JP2023094650A - Manufacturing method of forging heat-treated article - Google Patents

Manufacturing method of forging heat-treated article Download PDF

Info

Publication number
JP2023094650A
JP2023094650A JP2021210068A JP2021210068A JP2023094650A JP 2023094650 A JP2023094650 A JP 2023094650A JP 2021210068 A JP2021210068 A JP 2021210068A JP 2021210068 A JP2021210068 A JP 2021210068A JP 2023094650 A JP2023094650 A JP 2023094650A
Authority
JP
Japan
Prior art keywords
heat
manufacturing
steel
forging
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021210068A
Other languages
Japanese (ja)
Inventor
一晶 瀧戸
Kazuaki Takido
賢児 田崎
Kenji Tasaki
亨 秋田
Toru Akita
拓也 廣瀬
Takuya Hirose
健吾 長塚
Kengo Nagatsuka
建壮 高橋
Takemasa Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gohsyu Corp
Original Assignee
Gohsyu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gohsyu Corp filed Critical Gohsyu Corp
Priority to JP2021210068A priority Critical patent/JP2023094650A/en
Publication of JP2023094650A publication Critical patent/JP2023094650A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide a manufacturing method of a forging heat-treated article, in which recovery of a composition and improvement of crystallization are enhanced, by energy saving, in order to obtain a composition suited for cutting, and which obtains a forging heat-treated article of rigidity equivalent to that of quenching and tempering.SOLUTION: A manufacturing method of a forging heat-treated article includes: (1) a step for heating a steel material to 550-650°C; (2) a step for performing forging such that an equivalent strain is 0.05-7.00 with respect to the heated steel material in order to obtain a forging molding raw material; and (3) a cooling step for cooling the raw material immediately after molding while being 400°C at an average cooling speed of 100°C/minute or lower.SELECTED DRAWING: Figure 1

Description

本発明は、自動車用の構造部材等に使用される鍛造熱処理品の製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for manufacturing heat-treated forged products used as structural members for automobiles.

自動車の構造部材等に使用される鍛造部材は、熱間鍛造の場合、材料を1050~1300℃に加熱して変形抵抗を下げ成形を行うようにしている。
成形後、組織の改善のため、900℃付近まで加熱してオーステナイト組織にした後、冷却速度を調整することにより、変態後の組織を調整し、必要特性を得るようにしている。
In the case of hot forging, forged members used as structural members of automobiles are formed by heating the material to 1050 to 1300° C. to lower the deformation resistance.
After forming, in order to improve the structure, the steel is heated to about 900° C. to form an austenite structure, and then the cooling rate is adjusted to adjust the structure after transformation and obtain the required properties.

この熱間鍛造の一例として、例えば、特許文献1には、
(1)所定の成分を有する鋼を加熱温度1050~1300℃に加熱する工程と、
(2)900℃~加熱温度の範囲で圧下率10~90%の鍛造を行い、直ちに20℃/秒以上の冷却速度で焼き入れを行う工程と、
(3)その後、400℃~Ac1点の温度範囲で焼き戻しを行う工程と
を備えた熱間鍛造品の製造方法が開示されている。
As an example of this hot forging, for example, in Patent Document 1,
(1) a step of heating steel having predetermined components to a heating temperature of 1050 to 1300° C.;
(2) a step of forging at a reduction rate of 10 to 90% in the range of 900 ° C. to heating temperature, and immediately quenching at a cooling rate of 20 ° C./sec or more;
(3) Then, a hot forged product manufacturing method is disclosed, comprising a step of tempering in a temperature range of 400° C. to Ac1 point.

しかしながら、この変態を利用した組織調整は、加熱エネルギが必要になり、また、冷却速度を制御するための専用の炉設備が必要になるという問題点を有していた。 However, the structure adjustment using this transformation has the problem of requiring heating energy and dedicated furnace equipment for controlling the cooling rate.

