相当するものである。
In the present disclosure, the state of contact between the member to be cleaned and the wiper device is observed under the following conditions. An overview is shown in FIG. First, the arm pressing force of the wiper arm is set to 18 N/m, and the lip portion of the wiper blade is brought into contact with the first surface of the flat glass plate. Then, the wiper blade is moved at a speed of 1.65 m / sec in the A direction from the first point P1 to the second point P2 on the first surface of the glass plate, 50 cm in the direction orthogonal to the longitudinal direction of the blade rubber. Observe while moving and stopping.
The arm pressing force of 18 N/m is the highest pressing force per blade length under the test conditions specified in JIS D 5710:1998. Therefore, the lip portion is particularly strongly pressed by the wiping, so that the contact angle tends to be small and the contact width tends to be large. In addition, the speed of 1.65 m/sec is equivalent to the intermediate speed among the speeds measured at the center of the wiper blade (JIS D 5710: M zone in 1998) of actual automobiles distributed in Japan. It is something to do.

リップ部とガラス平板との接触部をガラス板の第1の表面とは反対側の第2の表面側から観察し、接触部のブレードラバーの長手方向と直交する方向の幅を当接幅Aとしたとき、当接幅Aが、1.0μm以上20.0μm以下である(図13参照)。
当接幅Aが上記範囲であることによって、本開示に係るワイパーブレードは、被清掃面の払拭性に優れたものとなることができる。すなわち、当接幅Aが1.0μm以上であることで、リップ部3の先端の被清掃面への接触をより安定化させ得る。また、当接幅Aが20.0μm以下であることで、後述するリップ部の特定の位置と被清掃面とがなす角度θを特定の範囲にあることを前提として、当接部分の単位面積当たりの当接圧を高く維持することができ、払拭ムラの発生を防止し得る。
一方、当接幅Aが20.0μmを超えると、当接部分の単位面積当たりの当接圧が小さくなり、水によるブレードを持ち上げる方向の力の影響を受けやすくなる。その結果、払拭方向下流への水の掻き取り漏れが生じやすい。当接幅Aは、好ましくは1.1μm以上15.0μm以下であり、より好ましくは1.2μm以上10.0μm以下であり、さらに好ましくは1.2μm以上6.5μm以下であり、さらにより好ましくは1.2μm以上5.0μm以下である。
The contact portion between the lip portion and the glass plate is observed from the second surface side opposite to the first surface of the glass plate, and the width of the contact portion in the direction orthogonal to the longitudinal direction of the blade rubber is the contact width A , the contact width A is 1.0 μm or more and 20.0 μm or less (see FIG. 13).
When the contact width A is within the above range, the wiper blade according to the present disclosure can be excellent in the wiping performance of the surface to be cleaned. That is, the contact width A of 1.0 μm or more can further stabilize the contact of the tip of the lip portion 3 with the surface to be cleaned. Further, since the contact width A is 20.0 μm or less, the unit area of the contact portion is A high contact pressure per hit can be maintained, and the occurrence of uneven wiping can be prevented.
On the other hand, if the contact width A exceeds 20.0 μm, the contact pressure per unit area of the contact portion becomes small, and the blade is likely to be affected by the force in the direction of lifting the blade due to water. As a result, the water tends to leak downstream in the wiping direction. The contact width A is preferably 1.1 μm or more and 15.0 μm or less, more preferably 1.2 μm or more and 10.0 μm or less, still more preferably 1.2 μm or more and 6.5 μm or less, and even more preferably. is 1.2 μm or more and 5.0 μm or less.

また、当接幅Aの標準偏差は、好ましくは6.00μm以下であり、より好ましくは4.00μm以下であり、さらに好ましくは2.00μm以下であり、さらにより好ましくは1.00μm以下であり、特に好ましくは0.80μm以下である。当接幅Aの標準偏差は小さいほど好ましく、下限は特に制限されないが、好ましくは0.00μm以上、0.10μm以上である。 The standard deviation of the contact width A is preferably 6.00 μm or less, more preferably 4.00 μm or less, even more preferably 2.00 μm or less, and even more preferably 1.00 μm or less. , and particularly preferably 0.80 μm or less. The standard deviation of the contact width A is preferably as small as possible, and although the lower limit is not particularly limited, it is preferably 0.00 μm or more and 0.10 μm or more.

また、以下のように定義される当接幅Bは、好ましくは1.0μm~20.0μm、さらに好ましくは1.0μm~15.0μmである。さらにより好ましくは、1.0μm~10.0μmである。
すなわち、ワイパーアームのアーム押さえ力を10N/mとして、ワイパーブレードのリップ部をガラス平板の第1の表面に当接させる。そして、ワイパーブレードを速度1.65m/秒にて、ガラス平板の該第1の表面の第1の地点P1から第2の地点P2に向かうA方向に、該ブレードラバーの長手方向と直交する方向に50cm移動させ、停止させる。停止させた状態において、リップ部とガラス平板との接触部をガラス板の第1の表面
とは反対側の第2の表面側から観察したとき、接触部のブレードラバーの長手方向と直交する方向の幅を、当接幅Bとする。
Further, the contact width B defined as follows is preferably 1.0 μm to 20.0 μm, more preferably 1.0 μm to 15.0 μm. Even more preferably, it is 1.0 μm to 10.0 μm.
That is, the arm pressing force of the wiper arm is set to 10 N/m, and the lip portion of the wiper blade is brought into contact with the first surface of the flat glass plate. Then, the wiper blade is moved at a speed of 1.65 m / sec in the A direction from the first point P1 to the second point P2 on the first surface of the glass plate in a direction perpendicular to the longitudinal direction of the blade rubber. 50 cm and stop. In the stopped state, when the contact portion between the lip portion and the glass plate is observed from the second surface side opposite to the first surface of the glass plate, the direction perpendicular to the longitudinal direction of the blade rubber at the contact portion is the contact width B.

上記当接幅A及び当接幅Bから、当接幅の荷重依存性を以下の式(A)により算出することができる。
当接幅の荷重依存性(μm/(N/m))
=(当接幅A(μm)-当接幅B(μm))/(荷重18(N/m)-荷重10(N/m)) ・・・(A)
From the contact width A and the contact width B, the load dependence of the contact width can be calculated by the following formula (A).
Contact width load dependence (μm/(N/m))
= (contact width A (μm)−contact width B (μm))/(load 18 (N/m)−load 10 (N/m)) (A)

上記式(A)で算出される、当接幅の荷重依存性は、小さいほど好ましく、下限は特に制限されないが、0.01μm~0.60μmであることが好ましく、0.01μm~0.50μmであることがより好ましく、0.02μm~0.30μmであることがさらに好ましく、0.02μm~0.10μmであることがさらにより好ましい。被清掃面に対するワイパーブレードの接触状態として、被清掃面の形状やワイパーアームからブレードラバー先端リップ部に伝わる力の状態によっては、長手において加わる力にムラが生じる場合がある。当接幅の荷重依存性を上記範囲に抑えることで、長手に亘って安定して払拭性能を発揮することが可能となる。
当接幅の荷重依存性は、荷重に対するミクロな領域の変形に起因するため、下記で示すミクロ領域の弾性率を制御することにより制御することができる。
The load dependence of the contact width calculated by the above formula (A) is preferably as small as possible. is more preferably 0.02 μm to 0.30 μm, and even more preferably 0.02 μm to 0.10 μm. Depending on the shape of the surface to be cleaned and the state of the force transmitted from the wiper arm to the tip lip portion of the blade rubber, the contact state of the wiper blade with respect to the surface to be cleaned may cause unevenness in the force applied in the longitudinal direction. By suppressing the load dependency of the contact width within the above range, it is possible to exhibit stable wiping performance over the length.
Since the load dependence of the contact width is caused by the deformation of the micro region with respect to the load, it can be controlled by controlling the elastic modulus of the micro region described below.

当接幅Aや当接幅の荷重依存性には、被清掃部材との当接部近傍のミクロな領域における変形の影響が支配的である。ワイパーアーム300から基部1を伝わり受ける押付力に対して、リップ部先端の変形を抑え、狭い当接幅で払拭することで、高い払拭性能を発揮する。
当接幅Aや当接幅の荷重依存性を上記範囲にする手段としては、例えば、ブレードラバー、特にはリップ部3のミクロ領域における弾性率を高めることが有効である。ブレードラバーのミクロ領域の弾性率を高めることで、リップ部3の先端の当接力に対する変形を抑制できる。また、リップ部先端が被清掃面との摩擦によって引き伸ばされることを抑制できる。その結果、払拭工程において、リップ部の被清掃面との当接幅が広がることを抑制できる。一方、ブレードラバーのミクロな弾性率が低い場合、押付力による変形と、払拭時の被清掃面との摩擦によるリップ部の先端の伸びと、によって、急激に当接幅が広がる場合がある。
The contact width A and the load dependence of the contact width are predominantly affected by deformation in a microscopic region near the contact portion with the member to be cleaned. A high wiping performance is exhibited by suppressing deformation of the tip of the lip portion against the pressing force transmitted from the wiper arm 300 to the base portion 1 and wiping with a narrow contact width.
As means for making the contact width A and the load dependency of the contact width within the above ranges, for example, it is effective to increase the elastic modulus of the blade rubber, particularly the lip portion 3, in the micro region. By increasing the elastic modulus of the micro region of the blade rubber, the deformation of the tip of the lip portion 3 against the contact force can be suppressed. In addition, it is possible to prevent the tip of the lip portion from being stretched due to friction with the surface to be cleaned. As a result, in the wiping step, it is possible to suppress the widening of the contact width of the lip portion with the surface to be cleaned. On the other hand, if the microscopic elastic modulus of the blade rubber is low, the contact width may suddenly widen due to deformation due to pressing force and elongation of the tip of the lip portion due to friction with the surface to be cleaned during wiping.

ミクロ領域の弾性率として、走査型プローブ顕微鏡(以下SPMと称す)によって測定することができる弾性率(以降、単に「弾性率」ともいう)が挙げられる。当接幅Aを適切な範囲に制御するために、ミクロ領域の弾性率を15.0~470.0MPaの範囲とすることが好ましい。このSPMによるミクロ領域の弾性率については後に詳述する。
弾性率を高める手段として、例えば、架橋密度を高めることや補強性のある添加剤を添加することが挙げられる。特に、ブレードラバーの構成材料としてウレタン樹脂を用いた場合、多官能のイソシアネートや多官能のポリオールを用いることや触媒の選択により、後述するハードセグメントとソフトセグメントからなるブロック共重合体の特性を利用し、架橋構造を設計することでミクロ領域の弾性率を上記範囲内に制御することができる。その結果、当接幅を適切な範囲に制御することができ、好ましい。
Elastic moduli in the micro region include elastic moduli (hereinafter also simply referred to as "elastic moduli") that can be measured with a scanning probe microscope (hereinafter referred to as SPM). In order to control the contact width A within an appropriate range, it is preferable to set the elastic modulus of the micro region within the range of 15.0 to 470.0 MPa. The elastic modulus of the micro region by this SPM will be described in detail later.
Means for increasing the elastic modulus include, for example, increasing the crosslink density and adding a reinforcing additive. In particular, when urethane resin is used as a constituent material of blade rubber, the characteristics of block copolymers consisting of hard and soft segments, which will be described later, can be utilized by using polyfunctional isocyanates and polyfunctional polyols and by selecting catalysts. However, by designing the crosslinked structure, the elastic modulus of the micro region can be controlled within the above range. As a result, the contact width can be controlled within an appropriate range, which is preferable.

また、ブレードラバーの長手方向における当接幅を均一にし、当接幅Aの標準偏差を上記範囲することが好ましい。当接幅Aの均一性が高いことにより、漏れなく払拭することが可能となる。不均一であると、その部分を起点にスジ状の漏れが発生する場合がある。特に被清掃部材に対して接着力の強い油膜に代表される汚れを払拭する際に均一性の影響が顕著である。
当接幅の標準偏差に影響する指標として、例えば、上記で示したミクロ領域の弾性率の
変動係数が挙げられる。ミクロ領域の弾性率の変動係数を小さく抑え、ミクロ領域の弾性率の均一性を高めることで当接幅Aの長手方向のばらつきをより小さくすることができる。ミクロ領域の弾性率の変動係数を小さく抑えることで、当接幅Aのムラを抑えることができ、均一な払拭性を発現するために好ましい。具体的には、SPMによる弾性率の変動係数を17.6%以下とすることが好ましい。後に詳述する。
ミクロな弾性率の変動係数を抑えるために、上記で述べた補強性のある添加剤を加える方法などと比較し、分子レベル、ナノスケールで構造制御可能なため、ウレタン樹脂を用いることが好ましい。ウレタン樹脂さらには、後述するハードセグメントとソフトセグメントからなるブロック共重合体の特性を利用し、ハードセグメントを微分散させることで弾性率の均一性を高めることが好ましい。
Further, it is preferable that the contact width in the longitudinal direction of the blade rubber is made uniform, and the standard deviation of the contact width A is within the above range. Due to the high uniformity of the contact width A, it is possible to perform wiping without leakage. If it is non-uniform, streak-like leakage may occur starting from that portion. In particular, the effect of uniformity is remarkable when wiping off dirt represented by an oil film having strong adhesion to the member to be cleaned.
As an index that affects the standard deviation of the contact width, for example, the coefficient of variation of the elastic modulus in the micro region shown above can be cited. By suppressing the coefficient of variation of the elastic modulus in the micro region and improving the uniformity of the elastic modulus in the micro region, the variation in the contact width A in the longitudinal direction can be further reduced. By suppressing the coefficient of variation of the elastic modulus in the micro region to a small value, it is possible to suppress unevenness in the contact width A, which is preferable for exhibiting uniform wiping properties. Specifically, it is preferable to set the coefficient of variation of the elastic modulus by SPM to 17.6% or less. A detailed description will be given later.
In order to suppress the microscopic coefficient of variation of elastic modulus, it is preferable to use urethane resin because it is possible to control the structure at the molecular level and nanoscale compared to the method of adding reinforcing additives as described above. It is preferable to improve the uniformity of the elastic modulus by finely dispersing the hard segments by utilizing the properties of the urethane resin and furthermore the block copolymer composed of the hard segments and the soft segments described below.

また、本開示に係るワイパーブレードは、以下の方法で観察されるリップ部の特定の位置と該ガラス平板とがなす角θが、20°以上80°以下である。
ワイパーアームのアーム押さえ力を18N/mとして、該ワイパーブレードの該リップ部をガラス平板の第1の表面に当接させ、該ワイパーブレードを速度1.65m/秒にて、該ガラス平板の該第1の表面の第1の地点P1から第2の地点P2に向かうA方向に、該ブレードラバーの長手方向と直交する方向に50cm移動させ、停止させる。この状態において、ブレードラバーの長手方向の側面から光学顕微鏡を用いて倍率200倍で観察する。リップ部とガラス平板との接触部(当接部)のうち、P1から最も遠い部位を点Q1とし、点Q1からA方向に向かって200μmの位置においてガラス平板の第1の表面に対して垂線をひき、垂線の、リップ部との最初の交点を点Q2とする。このとき、点Q1と点Q2とを結ぶ直線とガラス平板の第1の表面とがなす角をθとする。
Further, in the wiper blade according to the present disclosure, the angle θ formed between the specific position of the lip portion and the glass flat plate observed by the following method is 20° or more and 80° or less.
The lip portion of the wiper blade is brought into contact with the first surface of the glass flat plate with the arm pressing force of the wiper arm set to 18 N/m, and the wiper blade is moved at a speed of 1.65 m/sec to wipe the glass flat plate. It is moved 50 cm in a direction perpendicular to the longitudinal direction of the blade rubber in the A direction from the first point P1 to the second point P2 on the first surface and stopped. In this state, the longitudinal side of the blade rubber is observed with an optical microscope at a magnification of 200 times. In the contact portion (abutting portion) between the lip portion and the flat glass plate, the farthest portion from P1 is defined as a point Q1, and a line perpendicular to the first surface of the flat glass plate is located 200 μm in the direction A from the point Q1. and let the first intersection of the perpendicular with the lip be point Q2. At this time, let θ be the angle formed by the straight line connecting the points Q1 and Q2 and the first surface of the glass flat plate.

なす角θが上記範囲であることは、リップ部の極先端部分、ミクロ領域においても角度が立った状態で被清掃部材の表面に接触することを示している。そのため、払拭した水や汚れによる被清掃部材に対し垂直方向の力を受けにくくなり、ブレードラバーが持ち上がりにくくなるため、被清掃部材に存在する水などを十分に掻き取ることができる。
なす角θが、20°未満であると、払拭した水による被清掃部材に対し垂直方向の力を受けやすくなるため、ブレードラバーの浮きが発生しやすくなり、払拭のムラや漏れが生じやすくなる。
The fact that the angle .theta. is within the above range means that even the extreme tip portion of the lip portion and the micro region contact the surface of the member to be cleaned with an increased angle. As a result, the member to be cleaned is less likely to be subjected to vertical force due to wiped water and dirt, and the blade rubber is less likely to be lifted, so that water and the like present on the member to be cleaned can be sufficiently scraped off.
If the angle θ is less than 20°, the member to be cleaned is likely to receive a force in the direction perpendicular to the member to be cleaned by the wiped water, so the blade rubber is likely to float, resulting in uneven wiping and leakage. .

一方、なす角θが大きい場合、当接による変形の大きい材質を用いると当接状態が不安定になり、ブレードラバーの長手方向における払拭のムラや、ブレードのビビリが生じてしまう場合があり、従来の材質を用いた場合、なす角θを立てることが困難であった。当接幅と合わせて設計することにより、なす角を上記の範囲に大きくした場合も安定して払拭することが可能となる。ただし、本件の設計においてもなす角θが大きすぎる場合、当接状態が不安定になり、ブレードラバーの長手方向における払拭のムラや、ブレードのビビリが生じてしまう場合がある。 On the other hand, if the angle θ is large, the contact state becomes unstable if a material that deforms greatly due to contact is used, which may cause uneven wiping in the longitudinal direction of the blade rubber and chatter of the blade. When using conventional materials, it was difficult to form an angle θ. By designing together with the contact width, it becomes possible to stably wipe even when the angle formed is increased within the above range. However, if the angle θ formed in this design is too large, the contact state becomes unstable, which may cause uneven wiping in the longitudinal direction of the blade rubber and chattering of the blade.

なす角θは、好ましくは40°以上78°以下であり、より好ましくは60°以上75°以下である。
なす角θに影響を与える因子として、例えば、三つの因子が考えられる。それぞれの因子について、図6(a)、図6(b)、図6(c)に示す。
なす角θに影響する因子の一番目が、ブレードラバーのマクロな傾きに影響するネック部分の変形である(図6(a))。ワイパーブレードは、ネック部が変形し、傾いた状態で被清掃部材に接触する。ネック部が変形し、肩部が基部に接触することで当接姿勢の変化を抑え、安定して払拭することができる。ブレードラバーのマクロな傾きを制御する手段として、ネック部の長さ、肩部の長さを調整することがあげられる。
The angle θ formed is preferably 40° or more and 78° or less, more preferably 60° or more and 75° or less.
For example, three factors are conceivable as factors that affect the formed angle θ. Each factor is shown in FIG. 6(a), FIG. 6(b), and FIG. 6(c).
The first factor affecting the formed angle θ is the deformation of the neck portion, which affects the macroscopic inclination of the blade rubber (Fig. 6(a)). The wiper blade contacts the member to be cleaned in a state where the neck portion is deformed and tilted. The neck portion deforms and the shoulder portion comes into contact with the base portion, thereby suppressing a change in contact posture and stably wiping. As a means of controlling the macroscopic inclination of the blade rubber, adjusting the length of the neck portion and the length of the shoulder portion can be mentioned.

図6(d)に各部の長さの概要を示す。図6(d)において、NLは、ブレードラバー
の長手方向に垂直な断面におけるネック部の長さであり、基部とリップ部との距離に相当しうる。NTはネック部の厚みであり、すなわち、ブレードラバーのリップ先端を垂直に被清掃部材(ウインドシールド)に当接させたときに、ブレードラバーの長手方向に垂直で被清掃部材の表面に沿った方向(以下「幅方向」ともいう)のネック部の長さである。
SLは、ブレードラバーの長手方向に垂直な断面における肩部先端からネック部までの長さであり、すなわち、ブレードラバーのリップ先端を垂直に被清掃部材(ウインドシールド)に当接させたときに、ブレードラバーの長手方向に垂直で被清掃部材の表面に沿った方向(幅方向)の肩部からネック部までの長さである。
また、LLはリップ部の長さであり、すなわち、ブレードラバーの長手方向に垂直で被清掃部材(ウインドシールド)にも垂直な方向(以下、「高さ方向」ともいう)のリップ部の長さである。LMはリップ先端部の長さである。LTはリップ部の先端の先端面7における厚みであり、すなわち、ブレードラバーの幅方向のリップ部の先端の長さである。図3に示すブレードラバーにおいては、LTは、テーパー部4に連なる板状の部分の幅に相当し、LMはテーパー部4に連なる板状の部分の(高さ方向における)長さに相当する。
FIG. 6(d) shows an outline of the length of each part. In FIG. 6(d), NL is the length of the neck portion in the cross section perpendicular to the longitudinal direction of the blade rubber, and can correspond to the distance between the base portion and the lip portion. NT is the thickness of the neck portion, that is, when the lip tip of the blade rubber is vertically brought into contact with the member to be cleaned (windshield), the length of the blade rubber perpendicular to the longitudinal direction of the member to be cleaned It is the length of the neck portion in the direction (hereinafter also referred to as “width direction”).
SL is the length from the tip of the shoulder portion to the neck portion in a cross section perpendicular to the longitudinal direction of the blade rubber. , the length from the shoulder to the neck in the direction (width direction) perpendicular to the longitudinal direction of the blade rubber and along the surface of the member to be cleaned.
LL is the length of the lip portion, that is, the length of the lip portion in a direction perpendicular to the longitudinal direction of the blade rubber and also perpendicular to the member to be cleaned (windshield) (hereinafter also referred to as “height direction”). It is. LM is the length of the lip tip. LT is the thickness of the tip of the lip portion at the tip surface 7, that is, the length of the tip of the lip portion in the width direction of the blade rubber. In the blade rubber shown in FIG. 3, LT corresponds to the width of the plate-like portion connecting to the taper portion 4, and LM corresponds to the length (in the height direction) of the plate-like portion connecting to the taper portion 4. .

具体的には、ネック部の長さに対する肩部の長さの比を大きくすることが好ましい。具体的にはネック部の長さを短く、肩部の長さを長くすることで、ブレードラバーのマクロな傾きを大きくすることができる。ただし、ネック部の長さが短い場合、上記マクロな傾き方向に変形できず、狙いのマクロな傾きを達成できない場合があるため、ネック部の長さNLは200μm~1500μmであることが好ましい。より好ましくは250μm~1200μmである。 Specifically, it is preferable to increase the ratio of the length of the shoulder portion to the length of the neck portion. Specifically, by shortening the length of the neck portion and lengthening the length of the shoulder portion, it is possible to increase the macroscopic inclination of the blade rubber. However, if the length of the neck portion is short, it may not be possible to deform in the direction of the macroscopic inclination and the desired macroscopic inclination may not be achieved. It is more preferably 250 μm to 1200 μm.

マクロな傾き角を大きくすることが、ミクロな領域でのなす角θを大きくする方向に作用する。なす角θを上記範囲とするために、ブレードラバーの長手方向に垂直な断面におけるネック部の長さNLに対する肩部の長さSLの比(SL/NL)を0.37~9.00の範囲とすることが好ましい。より好ましくは1.00~6.00であり、さらに好ましくは2.00~5.00であり、さらにより好ましくは2.50~4.00である。 Increasing the macroscopic tilt angle acts to increase the angle θ formed in the microscopic region. In order to make the angle θ within the above range, the ratio (SL/NL) of the length SL of the shoulder portion to the length NL of the neck portion in the cross section perpendicular to the longitudinal direction of the blade rubber is 0.37 to 9.00. A range is preferred. It is more preferably 1.00 to 6.00, still more preferably 2.00 to 5.00, still more preferably 2.50 to 4.00.

なす角θに影響する因子の二番目が、ネック部からリップ部先端に至るブレードラバーの変形である(図6(b))。上記で説明したネック部の変形による傾きに加え、基部から加わる押付力を受け、リップ部が撓む。リップ部3の撓みにより、先端のなす角θは小さくなる。特に長手方向の長さが小さいネック部の伸びとリップ部の撓み(変形)の影響が大きい。リップ部の撓みを制御する手段として、例えば、変形の大きいネック部とリップ部の形状設計による手段や材料として引張強度を高めた材料設計とする手段が挙げられる。 The second factor affecting the formed angle θ is the deformation of the blade rubber from the neck portion to the tip of the lip portion (FIG. 6(b)). In addition to the inclination caused by the deformation of the neck portion described above, the lip portion is bent by receiving a pressing force applied from the base portion. The deflection of the lip portion 3 reduces the angle θ formed by the tip. In particular, the effect of elongation of the neck portion having a small length in the longitudinal direction and deflection (deformation) of the lip portion is large. Means for controlling the deflection of the lip portion include, for example, means by designing the shape of the neck portion and the lip portion, which deform greatly, and means by designing a material with increased tensile strength.

形状による手段について具体的には、ネック部とリップ部の厚みを厚くすることが挙げられる。ネック部の厚みNTを厚くすることで、押付力によりブレードラバー先端方向に伸ばされる変形を抑えることができ、上記マクロな傾き角を制御しやすくなる。ただし、ネック部の厚みNTが厚い場合、上記マクロな傾き方向に変形できず、狙いのマクロな傾きを達成できない場合がある。そのため、ネック部の厚みNTは500μm以下であることが好ましい。より好ましくは150μm~500μmであり、さらに好ましくは180μm~400μmであり、さらにより好ましくは200μm~350μmである。 A specific example of the shape means is to increase the thickness of the neck portion and the lip portion. By increasing the thickness NT of the neck portion, it is possible to suppress the deformation that is extended toward the tip of the blade rubber due to the pressing force, making it easier to control the macroscopic tilt angle. However, if the thickness NT of the neck portion is large, it may not be possible to deform in the direction of the macro tilt, and the desired macro tilt may not be achieved. Therefore, the thickness NT of the neck portion is preferably 500 μm or less. It is more preferably 150 μm to 500 μm, still more preferably 180 μm to 400 μm, still more preferably 200 μm to 350 μm.

また、リップ部の厚みを厚く、長さを短くすることで、リップ部の撓み変形を抑えることができる。その結果として、なす角θ、及び後述する、なす角θ´が小さくなりすぎることを防止し得る。リップ部の先端の厚みLTは、具体的には、例えば、200μm~1000μmが好ましく、より好ましくは400μm~750μm、更に好ましくは、500μm~650μmである。厚みLTを上記範囲内とすることで、リップ部が過度に剛直
になり、ワイパーブレード長手方向の被清掃部材への追従性が低下することを防止し得る。
Further, by increasing the thickness of the lip portion and shortening the length of the lip portion, bending deformation of the lip portion can be suppressed. As a result, it is possible to prevent the formed angle θ and the formed angle θ′, which will be described later, from becoming too small. Specifically, the thickness LT of the tip of the lip portion is preferably, for example, 200 μm to 1000 μm, more preferably 400 μm to 750 μm, still more preferably 500 μm to 650 μm. By setting the thickness LT within the above range, it is possible to prevent the lip portion from becoming excessively rigid and lowering the followability of the wiper blade to the member to be cleaned in the longitudinal direction.

また、リップ部の長さLLは、好ましくは3000μm~5000μmであり、より好ましくは3600μm~4500μmである。リップ先端部の長さLMは、好ましくは800μm~2000μmであり、より好ましくは1000μm~1600μmである Also, the length LL of the lip portion is preferably 3000 μm to 5000 μm, more preferably 3600 μm to 4500 μm. The lip tip length LM is preferably 800 μm to 2000 μm, more preferably 1000 μm to 1600 μm

材料による手段について引張強度を高めることが好ましい。具体的には、引張試験機によるリップ部の先端部分の50%伸長時の引張応力(以下50%モジュラスと称す)が、1.8MPa~20.0MPaであることが好ましい。より好ましくは2.0MPa~15.0MPaであり、さらに好ましくは3.0MPa~14.0MPaであり、さらにより好ましくは3.5MPa~13.5MPaである。
引張強度を前記範囲とするためには、例えば、架橋密度を高めることや補強性のある添加剤を添加することがあげられる。ただし、上記で示した弾性率範囲と引張強度の両立は困難である。達成のためには、ウレタン樹脂を用いることが好ましく、多官能のイソシアネートや多官能のポリオールを用いることや触媒の選択により、架橋状態を制御することで上述したように弾性率を制御するとともに引張強度を高めることができる。具体的には後述するようにハードセグメントとソフトセグメントからなるブロック共重合体の特性を利用する方法が挙げられる。
It is preferred to increase the tensile strength for material means. Specifically, it is preferable that the tensile stress (hereinafter referred to as 50% modulus) when the tip portion of the lip portion is stretched by 50% by a tensile tester is 1.8 MPa to 20.0 MPa. More preferably 2.0 MPa to 15.0 MPa, still more preferably 3.0 MPa to 14.0 MPa, still more preferably 3.5 MPa to 13.5 MPa.
In order to make the tensile strength within the above range, for example, increasing the crosslink density or adding a reinforcing additive can be mentioned. However, it is difficult to achieve both the elastic modulus range and the tensile strength shown above. In order to achieve this, it is preferable to use a urethane resin, and by using a polyfunctional isocyanate or a polyfunctional polyol and by selecting a catalyst, the elastic modulus can be controlled as described above by controlling the cross-linking state and the tensile strength. Strength can be increased. Specifically, as will be described later, there is a method that utilizes the properties of block copolymers composed of hard segments and soft segments.

なす角θに影響する因子の三番目が、リップ部先端の被清掃部材と接触するミクロ領域の変形である。押付力による被清掃部材との接触部の変形及びリップ部と被清掃面との摩擦力によるリップ部の伸長は、なす角θの値に特に大きな影響を与える。そのため、なす角θを上記範囲とするためには、リップ部の極先端部分のミクロ領域における変形、伸長を抑えることが必要である。 The third factor affecting the formed angle θ is the deformation of the micro area at the tip of the lip portion that contacts the member to be cleaned. The deformation of the contact portion with the member to be cleaned due to the pressing force and the elongation of the lip portion due to the frictional force between the lip portion and the surface to be cleaned have a particularly large effect on the value of the formed angle θ. Therefore, in order to keep the formed angle θ within the above range, it is necessary to suppress deformation and elongation in the micro region of the extreme tip portion of the lip portion.

上記したように、ワイパーブレードのリップ部極先端のミクロ領域が、払拭性に対し大きな影響を与えることから、上記で挙げた三つの因子に対して、三番目のミクロ領域の変形を制御することが重要となる。
ミクロ領域の変形、伸長を抑える手段としては、先に述べた通り、ミクロな領域における弾性率を高めることが有効である。ミクロ領域の弾性率を高めることで、当接力に対する変形、摩擦力による伸長が抑制され、なす角θが小さくなりすぎることを防止し得る。具体的には、ブレードラバー、特には、リップ部の先端の弾性率として、上述したSPMによる弾性率を15.0MPa以上470.0MPa以下の範囲とすることが好ましい。
As described above, the microregion at the tip of the lip portion of the wiper blade has a great influence on the wiping performance. is important.
As described above, it is effective to increase the elastic modulus in the micro region as means for suppressing deformation and elongation in the micro region. By increasing the elastic modulus in the micro region, deformation due to contact force and elongation due to frictional force are suppressed, and it is possible to prevent the formed angle θ from becoming too small. Specifically, it is preferable that the elastic modulus of the blade rubber, particularly the tip of the lip portion, is in the range of 15.0 MPa or more and 470.0 MPa or less according to the aforementioned SPM.

弾性率を高める手段として、例えば、架橋密度を高めることや補強性のある添加剤を添加することがあげられる。特に、ウレタン樹脂を用いた場合、多官能のイソシアネートや多官能のポリオールを用いることや触媒の選択により、架橋状態を制御することで当接幅Aを制御することができ、好ましい。後述するハードセグメントとソフトセグメントからなるブロック共重合体の特性を利用し、弾性率を高める方法が挙げられる。 Means for increasing the elastic modulus include, for example, increasing the crosslink density and adding reinforcing additives. In particular, when a urethane resin is used, the contact width A can be controlled by controlling the crosslinking state by using polyfunctional isocyanate or polyfunctional polyol or by selecting a catalyst, which is preferable. A method of increasing the elastic modulus by utilizing the properties of a block copolymer composed of a hard segment and a soft segment, which will be described later, can be mentioned.

また、以下の条件に変更して測定されるなす角θ´は、好ましくは20°~85°である。より好ましくは30°~80°、さらにより好ましくは40°~78°である。
すなわち、ワイパーアームのアーム押さえ力を18N/mとして、ワイパーブレードのリップ部をガラス平板の第1の表面に当接させる。そして、ワイパーブレードを速度0.60m/秒にて、ガラス平板の第1の表面の第1の地点P1から第2の地点P2に向かうA方向に、ブレードラバーの長手方向と直交する方向に50cm移動させ、停止させる。
上記条件で移動させ、停止させたワイパーブレードのブレードラバーを、当該ブレードラバーの長手方向の側面から光学顕微鏡を用いて倍率200倍で観察する。リップ部とガラス平板との接触部のうち、P1から最も遠い部位を点Q1とし、点Q1からA方向に向
かって200μmの位置においてガラス平板の第1の表面に対して垂線をひき、垂線の、リップ部との最初の交点を点Q2とする。このとき、点Q1と点Q2とを結ぶ直線とガラス平板の第1の表面とがなす角をなす角をθ´とする。
Further, the angle θ′ formed by changing the conditions below is preferably 20° to 85°. More preferably 30° to 80°, still more preferably 40° to 78°.
That is, the arm pressing force of the wiper arm is set to 18 N/m, and the lip portion of the wiper blade is brought into contact with the first surface of the glass flat plate. Then, the wiper blade is moved at a speed of 0.60 m / sec in the A direction from the first point P1 to the second point P2 on the first surface of the glass flat plate, 50 cm in the direction orthogonal to the longitudinal direction of the blade rubber. move and stop.
The blade rubber of the wiper blade moved and stopped under the above conditions is observed from the longitudinal side of the blade rubber at a magnification of 200 using an optical microscope. In the contact portion between the lip portion and the flat glass plate, the farthest portion from P1 is defined as a point Q1, and a perpendicular line is drawn to the first surface of the flat glass plate at a position 200 μm from the point Q1 in the direction A. , the first intersection with the lip portion is defined as point Q2. At this time, the angle formed by the straight line connecting the points Q1 and Q2 and the first surface of the glass flat plate is defined as θ'.

なす角θ´は、なす角θに対して払拭速度が遅い場合の角度であるため、値が大きい場合も比較的当接状態が不安定になりにくい。
また、上記なす角θ及びなす角θ´から、なす角θの払拭速度依存性を以下の式(B)により算出する。
なす角θの払拭速度依存性(%)=
(なす角θ´-なす角θ)/なす角θ×100 ・・・(B)
Since the formed angle θ' is an angle when the wiping speed is slower than the formed angle θ, the contact state is relatively less likely to become unstable even when the value is large.
Further, the wiping speed dependence of the formed angle θ is calculated from the formed angle θ and the formed angle θ′ by the following formula (B).
Wiping speed dependence (%) =
(Angle θ′−Angle θ)/Angle θ×100 (B)

なす角θの払拭速度依存性は、0.2%~18.5%であることが好ましく、0.2%~15.0%であることがより好ましく、0.2%~10.0%であることがさらに好ましく、0.2%~5.0%であることがさらにより好ましい。ワイパーブレードは円運動で払拭するものが多く、その場合、長手の払拭速度が異なる場合が多い。なす角θの払拭速度依存性を上記範囲に抑えることにより、ワイパーブレード長手全域において払拭性能を安定に発揮することができる。
なす角θの払拭速度依存性は、マクロな変形によるなす角θの変化を50%モジュラスで、ミクロな変形によるなす角θの変化をミクロ領域の弾性率により制御することができる。
The wiping speed dependence of the formed angle θ is preferably 0.2% to 18.5%, more preferably 0.2% to 15.0%, and 0.2% to 10.0%. and more preferably 0.2% to 5.0%. Many wiper blades wipe in a circular motion, and in that case, the wiping speed in the longitudinal direction is often different. By suppressing the wiping speed dependency of the formed angle θ within the above range, wiping performance can be stably exhibited over the entire length of the wiper blade.
The dependence of the angle .theta. on the wiping speed can be controlled by the 50% modulus of the change in the angle .theta. due to macroscopic deformation, and by the elastic modulus in the micro region for the change in the angle .theta.

特許文献1に係るワイパーブレードのような従来のワイパーブレードを用い、上記で示した形状に代表されるような手段によりマクロ的にリップ部と被清掃部材とのなす角を大きくしたとしても、本開示におけるよりミクロでの観察条件においては、リップ部の極先端部分は、ガラス面との摩擦によって湾曲し、当接角が小さくなっていることがわかった。具体的には、従来のワイパーブレードを用いて上記なす角θを測定したところ、なす角θは15°~18°程度であった。また、従来のワイパーブレードのリップ部では、ゴムの伸びにより当接幅が大きくなっている。そのため、従来のワイパーブレードは、形状や設定を変更した場合でも本件の当接幅Aとなす角θを両立することは困難である。そのため、ブレードラバーの平均当接圧が低く、水による被清掃部材に対し垂直方向の力を受けやすくなるため、ブレードラバーの浮きが発生しやすい。したがって、従来のワイパーブレードでは、水膜をごく薄く塗り広げてウインドシールドの視界を確保するという思想となる。 Even if a conventional wiper blade such as the wiper blade disclosed in Patent Document 1 is used and the angle formed by the lip portion and the member to be cleaned is macroscopically increased by means represented by the shape shown above, this Under the microscopic observation conditions disclosed, it was found that the extreme tip portion of the lip portion was curved due to friction with the glass surface, and the contact angle was small. Specifically, when the angle θ to be formed was measured using a conventional wiper blade, the angle θ to be formed was about 15° to 18°. In addition, at the lip portion of the conventional wiper blade, the contact width is increased due to the elongation of the rubber. Therefore, it is difficult for the conventional wiper blade to satisfy both the contact width A and the angle .theta. even if the shape and settings are changed. Therefore, the average contact pressure of the blade rubber is low, and the member to be cleaned is likely to receive a force in the direction perpendicular to the member to be cleaned by water. Therefore, with conventional wiper blades, the idea is to spread a very thin film of water to secure the visibility of the windshield.

一方、上記当接幅A及びなす角θを満足することは、ブレードラバーの平均当接圧が高く、かつ、リップ部の極先端部分が立った状態で被清掃部材に当接していることを示している。したがって、上記当接幅A及びなす角θを満足するワイパー装置では、水膜をウインドシールドにほとんど残さずに掻き取ることできる。したがって、従来よりもさらに高い払拭性を発揮することが可能となる。 On the other hand, satisfying the contact width A and the angle .theta. means that the average contact pressure of the blade rubber is high, and that the extreme tip portion of the lip portion is in contact with the member to be cleaned in a standing state. showing. Therefore, the wiper device that satisfies the contact width A and the angle .theta. can wipe off the water film on the windshield with almost no residue. Therefore, it is possible to exhibit higher wiping performance than ever before.

車両などのウインドシールドには、大気中に浮遊する油性の汚染物質により油膜が形成されることがある。このような汚染物質はワイパーの払拭動作によりウインドシールド全体に広げられ、広範囲にわたって油膜が形成される場合がある。油膜は水になじみにくいため、従来のワイパーブレードのように、水膜をごく薄く制御する思想においては、水膜が水滴化し、ギラつきなど光の乱反射を起こし視界を阻害してしまう。これに対し、上記当接幅A及びなす角θを満足する本開示のワイパー装置は、水膜をほとんど残さずに掻き取る、さらには、水膜だけでなく油膜をも掻き取ることが可能となる。したがって、従来よりもさらに高い払拭性を発揮し、ウインドシールドの状態によらず、よりクリアな視界を確保しうる。 Windshields of vehicles and the like sometimes form an oil film due to oily contaminants floating in the atmosphere. Such contaminants are spread across the windshield by the wiping action of the wipers and may form an oil film over a wide area. Since the oil film does not easily absorb water, the idea of controlling the water film to be extremely thin, as in conventional wiper blades, causes the water film to turn into water droplets, causing glare and other diffuse reflections of light that impede visibility. On the other hand, the wiper device of the present disclosure, which satisfies the contact width A and the angle θ, can wipe off the water film without leaving any residue, and can wipe off not only the water film but also the oil film. Become. Therefore, it exhibits a higher wiping performance than the conventional one, and a clearer field of view can be secured regardless of the state of the windshield.

次に、ワイパー装置におけるブレードラバーの好ましい態様について記載する。図7は、第1のエッジ8近傍の拡大図である。
図7に示すように、被清掃部材に当接するブレードラバー先端において、第1の側面5に、第1のエッジ8と平行に、第1のエッジ8からの距離が10μmである第1の線分11を引いたと仮定する。該第1の線分の長さをL1とする。
図8は、第1の線分近傍の拡大図である。該図8に示すように、該第1の線分11上の一端側から(1/8)L1、(1/2)L1、(7/8)L1の点を各々、P0、P1、P2とする。
このとき、第1の側面5の、該第1の線分11上のP0、P1及びP2の各々の点を重心とする、一辺が該第1の線分に平行な長さ70μmの辺であり、かつ、一辺が該第1の線分に垂直に交わる長さ10μmの辺である3つの長方形の観察領域12を設定する。
Next, preferred embodiments of the blade rubber in the wiper device will be described. FIG. 7 is an enlarged view of the vicinity of the first edge 8. FIG.
As shown in FIG. 7, at the tip of the blade rubber that abuts the member to be cleaned, a first line is formed on the first side surface 5 in parallel with the first edge 8 and the distance from the first edge 8 is 10 μm. Suppose you subtract minutes eleven. Let L1 be the length of the first line segment.
FIG. 8 is an enlarged view of the vicinity of the first line segment. As shown in FIG. 8, points (1/8) L1, (1/2) L1, and (7/8) L1 from one end side on the first line segment 11 are P0, P1, and P2, respectively. and
At this time, a side of the first side surface 5 with a length of 70 μm and parallel to the first line segment 11 with each point P0, P1 and P2 on the first line segment 11 as the center of gravity. Three rectangular observation areas 12 each having a length of 10 μm and one side perpendicularly intersecting the first line segment are set.

図9にP0を重心とする観察領域12近傍の拡大図を示す。
図9のP0と同様に、P1、P2も含め、3つの観察領域の各々について0.1μmピッチ(間隔)で各70000点の該第1の側面の弾性率を、走査型プローブ顕微鏡(以下SPMと称す)を用いて測定する。
上記の当接幅A及びなす角θを適切に制御する観点から、得られる計210000個の弾性率の値の平均値が15.0MPa~470.0MPaであることが好ましい。また、前述の払拭均一性の観点から、弾性率の変動係数は17.6%以下であることが好ましい。
FIG. 9 shows an enlarged view of the vicinity of the observation area 12 with P0 as the center of gravity.
Similar to P0 in FIG. 9, the elastic modulus of each 70000 points of the first side at 0.1 μm pitch (interval) for each of the three observation regions including P1 and P2 was measured with a scanning probe microscope (hereinafter referred to as SPM (referred to as ).
From the viewpoint of appropriately controlling the contact width A and the angle θ, the average value of the obtained 210000 elastic modulus values is preferably 15.0 MPa to 470.0 MPa. Moreover, from the viewpoint of the wiping uniformity described above, the coefficient of variation of the elastic modulus is preferably 17.6% or less.

また、該第1の側面における測定と同様に、被清掃部材に当接するブレードラバー先端において、第2の側面6に、第2のエッジ9と平行に、該第2のエッジ9からの距離が10μmである第2の線分を引いたと仮定する。該第2の線分の長さをL2とする。
該第2の線分上の一端側から(1/8)L2、(1/2)L2、(7/8)L2の点を各々、P3、P4、P5とする。
このとき、第2の側面6の、該第2の線分上のP3、P4、及びP5の各々の点を重心とする、一辺が該第2の線分に平行な長さ70μmの辺であり、かつ、一辺が該第2の線分に垂直に交わる長さ10μmの辺である3つの長方形の観察領域を設定する。
この3つの観察領域の各々について0.1μmピッチ(間隔)で各70000点の該第2の側面の弾性率を、SPMを用いて測定する。
上記と同様の理由で得られる計210000個の弾性率の値の平均値が15.0MPa以上470.0MPa以下であることが好ましい。また、弾性率の変動係数は17.6%以下であることが好ましい。
Also, in the same manner as the measurement on the first side, at the tip of the blade rubber in contact with the member to be cleaned, on the second side 6, parallel to the second edge 9, the distance from the second edge 9 is Suppose you have drawn a second line segment that is 10 μm. Let L2 be the length of the second line segment.
The points of (1/8)L2, (1/2)L2, and (7/8)L2 from one end side on the second line segment are P3, P4, and P5, respectively.
At this time, on the second side surface 6, with each point P3, P4, and P5 on the second line segment as the center of gravity, one side is parallel to the second line segment and has a length of 70 μm. and one side of which has a length of 10 μm and perpendicularly intersects the second line segment.
The elastic modulus of the second side is measured at 70,000 points at a pitch of 0.1 μm for each of the three observation areas using SPM.
For the same reason as above, the average value of the 210,000 elastic modulus values obtained is preferably 15.0 MPa or more and 470.0 MPa or less. Also, the coefficient of variation of the elastic modulus is preferably 17.6% or less.

清掃時の往復運動するワイパーブレードの挙動を詳細に観察した。その結果、清掃時の被清掃部材に対するワイパーブレードは、第1の側面及び第2の側面において、第1のエッジ及び第2のエッジから各々10μm程度の位置を含む領域で、被清掃部材と接触していることが確認できた。そして、本開示に係るワイパー装置は、上記した被清掃部材との接触部を構成し得る領域の長手方向における弾性率の平均値とその変動係数が所定の規定を満たすことで、払拭性能をより向上させることができる。また、当該規定を満たすことで、上記当接幅A及びなす角θが均一となり、安定して当接幅A及びなす角θを満足しやすくなる。 The behavior of reciprocating wiper blades during cleaning was observed in detail. As a result, the wiper blade against the member to be cleaned during cleaning contacts the member to be cleaned in areas including positions of about 10 μm from the first edge and the second edge on the first side and the second side. I was able to confirm that. In the wiper device according to the present disclosure, the average value of the elastic modulus in the longitudinal direction of the region that can constitute the contact portion with the member to be cleaned and the coefficient of variation thereof in the longitudinal direction satisfy predetermined regulations, so that the wiping performance is further improved. can be improved. Further, by satisfying the regulation, the contact width A and the angle θ formed are uniform, and it becomes easier to stably satisfy the contact width A and the angle θ formed.

本開示の一態様に係るワイパー装置は、被清掃部材と当接する接触部を構成し得る、第1の側面及び第2の側面の、第1のエッジ及び第2のエッジから各々10μm位置およびその近傍の領域の長手方向の所定の箇所で測定される弾性率の値の平均値が、15.0MPa以上470.0MPa以下であることが好ましい。また、第1の側面及び第2の側面の弾性率の測定において、該弾性率の変動係数は17.6%以下であることが好ましい。
第1の側面及び第2の側面の弾性率の測定において、該弾性率の値の平均値は、32.
0MPa以上62.0MPa以下であることがより好ましく、42.0MPa以上61.0MPa以下であることがさらに好ましく、45.0MPa以上60.0MPa以下であることがさらにより好ましい。第1の側面及び第2の側面の弾性率の測定において、該弾性率の変動係数は、6.0%以下であることがより好ましく、5.0%以下であることがさらに好ましく、4.0%以下であることがさらにより好ましい。該弾性率の変動係数は、小さいほど好ましいため、下限は特に制限されないが、例えば、好ましくは0.1%以上である。
A wiper device according to an aspect of the present disclosure is a position of 10 μm from each of the first edge and the second edge of the first side surface and the second side surface, which can constitute a contact portion that contacts the member to be cleaned, and the position thereof. It is preferable that the average value of the elastic modulus values measured at predetermined points in the longitudinal direction of the neighboring region is 15.0 MPa or more and 470.0 MPa or less. Moreover, in measuring the elastic moduli of the first side and the second side, the coefficient of variation of the elastic moduli is preferably 17.6% or less.
In measuring the elastic modulus of the first side and the second side, the average of the elastic modulus values is 32.
It is more preferably 0 MPa or more and 62.0 MPa or less, further preferably 42.0 MPa or more and 61.0 MPa or less, and even more preferably 45.0 MPa or more and 60.0 MPa or less. 4. In measuring the elastic moduli of the first side and the second side, the coefficient of variation of the elastic moduli is more preferably 6.0% or less, more preferably 5.0% or less. Even more preferably, it is 0% or less. Since the coefficient of variation of the elastic modulus is preferably as small as possible, the lower limit is not particularly limited, but is preferably 0.1% or more, for example.