また、材料を1100~1300℃に加熱して熱間鍛造を実施して中間品を得た後、冷却速度を制御して、組織と強度を得る方法が適用されている。 Also, a method is applied in which the material is heated to 1100 to 1300° C. and hot forged to obtain an intermediate product, and then the cooling rate is controlled to obtain the structure and strength.

この熱間鍛造の一例として、例えば、特許文献2には、
特定割合のC、Mn、P及びNに加えてさらにV、Ti及びNbのうちの1種を含有するか、特定割合のC、Mn、Cr、V及びBに加えてさらにNi、Cu及びMoのうちの1種以上を含有する鋼片を熱間圧延して、オーステナイト結晶粒度番号が特定範囲に調整された鋼を製造した後、この鋼に加熱温度、昇温速度、加熱保持時間を規制した熱間鍛造を施すことによってフェライト・パーライト主体の組織とする非調質高強度鋼靭性熱間鍛造部品の製造方法が開示されている。
As an example of this hot forging, for example, in Patent Document 2,
containing specific proportions of C, Mn, P and N plus one of V, Ti and Nb or specific proportions of C, Mn, Cr, V and B plus Ni, Cu and Mo After hot-rolling a steel slab containing one or more of Disclosed is a method for manufacturing a toughness hot forged part of a non-heat treated high strength steel having a structure mainly composed of ferrite and pearlite by performing hot forging.

しかしながら、この方法も、材料を高温に加熱するエネルギが必要になるという問題点を有していた。 However, this method also has the problem that it requires energy to heat the material to a high temperature.

特開平6-212347号公報JP-A-6-212347 特開平8-120342号公報JP-A-8-120342

本発明は、上記従来の熱間鍛造が有する問題点に鑑み、省エネルギで、組織の回復と結晶の改善を促進させることで、切削加工に適した組織を得ることができ、かつ、焼き入れ・焼き戻し処理と同等の硬度の鍛造熱処理品を得ることができる鍛造熱処理品の製造方法を提供することを目的とする。 In view of the problems of the conventional hot forging described above, the present invention saves energy and promotes recovery of the structure and improvement of the crystal structure, thereby obtaining a structure suitable for cutting and quenching. - It aims at providing the manufacturing method of the forging heat treatment product which can obtain the forging heat treatment product of hardness equivalent to a tempering process.

上記目的を達成するため、本発明の鍛造熱処理品の製造方法は、
(1)鋼材を500~650℃に加熱する工程と、
(2)前記加熱した鋼材に対して、相当ひずみが0.05~7.00となる鍛造を行い、鍛造成形素材を得る工程と、
(3)前記素材を、成形直後から400℃の間の平均冷却速度を100℃/分以下で冷却する冷却工程と
を備えることを特徴とする。
In order to achieve the above object, the method for producing a heat-treated forged product of the present invention comprises:
(1) a step of heating a steel material to 500 to 650°C;
(2) a step of forging the heated steel material with an equivalent strain of 0.05 to 7.00 to obtain a forged material;
(3) A cooling step of cooling the material at an average cooling rate of 100°C/min or less from immediately after molding to 400°C.

この場合において、前記冷却工程は、放熱又は断熱材で閉じられた容器の中に放置することにより実施することができる。 In this case, the cooling step can be carried out by leaving the container in a container closed with a heat-dissipating or heat-insulating material.

また、前記鋼材には、構造用工具鋼(SC材)、クロム鋼(SCR材)、クロムモリブデン鋼、ニッケルクロムモリブデン鋼(SNCM材)のいずれかを用いることができる。 Moreover, any one of structural tool steel (SC material), chromium steel (SCR material), chromium molybdenum steel, and nickel chromium molybdenum steel (SNCM material) can be used as the steel material.

また、前記鍛造熱処理品として、回転電機に用いられるロータシャフト用素材を製造することができる。 Further, as the heat-treated forged product, a material for a rotor shaft used in a rotating electric machine can be manufactured.