弾性率の値の平均値が上記範囲である場合、清掃時に被清掃部材に対してワイパーブレードの長手方向に亘って、なす角θを立てた状態で側面の一部を狭い当接幅で接触させることができる。すなわち、接触部分を線接触に近づけることが可能となり、押圧力が接触部分に集中し、被清掃部材から付着物を単に拭き取る、または塗り広げるのではなくて、付着物を確実に掻き取ることができる。その結果として、従来のワイパーブレードと比較して、極めて高い払拭性を発揮し得る。
また、弾性率の変動係数が17.6%以下であることは、側面の該接触部分の弾性率がその長手方向に、より均一又はより均質であることを意味する。そのため、ワイパーブレードを、その長手方向に亘って狭い当接幅で被清掃部材に安定して接触させることができる。その結果、清掃時にワイパーブレードの長手方向で清掃面がうねり乱れることがなく、ビビリなどの発生が抑制され、被清掃部材との均一な追従性と当接性を発揮することができる。その結果、被清掃部材に付着する粉塵や油膜などの付着力の強い汚れに対して、ワイパーブレードの長手方向の全域において、拭き取り残しや拭き取りムラのないより優れた払拭性を安定的に発揮することができる。
When the average value of the elastic modulus is within the above range, the side surface of the wiper blade comes into contact with the member to be cleaned in a narrow contact width while forming an angle θ in the longitudinal direction of the wiper blade during cleaning. can be made In other words, the contact portion can be brought closer to line contact, the pressing force is concentrated on the contact portion, and the adhered matter can be reliably scraped off from the member to be cleaned, rather than simply being wiped off or spread. can. As a result, extremely high wiping performance can be achieved compared to conventional wiper blades.
Further, a coefficient of variation of elastic modulus of 17.6% or less means that the elastic modulus of the contact portion of the side surface is more uniform or homogeneous in its longitudinal direction. Therefore, the wiper blade can be stably brought into contact with the member to be cleaned with a narrow contact width over the longitudinal direction. As a result, the surface to be cleaned is not undulated and disturbed in the longitudinal direction of the wiper blade during cleaning, the occurrence of chattering is suppressed, and uniform followability and abutment with the member to be cleaned can be exhibited. As a result, the wiper blade stably exhibits excellent wiping performance without wiping residue or wiping unevenness over the entire length of the wiper blade against highly adhesive dirt such as dust and oil films adhering to the member to be cleaned. be able to.

弾性率の変動係数は、下記式(1)により算出される。
式(1):変動係数(%)=標準偏差/弾性率の値の平均値×100
The coefficient of variation of elastic modulus is calculated by the following formula (1).
Formula (1): coefficient of variation (%) = standard deviation / average value of elastic modulus values × 100

図12に、ワイパーブレードの被清掃部材との接触部近傍の模式図を示す。
図12(a)に示すように上記当接幅A及びなす角θ、並びに弾性率の平均値及びその変動係数を満たさない従来のワイパーブレードは、被清掃部材に対し、側面が腹当て状態(面接触)で当接していることが確認される。一方、図12(b)に示すように本開示のワイパー装置におけるブレードラバーは、被清掃部材に対し、側面が線接触に近い状態でエッジ当接している。この当接状態の違いが、顕著な払拭性能の違いにつながったものと考えられる。
FIG. 12 shows a schematic diagram of the vicinity of the contact portion of the wiper blade with the member to be cleaned.
As shown in FIG. 12(a), a conventional wiper blade that does not satisfy the contact width A, the angle θ, the average elastic modulus, and the coefficient of variation of the elastic modulus is in a state where the side surface is in contact with the member to be cleaned ( It is confirmed that they are in contact with each other by surface contact). On the other hand, as shown in FIG. 12(b), the blade rubber in the wiper device of the present disclosure makes edge contact with the member to be cleaned in a state where the side surface is in close line contact. This difference in contact state is considered to have led to the remarkable difference in wiping performance.

テーパー部を含むリップ部を構成する材料としては、上記当接幅A及びなす角θを上記の規定に適合させることができる限り、特に限定されない。具体的には、例えば、リップ部は、機械特性に優れ、上記当接幅A及びなす角θを達成させやすいポリウレタンを含有することが好ましい。また、ポリウレタンは、上記弾性率の平均値及び変動係数に係る規定も達成させやすい。 The material forming the lip portion including the tapered portion is not particularly limited as long as the contact width A and the angle θ formed can meet the above regulations. Specifically, for example, the lip portion preferably contains polyurethane that has excellent mechanical properties and easily achieves the contact width A and the angle θ. Polyurethane also facilitates achieving the above-mentioned requirements relating to the average elastic modulus and the coefficient of variation.

また、該ポリウレタンは、ポリウレタンエラストマーであることが好ましい。ポリウレタンエラストマーは、主にポリオール、鎖延長剤、ポリイソシアネート、触媒、その他添加剤などの原料から得られる。該ポリウレタンエラストマーは、ハードセグメントとソフトセグメントからなるブロック共重合体である。ハードセグメントは、一般的に、ポリイソシアネートと短鎖ジオールを含む鎖延長剤から構成される。一方、ソフトセグメントは、一般的に、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオールなどの長鎖ポリオールとポリイソシアナートから構成される。 Also, the polyurethane is preferably a polyurethane elastomer. Polyurethane elastomers are obtained mainly from raw materials such as polyols, chain extenders, polyisocyanates, catalysts and other additives. The polyurethane elastomer is a block copolymer composed of hard segments and soft segments. The hard segment is generally composed of chain extenders including polyisocyanates and short chain diols. On the other hand, the soft segment is generally composed of long-chain polyols such as polyester polyols, polyether polyols and polycarbonate polyols, and polyisocyanates.

前記した当接幅A及びなす角θ、さらには弾性率の値の平均値及び該弾性率の変動係数に係る規定を達成するために、例えば、上記ハードセグメントとソフトセグメントからな
るブロック共重合体の特性を利用することが挙げられる。
従来のポリウレタンは、ウレタン結合が相互作用により凝集した部分が更に凝集したハードセグメントを有するものである。ウレタン結合部分の凝集部分が、更に凝集した比較的大きなハードセグメントを有する。そのため、このようなポリウレタンを用いて作製されるワイパーブレードは、本発明者らの検討によれば、本開示に係る上記当接幅A及びなす角θ、さらには弾性率の値の平均値及び該弾性率の変動係数の少なくとも一方を満たすようなものではなかった。すなわち、従来のポリウレタンは、比較的大きなハードセグメントを有するため、本開示に係る、走査型プローブ顕微鏡を用いて210000箇所の弾性率の変動係数17.6%以下とすることは困難である。
ここで、ハードセグメント自体の量が少ないポリウレタンの場合、ウレタン結合の凝集部分の更なる凝集が抑制され、当該変動係数を小さく抑え得るとも思われる。しかしながら、その場合、弾性率の値の平均値を15.0MPa以上とすることは困難であり、上記当接幅A及びなす角θを満たしにくくなる。
In order to achieve the above-described contact width A and angle θ, as well as the average value of the elastic modulus and the coefficient of variation of the elastic modulus, for example, a block copolymer composed of the hard segment and the soft segment It is possible to use the characteristics of
Conventional polyurethanes have hard segments in which portions where urethane bonds have aggregated due to interactions are further aggregated. The agglomerated portion of the urethane linkage portion has relatively large hard segments that are further agglomerated. Therefore, according to the study of the present inventors, the wiper blade manufactured using such polyurethane has the above contact width A and the angle θ according to the present disclosure, and furthermore, the average value of the elastic modulus values and At least one of the coefficients of variation of the elastic modulus was not satisfied. That is, since conventional polyurethane has relatively large hard segments, it is difficult to make the coefficient of variation of elastic modulus at 210,000 points less than 17.6% using a scanning probe microscope according to the present disclosure.
Here, in the case of a polyurethane having a small amount of the hard segment itself, further aggregation of the aggregation portion of the urethane bond is suppressed, and it is thought that the coefficient of variation can be kept small. However, in this case, it is difficult to set the average elastic modulus value to 15.0 MPa or more, and it becomes difficult to satisfy the contact width A and the angle θ.

本開示に係る物性を満たすリップ部は、例えば、ハードセグメントを微細かつ均一に分散させたポリウレタンの使用によって形成することができる。このようなポリウレタンについて以下に説明する。
すなわち、ウレタン原料として、ジイソシアネートや3官能以上の多官能イソシアネートと、ジオールや3官能以上の多官能アルコールとを適切な濃度範囲で用いることにより、ハードセグメントの凝集が抑制され、ハードセグメントが微細かつ均一に分散してなるポリウレタンを得られる。
A lip portion that satisfies the physical properties according to the present disclosure can be formed, for example, by using polyurethane in which hard segments are finely and uniformly dispersed. Such polyurethanes are described below.
That is, by using a diisocyanate, a tri- or higher polyfunctional isocyanate, and a diol or a tri- or higher polyfunctional alcohol as urethane raw materials in an appropriate concentration range, aggregation of the hard segments is suppressed, and the hard segments are fine and fine. A uniformly dispersed polyurethane is obtained.

具体的には、例えば、3官能以上の多官能アルコールを含むアルコール、及び、3官能以上の多官能イソシアネートを含むイソシアネート化合物の少なくとも一方をウレタン原料として用いることが好ましい。
また、ジオール及び3官能以上の多官能アルコールから選択される少なくとも一つを含むアルコールと、3官能以上の多官能イソシアネートを含むイソシアネート化合物と、をウレタン原料として用いることも好ましい。
また、3官能以上の多官能アルコールを含むアルコールと、ジイソシアネート及び3官能以上の多官能イソシアネートを含むイソシアネート化合物とをウレタン原料として用いることも好ましい。
特には、3官能以上の多官能イソシアネート、及び、3官能以上の多官能アルコールをウレタン原料に用いることが好ましい。
Specifically, for example, it is preferable to use at least one of an alcohol containing a trifunctional or higher polyfunctional alcohol and an isocyanate compound containing a trifunctional or higher polyfunctional isocyanate as the urethane raw material.
It is also preferable to use an alcohol containing at least one selected from diols and tri- or higher polyfunctional alcohols and an isocyanate compound containing a tri- or higher polyfunctional isocyanate as urethane raw materials.
It is also preferable to use an alcohol containing a tri- or higher polyfunctional alcohol and an isocyanate compound containing a diisocyanate and a tri- or higher polyfunctional isocyanate as urethane raw materials.
In particular, it is preferable to use a polyfunctional isocyanate having a functionality of 3 or more and a polyfunctional alcohol having a functionality of 3 or more as the urethane raw material.

3官能以上の多官能イソシアネート、及び、3官能以上の多官能アルコールとの反応物として得られるポリウレタンは、立体障害により分子の配向性が抑制され、ハードセグメントの凝集がより確実に抑制されたものとなる。そのため、本開示に係る当接幅A及びなす角θさらには弾性率及び変動係数を達成するうえで好適なポリウレタンである。
また、ソフトセグメント部分が例えば直鎖状のアルキレン構造を有する場合、ソフトセグメント同士がスタッキングすることで結晶性が高まる。その結果、ハードセグメントも分散しにくくなる。そのため、ソフトセグメント部分に、側鎖部分を有するアルキレン構造を導入することもハードセグメントの凝集を抑制するうえで有効である。具体的には、例えば、2つのウレタン結合の間のソフトセグメント部分に下記構造式(i)~(iv)で示されるような部分構造を導入することは、ハードセグメントの微細化に有効である。-CH-CH(CH)-CH-CH-O- (i)
-CH-CH-CH(CH)-CH-O- (ii)
-CH-CH(CH)-O- (iii)
-CH(CH)-CH-O- (iv)
Polyurethane obtained as a reaction product with a tri- or higher polyfunctional isocyanate and a tri- or higher polyfunctional alcohol has steric hindrance that suppresses molecular orientation and more reliably suppresses aggregation of hard segments. becomes. Therefore, it is a suitable polyurethane for achieving the contact width A and angle θ, as well as the elastic modulus and coefficient of variation according to the present disclosure.
Further, when the soft segment portion has, for example, a linear alkylene structure, the crystallinity is enhanced by stacking the soft segments. As a result, hard segments are also less likely to disperse. Therefore, introducing an alkylene structure having a side chain portion into the soft segment portion is also effective in suppressing aggregation of the hard segment. Specifically, for example, introduction of partial structures represented by the following structural formulas (i) to (iv) into the soft segment portion between two urethane bonds is effective in miniaturizing the hard segment. . -CH2 -CH( CH3 ) -CH2 - CH2 -O- (i)
-CH2 - CH2 -CH( CH3 )-CH2 - O- (ii)
—CH 2 —CH(CH 3 )—O— (iii)
-CH( CH3 ) -CH2 -O- (iv)

構造式(i)及び(ii)の構造は、3-メチルテトラヒドロフランを開環重合させる
ことによって生じる構造であり、実質的に同じである。また、構造式(iii)及び(iv)の構造は、1,2-プロピレンオキシドを開環重合させることによって生じる構造であり実質的に同じである。隣接する2つのウレタン結合の間にこれらの構造を有するウレタン樹脂は、これらの構造を有するポリエーテルポリオールやポリエステルポリオールをイソシアネートと反応させることで得られる。ここで、ウレタン原料として、2官能のアルコール(ジオール)と2官能のイソシアネート(ジイソシアネート)とを用いる場合、ハードセグメントの微分散化は通常困難である。しかしながら、上記の部分構造をソフトセグメント部分に導入することで、たとえ、ジオール及びジイソシアネートをウレタン原料に用いる場合であっても、ハードセグメントの微分散化を図ることができる。その結果、本開示に係るパラメータを満たすワイパーブレードを与えるポリウレタンを得ることができる。
The structures of structural formulas (i) and (ii) are substantially the same, resulting from ring-opening polymerization of 3-methyltetrahydrofuran. The structures of structural formulas (iii) and (iv) are substantially the same as the structures produced by ring-opening polymerization of 1,2-propylene oxide. A urethane resin having these structures between two adjacent urethane bonds can be obtained by reacting a polyether polyol or polyester polyol having these structures with isocyanate. Here, when a bifunctional alcohol (diol) and a bifunctional isocyanate (diisocyanate) are used as urethane raw materials, it is usually difficult to finely disperse the hard segments. However, by introducing the above partial structure into the soft segment portion, fine dispersion of the hard segment can be achieved even when diol and diisocyanate are used as the urethane raw material. As a result, a polyurethane can be obtained that provides wiper blades that meet the parameters according to the present disclosure.

また、上記したソフトセグメント部分に側鎖を導入する以外にソフトセグメント同士のスタッキングによる結晶化を抑制し、ハードセグメントの凝集を防止する方法として、ウレタン原料のアルコールとして、直鎖部分の炭素数が異なる2種以上のアルコールを用いる方法が挙げられる。直鎖部分の炭素数が異なるアルコールを2種以上用いて得られるポリウレタンは、ソフトセグメント部分に直鎖のアルキレン構造を有していても、炭素数が異なることでソフトセグメント同士のスタッキングによる結晶化を抑制することができる。また、ソフトセグメント部分の炭素数が異なることで、ウレタン結合部分の凝集が抑制されることで、ハードセグメントの凝集を防止し得る。従って、直鎖のアルキレン構造を分子内に有するジオール及びジイソシアネートをウレタン原料に用いた場合であっても、当該ジオールとして直鎖アルキレン構造の炭素数が異なる複数種のジオールを用いることで、ハードセグメントの微細化を図ることができる。その結果、本開示に係るパラメータを満たすワイパーブレードを与えるポリウレタンを得ることができる。複数種のジオールの例としては、例えば、ポリブチレンアジペートポリエステルポリオールとポリヘキシレンアジペートポリエステルポリオールとの併用が挙げられる。 In addition to introducing side chains into the soft segment portion described above, as a method of suppressing crystallization due to stacking of the soft segments and preventing aggregation of the hard segments, alcohol of the urethane raw material has a straight chain portion with a carbon number of A method using two or more different alcohols is included. Polyurethanes obtained by using two or more kinds of alcohols having different carbon numbers in their straight-chain portions crystallize due to stacking of the soft segments due to the different carbon numbers, even though the soft segment portions have a straight-chain alkylene structure. can be suppressed. In addition, since the number of carbon atoms in the soft segment portion is different, aggregation of the urethane bond portion is suppressed, thereby preventing aggregation of the hard segment. Therefore, even when a diol and a diisocyanate having a straight-chain alkylene structure in the molecule are used as urethane raw materials, by using a plurality of diols having different carbon numbers in the straight-chain alkylene structure as the diol, the hard segment can be miniaturized. As a result, a polyurethane can be obtained that provides wiper blades that meet the parameters according to the present disclosure. Examples of multiple kinds of diols include combined use of polybutylene adipate polyester polyol and polyhexylene adipate polyester polyol.

上記アルコールとしては、例えば以下のものが挙げられる。
ポリエチレンアジペートポリエステルポリオール、ポリブチレンアジペートポリエステルポリオール、ポリヘキシレンアジペートポリエステルポリオール、(ポリエチレン/ポリプロピレン)アジペートポリエステルポリオール、(ポリエチレン/ポリブチレン)アジペートポリエステルポリオール、(ポリエチレン/ポリネオペンチレン)アジペートポリエステルポリオールなどのポリエステルポリオール;カプロラクトンを開環重合して得られるポリカプロラクトン系ポリオール;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなどのポリエーテルポリオール;ポリカーボネートジオール。これらは単独で、又は2種以上を組み合わせて用いることができる。
Examples of the alcohol include the following.
Polyesters such as polyethylene adipate polyester polyol, polybutylene adipate polyester polyol, polyhexylene adipate polyester polyol, (polyethylene/polypropylene) adipate polyester polyol, (polyethylene/polybutylene) adipate polyester polyol, (polyethylene/polyneopentylene) adipate polyester polyol Polyols; polycaprolactone-based polyols obtained by ring-opening polymerization of caprolactone; polyether polyols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol; polycarbonate diols. These can be used alone or in combination of two or more.

また、前記したように、アルコールとして直鎖部分(アルキレン鎖)の炭素数が異なる2種以上のポリオールを用いることは、ソフトセグメントの結晶化を抑制し、ハードセグメントの凝集が抑制されたウレタンを得られるため、好ましい。この場合、例えば、ポリエチレンアジペートポリエステルポリオール、ポリブチレンアジペートポリエステルポリオール、ポリヘキシレンアジペートポリエステルポリオール、(ポリエチレン/ポリプロピレン)アジペートポリエステルポリオール、(ポリエチレン/ポリブチレン)アジペートポリエステルポリオール、(ポリエチレン/ポリネオペンチレン)アジペートポリエステルポリオールなどのポリエステルポリオールからなる群から選択される少なくとも2つを用いることが好ましい。 In addition, as described above, the use of two or more polyols having different carbon numbers in the straight-chain portion (alkylene chain) as the alcohol suppresses crystallization of the soft segment, resulting in a urethane with suppressed aggregation of the hard segment. It is preferable because it can be obtained. In this case, for example, polyethylene adipate polyester polyols, polybutylene adipate polyester polyols, polyhexylene adipate polyester polyols, (polyethylene/polypropylene) adipate polyester polyols, (polyethylene/polybutylene) adipate polyester polyols, (polyethylene/polyneopentylene) adipate It is preferable to use at least two selected from the group consisting of polyester polyols such as polyester polyols.

上記鎖延長剤としては、ポリウレタンエラストマー鎖を延長可能なジオールや、3官能以上の多官能アルコールも使用することができる。
ジオールとしては、例えば以下のものを挙げることができる。
エチレングリコール(EG)、ジエチレングリコール(DEG)、プロピレングリコール(PG)、ジプロピレングリコール(DPG)、1,4-ブタンジオール(1,4-BD)、1,6-ヘキサンジオール(1,6-HD)、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、キシリレングリコール(テレフタリルアルコール)、トリエチレングリコール。これらは単独で、又は2種以上を組み合わせて用いることができる。
As the chain extender, a diol capable of extending the polyurethane elastomer chain, or a tri- or higher polyfunctional alcohol can be used.
Examples of diols include the following.
Ethylene glycol (EG), diethylene glycol (DEG), propylene glycol (PG), dipropylene glycol (DPG), 1,4-butanediol (1,4-BD), 1,6-hexanediol (1,6-HD ), 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, xylylene glycol (terephthalyl alcohol), triethylene glycol. These can be used alone or in combination of two or more.

3官能以上の多官能アルコールとしては、トリメチロールプロパン(TMP)、グリセリン、ペンタエリスリトール(PEN)、ソルビトールを挙げることができる。これらは単独で、又は2種以上を組み合わせて用いることができる。 Trimethylolpropane (TMP), glycerin, pentaerythritol (PEN), and sorbitol can be mentioned as tri- or higher polyfunctional alcohols. These can be used alone or in combination of two or more.

ポリウレタンエラストマーの弾性率を向上させる方法の一つとして、架橋構造を導入することを挙げられる。架橋を導入する方法としては、上記の鎖延長剤に3官能以上の多官能アルコールを用いることが好ましい。また、3官能以上の多官能アルコールの使用によるポリウレタンへの分岐構造の導入は、ポリウレタンの結晶化を抑制し、ハードセグメントの凝集を更に抑制し得る。ここで、多官能アルコールとしては、ポリウレタンの架橋度が高くなりすぎることによる過度な硬度上昇を抑制する観点から、3官能のアルコールを用いることが好ましい。中でも、水酸基の隣にメチレン骨格を有し、分子構造的にフレキシブルな架橋構造が取ることができるトリオールは、ハードセグメントの結晶性のより一層の抑制効果を有するため好ましい。このようなトリオールの例としては、例えば、トリメチロールプロパン(TMP)、グリセリンが挙げられる。 One method for improving the elastic modulus of polyurethane elastomers is to introduce a crosslinked structure. As a method for introducing cross-linking, it is preferable to use a trifunctional or higher polyfunctional alcohol as the chain extender. In addition, introduction of a branched structure into polyurethane by using a tri- or higher polyfunctional alcohol can suppress crystallization of polyurethane and further suppress aggregation of hard segments. Here, as the polyfunctional alcohol, it is preferable to use a trifunctional alcohol from the viewpoint of suppressing an excessive increase in hardness due to an excessively high degree of cross-linking of the polyurethane. Among them, a triol, which has a methylene skeleton next to a hydroxyl group and can take a flexible crosslinked structure in terms of molecular structure, is preferable because it has an effect of further suppressing the crystallinity of the hard segment. Examples of such triols include, for example, trimethylolpropane (TMP), glycerin.

上記イソシアネート化合物としては、例えば以下のものが挙げられる。
4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、ポリメリックMDI、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、キシレンジイソシアネート(XDI)、1,5-ナフチレンジイソシアネート(1,5-NDI)、p-フェニレンジイソシアネート(PPDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水添MDI)、テトラメチルキシレンジイソシアネート(TMXDI)、カルボジイミド変性MDI、トリフェニルメタン-4,4’,4’’-トリイソシアネート(TTI)、トリス(フェニルイソシアネート)チオホスフェート(TPTI)。
Examples of the isocyanate compound include the following.
4,4'-diphenylmethane diisocyanate (4,4'-MDI), polymeric MDI, 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), xylene Diisocyanate (XDI), 1,5-naphthylene diisocyanate (1,5-NDI), p-phenylene diisocyanate (PPDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 4,4'-dicyclohexylmethane diisocyanate ( hydrogenated MDI), tetramethylxylene diisocyanate (TMXDI), carbodiimide-modified MDI, triphenylmethane-4,4',4''-triisocyanate (TTI), tris(phenylisocyanate) thiophosphate (TPTI).

この中で、二つのイソシアネート基が同等の反応性を有し、高い機械的特性が得られる4,4’-MDIが好ましい。また、3官能以上の多官能イソシアネートを併用することが好ましい。3官能以上の多官能イソシアネートを用いることで、ポリウレタン中に分岐構造を導入することができ、ハードセグメントのより一層の凝集抑制に有効である。また、ポリウレタンに、より緻密な架橋構造を導入し得るため、リップ部の被清掃部材への当接性をより安定させることができる。その結果、被清掃部材の拭き残しや拭きムラを、より効果的に抑えられる。 Among these, 4,4'-MDI is preferred because two isocyanate groups have the same reactivity and high mechanical properties can be obtained. Moreover, it is preferable to use together a polyfunctional isocyanate having a functionality of 3 or more. By using a polyfunctional isocyanate having a functionality of 3 or more, a branched structure can be introduced into the polyurethane, which is effective in further suppressing aggregation of the hard segments. In addition, since a denser crosslinked structure can be introduced into the polyurethane, the abutment of the lip portion to the member to be cleaned can be more stabilized. As a result, it is possible to more effectively suppress unwiped and uneven wiping of the member to be cleaned.

3官能以上の多官能イソシアネートとしては、トリフェニルメタン-4,4’,4’’-トリイソシアネート(TTI)、トリス(フェニルイソシアネート)チオホスフェート(TPTI)及びポリメリックMDIからなる群から選択される少なくとも一が挙げられる。中でも、トリス(フェニルイソシアネート)チオホスフェート(TPTI)及びポリメリックMDIをより好適に用いることができる。これらのイソシアネートは、複数のNCO基の間にメチレン基やエーテル基を有し、複数のウレタン結合間の距離を適切に保つことができる。そのため、ハードセグメントの凝集の抑制に有利である。 The tri- or higher polyfunctional isocyanate is at least selected from the group consisting of triphenylmethane-4,4',4''-triisocyanate (TTI), tris(phenylisocyanate) thiophosphate (TPTI) and polymeric MDI. One is mentioned. Among them, tris(phenylisocyanate) thiophosphate (TPTI) and polymeric MDI can be used more preferably. These isocyanates have a methylene group or an ether group between multiple NCO groups, and can appropriately maintain the distance between multiple urethane bonds. Therefore, it is advantageous for suppressing aggregation of hard segments.

ここで、ポリメリックMDIは以下の化学式(1)及び化学式(1)’で示される。化学式(1)’におけるnは、1以上4以下であることが好ましい。化学式(1)は、化学式(1)’においてnが1の場合である。

Figure 2023095727000002
Here, the polymeric MDI is represented by the following chemical formulas (1) and (1)'. n in the chemical formula (1)′ is preferably 1 or more and 4 or less. Chemical formula (1) is the case where n is 1 in chemical formula (1)′.
Figure 2023095727000002

本開示に係るリップ部が、ジイソシアネート及び3官能以上の多官能イソシアネートを含むイソシアネート化合物、並びに3官能以上の多官能アルコールを含むアルコールを含む原料組成物の反応物であるポリウレタンを含む場合において、該リップ部は、以下の物性を有するものであることが好ましい。 In the case where the lip portion according to the present disclosure contains a polyurethane that is a reaction product of a raw material composition containing an isocyanate compound containing a diisocyanate and a tri- or higher polyfunctional isocyanate and an alcohol containing a tri- or higher polyfunctional alcohol, The lip portion preferably has the following physical properties.

すなわち、該リップ部の第1の側面及び第2の側面に、それぞれ第1のエッジ及び第2のエッジと平行に、第1のエッジ及び第2のエッジとの距離が0.5mmである線分を引いたと仮定する。そして、該線分の長さをL’とし、該線分上の一端側から1/8L’、1/2L’、7/8L’の点を各々、P0’、P1’、P2’とする。
該第1の側面及び該第2の側面の該P0’、該P1’及び該P2’の各々においてサンプリングされる試料を、イオン化室内で加熱気化させ、試料分子をイオン化する直接試料導入方式の質量分析計を用いて、昇温速度10℃/s、1000℃まで加熱する。その結果として得られる、全てのイオンの検出量をM1とし、3官能以上の多官能イソシアネートに由来するm/z値の範囲に対応する抽出イオンサーモグラムのピークの積分強度をM2とする。このとき、第1の側面及び/又は第2の側面におけるM2/M1が、0.0010~0.0150であることが好ましく、特には、M2/M1が0.0030~0.0150であることがより好ましい。
That is, on the first side and the second side of the lip, a line parallel to the first edge and the second edge, respectively, with a distance of 0.5 mm from the first edge and the second edge Assuming you subtracted the minute. Then, let the length of the line segment be L', and points 1/8L', 1/2L', and 7/8L' from one end side on the line segment be P0', P1', and P2', respectively. .
The mass of the direct sample introduction system in which the sample sampled at each of the P0′, P1′ and P2′ of the first side and the second side is heated and vaporized in the ionization chamber to ionize the sample molecules. Using an analyzer, heat up to 1000°C at a heating rate of 10°C/s. M1 is the detected amount of all ions obtained as a result, and M2 is the integrated intensity of the peak of the extracted ion thermogram corresponding to the m/z value range derived from the tri- or higher polyfunctional isocyanate. At this time, M2/M1 on the first side and/or the second side is preferably 0.0010 to 0.0150, particularly M2/M1 is 0.0030 to 0.0150 is more preferred.

また、ジイソシアネートに由来するm/z値の範囲に対応する抽出イオンサーモグラムのピークの積分強度をM3としたときに、第1の側面及び/又は第2の側面におけるM3/M1が、0.0200~0.1100であることが好ましく、特には、0.0380~0.0760であることがより好ましい。M2/M1、及びM3/M1が上記の範囲にあることで、該ポリウレタンには、結晶性が低い、3官能以上の多官能イソシアネートに由来する構造が適切な量導入された結果、ハードセグメントの凝集が抑えられ、ハードセグメントがより微細かつ均一に分散されたものであることができる。また、ポリウレタン中の架橋構造の過度の発達が抑えられ、当接幅A及びなす角θを制御しやすくなる。また、弾性率の平均値を15.0MPa以上、470.0MPaの範囲内により容易に調整し得る。 Further, when M3 is the integrated intensity of the peak of the extracted ion thermogram corresponding to the range of m/z values derived from diisocyanate, M3/M1 on the first side and/or the second side is 0. 0200 to 0.1100 is preferable, and 0.0380 to 0.0760 is particularly preferable. When M2/M1 and M3/M1 are within the above ranges, an appropriate amount of a structure derived from tri- or higher polyfunctional isocyanate with low crystallinity is introduced into the polyurethane, resulting in hard segment Aggregation can be suppressed, and the hard segments can be more finely and uniformly dispersed. In addition, excessive development of the crosslinked structure in the polyurethane is suppressed, making it easier to control the contact width A and the angle θ. In addition, the average elastic modulus can be easily adjusted within the range of 15.0 MPa or more to 470.0 MPa.

さらに、M2/M3を0.0130以上、0.3000以下とすることが好ましい。M2/M3は、該ポリウレタンのイソシアネート由来の構造における、ジイソシアネート由
来の構造部分と、3官能以上の多官能イソシアネート由来の構造部分との割合を表すパラメータであり、M2/M3を上記範囲内とすることで、弾性率の過度の上昇が抑えられ、かつ、ハードセグメントの凝集がより一層抑制されたポリウレタンとすることができる。
Furthermore, it is preferable to set M2/M3 to 0.0130 or more and 0.3000 or less. M2/M3 is a parameter representing the ratio of the structural portion derived from diisocyanate and the structural portion derived from trifunctional or higher polyfunctional isocyanate in the isocyanate-derived structure of the polyurethane, and M2/M3 is within the above range. As a result, it is possible to obtain a polyurethane in which an excessive increase in elastic modulus is suppressed and aggregation of hard segments is further suppressed.

ここで、該ポリウレタンが、3官能以上の多官能イソシアネートとして、上記化学式(1)’で示されるポリメリックMDIを用いて製造されたポリウレタンである場合、上記した質量分析によって得られる抽出イオンサーモグラムにおいて、化学式(1)’で示される構造のn=1に由来するm/z値が380.5~381.5の範囲、n=2に由来するm/z値が511.5~512.5の範囲、n=3に由来するm/z値が642.5~643.5の範囲、及び、n=4に由来するm/z値が773.5~774.5の範囲の各々に対応するピークの積分強度の合計をM2とすればよい。 Here, when the polyurethane is a polyurethane produced using polymeric MDI represented by the above chemical formula (1)' as a polyfunctional isocyanate having three or more functionalities, the extracted ion thermogram obtained by the above mass spectrometry shows , the m / z value derived from n = 1 of the structure represented by the chemical formula (1) 'is in the range of 380.5 to 381.5, and the m / z value derived from n = 2 is 511.5 to 512.5 , the range of m / z values 642.5 to 643.5 derived from n = 3, and the range of m / z values 773.5 to 774.5 derived from n = 4. M2 may be the sum of the integrated intensities of the peaks.

また、該ポリウレタンが、ジイソシアネートとして、化学式(2)で示される4,4’-MDIを原料のうちの一つとして用いられたポリウレタンである場合には、上記した質量分析によって得られるイオンサーモグラムにおいて、化学式(2)で示される構造に由来するm/z値が249.5~250.5の範囲に対応するピークの積分強度をM3とすればよい。

Figure 2023095727000003
Further, when the polyurethane is a polyurethane using 4,4'-MDI represented by the chemical formula (2) as one of the raw materials as a diisocyanate, the ion thermogram obtained by the above-described mass spectrometry , the integrated intensity of the peak corresponding to the m/z value range of 249.5 to 250.5 derived from the structure represented by the chemical formula (2) may be defined as M3.
Figure 2023095727000003

さらに、本開示の一態様に係るワイパー装置のリップ部が、3官能以上の多官能イソシアネートを含むイソシアネート化合物、並びに3官能以上の多官能アルコールを含むアルコールを含む原料組成物の反応物であるポリウレタンを含む場合において、リップ部は、以下の物性を有するものであることが好ましい。すなわち、リップ部の第1の側面及び第2の側面に、それぞれ第1のエッジ及び第2のエッジと平行に、第1のエッジ及び第2のエッジとの距離が0.5mmである線分を引いたと仮定したときに、線分の長さをL’とし、該線分上の一端側から1/8L’、1/2L’、7/8L’の点を各々、P0’、P1’、P2’とする。該第1の側面及び該第2の側面の該P0’、該P1’及び該P2’の各々においてサンプリングされる試料を、熱分解GC/MS(ガスクロマトグラフィー及び質量分析法)により測定する。そして、該ポリウレタン中の3官能以上の多官能アルコールに由来する成分の濃度が、0.04mmol/g~0.39mmol/gであることが好ましく、0.14mmol/g~0.39mmol/gであることがより好ましく、0.22mmol/g~0.39mmol/gであることがさらに好ましい。 Furthermore, the lip portion of the wiper device according to one aspect of the present disclosure is a polyurethane that is a reaction product of a raw material composition containing an isocyanate compound containing a tri- or higher polyfunctional isocyanate and an alcohol containing a tri- or higher polyfunctional alcohol. In the case of containing, the lip portion preferably has the following physical properties. That is, on the first side surface and the second side surface of the lip portion, line segments parallel to the first edge and the second edge, respectively, with a distance of 0.5 mm from the first edge and the second edge is drawn, the length of the line segment is L', and points 1/8L', 1/2L', and 7/8L' from one end of the line segment are P0' and P1', respectively. , P2′. Samples sampled at each of the P0', the P1' and the P2' of the first side and the second side are measured by pyrolytic GC/MS (Gas Chromatography and Mass Spectrometry). The concentration of the component derived from the tri- or higher polyfunctional alcohol in the polyurethane is preferably 0.04 mmol/g to 0.39 mmol/g, more preferably 0.14 mmol/g to 0.39 mmol/g. more preferably 0.22 mmol/g to 0.39 mmol/g.

該3官能以上の多官能アルコールに由来する成分の濃度が0.04mmol/g以上である場合、該ポリウレタンは、ハードセグメントの凝集がより確実に抑制されたものであることができる。また、該3官能以上の多官能アルコール由来の成分の濃度が0.39mmol/g以下であることで、該ポリウレタン中の架橋構造の過度の発達を抑制でき、弾性率が高くなりすぎることを防止し得る。よって、上記の物性を有するテーパー部は、より容易に前記した当接幅、なす角θ、弾性率の値の平均値及び弾性率の変動係数に係る規定を満たし得る。なお、ポリウレタン中の3官能以上の多官能アルコールの濃度は下記式(2)により算出される。 When the concentration of the component derived from the trifunctional or higher polyfunctional alcohol is 0.04 mmol/g or more, the polyurethane can more reliably suppress aggregation of hard segments. In addition, when the concentration of the component derived from the tri- or higher polyfunctional alcohol is 0.39 mmol/g or less, the excessive development of the crosslinked structure in the polyurethane can be suppressed, and the elastic modulus can be prevented from becoming too high. can. Therefore, the tapered portion having the above-described physical properties can more easily satisfy the above-described specifications relating to the contact width, the formed angle θ, the average value of the elastic modulus values, and the coefficient of variation of the elastic modulus. The concentration of tri- or higher polyfunctional alcohol in polyurethane is calculated by the following formula (2).

式(2):3官能以上の多官能アルコールの濃度(mmol/g)=
〔3官能以上の多官能アルコール量(g)/3官能以上の多官能アルコール分子量×10
00〕/〔ポリウレタン質量(g)〕
Formula (2): Concentration of trifunctional or higher polyfunctional alcohol (mmol/g) =
[Amount of trifunctional or higher polyfunctional alcohol (g)/trifunctional or higher polyfunctional alcohol molecular weight x 10
00]/[polyurethane mass (g)]

ウレタン原料は、イソシアネート化合物及びアルコールの反応を促進するための触媒を含むことができる。触媒としては、一般的に用いられるポリウレタンエラストマー硬化用の触媒を使用することができ、例えば、三級アミン触媒や三級アミノアルコールが挙げられ、具体的には、以下のものを例示できる。
ジメチルエタノールアミン、N,N,N’-トリメチルアミノプロピルエタノールアミン、N,N‘-ジメチルヘキサノールアミンの如きアミノアルコール;トリエチルアミンの如きトリアルキルアミン;N,N,N’N’-テトラメチル-1,3-ブタンジアミンの如きテトラアルキルジアミン;トリエチレンジアミン、ピペラジン系化合物、トリアジン系化合物。
The urethane raw material can contain a catalyst for promoting the reaction of the isocyanate compound and the alcohol. As the catalyst, commonly used catalysts for curing polyurethane elastomers can be used. Examples thereof include tertiary amine catalysts and tertiary amino alcohols. Specific examples include the following.
aminoalcohols such as dimethylethanolamine, N,N,N'-trimethylaminopropylethanolamine, N,N'-dimethylhexanolamine; trialkylamines such as triethylamine; N,N,N'N'-tetramethyl-1 , 3-butanediamine; triethylenediamine, piperazine compounds, triazine compounds.

3級アミノアルコールとしては、例えば2-(ジメチルアミノ)エタノール、3-(ジメチルアミノ)プロパノール、2-(ジメチルアミノ)-1-メチルプロパノール、2-{2-(ジメチルアミノ)エトキシ}エタノール、2-{2-(ジエチルアミノ)エトキシ}エタノール、2-[{2-(ジメチルアミノ)エチル}メチルアミノ]エタノール。
また、酢酸カリウム、オクチル酸カリウムアルカリなどの金属の有機酸塩も用いることができる。さらに、通常、ウレタン化に用いられる金属触媒、例えば、ジブチル錫ジラウレートも使用可能である。これらは単独で、または2種以上を組み合わせて用いることができる。
Examples of tertiary amino alcohols include 2-(dimethylamino)ethanol, 3-(dimethylamino)propanol, 2-(dimethylamino)-1-methylpropanol, 2-{2-(dimethylamino)ethoxy}ethanol, 2 -{2-(diethylamino)ethoxy}ethanol, 2-[{2-(dimethylamino)ethyl}methylamino]ethanol.
Organic acid salts of metals such as potassium acetate and potassium octylate alkali can also be used. Furthermore, metal catalysts usually used for urethanization, such as dibutyltin dilaurate, can also be used. These can be used alone or in combination of two or more.

中でも、2-{2-(ジエチルアミノ)エトキシ}エタノール、2-[{2-(ジメチルアミノ)エチル}メチルアミノ]エタノールのような感温性触媒は、前記した多官能イソシアネートをポリオールと極めて高効率で反応させることができ、ポリウレタン中に高次架橋構造をより良く形成することができる。 Among them, temperature-sensitive catalysts such as 2-{2-(diethylamino)ethoxy}ethanol and 2-[{2-(dimethylamino)ethyl}methylamino]ethanol convert the polyfunctional isocyanate described above into a polyol with extremely high efficiency. and can better form a highly crosslinked structure in the polyurethane.

ブレードラバーを構成する原料には、当接幅A及びなす角θに影響を与えない範囲で、必要に応じて、顔料、可塑剤、防水剤、酸化防止剤、紫外線吸収剤、光安定剤、加水分解防止剤等の添加剤を配合することができる。 Raw materials constituting the blade rubber may optionally contain pigments, plasticizers, waterproofing agents, antioxidants, ultraviolet absorbers, light stabilizers, and Additives such as hydrolysis inhibitors can be incorporated.

<表面処理>
ブレードラバーの少なくともテーパー部を含むリップ部は、電子線照射や紫外線照射や表面層塗布、表面硬化処理などといった表面処理されていてもよい。本開示において好ましい表面処理の方法としては、例えば、(i)被処理物に対して紫外線を照射する工程を含む方法、及び(ii)被処理物に対して硬化領域形成用の材料を塗布して硬化させる工程を含む方法、が挙げられる。
ただし、上記で示したようにマクロからミクロな領域での変形が性能に寄与するため、表面処理を施す前の設計を上述のように行った上で表面処理を行うことにより、より効果的に影響するものである。
<Surface treatment>
The lip portion including at least the taper portion of the blade rubber may be subjected to surface treatment such as electron beam irradiation, ultraviolet irradiation, surface layer coating, and surface hardening treatment. Preferred surface treatment methods in the present disclosure include, for example, (i) a method including a step of irradiating the object to be treated with ultraviolet rays, and (ii) applying a material for forming a cured region to the object to be treated. a method comprising the step of curing with.
However, as shown above, since the deformation in the macro to micro region contributes to the performance, it is more effective to perform the surface treatment after performing the design as described above before applying the surface treatment. It affects.

(i)紫外線を照射する条件としては、特に限定されない。該紫外線は、400nm以下の波長を有するものであればよいが、200nm以上であることが好ましい。紫外線の波長が200nm以上であれば、効果的に弾性率を増加させることができる。光源が発する光の最大の発光ピークの波長が、200nm以上400nm以下であることが好ましい。特には、該最大の発光ピークの波長が、254nm近傍、例えば、254±1nmの範囲にあることが好ましい。これは、上記波長域又は上記波長の紫外線がワイパーブレードテーパー部表面を改質させる活性酸素を効率よく発生させることができるためである。紫外線の発光ピークが複数存在する場合、そのうち一つが254nm近傍に存在することが好ましい。 (i) The conditions for irradiating ultraviolet rays are not particularly limited. The ultraviolet light may have a wavelength of 400 nm or less, preferably 200 nm or more. If the wavelength of ultraviolet rays is 200 nm or more, the elastic modulus can be effectively increased. The maximum emission peak wavelength of light emitted from the light source is preferably 200 nm or more and 400 nm or less. In particular, it is preferable that the wavelength of the maximum emission peak is in the vicinity of 254 nm, for example, in the range of 254±1 nm. This is because the ultraviolet rays in the above wavelength range or the above wavelengths can efficiently generate active oxygen that modifies the surface of the taper portion of the wiper blade. When there are a plurality of emission peaks of ultraviolet rays, it is preferable that one of them exists near 254 nm.

光源から発光される光の強度は特に限定されるものではなく、分光放射照度計(商品名:USR-40V/D、ウシオ電機社製)、紫外線積算光量計(商品名:UIT-150-A、UVD-S254、VUV-S172、VUV-S365、ウシオ電機社製)などを用いて測定した値を採用することができる。また、表面処理工程でリップ部に照射される紫外線の積算光量は、得られる表面処理の効果に応じて適宜選択すればよい。光源からの光による照射時間、光源の出力、光源と距離等により行うことが可能で、例えば、10000mJ/cmなど所望の積算光量が得られるように決めればよい。 The intensity of the light emitted from the light source is not particularly limited. , UVD-S254, VUV-S172, VUV-S365, manufactured by Ushio Inc.) or the like can be used. In the surface treatment step, the integrated amount of UV light irradiated to the lip portion may be appropriately selected according to the effect of the surface treatment to be obtained. It can be determined by the irradiation time of the light from the light source, the output of the light source, the distance from the light source, and the like.

リップ部に照射される紫外線の積算光量は以下の方法により算出することができる。
紫外線積算光量(mJ/cm)=紫外線強度(mW/cm)×照射時間(sec)
The integrated amount of UV light irradiated to the lip portion can be calculated by the following method.
Accumulated amount of UV light (mJ/cm 2 ) = UV intensity (mW/cm 2 ) x irradiation time (sec)

紫外線を発光する光源としては、例えば、高圧水銀ランプや低圧水銀ランプを好適に使用できる。これらの光源は、照射距離による減衰が少ない好適な波長の紫外線を安定して発光することができ、表面全体を均一に照射することができることから、好ましい。 As a light source for emitting ultraviolet light, for example, a high-pressure mercury lamp or a low-pressure mercury lamp can be preferably used. These light sources are preferable because they can stably emit ultraviolet light having a suitable wavelength that is less attenuated by irradiation distance, and can uniformly irradiate the entire surface.

(ii)硬化領域形成用の材料を塗布して硬化させる条件は特に限定されない。リップ部における硬化領域の形成は、硬化領域形成用の材料を塗布して硬化させることによって行うことができる。この処理は、硬化領域形成用の材料を塗布して硬化された部分の弾性率を効果的に増加させることができる。硬化領域は、少なくとも前記リップ部の被清掃部材に当接される第1の側面及び第2の側面の両面に形成されていることが好ましい。 (ii) Conditions for applying and curing the material for forming the cured region are not particularly limited. Formation of the cured region in the lip portion can be performed by applying and curing a material for forming the cured region. This treatment can effectively increase the elastic modulus of the cured portion by applying the material for forming the cured region. It is preferable that the hardened region is formed at least on both the first side surface and the second side surface of the lip portion that are in contact with the member to be cleaned.

この硬化領域形成用の材料は必要に応じて希釈溶剤で希釈して使用され、ディッピング、スプレー、ディスペンサ、刷毛塗り、ローラ塗布等、公知の手段で塗布することができる。また、硬化領域形成用の材料を塗布した後、加熱処理などの処理をさらに行ってもよい。硬化領域形成用の材料をリップ部に含まれるポリウレタンの中に含浸させるとよい。硬化領域形成用の材料を高濃度かつ低粘度にすることで含浸は促進されるため、硬化領域形成用材料を希釈せずに加熱し含侵させてもよい。該硬化の程度は、硬化領域形成用の材料温度、含浸又は浸漬時間、含浸又は浸漬後の熱処理温度及び熱処理時間、その後の放置時間などで調節するとよい。 The material for forming the cured region is used after being diluted with a diluting solvent as necessary, and can be applied by known means such as dipping, spraying, dispenser, brush coating, roller coating and the like. Moreover, after applying the material for forming the cured region, a treatment such as a heat treatment may be further performed. It is preferable to impregnate the polyurethane contained in the lip portion with a material for forming the cured region. Since the impregnation is promoted by making the cured region forming material high in concentration and low in viscosity, the cured region forming material may be impregnated by heating without dilution. The degree of curing may be adjusted by adjusting the temperature of the material for forming the cured region, the impregnation or immersion time, the heat treatment temperature and heat treatment time after the impregnation or immersion, and the subsequent standing time.

硬化領域形成用の材料の温度は、60℃~90℃程度にするとよい。また、含浸又は浸漬時間は、一概にいえないが、10秒~180秒程度にすることが好ましい。硬化領域形成用の材料を硬化領域に塗布後、加熱処理を行ってもよい。該加熱処理によりポリウレタンの表面に存在する硬化領域形成用の材料の粘度が低下して、ポリウレタン内部への浸透及び拡散を促進させることができる。 The temperature of the material for forming the cured region should be about 60.degree. C. to 90.degree. The impregnation or immersion time cannot be generalized, but it is preferably about 10 seconds to 180 seconds. Heat treatment may be performed after the material for forming the cured region is applied to the cured region. The heat treatment lowers the viscosity of the cured region-forming material present on the surface of the polyurethane, and promotes penetration and diffusion into the interior of the polyurethane.