本発明の鍛造熱処理品の製造方法によれば、JISで定められた標準規格鋼材を使用して、追加の合金成分を添加することなく、A1変態点723℃以下の温度まで加熱して、成形と結晶粒細分化を終了した後、材料が持っている熱エネルギを利用することにより、省エネルギで、組織の回復と結晶組織の改善を促進させることで、切削加工等の機械加工に適したフェライト・パーライト組織を得ることができ、かつ、焼き入れ・焼き戻し処理と同等の硬度の鍛造熱処理品を得ることができる。
これにより、鍛造部材を、低コストで製造することができる。
According to the method for producing a heat-treated forged product of the present invention, a standard steel material specified by JIS is used, and without adding additional alloying ingredients, it is heated to a temperature of 723 ° C. or less at the A1 transformation point, and formed. After completion of grain refining, by utilizing the thermal energy of the material, it is energy-saving and promotes recovery of the structure and improvement of the crystal structure, making it suitable for machining such as cutting. A ferrite/pearlite structure can be obtained, and a forged heat-treated product having a hardness equivalent to that of quenching/tempering can be obtained.
Thereby, the forged member can be manufactured at low cost.

本発明の鍛造熱処理品の製造方法を適用したロータシャフトの製造工程の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a manufacturing process of a rotor shaft to which the method for manufacturing a heat-treated forged product of the present invention is applied; 本発明の鍛造熱処理品の製造方法の温度と時間の関係を示すグラフである。It is a graph which shows the relationship between the temperature of the manufacturing method of the heat-treated forging product of the present invention and time. 本発明の鍛造熱処理品(ロータシャフト用素材)の製造方法の説明図である。FIG. 3 is an explanatory diagram of a method for manufacturing a heat-treated forged product (rotor shaft material) of the present invention; (a1)はロータシャフト用素材の縦断面図、(a2)は同平面図、(b1)はロータシャフト(最終製品)の縦断面図、(b2)は同平面図である。(a1) is a longitudinal sectional view of a rotor shaft material, (a2) is a plan view of the same, (b1) is a longitudinal sectional view of a rotor shaft (final product), and (b2) is a plan view of the same. (a)はロータシャフト用素材の変形例の縦断面図、(b)は同平面図である。(a) is a vertical cross-sectional view of a modification of the rotor shaft material, and (b) is a plan view of the same. 本発明の鍛造熱処理品(ロータシャフト用素材の変形例)の製造方法の説明図である。FIG. 5 is an explanatory diagram of a method for manufacturing a heat-treated forged product (a modified example of a rotor shaft material) according to the present invention; ロータシャフト用素材の分析位置を示す説明図である。FIG. 4 is an explanatory view showing analysis positions of a rotor shaft material; ロータシャフト用素材の各部位の硬度及びミクロ組織の分析結果を示す説明図である。FIG. 4 is an explanatory view showing analysis results of hardness and microstructure of each part of the rotor shaft material;

以下、本発明の鍛造熱処理品の製造方法の実施の形態を、図面に基づいて説明する。 An embodiment of the method for manufacturing a heat-treated forged product according to the present invention will be described below with reference to the drawings.

図1及び図2に、本発明の成形方法を適用した工程の一例として、回転電機に用いられるロータシャフト用素材の製造例を示す。 FIGS. 1 and 2 show an example of manufacturing a material for a rotor shaft used in a rotating electric machine, as an example of a process to which the molding method of the present invention is applied.

(1)加熱工程
加熱工程では、鋼材として構造用工具鋼(SC材(S45C))からなるビレット(円柱状素材)1を、550~650℃に加熱する。
(1) Heating Step In the heating step, a billet (columnar material) 1 made of structural tool steel (SC material (S45C)) is heated to 550 to 650°C.