加熱方法としては、加熱炉内を通過させる方法や加熱風を吹き付ける方法などが挙げられるが、特に制限されない。例えば、加熱炉としては放射型加熱炉、循環風型加熱炉などが挙げられ、加熱風を形成する機器としては、熱風器、遠赤外線ヒーターなどが挙げられる。
加熱条件を高温、及び/又は、長時間とすることで硬化領域は広くなる。加熱条件としては、処理面の表面温度を、例えば、90℃~110℃とすることが好ましい。また、加熱時間としては、例えば、10分~60分とすることが好ましい。
The heating method includes, but is not particularly limited to, a method of passing through a heating furnace, a method of blowing hot air, and the like. For example, the heating furnace includes a radiant heating furnace, a circulating air heating furnace, and the like, and the device for generating heating air includes a hot air blower, a far-infrared heater, and the like.
The cured region is widened by setting the heating conditions to a high temperature and/or a long time. As for the heating conditions, the surface temperature of the treated surface is preferably 90° C. to 110° C., for example. Also, the heating time is preferably 10 minutes to 60 minutes, for example.

また、ポリウレタン成型時の残存イソシアネート量は、成型後、時間の経過とともに徐々に減少する傾向にある。そのため、硬化領域の形成は、ポリウレタン成型後、速やかに実施するとよいが、特段限定されない。例えば、3時間以内に行うとよい。なお、該残存イソシアネート量は、ポリウレタン形成時に用いられる組成物の混合比によっても調整することができる。 In addition, the amount of residual isocyanate during polyurethane molding tends to gradually decrease with the lapse of time after molding. Therefore, it is preferable to form the cured region immediately after molding the polyurethane, but there is no particular limitation. For example, within 3 hours. The amount of residual isocyanate can also be adjusted by the mixing ratio of the composition used when forming the polyurethane.

硬化領域形成用の材料は、ポリウレタンを硬化させることが可能なもの、又は、ポリウレタンの表面上に硬化領域を形成させることが可能なものであれば特に限定されない。
例えば、イソシアネート化合物やアクリル化合物などが挙げられる。硬化領域形成用の材料は、溶剤などで希釈して用いてもよい。希釈に用いる溶剤としては、使用する材料を溶解するものであれば特に限定されず、例えば、トルエン、キシレン、酢酸ブチル、メチルイソブチルケトン、メチルエチルケトンなどが挙げられる。
The material for forming the cured region is not particularly limited as long as it can cure polyurethane or form a cured region on the surface of polyurethane.
Examples include isocyanate compounds and acrylic compounds. The material for forming the cured region may be used after being diluted with a solvent or the like. The solvent used for dilution is not particularly limited as long as it dissolves the materials used, and examples thereof include toluene, xylene, butyl acetate, methyl isobutyl ketone, and methyl ethyl ketone.

ワイパーブレードのリップ部の構成材料がポリウレタンである場合、硬化領域を形成する材料としては、リップ部の材料との相溶性や含浸性を考慮すると、ポリウレタンの構成材料であるイソシアネート化合物を用いることがより好ましい。イソシアネート化合物としては、分子中に1個以上のイソシアネート基を有するものを使用することができる。 When the lip portion of the wiper blade is made of polyurethane, it is possible to use an isocyanate compound, which is a constituent material of polyurethane, as the material for forming the cured region, considering compatibility with the material of the lip portion and impregnation. more preferred. As the isocyanate compound, those having one or more isocyanate groups in the molecule can be used.

分子中に1個のイソシアネート基を有するイソシアネート化合物としては、オクタデシルイソシアネート(ODI)等の脂肪族モノイソシアネート、フェニルイソシアネート(PHI)等の芳香族モノイソシアネートなどを使用することができる。
分子中に2個のイソシアネート基を有するイソシアネート化合物としては、通常、ポリウレタン樹脂の製造に用いられるものが使用でき、具体的には、以下のものを挙げることができる。2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、m-フェニレンジイソシアネート(MPDI)、テトラメチレンジイソシアネート(TMDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)等。
Examples of the isocyanate compound having one isocyanate group in the molecule include aliphatic monoisocyanates such as octadecyl isocyanate (ODI) and aromatic monoisocyanates such as phenyl isocyanate (PHI).
As the isocyanate compound having two isocyanate groups in the molecule, those commonly used in the production of polyurethane resins can be used. Specific examples include the following. 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4′-diphenylmethane diisocyanate (MDI), m-phenylene diisocyanate (MPDI), tetra methylene diisocyanate (TMDI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI) and the like.

また、分子中に3個以上のイソシアネート基を有するイソシアネート化合物として、例えば、4,4’,4”-トリフェニルメタントリイソシアネート、2,4,4’-ビフェニルトリイソシアネート、2,4,4’-ジフェニルメタントリイソシアネート等が使用できる。
また、2個以上のイソシアネート基を有するイソシアネート化合物は、その変性誘導体や多量体等も使用可能である。硬化領域の弾性率を効率的に上げるためには、結晶性の高い、つまり構造が対称性をもっているMDIが好ましく、さらに、変性体を含んだMDIは常温で液体であるため、作業性の面からも好ましい。
Examples of isocyanate compounds having 3 or more isocyanate groups in the molecule include 4,4′,4″-triphenylmethane triisocyanate, 2,4,4′-biphenyltriisocyanate, 2,4,4′ - Diphenylmethane triisocyanate and the like can be used.
In addition, isocyanate compounds having two or more isocyanate groups can also be used as modified derivatives or polymers thereof. In order to efficiently increase the elastic modulus of the cured region, MDI having high crystallinity, that is, having a symmetrical structure is preferable. is also preferred.

<ブレードラバーの製造方法>
ブレードラバーの製造方法は、特に限定されず、公知の方法の中から選択することができる。例えば、ブレードラバー用金型内に、例えば、ポリウレタンエラストマー原料組成物をキャビティに注入し、加熱して硬化させることにより、テーパー部を有するリップ部を得ることができる。テーパー部の先端部において、切断し形状を形成してもよい。このようにすると、第1のエッジ及び第2のエッジの平滑度を高く成形することができるため、好ましい。また、テーパー部が互いに向き合うよう当接して形成されたタンデム形状の一対の成型体を作製し、長手方向に切断することによりワイパーブレードを作製してもよい。また、基部及びネックは、従来公知の材料、製造方法を用いて製造するとよい。
<Method for manufacturing blade rubber>
The method for producing the blade rubber is not particularly limited, and can be selected from known methods. For example, a lip portion having a tapered portion can be obtained by injecting, for example, a polyurethane elastomer raw material composition into a cavity of a mold for a blade rubber and heating and curing it. At the tip of the tapered portion, the shape may be formed by cutting. This is preferable because it is possible to form the first edge and the second edge with high smoothness. Alternatively, a wiper blade may be produced by producing a pair of tandem-shaped moldings formed in contact with each other so that the tapered portions face each other, and cutting them in the longitudinal direction. Also, the base and neck may be manufactured using conventionally known materials and manufacturing methods.

<ワイパー装置>
ワイパー装置は、例えば、駆動モータ(図示せず)に連携されたワイパーアームと、ワイパーアームに装着されたワイパーブレードとを具備する。ワイパー装置は、特に制限されず、公知の構成を採用しうる。例えば、タンデム式、対向払拭式といった様々な形式のワイパー装置が挙げられる。
ワイパーブレードの構成も特に制限されず、公知のものを採用しうる。ワイパーブレードは、ブレードラバーと、ブレードラバーを支持するブレードステーとを有する。ブレードステーとしては、フラット型、トーナメント型といった様々な形式を採用しうる。フラ
ットブレードにおいては、ブレードステーはブレードラバーをその全長にわたって保持する、例えばバネ弾性を有する支持体である。
長手に均一に当接させるために、バッキングブレードをブレードラバーに取り付け、使用してもよい。
<Wiper device>
A wiper device, for example, comprises a wiper arm associated with a drive motor (not shown) and a wiper blade mounted on the wiper arm. The wiper device is not particularly limited, and can employ a known configuration. For example, there are various types of wiper devices such as a tandem type and an opposing wiping type.
The configuration of the wiper blade is also not particularly limited, and a known configuration can be adopted. The wiper blade has a blade rubber and a blade stay that supports the blade rubber. Various types such as a flat type and a tournament type can be adopted as the blade stay. In a flat blade, the blade stay is, for example, a spring-elastic support that holds the blade rubber over its entire length.
A backing blade attached to the blade rubber may be used for uniform longitudinal abutment.

以下に製造例、実施例及び比較例によって本開示を説明するが、本開示はこれら実施例などにより何ら限定されるものではない。実施例及び比較例において表示した以外の原材料は、試薬または工業薬品を用いた。なお、実施例及び比較例中の「部」は特に断りが無い場合、すべて質量基準である。 Although the present disclosure will be described below with production examples, examples, and comparative examples, the present disclosure is not limited to these examples. Raw materials other than those indicated in Examples and Comparative Examples were reagents or industrial chemicals. In addition, all "parts" in Examples and Comparative Examples are based on mass unless otherwise specified.

実施例及び比較例において、ワイパーブレードを製造して評価した。実施例及び比較例の配合と評価結果を表3~表9に示す。 Wiper blades were manufactured and evaluated in Examples and Comparative Examples. Tables 3 to 9 show the formulations and evaluation results of Examples and Comparative Examples.

〔実施例1〕
<ワイパーブレード用原料の調製>
4,4’-ジフェニルメタンジイソシアネート(商品名:ミリオネートMT、東ソー社製)(以下4,4’-MDIと称し、表中では、単に「MDI」と記す)191.1g、3官能以上の多官能イソシアネートとして、ポリメリックMDI(商品名:ミリオネートMR-200、東ソー社製)(以下MR200と称す)を210.0g、
数平均分子量2500のポリブチレンアジペートポリエステルポリオール(商品名:ニッポラン3027、東ソー社製)(以下PBA2500と称す)598.9gを、80℃で3時間反応させ、NCO含量が10.2質量%のプレポリマーを得た。
[Example 1]
<Preparation of raw material for wiper blade>
4,4'-diphenylmethane diisocyanate (trade name: Millionate MT, manufactured by Tosoh Corporation) (hereinafter referred to as 4,4'-MDI and simply "MDI" in the tables) 191.1 g, trifunctional or higher polyfunctional As an isocyanate, 210.0 g of polymeric MDI (trade name: Millionate MR-200, manufactured by Tosoh Corporation) (hereinafter referred to as MR200),
598.9 g of polybutylene adipate polyester polyol (trade name: Nippolan 3027, manufactured by Tosoh Corporation) having a number average molecular weight of 2500 (hereinafter referred to as PBA2500) was reacted at 80° C. for 3 hours to prepare a pre-precipitate having an NCO content of 10.2% by mass. A polymer was obtained.

続いて、下記表1の成分を混合して硬化剤を調製した。

Figure 2023095727000004
Subsequently, the components shown in Table 1 below were mixed to prepare a curing agent.
Figure 2023095727000004

前述のプレポリマーにこの硬化剤を添加し、混合して原料組成物を得た。この原料組成物を、ワイパーブレード用成形金型内に注入し、温度130℃で2分間硬化させた。その後に脱型して、ポリウレタン成形体を得た。なお、ワイパーブレード用成形金型内には、予め離型剤Aを塗布した。離型剤Aは、下記表2に記載の材料の混合物である。

Figure 2023095727000005
This curing agent was added to the prepolymer described above and mixed to obtain a raw material composition. This raw material composition was injected into a wiper blade molding die and cured at a temperature of 130° C. for 2 minutes. After that, the mold was removed to obtain a polyurethane molded article. A release agent A was applied in advance to the mold for the wiper blade. Release Agent A is a mixture of materials listed in Table 2 below.
Figure 2023095727000005

得られたポリウレタン成形体のリップ部先端側を切断して本実施例に係るワイパーブレードを得た。ワイパーブレードの長手方向の距離は、700mmとした。ワイパーブレードの断面形状としては、図3に示したようにリップ部3の先端側にテーパー部4に連なる板状の部分を有するものであった。ネック部の長さNLと厚みNT、肩部の長さSL、リップ部の長さLM、LL及び厚みLTを表3に示す。得られたワイパーブレードは以下の方法によって評価した。 A wiper blade according to the present example was obtained by cutting the lip tip end side of the obtained polyurethane molded article. The longitudinal distance of the wiper blade was 700 mm. As for the cross-sectional shape of the wiper blade, as shown in FIG. Table 3 shows the length NL and thickness NT of the neck portion, the length SL of the shoulder portion, the lengths LM and LL of the lip portion, and the thickness LT. The obtained wiper blades were evaluated by the following methods.

〔リップ部の50%モジュラスの測定方法〕
ワイパーブレードよりリップ部の先端部分(リップ部がテーパー形状の変化したリップ先端部を有する場合は、リップ先端部)を(長手方向に100mm程度)切り出し、切り出し片の厚みと幅を計測した。切り出し片を、引張試験機(商品名:RTG-1225、エー・アンド・デイ社製)を用い、JIS K6254-1993に準拠し、測定を実施した。測定条件は、引張速度は500mm/分、標線間距離は20mm、試験温度は25℃、測定回数は3回とした。3回の測定結果の平均値を50%モジュラスとした。結果を表3に示す。
[Method for measuring 50% modulus of lip part]
The tip of the lip (if the lip has a tapered tip, the tip of the lip) was cut out (about 100 mm in the longitudinal direction) from the wiper blade, and the thickness and width of the cut piece were measured. The cut piece was measured using a tensile tester (trade name: RTG-1225, manufactured by A&D) in accordance with JIS K6254-1993. The measurement conditions were a tensile speed of 500 mm/min, a gauge length of 20 mm, a test temperature of 25° C., and three measurements. The average value of the results of three measurements was taken as the 50% modulus. Table 3 shows the results.

〔当接幅A及びなす角θの測定方法〕
(ガラス平板に対する当接・移動試験)
ガラス平板上の第一の表面に、アームに取り付けたブレードラバーのリップ部を接触させる。取り付けるブレードラバーは、上記で作製したブレードラバーを切断し、長手長15mmに調整したブレードラバー試験片を作製した。ブレードラバー試験片の把持は、車両用ワイパーの把持部を模した形状とするため、ブレードラバー試験片の基部を挟み込む形で把持した。ブレードラバー試験片を該ブレードラバーの長手方向と直交する方向に移動させ、ガラス平板上をリップ部により払しょくし、停止した。停止した状態でブレードラバーを観察することで払しょく時のワイパーブレードの当接姿勢の評価を行った。
[Measurement method of contact width A and angle θ]
(Contact/movement test for glass flat plate)
A first surface on the glass plate is brought into contact with the lip portion of the blade rubber attached to the arm. As for the blade rubber to be attached, the blade rubber prepared above was cut to prepare a blade rubber test piece adjusted to a longitudinal length of 15 mm. The gripping of the blade rubber test piece was carried out in such a manner that the base of the blade rubber test piece was sandwiched in order to obtain a shape simulating the gripping portion of a vehicle wiper. The blade rubber test piece was moved in a direction orthogonal to the longitudinal direction of the blade rubber, and the glass flat plate was brushed off by the lip and stopped. The contact posture of the wiper blade was evaluated by observing the blade rubber while the wiper was stopped.

図10に評価を行った試験機の概略図例を示す。該試験機は、ブレードラバー試験片にかかる押さえ力を制御できる機構を持ち、ガラス平板に対して安定して当接させ、規定の速度で払拭できる。該試験機は、天秤式を用いており、おもりによる荷重を変更することで押さえ力を制御することが可能である。
図10及び図5に示すように、該ブレードラバー試験片に対し押さえ力を18N/m(長手長)として、該ブレードラバー試験片の該リップ部をガラス平板の第1の表面に当接させ、該ワイパーブレードを速度1.65m/秒にて、該ガラス平板の該第1の表面の第1の地点P1から第2の地点P2に向かうA方向に、該ブレードラバーの長手方向と直交する方向に50cm移動させ、停止させた。停止した状態を観察することより下記一定の条件でガラス平板上を払拭した際の当接姿勢を評価した。
FIG. 10 shows an example of a schematic diagram of the test machine used for evaluation. The tester has a mechanism capable of controlling the pressing force applied to the blade rubber test piece, stably bringing it into contact with the glass flat plate, and wiping it at a prescribed speed. The testing machine uses a balance system, and can control the pressing force by changing the load of the weight.
As shown in FIGS. 10 and 5, the lip portion of the blade rubber test piece was brought into contact with the first surface of the glass flat plate with a pressing force of 18 N/m (longitudinal length) on the blade rubber test piece. , move the wiper blade at a speed of 1.65 m/s in a direction A from a first point P1 to a second point P2 on the first surface of the glass plate, perpendicular to the longitudinal direction of the blade rubber. It was moved 50 cm in the direction and stopped. By observing the stopped state, the contact posture when wiping the glass plate under the following constant conditions was evaluated.

評価するブレードラバーを長手方向に均等に10分割した各部分から試験片をサンプリングするなどして、ブレードラバーから均等に10点の試験片を得て、評価を行う。
〔払拭条件〕
アーム押さえ力:18N/m(長手1mあたり18N)
ワイパーブレード試験片長:15mm
ガラス平板移動速度:1.65m/sec
払しょく距離:50cm
The blade rubber to be evaluated is evenly divided into 10 parts in the longitudinal direction, and the test pieces are sampled from each portion to obtain 10 test pieces evenly from the blade rubber for evaluation.
[Wiping conditions]
Arm pressing force: 18 N/m (18 N per 1 m of length)
Wiper blade test piece length: 15 mm
Glass plate moving speed: 1.65m/sec
Discharge distance: 50cm

(当接幅の測定)
上記ガラス平板に対する当接・移動試験にて、払しょくした後停止した状態で、該リップ部と該ガラス平板との接触部を該ガラス板の該第1の表面とは反対側の第2の表面側から顕微鏡(コンフォーカル顕微鏡(商品名:OPTELICS HYBRID、レーザーテック社製))により観察した。観察条件は、対物レンズ20倍、画素数1024×1024pixelとした。ブレードラバー試験片とガラス平板との接触部の長手方向において、端部から1mm間隔で観察した。10点の試験片に対し、それぞれの観察点における視野の観察像からガラス面に当接している移動方向に対して垂直に最も上流の点と最も下流の点の距離である当接幅を長手方向で10点測定した。計100点の値の平均値を算出した。この平均値を当接幅Aとした。
また、測定した100点の値の標準偏差を算出し、当接幅のムラを示す当接幅Aの標準偏差とした。
(Measurement of contact width)
In the contact/movement test with respect to the glass plate, the contact portion between the lip portion and the glass plate is moved to the second surface opposite to the first surface of the glass plate in a stopped state after being swept away. The surface side was observed with a microscope (confocal microscope (trade name: OPTELICS HYBRID, manufactured by Lasertec)). Observation conditions were a 20-fold objective lens and a pixel count of 1024×1024 pixels. In the longitudinal direction of the contact portion between the blade rubber test piece and the glass flat plate, observations were made at intervals of 1 mm from the end. For 10 test pieces, the contact width, which is the distance between the most upstream point and the most downstream point perpendicular to the moving direction of contact with the glass surface from the observation image of the field of view at each observation point, is measured longitudinally. 10 points were measured in the direction. An average value of 100 points in total was calculated. This average value was defined as the contact width A.
Also, the standard deviation of the measured values at 100 points was calculated and used as the standard deviation of the contact width A indicating the non-uniformity of the contact width.

また、アーム押さえ力を10N/mに変更した以外は上記と同様に当接幅Bを測定し、当接幅Bとした。アーム押さえ力の変化量に対する当接幅の変化量の比を算出した。この値を当接幅の荷重依存性として、表3に示す。 Further, the contact width B was measured in the same manner as described above except that the arm pressing force was changed to 10 N/m. A ratio of the amount of change in the contact width to the amount of change in the arm pressing force was calculated. Table 3 shows this value as the load dependence of the contact width.

(なす角θの測定)
上記ガラス平板に対する当接・移動試験にて、払しょくした後停止した状態で、ブレードラバーをブレードラバーの長手方向の側面から光学顕微鏡(カメラユニット(商品名:高速カラーカメラユニットVW-600C、キーエンス社製)、ハイスピードマイクロスコープ(商品名:ハイスピードマイクロスコープVW-9000、キーエンス社製)及びズームレンズ(商品名:長距離高性能ズームレンズVH-Z50L、キーエンス社製)が挙げられる)を用いて、観察倍率200倍の静止画像で観察した。
図5に示すように、リップ部とガラス平板との接触部のうち、P1から最も遠い部位を点Q1とし、点Q1からA方向に向かって200μmの位置においてガラス平板の該第1の表面に対して垂線をひく。該垂線の、リップ部との最初の交点を点Q2としたとき、点Q1と点Q2とを結ぶ直線とガラス平板の該第1の表面とがなす角θを評価した。10点の試験片を同様に評価し、その平均値をなす角θとした。
(Measurement of angle θ)
In the contact/movement test against the glass flat plate, the blade rubber is observed from the longitudinal side of the blade rubber with an optical microscope (camera unit (trade name: high-speed color camera unit VW-600C, Keyence company), high-speed microscope (trade name: high-speed microscope VW-9000, manufactured by Keyence Corporation) and zoom lenses (trade name: long-distance high-performance zoom lens VH-Z50L, manufactured by Keyence Corporation)). A still image was observed at an observation magnification of 200 times.
As shown in FIG. 5, in the contact portion between the lip portion and the flat glass plate, the farthest portion from P1 is defined as a point Q1. Draw a perpendicular line. Assuming that the first intersection of the perpendicular line with the lip portion was point Q2, the angle θ formed by the first surface of the glass flat plate and the straight line connecting points Q1 and Q2 was evaluated. Ten test pieces were evaluated in the same manner, and the average value was taken as the angle θ.

また、上記払拭条件としてガラス平板移動速度を0.60m/secに変更した以外は上記と同様にしてなす角θ´を測定した。ガラス平板移動速度1.65m/secのなす角θとガラス平板移動速度0.60m/secのなす角θ´の差分のガラス平板移動速度1.65m/secのなす角θに対する割合(%)を算出した。この値をなす角θの払拭速度依存性として、表3に示す。 Further, the angle θ' formed was measured in the same manner as described above except that the moving speed of the glass flat plate was changed to 0.60 m/sec as the wiping condition. The ratio (%) of the difference between the angle θ formed by the glass plate moving speed of 1.65 m/sec and the angle θ′ formed by the glass plate moving speed of 0.60 m/sec to the angle θ formed by the glass plate moving speed of 1.65 m/sec is calculated. Calculated. Table 3 shows the wiping speed dependence of the angle .theta.

〔多官能アルコール種、濃度の測定方法〕
熱分解GC/MS(ガスクロマトグラフィー及び質量分析法)により、多官能アルコールの検出を行った。測定条件を以下に示す。
サンプリング位置:リップ部の第1の側面及び第2の側面に、それぞれ第1のエッジ及び第2のエッジと平行に、第1のエッジ及び第2のエッジとの距離が0.5mmである線
分を引いたと仮定したときに、線分の長さをL’とし、該線分上の一端側から1/8L’、1/2L’、7/8L’の点を各々、P0’、P1’、P2’とした。
該第1の側面及び該第2の側面の該P0’、該P1’及び該P2’の各々においてサンプリングされる試料を下記方法にて測定した。なお、サンプリングでは、ポリウレタンなどの部材をバイオカッターで切り取った。
装置:
・熱分解装置:商品名:EGA/PY-3030D、フロンティアラボ社製
・ガスクロマトグラフィー装置:TRACE1310ガスクロマトグラフ、サーモフィッシャーサイエンティフィック社製
・質量分析装置:ISQLT、サーモフィッシャーサイエンティフィック社製
・熱分解温度:500℃
・GCカラム:内径0.25mm×30m ステンレスキャピラリーカラム
・固定相 5%フェニルポリジメチルシロキサン
・昇温条件:50℃3分保持し、8℃/分で300℃まで昇温
・MS条件:質量数範囲 m/z10~650
・スキャン速度 1秒/スキャン
[Polyfunctional alcohol species, concentration measurement method]
Polyfunctional alcohols were detected by pyrolysis GC/MS (gas chromatography and mass spectrometry). Measurement conditions are shown below.
Sampling position: lines on the first and second sides of the lip, parallel to the first and second edges respectively, with a distance of 0.5 mm from the first and second edges 1/8L', 1/2L', and 7/8L' points from one end of the line segment are P0' and P1, respectively. ', P2'.
Samples sampled at each of the P0′, P1′ and P2′ of the first side and the second side were measured by the following method. In the sampling, members such as polyurethane were cut with a biocutter.
Device:
・Pyrolyzer: Product name: EGA/PY-3030D, manufactured by Frontier Lab ・Gas chromatography device: TRACE1310 gas chromatograph, manufactured by Thermo Fisher Scientific ・Mass spectrometer: IQLT, manufactured by Thermo Fisher Scientific ・Thermal decomposition temperature: 500°C
・GC column: 0.25 mm inner diameter × 30 m stainless steel capillary column ・Stationary phase 5% phenylpolydimethylsiloxane ・Temperature rising conditions: Hold at 50 ° C. for 3 minutes and heat up to 300 ° C. at 8 ° C./min ・ MS conditions: Mass range m/z 10-650
Scan speed 1 sec/scan

多官能アルコール種はGC/MSで定性した。定性した多官能アルコール種の既知濃度のGC分析での検量線を作成し、GCピーク面積比から定量を行った。そして、第1の側面及び第2の側面のそれぞれの該P0’、該P1’及び該P2’の各々の試料から得られた数値の算術平均値を、第1の側面及び第2の側面のそれぞれの多官能アルコール濃度とした。 Polyfunctional alcohol species were characterized by GC/MS. A calibration curve was prepared by GC analysis of known concentrations of the qualitative polyfunctional alcohol species, and quantification was performed from the GC peak area ratio. Then, the arithmetic mean value of the numerical values obtained from the samples of each of the P0', the P1' and the P2' of the first side and the second side is It was set as each polyfunctional alcohol concentration.

〔M1、M2及びM3の測定〕
サンプルを、ガスクロマトグラフ(GC)を通さずにイオン源に直接導入する直接試料導入法(DI法)を用いてM1~M3の測定を行った。
装置としては、イオントラップ型GC/MS(商品名:POLARIS Q、サーモフ
ィッシャーサイエンティフィック社製)を使用し、直接導入プローブとしては、ダイレクト・エクスポージャー・プローブ(Direct Exposure Probe、(DEP))を用いた。
リップ部の第1の側面及び第2の側面に、それぞれ第1のエッジ及び第2のエッジと平行に、第1のエッジ及び第2のエッジとの距離が0.5mmである線分を引いたと仮定したときに、線分の長さをL’とし、該線分上の一端側から1/8L’、1/2L’、7/8L’の点を各々、P0’、P1’、P2’とした。
該第1の側面及び該第2の側面の該P0’、該P1’及び該P2’の各々においてサンプリングされる試料を下記方法にて測定した。なお、サンプリングでは、ポリウレタンなどの部材をバイオカッターで切り取った。
該第1の側面及び該第2の側面の該P0’、該P1’及び該P2’の各々においてサンプリングされた試料約0.1μgをプローブの先端に位置するフィラメントに固定し、イオン化チャンバーの中に直接挿入した。その後、一定の昇温速度(約10℃/s)で室温から1000℃まで急速に加熱し、気化したガスを質量分析計により検出した。
[Measurement of M1, M2 and M3]
M1 to M3 were measured using the direct sample introduction method (DI method) in which the sample was directly introduced into the ion source without passing through a gas chromatograph (GC).
As an apparatus, an ion trap type GC/MS (trade name: POLARIS Q, manufactured by Thermo Fisher Scientific) was used, and a direct exposure probe (DEP) was used as a direct introduction probe. Using.
On the first side and the second side of the lip portion, line segments are drawn parallel to the first edge and the second edge, respectively, with a distance of 0.5 mm from the first edge and the second edge. , the length of a line segment is L', and points 1/8L', 1/2L', and 7/8L' from one end of the line segment are P0', P1', and P2, respectively. '.
Samples sampled at each of the P0′, P1′ and P2′ of the first side and the second side were measured by the following method. In sampling, members such as polyurethane were cut with a biocutter.
About 0.1 μg of the sample sampled at each of the P0′, P1′ and P2′ of the first side and the second side is fixed to a filament located at the tip of the probe and placed in an ionization chamber. inserted directly into the After that, it was rapidly heated from room temperature to 1000° C. at a constant heating rate (about 10° C./s), and the vaporized gas was detected by a mass spectrometer.

全てのイオンの検出量M1は得られたトータルイオンカレントサーモグラムにおいて全ピークの積分強度を合計したものとし、
3官能以上の多官能イソシアネートに由来するm/z値の抽出イオンサーモグラムのピークの積分強度の合計をM2としたときに、該M1及びM2の値を用いて、(M2/M1)を算出した。また、ジイソシアネートに由来するm/z値の抽出イオンサーモグラムのピークの積分強度の合計をM3としたときに、該M1及びM3の値を用いて、(M3/M1)を算出した。そして、第1の側面及び第2の側面のそれぞれのP0’、P1’及びP2’の各々の試料から得られた数値の算術平均値を、第1の側面及び第2の側面のそれぞ
れの(M2/M1)及び(M3/M1)の値とした。
The detected amount M1 of all ions is the sum of the integrated intensities of all peaks in the total ion current thermogram obtained,
(M2/M1) is calculated using the values of M1 and M2, where M2 is the sum of the integrated intensities of the peaks of the m/z value extracted ion thermogram derived from tri- or higher polyfunctional isocyanate. bottom. In addition, when the sum of the integrated intensities of the peaks of the extracted ion thermogram with m/z values derived from diisocyanate was defined as M3, (M3/M1) was calculated using the values of M1 and M3. Then, the arithmetic mean value of the numerical values obtained from each sample of P0', P1' and P2' of each of the first side and the second side is calculated for each of the first side and the second side ( M2/M1) and (M3/M1).

ここで、本実施例において、3官能以上の多官能イソシアネートとして使用した、TTIは、下記化学式(3)で示される構造を有する。そして、本評価にて得られた抽出イオンサーモグラムにおいては、m/zが366.5~367.5の位置にピークトップを有する、TTIの陽イオン化物に由来するピークが検出された。そこで、本実施例では当該ピークの積分強度をM2とした。

Figure 2023095727000006
Here, in this example, TTI used as a polyfunctional isocyanate having a functionality of 3 or more has a structure represented by the following chemical formula (3). In the extracted ion thermogram obtained in this evaluation, a peak derived from the cationized product of TTI having a peak top at m/z of 366.5 to 367.5 was detected. Therefore, in this example, the integrated intensity of the peak was defined as M2.
Figure 2023095727000006

なお、後述する他の実施例において、3官能以上の多官能イソシアネートとしてポリメリックMDIを用いて合成したポリウレタンからなる弾性部は、本評価にて得られた抽出イオンサーモグラムにおいては、上記化学式(1)’で示される構造のn=1を示すm/z値が380.5~381.5の範囲、n=2を示すm/z値が511.5~512.5の範囲、n=3を示すm/z値が642.5~643.5の範囲、及び、n=4を示すm/z値が773.5~774.5の各位置にピークトップを有する、ポリメリックMDIの陽イオン化物に由来するピークが検出された。そこで、当該実施例においては、当該各ピークの積分強度の合計をM2とした。 In other examples described later, the elastic portion made of polyurethane synthesized using polymeric MDI as a polyfunctional isocyanate having a functionality of 3 or more has the above chemical formula (1 )′ m/z value indicating n=1 in the range of 380.5 to 381.5, m/z value indicating n=2 in the range of 511.5 to 512.5, n=3 The m / z value range of 642.5 to 643.5, and the m / z value of n = 4 is 773.5 to 774.5. A peak originating from the substance was detected. Therefore, in this example, the sum of the integrated intensities of the respective peaks was defined as M2.

同様に、後述する実施例において、3官能以上の多官能イソシアネートとして用いたトリス(フェニルイソシアネート)チオホスフェート(TPTI)は、化学式(4)で示す構造を有する。そして、本評価にて得られた抽出イオンサーモグラムにおいては、m/zが464.5~465.5の位置にピークトップを有する、TPTIの陽イオン化物に由来するピークが検出された。そこで、当該実施例においては、当該ピークの積分強度をM2とした。

Figure 2023095727000007
Similarly, tris(phenylisocyanate)thiophosphate (TPTI) used as a polyfunctional isocyanate having a functionality of 3 or more in the examples described later has a structure represented by the chemical formula (4). In the extracted ion thermogram obtained in this evaluation, a peak derived from the cationized product of TPTI having a peak top at m/z of 464.5 to 465.5 was detected. Therefore, in this example, the integrated intensity of the peak was defined as M2.
Figure 2023095727000007

一方、ジイソシアネートである4,4’-MDIの場合、4,4’-MDIに由来する、上記化学式(2)で示される構造のm/zが249.5~250.5の範囲では、前記化学式(2)で示す構造が陽イオン化されて検出された。この構造に対応する抽出イオン
サーモグラムのピークの積分強度を(M3)とした。
On the other hand, in the case of 4,4'-MDI, which is a diisocyanate, when the m/z of the structure represented by the above chemical formula (2) derived from 4,4'-MDI is in the range of 249.5 to 250.5, the above The structure represented by the chemical formula (2) was cationized and detected. The peak integrated intensity of the extracted ion thermogram corresponding to this structure was defined as (M3).

〔弾性率の測定方法〕
SPMによる弾性率は、走査型プローブ顕微鏡(SPM)(商品名:MFP-3D-Origin、オックスフォード・インストゥルメンツ社製)を用いて、以下の方法で測定した。
まず、サンプルを以下のようにして調製した。得られたワイパーブレードについて、図7に示すように、第1の側面と先端面により形成される第1のエッジを設定し、第1のエッジと平行に、第1のエッジとの距離が10μmである、長さL1の第1の線分を引いたと仮定したときに、該線分上の一端側から1/8L、1/2L、7/8Lの各点P0、P1及びP2を重心とし、一辺が第1の線分と平行である2mm角の正方形の測定サンプルを3個切り出した。次いで、各測定サンプルから、クライオミクロトーム(UC-6(製品名)、ライカマイクロシステムズ社製)を用いて、P0、P1、P2を重心とし、一辺が第1の線分と平行な100μm角、厚みが1μmのポリウレタン薄片を-50℃の状態で切り出した。こうして3個の測定サンプルを調製した。得られた測定サンプルの各々を、平滑なシリコンウエハ上に載せ、室温25℃湿度50%の環境下に24時間放置した。
[Method for measuring elastic modulus]
The elastic modulus by SPM was measured by the following method using a scanning probe microscope (SPM) (trade name: MFP-3D-Origin, manufactured by Oxford Instruments).
First, samples were prepared as follows. For the obtained wiper blade, as shown in FIG. 7, a first edge formed by a first side surface and a tip surface was set, and a distance of 10 μm from the first edge was set in parallel with the first edge. Assuming that the first line segment of length L1 is drawn, the centers of gravity are points P0, P1 and P2 of 1/8L, 1/2L and 7/8L from one end side of the line segment. , three 2 mm square measurement samples having one side parallel to the first line segment were cut out. Next, from each measurement sample, using a cryomicrotome (UC-6 (product name), manufactured by Leica Microsystems), a 100 μm square with one side parallel to the first line segment with P0, P1, and P2 as the center of gravity, Polyurethane flakes with a thickness of 1 µm were cut at -50°C. Three measurement samples were thus prepared. Each of the obtained measurement samples was placed on a smooth silicon wafer and left in an environment of room temperature 25° C. and humidity 50% for 24 hours.

次に測定サンプルを載せたシリコンウエハをSPMステージにセットし、SPM観察した。なお、シリコン製のカンチレバー(商品名:OMCL-AC160、オリンパス社製、先端曲率半径:8nm)のバネ定数と比例定数は、あらかじめ本SPM装置搭載のサーマルノイズ法において以下であることを確認した(バネ定数:30.22nN/nm、比例定数:82.59nm/V)。
また、あらかじめカンチレバーのチューニングを実施し、カンチレバーの共振周波数を求めた(285KHz(1次)および1.60MHz(高次))。
SPMの測定モードはAM-FMモード、カンチレバーの自由振幅は3V、セットポイント振幅は2V(1次)および25mV(高次)とし、視野70μm×70μmのサイズにおいて、スキャン速度は1Hz、スキャン点数は縦256および横256の条件でスキャンを行い、位相像を取得した。なお、視野は、各測定サンプルのP0、P1及びP2が視野の中央に存在し、かつ、一辺が第1の線分と平行となる位置を選択した。
得られた位相像から、測定サンプルにおいて、フォースカーブ測定により弾性率測定を行う箇所を指定した。具体的には、図8及び図9に示したように、70μm×70μmの位相像における、P0、P1及びP2の各々の点を重心とする、一辺が第1の線分に平行な長さ70μmの辺であり、かつ、一辺が第1の線分に垂直に交わる長さ10μmの辺である長方形の領域の、縦横0.1μmピッチ(間隔)の70000点に相当する位置を測定箇所として指定した。
Next, the silicon wafer on which the measurement sample was placed was set on the SPM stage, and SPM observation was performed. The spring constant and proportionality constant of the silicon cantilever (trade name: OMCL-AC160, manufactured by Olympus, tip curvature radius: 8 nm) were confirmed in advance by the thermal noise method equipped with this SPM device to be as follows ( spring constant: 30.22 nN/nm, proportionality constant: 82.59 nm/V).
Also, the cantilever was tuned in advance, and the resonant frequencies of the cantilever were obtained (285 KHz (first order) and 1.60 MHz (higher order)).
The SPM measurement mode is AM-FM mode, the free amplitude of the cantilever is 3 V, the set point amplitude is 2 V (first order) and 25 mV (high order), the field of view is 70 μm × 70 μm, the scan speed is 1 Hz, and the number of scan points is A phase image was acquired by scanning under conditions of 256 vertical and 256 horizontal. The field of view was selected such that P0, P1 and P2 of each measurement sample existed in the center of the field of view and one side was parallel to the first line segment.
From the obtained phase image, a portion of the measurement sample to be subjected to elastic modulus measurement by force curve measurement was specified. Specifically, as shown in FIGS. 8 and 9, each point P0, P1, and P2 in the 70 μm×70 μm phase image is the center of gravity, and one side has a length parallel to the first line segment. Positions corresponding to 70000 points with a pitch of 0.1 μm in length and width in a rectangular region having sides of 70 μm and a length of 10 μm where one side perpendicularly intersects the first line segment are used as measurement points. specified.

その後、すべての点においてコンタクトモードでのフォースカーブ測定を1回ずつ行った。なお、フォースカーブの取得は、以下の条件で行った。フォースカーブ測定においては、カンチレバーの先端が試料表面に接触することによりたわみが一定値になったところで折り返すようカンチレバーの駆動源であるピエゾ素子を制御する。この際の折り返しポイントはトリガー値と呼ばれ、フォースカーブ開始時のディフレクション電圧から、どの程度電圧が増加したときにカンチレバーを折り返すかを表している。今回の測定においては、トリガー値を0.2Vに設定してフォースカーブ測定を行った。その他のフォースカーブ測定条件としては、待機状態にあるカンチレバーの先端位置からトリガー値においてカンチレバーが折り返すまでの距離を500nm、スキャン速度を1Hz(探針が1往復する速さ)とした。その後、得られたフォースカーブについて、1本ずつHertz理論に基づくフィッティングを行い、弾性率を算出した。なお、Hertz理論による弾性率(ヤング率)は、下記計算式(*1)によって算出される。 Thereafter, force curve measurement in contact mode was performed once at each point. Acquisition of the force curve was performed under the following conditions. In the force curve measurement, the piezo element, which is the driving source of the cantilever, is controlled so that the tip of the cantilever contacts the surface of the sample and bends at a constant value. The turning point at this time is called a trigger value, which indicates how much the voltage increases from the deflection voltage at the start of the force curve, at which the cantilever turns back. In this measurement, the trigger value was set to 0.2 V and the force curve was measured. As other force curve measurement conditions, the distance from the tip position of the cantilever in the standby state until the cantilever turns back at the trigger value is 500 nm, and the scanning speed is 1 Hz (the speed at which the probe reciprocates once). After that, fitting based on the Hertz theory was performed one by one on the obtained force curves to calculate the elastic modulus. The elastic modulus (Young's modulus) according to Hertz theory is calculated by the following formula (*1).

計算式(*1)
F=(4/3)E1/23/2
ここで、Fは、カンチレバーの折り返し時点におけるカンチレバーによってサンプルにえられた力、Eは複合弾性率、Rはカンチレバーの先端の曲率半径(8nm)、dは、カンチレバーの折り返し時点での試料の変形量である。
Formula (*1)
F=(4/3)E * R 1/2 d 3/2
where F is the force exerted on the sample by the cantilever at the point of folding of the cantilever, E * is the composite modulus of elasticity, R is the radius of curvature of the tip of the cantilever (8 nm), and d is the force exerted on the sample at the point of folding of the cantilever. is the amount of deformation.

そして、dは下記計算式(*2)から算出した。
計算式(*2)
d=Δz-Dで算出した。
Δzは、カンチレバーの先端が試料に接したときから折り返すまでのピエゾ素子の変位量であり、Dはカンチレバーの折り返し時点におけるカンチレバーの反り量である。そして、Dは、下記計算式(*3)から算出した。
Then, d was calculated from the following formula (*2).
Formula (*2)
Calculated by d=Δz−D.
Δz is the amount of displacement of the piezo element from when the tip of the cantilever touches the sample until it is folded, and D is the amount of warp of the cantilever at the point of folding of the cantilever. D was calculated from the following formula (*3).

計算式(*3)
D=α・ΔVdeflection
計算式(*3)において、αは、カンチレバーの比例定数(インボルス定数)、ΔVdeflectionは、カンチレバーの試料に接触し始めてから折り返し時点までのディフレクション電圧の変化量を表す。
Formula (*3)
D=α・ΔV deflection
In the formula (*3), α is the proportionality constant (Invols constant) of the cantilever, and ΔVdeflection is the amount of change in the deflection voltage from when the cantilever starts contacting the sample until it bends.

さらに、Fは、下記計算式(*4)で算出した。
計算式(*4)
F=κ・D
κは、カンチレバーのバネ定数である。
ΔVdeflection及びΔzは実測値であるため、計算式(*1)~(*4)より、計算式(*1)中のEを求めた。さらに、求める弾性率(ヤング率)Esは下記計算式(*5)から算出した。
Furthermore, F was calculated by the following formula (*4).
Formula (*4)
F=κ・D
κ is the spring constant of the cantilever.
Since ΔVdeflection and Δz are actually measured values, E * in formula (*1) was obtained from formulas (*1) to (*4). Furthermore, the desired elastic modulus (Young's modulus) Es was calculated from the following formula (*5).

計算式(*5)
1/E=[(1-Vs)/Es]-[(1-Vi)/Ei]
Vs:試料のポアソン比(本実施例では、0.33で固定);
Vi:カンチレバー先端のポアソン比(本実施例では、ケイ素の値を使用);
Ei:カンチレバー先端のヤング率(本実施例では、ケイ素の値を使用)。
Formula (*5)
1/E * =[(1−Vs 2 )/Es]−[(1−Vi 2 )/Ei]
Vs: Poisson's ratio of the sample (fixed at 0.33 in this example);
Vi: Poisson's ratio of the cantilever tip (in this example, the value for silicon is used);
Ei: Young's modulus of the cantilever tip (the value for silicon is used in this example).

P0、P1、P2の各々を重心とする、一辺が第1の線分に平行な長さ70μmの辺であり、かつ、一辺が第1の線分に垂直に交わる長さ10μmの辺である長方形の観察領域(3か所の10μm×70μmの観察領域)において、縦横0.1μmピッチ(間隔)で70000点の弾性率を測定した。そして、計210000点のフォースカーブから算出した弾性率の値の平均値を第1の側面の弾性率とした。
また、計210000点の弾性率から標準偏差を算出した。弾性率の値の平均値と標準偏差から下記式1により第1の側面の弾性率の変動係数を算出した。
式(1):変動係数(%)=標準偏差/弾性率の値の平均値×100
Each of P0, P1, and P2 is the center of gravity, one side is 70 μm in length parallel to the first line segment, and one side is 10 μm in length and perpendicularly intersects the first line segment. The elastic modulus was measured at 70,000 points at a pitch of 0.1 μm in length and width in a rectangular observation area (three observation areas of 10 μm×70 μm). Then, the average value of the elastic modulus values calculated from a total of 210,000 force curves was taken as the elastic modulus of the first side surface.
Moreover, the standard deviation was calculated from the elastic modulus of a total of 210000 points. The coefficient of variation of the elastic modulus of the first side surface was calculated from the average value and standard deviation of the elastic modulus values according to Equation 1 below.
Formula (1): coefficient of variation (%) = standard deviation / average value of elastic modulus x 100

第2の側面についても上記と同様にして、第2の側面の弾性率の値の平均値、及び、第2の側面の弾性率の変動係数を算出した。結果を表3に示す。 For the second side surface, the average value of the elastic modulus values of the second side surface and the coefficient of variation of the elastic modulus of the second side surface were calculated in the same manner as described above. Table 3 shows the results.

<水の払拭性能の評価>
日本産業規格(JIS)D5710:1998(自動車部品-ワイパーアーム及びワイパーブレード)に記載されている払拭性能試験の試験装置を用い、ワイパーブレードの払拭性の評価を行った。この試験は、バッキングブレードをワイパーブレードに装着した状態でワイパーブレードを取り付け、被清掃部材であるガラス面に水滴を霧吹きにより払拭面全体に塗布し、下記条件で清掃を行った。
ワイパーブレードを往路側(第1の側面がガラス面を払拭する方向)で1回払拭させた後のガラス面上の拭き残り状態を、払拭面に感水試験紙(商品名:感水試験紙20301)を接触させ確認した。感水試験紙は長辺長さ76mm短辺長さ52mmのものを用いた。払拭領域の払拭方向中央部の位置において、ワイパーブレード200の長手方向中央部をガラス面220にあてたときに、ワイパーブレード長手方向に感水試験紙の長辺がくるよう試験紙を接触させた(図11(a)のA)。
<Evaluation of water wiping performance>
The wiping performance of the wiper blade was evaluated using a wiping performance test apparatus described in Japanese Industrial Standards (JIS) D5710:1998 (automobile parts--wiper arm and wiper blade). In this test, the wiper blade was attached while the backing blade was attached to the wiper blade, water droplets were sprayed onto the glass surface, which is the member to be cleaned, over the entire wiped surface, and the cleaning was performed under the following conditions.
After wiping the wiper blade once on the forward side (the direction in which the first side wipes the glass surface), the unwiped state on the glass surface is measured with a water sensitivity test paper (trade name: water sensitivity test paper) on the wiping surface. 20301) was contacted and confirmed. A water sensitivity test paper having a long side length of 76 mm and a short side length of 52 mm was used. At the position of the central part of the wiping direction of the wiping area, when the longitudinal central part of the wiper blade 200 was applied to the glass surface 220, the test paper was brought into contact with the long side of the water sensitivity test paper in the longitudinal direction of the wiper blade. (A in FIG. 11(a)).

払拭面に接触させた感水試験紙をビデオマイクロスコープ(商品名:DIGITAL MICROSCOPE VHX-5000、キーエンス社製)及びズームレンズ(商品名:スイングヘッドズームレンズ VH-ZST、キーエンス社製)を用いて観察倍率50倍で観察した。観察箇所は、図11(b)に示すように感水試験紙の長辺側に8か所×短辺側に3か所の計24点とした。観察像より、水により変色していない部分の面積の割合((水により変色していない部分の面積)/倍率50倍での観察領域の面積)×100)を算出し、24か所の観察箇所の平均値(以下、水膜除去面積率(%)と称す)として算出した。 Water sensitivity test paper in contact with the wiped surface is measured using a video microscope (trade name: DIGITAL MICROSCOPE VHX-5000, manufactured by Keyence Corporation) and a zoom lens (trade name: swing head zoom lens VH-ZST, manufactured by Keyence Corporation). Observation was made at an observation magnification of 50 times. As shown in FIG. 11(b), observation points were 8 points on the long side of the water sensitivity test paper and 3 points on the short side, for a total of 24 points. From the observed image, the ratio of the area of the portion not discolored by water ((area of the portion not discolored by water)/area of observation area at 50x magnification) x 100) was calculated, and 24 observations were made. It was calculated as an average value of locations (hereinafter referred to as water film removal area ratio (%)).

同様に、復路側(第2の側面がガラス面を払拭する方向)で1回払拭させた後のガラス面上の拭き残り状態を、払拭面に感水試験紙を接触させ確認した。
算出した水膜除去面積率から下記評価基準により払拭性能の評価を実施した。この結果を初期の払拭性能とする初期評価の結果をワイパーブレードの払拭性能として表3に示す。
Similarly, after wiping once on the return side (the direction in which the second side wipes the glass surface), the unwiped state on the glass surface was checked by bringing a water sensitivity test paper into contact with the wiping surface.
Based on the calculated water film removal area ratio, the wiping performance was evaluated according to the following evaluation criteria. Using this result as the initial wiping performance, the initial evaluation results are shown in Table 3 as the wiping performance of the wiper blade.

また、上記と同様にして往路側と復路側について、それぞれ払拭領域の払拭方向中央において、図11(a)に示すようにワイパーブレード長手方向の内側から外側端部に向かって均等に5点に感水試験紙230を接触させ、同様に水膜除去面積率を算出した。往路と復路から各5点、計10点の水膜除去面積率から最大値と最小値の差分を算出し、平均値に対する割合(%)を払拭性能のばらつきとして評価し、下記評価基準により払拭性能ムラの評価を行った。 Further, in the same manner as described above, five points were evenly distributed from the inner side to the outer end in the longitudinal direction of the wiper blade at the center of the wiping direction of the wiping area on the forward and return sides, respectively, as shown in FIG. 11(a). A water sensitivity test paper 230 was brought into contact, and the water film removal area ratio was similarly calculated. Calculate the difference between the maximum value and the minimum value from the water film removal area ratio of 10 points in total, 5 points each from the forward trip and return trip, and evaluate the ratio (%) to the average value as the variation in wiping performance, and wipe according to the following evaluation criteria. Performance unevenness was evaluated.

〔払拭条件〕
払拭環境:温度20±5℃、湿度70%以上
判定時間:払拭後3秒後以内
ワイパーブレード長手長:700mm
ワイパーブレードに加える荷重:18N/m
ワイパーブレードの払拭往復速度:55回/分(Mゾーンにおいて、1.65m/秒)
水の塗布:ガラス全面に水滴を霧状に散布
[Wiping conditions]
Wiping environment: temperature 20 ± 5 ° C, humidity 70% or more Judgment time: within 3 seconds after wiping Wiper blade length: 700 mm
Load applied to wiper blade: 18N/m
Wiping reciprocating speed of wiper blade: 55 times/min (1.65 m/sec in M zone)
Application of water: Water droplets are sprayed on the entire surface of the glass in the form of a mist.

〔水払拭性能評価基準〕
ランクA:水膜除去面積率が95%以上
ランクB:水膜除去面積率が90%以上95%未満
ランクC:水膜除去面積率が85%以上90%未満
ランクD:水膜除去面積率が80%以上85%未満
ランクE:水膜除去面積率が50%未満
[Water wiping performance evaluation criteria]
Rank A: Water film removal area ratio is 95% or more Rank B: Water film removal area ratio is 90% or more and less than 95% Rank C: Water film removal area ratio is 85% or more and less than 90% Rank D: Water film removal area ratio is 80% or more and less than 85% Rank E: Water film removal area ratio is less than 50%

〔水払拭性能ムラ評価基準〕
ランクA:払拭性能のばらつきが3%未満
ランクB:払拭性能のばらつきが3%以上10%未満
ランクC:払拭性能のばらつきが10%以上20%未満
ランクD:払拭性能のばらつきが20%以上40%未満
ランクE:払拭性能のばらつきが40%以上
[Water wiping performance unevenness evaluation criteria]
Rank A: Variation in wiping performance is less than 3% Rank B: Variation in wiping performance is 3% or more and less than 10% Rank C: Variation in wiping performance is 10% or more and less than 20% Rank D: Variation in wiping performance is 20% or more Less than 40% Rank E: Variation in wiping performance is 40% or more

<油膜の払拭性能の評価>
日本産業規格(JIS)D5710:1998(自動車部品-ワイパーアーム及びワイパーブレード)に記載されている払拭性能試験の試験装置を用い、ワイパーブレードの払拭性の評価を行った。この試験は、ワイパーブレードを取り付け、被清掃部材であるガラス面に油膜を模した状態としてシリコーンオイル(商品名:KF-96-50cs、信越化学工業社製)を払拭面全体に塗布し、下記条件で清掃を行った。
ワイパーブレードを1往復させた後のガラス面上の拭き残り状態を清掃面の裏側より観察し、光沢ムラ、視界への影響を目視で確認した。結果を、ワイパーブレードにより払拭される面の面積に対するシリコーンオイル膜が除去された部分の面積の割合(以下、シリコーンオイル膜除去面積率(%)と称す)として算出した。
算出した油膜除去面積率から下記基準により払拭性能の評価を実施した。この結果を初期の払拭性能とする。結果をワイパーブレードの油膜の払拭性能として表3に示す。
<Evaluation of oil film wiping performance>
The wiping performance of the wiper blade was evaluated using a wiping performance test apparatus described in Japanese Industrial Standards (JIS) D5710:1998 (automobile parts--wiper arm and wiper blade). In this test, a wiper blade is attached, and silicone oil (trade name: KF-96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) is applied to the entire surface to be wiped in a state that simulates an oil film on the glass surface that is the member to be cleaned. Cleaned on condition.
After one reciprocation of the wiper blade, the unwiped state on the glass surface was observed from the back side of the cleaned surface, and the effects on gloss unevenness and visibility were visually confirmed. The results were calculated as the ratio of the area from which the silicone oil film was removed to the area of the surface wiped by the wiper blade (hereinafter referred to as silicone oil film removal area ratio (%)).
Based on the calculated oil film removal area ratio, the wiping performance was evaluated according to the following criteria. Let this result be the initial wiping performance. The results are shown in Table 3 as the oil film wiping performance of the wiper blade.

〔払拭条件〕
ワイパーブレードに加える荷重:18N/m
ワイパーブレードの払拭往復速度:55回/分(Mゾーンにおいて、1.65m/秒)
〔評価基準〕
ランクA:シリコーンオイル膜除去面積率が95%以上
ランクB:シリコーンオイル膜除去面積率が90%以上95%未満
ランクC:シリコーンオイル膜除去面積率が85%以上90%未満
ランクD:シリコーンオイル膜除去面積率が80%以上85%未満
ランクE:シリコーンオイル膜除去面積率が70%以上80%未満
ランクF:シリコーンオイル膜除去面積率が50%未満
[Wiping conditions]
Load applied to wiper blade: 18N/m
Wiping reciprocating speed of wiper blade: 55 times/min (1.65 m/sec in M zone)
〔Evaluation criteria〕
Rank A: Silicone oil film removal area ratio of 95% or more Rank B: Silicone oil film removal area ratio of 90% or more and less than 95% Rank C: Silicone oil film removal area ratio of 85% or more and less than 90% Rank D: Silicone oil Film-removed area ratio of 80% or more and less than 85% Rank E: Silicone oil film-removed area ratio of 70% or more and less than 80% Rank F: Silicone oil film-removed area ratio of less than 50%

〔実施例2~19〕
プレポリマー用の各種材料の種類とその使用量、及び硬化剤用の各種材料の種類とその使用量、ワイパー形状を表3~4に記載した通りとした以外は実施例1と同様にしてワイパーブレードを作製し、評価した。
[Examples 2 to 19]
A wiper was prepared in the same manner as in Example 1 except that the types and amounts of various materials for the prepolymer, the types and amounts of the various materials for the curing agent, and the shape of the wiper were as described in Tables 3 and 4. Blades were fabricated and evaluated.

使用した材料は以下の通りである。
MDI:4,4’-ジフェニルメタンジイソシアネート(商品名:ミリオネートMT、東ソー社製)(以下4,4’-MDIとも称し、表中では、単に「MDI」と記す)
TTI:トリフェニルメタン-4,4’,4’’-トリイソシアネート(商品名:ウルタイトスーパーCA、東邦化成工業社製)
TPTI:トリス(フェニルイソシアネート)チオホスフェート(商品名:ウルタイトスーパーCAII、東邦化成工業社製)
グリセリン:(東京化成工業社製)
TMP:トリメチロールプロパン(東京化成工業社製)
PEN:ペンタエリスリトール(東京化成工業社製)
MR200:ポリメリックMDI(商品名:ミリオネートMR-200、東ソー社製)
MR400:ポリメリックMDI(商品名:ミリオネートMR-400、東ソー株式会社製)
M-200:ポリメリックMDI(商品名:コスモネートM-200、三井化学社製)
PBA2500:数平均分子量2500のポリブチレンアジペートポリエステルポリオール(商品名:ニッポラン3027、東ソー社製)
PBA1000:ポリブチレンアジペートポリエステルポリオール(商品名:ニッポラン4009、東ソー社製)
PBA2000:数平均分子量2000のポリブチレンアジペートポリエステルポリオール(商品名:ニッポラン4010、東ソー社製)
PHA1000:ポリヘキシレンアジペートポリエステルポリオール(商品名:ニッポラン164、東ソー社製、 数平均分子量1000)
PHA2600:数平均分子量2600のポリヘキシレンアジペートポリエステルポリオール(商品名:ニッポラン136、東ソー社製)
PTG-2000SN:数平均分子量2000のポリテトラメチレンエーテルグリコール(商品名:PTG-2000SN、保土谷化学工業社製)
PTG1000SN:数平均分子量1000のポリテトラメチレンエーテルグリコール(商品名:PTG-1000SN、保土谷化学工業社製)
1,4-BD:1,4-ブタンジオール(東京化成工業社製)
Polycat46:(商品名、エアープロダクツジャパン社製)
No.25:N,N’-ジメチルヘキサノールアミン(商品名カオーライザーNo.25、花王社製)
RX5:2-[{2-(ジメチルアミノ)エチル}メチルアミノ]エタノール(商品名:TOYOCAT-RX5、東ソー社製)
The materials used are as follows.
MDI: 4,4'-diphenylmethane diisocyanate (trade name: Millionate MT, manufactured by Tosoh Corporation) (hereinafter also referred to as 4,4'-MDI, and simply referred to as "MDI" in the tables)
TTI: triphenylmethane-4,4′,4″-triisocyanate (trade name: Ultite Super CA, manufactured by Toho Chemical Industry Co., Ltd.)
TPTI: tris(phenylisocyanate) thiophosphate (trade name: Ultite Super CAII, manufactured by Toho Kasei Kogyo Co., Ltd.)
Glycerin: (manufactured by Tokyo Chemical Industry Co., Ltd.)
TMP: Trimethylolpropane (manufactured by Tokyo Chemical Industry Co., Ltd.)
PEN: Pentaerythritol (manufactured by Tokyo Chemical Industry Co., Ltd.)
MR200: Polymeric MDI (trade name: Millionate MR-200, manufactured by Tosoh Corporation)
MR400: Polymeric MDI (trade name: Millionate MR-400, manufactured by Tosoh Corporation)
M-200: Polymeric MDI (trade name: Cosmonate M-200, manufactured by Mitsui Chemicals, Inc.)
PBA2500: polybutylene adipate polyester polyol with a number average molecular weight of 2500 (trade name: Nippon Run 3027, manufactured by Tosoh Corporation)
PBA1000: polybutylene adipate polyester polyol (trade name: Nippon Run 4009, manufactured by Tosoh Corporation)
PBA2000: polybutylene adipate polyester polyol with a number average molecular weight of 2000 (trade name: Nippon Run 4010, manufactured by Tosoh Corporation)
PHA1000: polyhexylene adipate polyester polyol (trade name: Nippolan 164, manufactured by Tosoh Corporation, number average molecular weight 1000)
PHA2600: Polyhexylene adipate polyester polyol with a number average molecular weight of 2600 (trade name: Nipporan 136, manufactured by Tosoh Corporation)
PTG-2000SN: Polytetramethylene ether glycol with a number average molecular weight of 2000 (trade name: PTG-2000SN, manufactured by Hodogaya Chemical Co., Ltd.)
PTG1000SN: Polytetramethylene ether glycol with a number average molecular weight of 1000 (trade name: PTG-1000SN, manufactured by Hodogaya Chemical Co., Ltd.)
1,4-BD: 1,4-butanediol (manufactured by Tokyo Chemical Industry Co., Ltd.)
Polycat46: (trade name, manufactured by Air Products Japan)
No. 25: N,N'-dimethylhexanolamine (trade name Kaolizer No. 25, manufactured by Kao Corporation)
RX5: 2-[{2-(dimethylamino)ethyl}methylamino]ethanol (trade name: TOYOCAT-RX5, manufactured by Tosoh Corporation)

〔実施例20〕
実施例14と同様にして作製したワイパーブレードのリップ部の先端2mmを、温度80℃で溶解させた4,4’-MDIに90秒間浸漬した。その後、酢酸ブチルを浸したスポンジを用いて、当該ワイパーブレードの浸漬部分の表面に付着した4,4’-MDIを拭き取った後、温度100℃で30分加熱した。その後、温度23℃、相対湿度50%の環境下で24時間エージングし、リップ部の先端に硬化領域を形成した。こうして、本実施例に係るワイパーブレードを得た。このワイパーブレードを実施例1と同様に評価した。
[Example 20]
A 2 mm tip of the lip portion of a wiper blade fabricated in the same manner as in Example 14 was immersed in melted 4,4'-MDI at a temperature of 80° C. for 90 seconds. Thereafter, 4,4'-MDI adhering to the surface of the immersed portion of the wiper blade was wiped off using a sponge soaked with butyl acetate, and then heated at a temperature of 100°C for 30 minutes. After that, it was aged for 24 hours under an environment of a temperature of 23° C. and a relative humidity of 50% to form a hardened region at the tip of the lip portion. Thus, a wiper blade according to this example was obtained. This wiper blade was evaluated in the same manner as in Example 1.

〔実施例21〕
実施例19と同様にして作製したワイパーブレードを実施例20と同様にリップ部の先端に硬化領域を形成した。こうして、本実施例に係るワイパーブレードを作製した。このワイパーブレードを実施例1と同様にして評価した。
[Example 21]
A wiper blade manufactured in the same manner as in Example 19 was formed with a hardened region at the tip of the lip portion in the same manner as in Example 20. Thus, a wiper blade according to this example was produced. This wiper blade was evaluated in the same manner as in Example 1.

〔実施例22〕
実施例18と同様にして作製したワイパーブレードのリップ部の先端2mmを、温度80℃で溶解させた4,4’-MDIに90秒間浸漬した。その後、酢酸ブチルを浸したスポンジを用いて、当該ワイパーブレードの浸漬部分の表面に付着した4,4’-MDIを拭き取った。その後、温度23℃、相対湿度50%の環境下で24時間エージングし、リップ部の先端に硬化領域を形成した。こうして、本実施例に係るワイパーブレードを作製した。このワイパーブレードを実施例1と同様にして評価した。
[Example 22]
A 2 mm tip of the lip portion of the wiper blade produced in the same manner as in Example 18 was immersed in 4,4′-MDI melted at 80° C. for 90 seconds. Then, 4,4'-MDI adhering to the surface of the soaked portion of the wiper blade was wiped off using a sponge soaked with butyl acetate. After that, it was aged for 24 hours under an environment of a temperature of 23° C. and a relative humidity of 50% to form a hardened region at the tip of the lip portion. Thus, a wiper blade according to this example was produced. This wiper blade was evaluated in the same manner as in Example 1.

〔実施例23〕
実施例19と同様にしてワイパーブレードを作製した。次いで、このワイパーブレードのリップ部に対して、紫外線積算光量が492mJ/cmとなるように紫外線を照射して、本実施例に係るワイパーブレードを得た。なお、紫外線の光源としては、波長254nmに最大発光波長ピークを有する低圧水銀オゾンレスランプ(東芝ライテック社製)を用いた。このワイパーブレードを実施例1と同様に評価した。
[Example 23]
A wiper blade was produced in the same manner as in Example 19. Next, the lip portion of the wiper blade was irradiated with ultraviolet light so that the integrated ultraviolet light amount was 492 mJ/cm 2 , thereby obtaining the wiper blade according to the present example. A low-pressure mercury ozoneless lamp (manufactured by Toshiba Lighting & Technology Co., Ltd.) having a maximum emission wavelength peak at a wavelength of 254 nm was used as the ultraviolet light source. This wiper blade was evaluated in the same manner as in Example 1.

〔実施例24〕
実施例13と同様にしてワイパーブレードを作製した。次いで、このワイパーブレードのリップ部に対して、紫外線積算光量が1968mJ/cmとなるように紫外線を照射して、本実施例に係るワイパーブレードを得た。なお、紫外線の光源としては、波長254nmに最大発光波長ピークを有する低圧水銀オゾンレスランプ(東芝ライテック社製)を用いた。このワイパーブレードを実施例1と同様に評価した。
[Example 24]
A wiper blade was produced in the same manner as in Example 13. Next, the lip portion of the wiper blade was irradiated with ultraviolet light so that the integrated ultraviolet light amount was 1968 mJ/cm 2 , thereby obtaining the wiper blade according to the present example. A low-pressure mercury ozoneless lamp (manufactured by Toshiba Lighting & Technology Co., Ltd.) having a maximum emission wavelength peak at a wavelength of 254 nm was used as the ultraviolet light source. This wiper blade was evaluated in the same manner as in Example 1.

〔実施例25〕
実施例18と同様にしてワイパーブレードを作製した。次いで、このワイパーブレードのリップ部に対して、紫外線積算光量が3936mJ/cmとなるように紫外線を照射して、本実施例に係るワイパーブレードを得た。なお、紫外線の光源としては、波長254nmに最大発光波長ピークを有する低圧水銀オゾンレスランプ(東芝ライテック社製)を用いた。このワイパーブレードを実施例1と同様に評価した。
[Example 25]
A wiper blade was produced in the same manner as in Example 18. Next, the lip portion of the wiper blade was irradiated with ultraviolet light so that the integrated ultraviolet light amount was 3936 mJ/cm 2 , thereby obtaining the wiper blade according to the present example. A low-pressure mercury ozoneless lamp (manufactured by Toshiba Lighting & Technology Co., Ltd.) having a maximum emission wavelength peak at a wavelength of 254 nm was used as the ultraviolet light source. This wiper blade was evaluated in the same manner as in Example 1.

〔実施例26〕
アクリロニトリルブタジエンゴム(以下NBRと称す)(商品名:JSR NBR N220S、JSR社製)100質量部に対し、カーボンブラック(商品名:トーカブラック#7360SB、東海カーボン社製)を75.0質量部、酸化亜鉛(商品名:亜鉛華2種、堺化学工業社製)を5.0質量部、ステアリン酸亜鉛(商品名:SZ-2000、堺化学工業社製)を1.0質量部加えて、50℃に調節した密閉型ミキサーにて15分間混練した。
これに、加硫剤として硫黄を2.6質量部及びテトラベンジルチウラムスルフィド(TBzTD)(商品名:パーカシットTBzTD、フレキンス社製)を4.5質量部添加した。次いで、温度25℃に冷却した二本ロール機にて10分間混練して、ゴム組成物を得た。得られたゴム組成物をワイパーブレード用成形金型内に入れ、温度170℃で20分間加熱して加硫させた。その後に脱型して、本実施例に係るワイパーブレードを得た。得られたワイパーブレードを実施例1と同様に評価した。
[Example 26]
Acrylonitrile butadiene rubber (hereinafter referred to as NBR) (trade name: JSR NBR N220S, manufactured by JSR) is 100 parts by mass, and carbon black (trade name: Toka Black #7360SB, manufactured by Tokai Carbon Co., Ltd.) is added in an amount of 75.0 parts by mass. Add 5.0 parts by mass of zinc oxide (trade name: zinc oxide 2, manufactured by Sakai Chemical Industry Co., Ltd.) and 1.0 part by mass of zinc stearate (trade name: SZ-2000, manufactured by Sakai Chemical Industry Co., Ltd.), The mixture was kneaded for 15 minutes with a closed mixer adjusted to 50°C.
To this, 2.6 parts by mass of sulfur and 4.5 parts by mass of tetrabenzylthiuram sulfide (TBzTD) (trade name: Perkacit TBzTD, manufactured by Flexinth) were added as vulcanizing agents. Then, the mixture was kneaded for 10 minutes with a two-roll machine cooled to 25° C. to obtain a rubber composition. The obtained rubber composition was placed in a wiper blade molding die and vulcanized by heating at 170° C. for 20 minutes. After that, the mold was removed to obtain a wiper blade according to this example. The obtained wiper blade was evaluated in the same manner as in Example 1.

〔比較例1〕
天然ゴム100質量部に対し、カーボンブラック(商品名:トーカブラック#7360SB、東海カーボン社製)を50.0質量部、酸化亜鉛(商品名:亜鉛華2種、堺化学工業社製)を5.0質量部、ステアリン酸亜鉛(商品名:SZ-2000、堺化学工業社製)を1.0質量部、炭酸カルシウム(商品名:ナノックス#30、丸尾カルシウム社製)を25質量部加えて、50℃に調節した密閉型ミキサーにて15分間混練した。
これに、加硫剤として硫黄を1.2質量部及びテトラベンジルチウラムスルフィド(TBzTD)(商品名:パーカシットTBzTD、フレキンス社製)を4.5質量部添加した。次いで、温度25℃に冷却した二本ロール機にて10分間混練して、ゴム組成物を得た。得られたゴム組成物をワイパーブレード用成形金型内に入れ、温度170℃で20分間加熱して加硫させた。その後に脱型して、本比較例に係るワイパーブレードを得た。得られたワイパーブレードを実施例1と同様に評価した。
[Comparative Example 1]
To 100 parts by mass of natural rubber, 50.0 parts by mass of carbon black (trade name: Toka Black #7360SB, manufactured by Tokai Carbon Co., Ltd.) and 5 parts of zinc oxide (trade name: Type 2 zinc oxide, manufactured by Sakai Chemical Industry Co., Ltd.) 0 part by mass, 1.0 part by mass of zinc stearate (trade name: SZ-2000, manufactured by Sakai Chemical Industry Co., Ltd.), and 25 parts by mass of calcium carbonate (trade name: Nanox #30, manufactured by Maruo Calcium Co., Ltd.) , and kneaded for 15 minutes in a closed type mixer adjusted to 50°C.
To this, 1.2 parts by mass of sulfur and 4.5 parts by mass of tetrabenzylthiuram sulfide (TBzTD) (trade name: Perkacit TBzTD, manufactured by Flexinth) were added as vulcanizing agents. Then, the mixture was kneaded for 10 minutes with a two-roll machine cooled to 25° C. to obtain a rubber composition. The obtained rubber composition was placed in a wiper blade molding die and vulcanized by heating at a temperature of 170° C. for 20 minutes. After that, the mold was removed to obtain a wiper blade according to this comparative example. The obtained wiper blade was evaluated in the same manner as in Example 1.

〔比較例2〕
比較例1と同様にして得たゴム組成物を使用し、ワイパー形状を表6に記載した通りとした以外は比較例1と同様にしてワイパーブレードを作製し、評価した。
比較例1と比較し、マクロな接触姿勢は立っているものの、ミクロな領域では変形が大きくなり、接触幅が増大しなす角θも小さくなっていた。そのため、性能の向上も見られなかった。
[Comparative Example 2]
A wiper blade was produced and evaluated in the same manner as in Comparative Example 1 except that a rubber composition obtained in the same manner as in Comparative Example 1 was used and the shape of the wiper was changed as shown in Table 6.
Compared to Comparative Example 1, although the macroscopic contact posture was upright, deformation increased in the microscopic region, and the contact width increased and the angle θ formed also decreased. Therefore, no improvement in performance was observed.

〔比較例3~4〕
実施例26と同様にして得たゴム組成物を使用し、ワイパー形状を表6に記載した通りとした以外は比較例1と同様にしてワイパーブレードを作製し、評価した。
比較例3に関し払拭時にビビリが確認され、それに伴い水や油膜の波上の漏れが確認された。
比較例4に関し払拭時に水や油膜により浮きが発生し、それに伴い漏れが確認された。
[Comparative Examples 3-4]
A wiper blade was produced and evaluated in the same manner as in Comparative Example 1 except that the rubber composition obtained in the same manner as in Example 26 was used and the shape of the wiper was changed as shown in Table 6.
Regarding Comparative Example 3, chattering was confirmed during wiping, and along with this, leakage of water or oil film on waves was confirmed.
As for Comparative Example 4, floating occurred due to water or oil film during wiping, and leakage was confirmed accordingly.

各実施例及び比較例に係るワイパーブレードの評価結果を表3~表6に示す。

Figure 2023095727000008

表3~6中、「往路当接姿勢」は、第1の側面側を評価したものであり、「復路当接姿勢」は第2の側面側を評価したものである。 Tables 3 to 6 show the evaluation results of the wiper blades according to each example and comparative example.
Figure 2023095727000008

In Tables 3 to 6, the "outward contact posture" is the evaluation of the first side surface, and the "return contact posture" is the evaluation of the second side surface.

Figure 2023095727000009
Figure 2023095727000009

Figure 2023095727000010
Figure 2023095727000010

Figure 2023095727000011
Figure 2023095727000011

1:ブレード支持部、2:ネック、3:リップ部、4:テーパー部、5:第1の側面、6:第2の側面、7:先端面、8:第1のエッジ、9:第2のエッジ、10:被清掃部材、11:第1の線分、12:観察領域

1: blade support portion, 2: neck, 3: lip portion, 4: taper portion, 5: first side surface, 6: second side surface, 7: tip surface, 8: first edge, 9: second , 10: member to be cleaned, 11: first line segment, 12: observation area

Claims (17)

ウインドシールドのワイパー装置であって、
該ワイパー装置は、ワイパーアームと該ワイパーアームに装着されたワイパーブレードとを具備し、
該ワイパーブレードは、ブレードラバーと該ブレードラバーを支持するブレードステーを有し、
該ブレードラバーは、該ブレードラバーの該ブレードステーへの取り付け部である基部と、リップ部と、該リップ部を該基部に揺動可能に連結しているネック部と、を有し、
該リップ部の先端の少なくとも一部は該ウインドシールドとの接触部を構成し、
該ワイパーアームのアーム押さえ力を18N/mとして、該ワイパーブレードの該リップ部をガラス平板の第1の表面に当接させ、該ワイパーブレードを速度1.65m/秒にて、該ガラス平板の該第1の表面の第1の地点P1から第2の地点P2に向かうA方向に、該ブレードラバーの長手方向と直交する方向に50cm移動させ、停止させた状態において、
該リップ部と該ガラス平板との接触部を該ガラス平板の該第1の表面とは反対側の第2の表面側から観察し、該接触部の該ブレードラバーの長手方向と直交する方向の幅を当接幅Aとしたとき、該当接幅Aが、1.0μm以上20.0μm以下であり、かつ、
該ブレードラバーを該ブレードラバーの長手方向の側面から光学顕微鏡を用いて倍率200倍で観察したとき、
該リップ部と該ガラス平板との該接触部のうち、該P1から最も遠い部位を点Q1とし、該点Q1から該A方向に向かって200μmの位置において該ガラス平板の該第1の表面に対して垂線をひき、該垂線の、該リップ部との最初の交点を点Q2としたとき、該点Q1と該点Q2とを結ぶ直線と該ガラス平板の該第1の表面とがなす角θが、20°以上80°以下である、ことを特徴とするワイパー装置。
A windshield wiper device comprising:
The wiper device comprises a wiper arm and a wiper blade attached to the wiper arm,
The wiper blade has a blade rubber and a blade stay that supports the blade rubber,
The blade rubber has a base portion, which is an attachment portion of the blade rubber to the blade stay, a lip portion, and a neck portion which pivotally connects the lip portion to the base portion,
at least part of the tip of the lip portion forms a contact portion with the windshield;
With the arm pressing force of the wiper arm set to 18 N/m, the lip portion of the wiper blade is brought into contact with the first surface of the glass plate, and the wiper blade is moved at a speed of 1.65 m/sec to remove the glass plate. In the A direction from the first point P1 to the second point P2 on the first surface, the blade rubber is moved 50 cm in a direction perpendicular to the longitudinal direction of the blade rubber and stopped.
The contact portion between the lip portion and the glass flat plate is observed from the second surface side opposite to the first surface of the glass flat plate, and the direction perpendicular to the longitudinal direction of the blade rubber of the contact portion is observed. When the width is the contact width A, the contact width A is 1.0 μm or more and 20.0 μm or less, and
When the blade rubber is observed from the longitudinal side of the blade rubber using an optical microscope at a magnification of 200,
In the contact portion between the lip portion and the glass flat plate, the farthest portion from the P1 is defined as a point Q1, and at a position 200 μm from the point Q1 toward the A direction, the first surface of the glass flat plate When a perpendicular line is drawn against the lip portion and the first intersection point of the perpendicular line with the lip portion is a point Q2, the angle formed by the straight line connecting the point Q1 and the point Q2 and the first surface of the glass flat plate A wiper device characterized in that θ is 20° or more and 80° or less.
前記当接幅Aの標準偏差が、6.00μm以下である請求項1に記載のワイパー装置。 2. A wiper device according to claim 1, wherein the standard deviation of said contact width A is 6.00 [mu]m or less. 前記ワイパーアームのアーム押さえ力を10N/mとして、前記ワイパーブレードの前記リップ部を前記ガラス平板の第1の表面に当接させ、前記ワイパーブレードを速度1.65m/秒にて、前記ガラス平板の第1の表面の第1の地点P1から第2の地点P2に向かうA方向に、前記ブレードラバーの長手方向と直交する方向に50cm移動させ、停止させた状態において、
前記リップ部と前記ガラス平板との接触部をガラス平板の第1の表面とは反対側の第2の表面側から観察し、該接触部の前記ブレードラバーの長手方向と直交する方向の幅を、当接幅Bとしたとき、
前記当接幅A及び該当接幅Bから、以下の式(A)により算出される当接幅の荷重依存性が、0.01μm~0.60μmである請求項1又は2に記載のワイパー装置。
当接幅の荷重依存性(μm/(N/m))
=(当接幅A(μm)-当接幅B(μm))/(荷重18(N/m)-荷重10(N/m)) ・・・(A)
With the arm pressing force of the wiper arm set to 10 N/m, the lip portion of the wiper blade is brought into contact with the first surface of the glass plate, and the wiper blade is moved at a speed of 1.65 m/sec to move the glass plate. 50 cm in a direction perpendicular to the longitudinal direction of the blade rubber in the A direction from the first point P1 to the second point P2 on the first surface of the blade rubber, and in a stopped state,
The contact portion between the lip portion and the glass plate is observed from the second surface side opposite to the first surface of the glass plate, and the width of the contact portion in the direction orthogonal to the longitudinal direction of the blade rubber is measured. , the contact width B,
3. The wiper device according to claim 1, wherein the load dependency of the contact width calculated from the contact width A and the corresponding contact width B by the following formula (A) is 0.01 μm to 0.60 μm. .
Contact width load dependence (μm/(N/m))
= (contact width A (μm)−contact width B (μm))/(load 18 (N/m)−load 10 (N/m)) (A)
前記ワイパーアームのアーム押さえ力を18N/mとして、前記ワイパーブレードの前記リップ部を前記ガラス平板の第1の表面に当接させ、前記ワイパーブレードを速度0.60m/秒にて、前記ガラス平板の第1の表面の第1の地点P1から第2の地点P2に向かうA方向に、前記ブレードラバーの長手方向と直交する方向に50cm移動させ、停止させた状態において、
前記ブレードラバーを前記ブレードラバーの長手方向の側面から光学顕微鏡を用いて倍率200倍で観察したとき、
前記リップ部と前記ガラス平板との接触部のうち、該P1から最も遠い部位を点Q1とし
、該点Q1から該A方向に向かって200μmの位置において前記ガラス平板の第1の表面に対して垂線をひき、垂線の、リップ部との最初の交点を点Q2としたとき、点Q1と点Q2とを結ぶ直線とガラス平板の第1の表面とがなす角をなす角θ´とする。
前記なす角θ及び該なす角θ´から、以下の式(B)により算出されるなす角θの払拭速度依存性が、0.2%~18.5%である請求項1~3のいずれか一項に記載のワイパー装置。
なす角θの払拭速度依存性(%)=
(なす角θ´-なす角θ)/なす角θ×100 ・・・(B)
With the arm pressing force of the wiper arm set to 18 N/m, the lip portion of the wiper blade is brought into contact with the first surface of the glass flat plate, and the wiper blade is moved at a speed of 0.60 m/sec to move the glass flat plate. 50 cm in a direction perpendicular to the longitudinal direction of the blade rubber in the A direction from the first point P1 to the second point P2 on the first surface of the blade rubber, and in a stopped state,
When the blade rubber is observed from the longitudinal side of the blade rubber using an optical microscope at a magnification of 200 times,
In the contact portion between the lip portion and the glass flat plate, the farthest portion from the P1 is defined as a point Q1. When a perpendicular is drawn and the first intersection of the perpendicular with the lip portion is assumed to be point Q2, the angle formed by the straight line connecting points Q1 and Q2 and the first surface of the glass flat plate is defined as θ'.
The wiping speed dependency of the formed angle θ calculated from the formed angle θ and the formed angle θ′ by the following formula (B) is 0.2% to 18.5%. or a wiper device according to claim 1.
Wiping speed dependence (%) =
(Angle θ′−Angle θ)/Angle θ×100 (B)
前記リップ部は、前記リップ部の前記ネック部側の端部に、前記ネック部よりも側方に伸び出した肩部を備え
ブレードラバーの長手方向に垂直な断面における前記ネック部の長さNLに対する該肩部の長さSLの比(SL/NL)が、0.37~9.00である請求項1~4のいずれか一項に記載のワイパー装置。
The lip portion has a shoulder portion extending laterally from the neck portion at the end of the lip portion on the neck portion side, and the neck portion length NL in a cross section perpendicular to the longitudinal direction of the blade rubber. A wiper device according to any one of claims 1 to 4, wherein the ratio (SL/NL) of the length SL of the shoulder portion to the length SL is 0.37 to 9.00.
引張試験機による前記リップ部の先端部分の50%伸長時の引張応力が、1.8MPa~20.0MPaである請求項1~5のいずれか一項に記載のワイパー装置。 The wiper device according to any one of claims 1 to 5, wherein the tensile stress when the tip portion of the lip portion is stretched by 50% by a tensile tester is 1.8 MPa to 20.0 MPa. 前記リップ部は、前記ブレードラバーの長手方向に直交する方向の断面が、前記基部に近い側から前記基部から離れる方向に向かう幅が漸減するテーパー部を有し、
前記リップ部は、
該テーパー部から連なる第1の側面及び第2の側面と、
該第1の側面及び該第2の側面と共に、該リップ部の前記基部から最も離れた側に第1のエッジ及び第2のエッジを構成する先端面と、を有し、
該第1の側面に、該第1のエッジと平行に、該第1のエッジからの距離が10μmである第1の線分を引いたと仮定したとき、
該第1の線分の長さをL1とし、
該第1の線分上の一端側から(1/8)L1、(1/2)L1、(7/8)L1の点を各々、P0、P1、P2とし、
該第1の側面の、該P0、該P1及び該P2の各々の点を重心とする、一辺が該第1の線分に平行な長さ70μmの辺であり、かつ、一辺が該第1の線分に垂直に交わる長さ10μmの辺である長方形の観察領域の3つの各々について、0.1μmピッチで各70000点の該第1の側面の弾性率を、走査型プローブ顕微鏡を用いて測定したときに得られる計210000個の弾性率の値の平均値が15.0MPa~470.0MPaであり、
該第2の側面に、該第2のエッジと平行に、該第2のエッジからの距離が10μmである第2の線分を引いたと仮定したとき、
該第2の線分の長さをL2とし、
該第2の線分上の一端側から(1/8)L2、(1/2)L2、(7/8)L2の点を各々、P3、P4、P5とし、
該第2の側面の、該P3、該P4及び該P5の各々の点を重心とする、一辺が該第2の線分に平行な長さ70μmの辺であり、かつ、一辺が該第2の線分に垂直に交わる長さ10μmの辺である長方形の観察領域の3つの各々について0.1μmピッチで各70000点の該第2の側面の弾性率を、走査型プローブ顕微鏡を用いて測定したときに得られる計210000個の弾性率の値の平均値が15.0MPa~470.0MPaである
請求項1~6のいずれか一項に記載のワイパー装置。
The lip portion has a tapered portion in which a cross section of the blade rubber in a direction orthogonal to the longitudinal direction has a width gradually decreasing in a direction away from the base portion from a side close to the base portion,
The lip portion
a first side surface and a second side surface contiguous from the tapered portion;
a tip surface forming a first edge and a second edge on a side of the lip portion farthest from the base portion together with the first side surface and the second side surface;
Assuming that a first line segment is drawn on the first side surface parallel to the first edge and the distance from the first edge is 10 μm,
Let the length of the first line segment be L1,
(1/8) L1, (1/2) L1, and (7/8) L1 points from one end side on the first line segment are P0, P1, and P2, respectively;
The center of gravity of each point of the P0, the P1, and the P2 of the first side surface is a side having a length of 70 μm parallel to the first line segment, and one side is the first side Using a scanning probe microscope, the elastic modulus of each 70000 points on the first side at a pitch of 0.1 μm for each of the three rectangular observation areas having sides of 10 μm in length perpendicular to the line segment of The average value of a total of 210,000 elastic modulus values obtained when measured is 15.0 MPa to 470.0 MPa,
Assuming that a second line segment is drawn on the second side surface parallel to the second edge and the distance from the second edge is 10 μm,
Let the length of the second line segment be L2,
(1/8) L2, (1/2) L2, and (7/8) L2 points from one end side on the second line segment are P3, P4, and P5, respectively;
The center of gravity of each of the points P3, P4, and P5 of the second side surface is 70 μm in length parallel to the second line segment, and the second side Measure the elastic modulus of each 70,000 points of the second side at a pitch of 0.1 μm for each of three rectangular observation areas having sides of 10 μm in length perpendicular to the line segment of , using a scanning probe microscope. The wiper device according to any one of claims 1 to 6, wherein an average value of a total of 210,000 elastic modulus values obtained when the wiper is 15.0 MPa to 470.0 MPa.
前記第1の側面の弾性率の測定において、
前記弾性率の値の平均値が、32.0MPa以上62.0MPa以下であり、
前記第2の側面の弾性率の測定において、
前記弾性率の値の平均値が、32.0MPa以上62.0MPa以下である請求項7に
記載のワイパー装置。
In measuring the elastic modulus of the first side,
The average value of the elastic modulus values is 32.0 MPa or more and 62.0 MPa or less,
In measuring the elastic modulus of the second side,
The wiper device according to claim 7, wherein the average value of the elastic modulus values is 32.0 MPa or more and 62.0 MPa or less.
前記第1の側面の弾性率の測定において、
前記弾性率の変動係数が、17.6%以下であり、
前記第2の側面の弾性率の測定において、
前記弾性率の変動係数が、17.6%以下である請求項7又は8に記載のワイパー装置。
In measuring the elastic modulus of the first side,
The coefficient of variation of the elastic modulus is 17.6% or less,
In measuring the elastic modulus of the second side,
A wiper device according to claim 7 or 8, wherein the coefficient of variation of said elastic modulus is 17.6% or less.
前記第1の側面の弾性率の測定において、
前記弾性率の変動係数が、6.0%以下であり、
前記第2の側面の弾性率の測定において、
前記弾性率の変動係数が、6.0%以下である請求項7~9のいずれか一項に記載のワイパー装置。
In measuring the elastic modulus of the first side,
The coefficient of variation of the elastic modulus is 6.0% or less,
In measuring the elastic modulus of the second side,
The wiper device according to any one of claims 7 to 9, wherein the coefficient of variation of the elastic modulus is 6.0% or less.
前記リップ部は、ポリウレタンを含有し、
該ポリウレタンは、3官能以上の多官能アルコールを含むアルコール、及び、3官能以上の多官能イソシアネートを含むイソシアネート化合物の少なくとも一方を含む原料組成物の反応物を含む、請求項1~9のいずれか一項に記載のワイパー装置。
The lip portion contains polyurethane,
10. The polyurethane comprises a reactant of a raw material composition containing at least one of an alcohol containing a tri- or higher polyfunctional alcohol and an isocyanate compound containing a tri- or higher polyfunctional isocyanate. A wiper device according to claim 1.
前記アルコールが、更にジオールを含む請求項11に記載のワイパー装置。 A wiper device according to claim 11, wherein said alcohol further comprises a diol. 前記イソシアネート化合物が、更にジイソシアネートを含む請求項11又は12に記載のワイパー装置。 A wiper device according to claim 11 or 12, wherein said isocyanate compound further comprises a diisocyanate. 前記リップ部は、前記ブレードラバーの長手方向に直交する方向の断面が、前記基部に近い側から前記基部から離れる方向に向かう幅が漸減するテーパー部を有し、
前記リップ部は、
該テーパー部を構成する第1の側面及び第2の側面と、
該第1の側面及び該第2の側面と共に、該リップ部の前記基部から最も離れた側に第1のエッジ及び第2のエッジを構成する先端面と、を有し、
前記リップ部の該第1の側面及び該第2の側面に、それぞれ該第1のエッジ及び該第2のエッジと平行に、該第1のエッジ及び前記第2のエッジとの距離が0.5mmである線分を引いたと仮定したときに、線分の長さをL’とし、該線分上の一端側から1/8L’、1/2L’、7/8L’の点を各々、P0’、P1’、P2’とし、
該第1の側面及び該第2の側面の該P0’、該P1’及び該P2’の各々においてサンプリングされる試料を、イオン化室内で加熱気化させ、試料分子をイオン化する直接試料導入方式の質量分析計を用いて、昇温速度10℃/s、1000℃まで加熱したときに得られる、
全てのイオンの検出量をM1とし、
前記3官能以上の多官能イソシアネートに由来するm/z値の範囲に対応する抽出イオンサーモグラムのピークの積分強度をM2とし、
前記ジイソシアネートに由来するm/z値の範囲に対応する抽出イオンサーモグラムのピークの積分強度をM3としたときに、
該第1の側面において、M2/M1が0.0010~0.0150であり、M3/M1が0.0200~0.1100であり、
該第2の側面において、M2/M1が0.0010~0.0150であり、M3/M1が0.0200~0.1100である請求項13に記載のワイパー装置。
The lip portion has a tapered portion in which a cross section of the blade rubber in a direction orthogonal to the longitudinal direction has a width gradually decreasing in a direction away from the base portion from a side close to the base portion,
The lip portion
a first side surface and a second side surface that constitute the tapered portion;
a tip surface forming a first edge and a second edge on a side of the lip portion farthest from the base portion together with the first side surface and the second side surface;
On the first side and the second side of the lip portion, parallel to the first edge and the second edge respectively, the distance between the first edge and the second edge is 0.0. Assuming that a line segment of 5 mm is drawn, the length of the line segment is L ', and the points of 1/8L', 1/2L', and 7/8L' from one end side on the line segment are respectively, Let P0′, P1′, and P2′ be
The mass of the direct sample introduction system in which the sample sampled at each of the P0′, P1′ and P2′ of the first side and the second side is heated and vaporized in the ionization chamber to ionize the sample molecules. Obtained when heated to 1000 ° C. at a heating rate of 10 ° C./s using an analyzer,
Let the detected amount of all ions be M1,
The integrated intensity of the peak of the extracted ion thermogram corresponding to the m / z value range derived from the trifunctional or higher polyfunctional isocyanate is M2,
When the integrated intensity of the peak of the extracted ion thermogram corresponding to the m / z value range derived from the diisocyanate is M3,
In the first aspect, M2/M1 is 0.0010 to 0.0150 and M3/M1 is 0.0200 to 0.1100,
A wiper device according to claim 13, wherein in the second aspect M2/M1 is between 0.0010 and 0.0150 and M3/M1 is between 0.0200 and 0.1100.
前記リップ部は、前記ブレードラバーの長手方向に直交する方向の断面が、前記基部に近い側から前記基部から離れる方向に向かう幅が漸減するテーパー部を有し、
前記リップ部は、
該テーパー部を構成する第1の側面及び第2の側面と、
該第1の側面及び該第2の側面と共に、該リップ部の前記基部から最も離れた側に第1のエッジ及び第2のエッジを構成する先端面と、を有し、
前記リップ部の該第1の側面及び該第2の側面に、それぞれ該第1のエッジ及び該第2のエッジと平行に、該第1のエッジ及び該第2のエッジとの距離が0.5mmである線分を引いたと仮定したときに、線分の長さをL’とし、該線分上の一端側から1/8L’、1/2L’、7/8L’の点を各々、P0’、P1’、P2’とし、
該第1の側面及び該第2の側面の該P0’、該P1’及び該P2’の各々においてサンプリングされる試料を、熱分解GC/MSにより測定したとき、
該第1の側面において、ポリウレタン中の3官能以上の多官能アルコールの濃度が、0.04mmol/g~0.39mmol/gであり、
該第2の側面において、ポリウレタン中の3官能以上の多官能アルコールの濃度が、0.04mmol/g~0.39mmol/gである請求項11~14のいずれか一項に記載のワイパー装置。
The lip portion has a tapered portion in which a cross section in a direction perpendicular to the longitudinal direction of the blade rubber has a width gradually decreasing in a direction away from the base portion from a side close to the base portion,
The lip portion
a first side surface and a second side surface that constitute the tapered portion;
a tip surface forming a first edge and a second edge on a side of the lip portion farthest from the base portion together with the first side surface and the second side surface;
On the first side and the second side of the lip portion, parallel to the first edge and the second edge respectively, the distance between the first edge and the second edge is 0.0. Assuming that a line segment of 5 mm is drawn, the length of the line segment is L ', and the points of 1/8L', 1/2L', and 7/8L' from one end side on the line segment are respectively, Let P0′, P1′, and P2′ be
When the samples sampled at each of the P0', the P1' and the P2' of the first side and the second side are measured by pyrolytic GC/MS,
In the first aspect, the concentration of the tri- or higher polyfunctional alcohol in the polyurethane is 0.04 mmol/g to 0.39 mmol/g,
The wiper device according to any one of claims 11 to 14, wherein, in the second aspect, the concentration of tri- or higher polyfunctional alcohol in the polyurethane is 0.04 mmol/g to 0.39 mmol/g.
前記3官能以上の多官能アルコールが、ペンタエリスリトール、トリメチロールプロパン及びグリセリンからなる群から選択される少なくとも一を含む請求項11~15のいずれか一項に記載のワイパー装置。 The wiper device according to any one of claims 11 to 15, wherein the tri- or higher polyfunctional alcohol contains at least one selected from the group consisting of pentaerythritol, trimethylolpropane and glycerin. 前記3官能以上の多官能イソシアネートが、トリフェニルメタン-4,4’,4’’-トリイソシアネート(TTI)、トリス(フェニルイソシアネート)チオホスフェート(TPTI)及びポリメリックMDIからなる群から選択される少なくとも一である請求項11~16のいずれか一項に記載のワイパー装置。

At least the tri- or higher polyfunctional isocyanate is selected from the group consisting of triphenylmethane-4,4′,4″-triisocyanate (TTI), tris(phenylisocyanate) thiophosphate (TPTI) and polymeric MDI A wiper device according to any one of claims 11 to 16, wherein the wiper device is one.

JP2022011862A 2021-12-24 2022-01-28 wiper device Pending JP2023095727A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/047313 WO2023120633A1 (en) 2021-12-24 2022-12-22 Wiper device
CN202280085415.6A CN118451011A (en) 2021-12-24 2022-12-22 Wiper device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021210808 2021-12-24
JP2021210808 2021-12-24

Publications (1)

Publication Number Publication Date
JP2023095727A true JP2023095727A (en) 2023-07-06

Family

ID=87002767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022011862A Pending JP2023095727A (en) 2021-12-24 2022-01-28 wiper device

Country Status (1)

Country Link
JP (1) JP2023095727A (en)

Similar Documents

Publication Publication Date Title
JP5364251B2 (en) Blade for electrophotographic apparatus and method for manufacturing the same
US10088795B2 (en) Cleaning blade, process cartridge, and electrophotographic image forming apparatus
EP4071555A1 (en) Electrophotographic cleaning blade, process cartridge, and electrophotographic image forming device
JP2007052062A (en) Cleaning blade and manufacturing method therefor, and electrophotographic apparatus
US11945414B2 (en) Vehicle windshield wiper blade
US20230157493A1 (en) Wiper blade
WO2023120633A1 (en) Wiper device
JP2023095727A (en) wiper device
WO2022025267A1 (en) Wiper blade for vehicle
WO2022025246A1 (en) Cleaning wiper blade
JP6800697B2 (en) Cleaning blades, process cartridges and electrophotographic image forming equipment
CN118451011A (en) Wiper device
JP2022027492A (en) Wiper blade for vehicle
JP2022027489A (en) Cleaning wiper blade
CN116457384A (en) Cleaning blade for electrophotography, process cartridge, and electrophotographic image forming apparatus
WO2024135765A1 (en) Method for regenerating blade rubber, and method for manufacturing regenerated blade rubber
WO2024117207A1 (en) Blade rubber, wiper blade and wiper device, and urethane molded body
JP3633390B2 (en) Cleaning blade
JP2022027511A (en) Wiper blade for vehicle
JP2024080597A (en) Blade rubber, wiper blade and wiper device, and urethane molding
WO2023032827A1 (en) Polyurethane-containing non-foamed molded body
JP2022027510A (en) Cleaning wiper blade
JP2024091496A (en) Method of regenerating blade rubber and method of producing regenerated blade rubber
WO2024172019A1 (en) Electrophotography cleaning blade, process cartridge, and electrophotographic image forming device
CN117460584A (en) Cleaning member and elastic member