(2)鍛造工程
鍛造工程では、加熱したビレット(円柱状素材)1を、相当ひずみが0.05~7.00となる鍛造を行い、鍛造成形素材である中空シャフト素材(ロータシャフト用素材)3を得る。
ここで、「相当ひずみ」とは、任意の変形状態に対するひずみの大きさを定義する量であって、3次元変形におけるひずみを単軸変形に換算したものである。
本実施例においては、図3に示すように、ビレット(円柱状素材)1を、鍛造型(ロータシャフト用素材3の中心に形成する深穴32a、32b、フランジ部33及びキー溝34に対応した形状に形成した鍛造型)を用いて、鍛造(鍛造時の温度:550~650℃)により、1工程で、中心に穴22a、22bを有するブランク2を経て、全長150~300mm程度で、軸部31(径40~80mm程度)、深穴32a、32b、フランジ部33(径60~100mm程度)及びキー溝34(長さ100~250mm程度(フランジ部からロータコア装着部側の先端に亘る長さ)、幅5~10mm程度、深さ1~10mm程度)を形成したロータシャフト用素材3に成形する。
ここで、鍛造工程は、必ずしも1工程で行う必要はなく、鍛造による相当ひずみが0.05~7.00となるように、複数工程で行うこともできる。
また、キー溝34は、軸部31の180°対称位置に2本形成するようにしたが、1本又は3本以上形成することもできる。
また、キー溝34は、必ずしも鍛造時に成形する必要はなく、図5に示す変形例のように、鍛造工程ではキー溝を成形せずに、後述の機械加工工程で、サイドカッタ、エンドミルカッタ等を用いて切削加工により形成することもできる。
また、ロータシャフト用素材3の形状も、図3に示す形状に限定されず、例えば、図6に示す変形例のような形状とすることもできる。
(2) Forging process In the forging process, a heated billet (cylindrical material) 1 is forged with an equivalent strain of 0.05 to 7.00, and a hollow shaft material (rotor shaft material) is forged. get 3.
Here, "equivalent strain" is a quantity that defines the magnitude of strain for an arbitrary deformation state, and is obtained by converting strain in three-dimensional deformation into uniaxial deformation.
In this embodiment, as shown in FIG. 3, a billet (columnar material) 1 is formed into a forging die (a rotor shaft material 3 corresponding to deep holes 32a and 32b, a flange portion 33 and a key groove 34 formed in the center of the rotor shaft material 3). Using a forging die formed into a shape that is formed into a shape), by forging (temperature during forging: 550 to 650 ° C.), in one process, through a blank 2 having holes 22a and 22b in the center, with a total length of about 150 to 300 mm, Axle portion 31 (diameter about 40 to 80 mm), deep holes 32a, 32b, flange portion 33 (diameter about 60 to 100 mm) and key groove 34 (length about 100 to 250 mm) length), width of about 5 to 10 mm, and depth of about 1 to 10 mm).
Here, the forging process does not necessarily have to be performed in one process, and may be performed in multiple processes so that the equivalent strain due to forging is 0.05 to 7.00.
Also, two key grooves 34 are formed at 180° symmetrical positions on the shaft portion 31, but one or three or more may be formed.
Moreover, the key groove 34 does not necessarily have to be formed during forging. As in the modification shown in FIG. It can also be formed by cutting using.
Also, the shape of the rotor shaft material 3 is not limited to the shape shown in FIG.

(3)冷却工程
次に、冷却工程で、ロータシャフト用素材3を、成形直後から400℃の間の平均冷却速度を100℃/分以下、好ましくは、90℃/分以下、より好ましくは、80℃/分以下で冷却する。
この冷却工程は、ロータシャフト用素材3を、断熱材で閉じられた容器の中に放置することにより実施するほか、平均冷却速度が上記数値を維持できる場合は、放冷することによっても実施することができる。
(3) Cooling step Next, in the cooling step, the rotor shaft material 3 is cooled at an average cooling rate of 100°C/min or less, preferably 90°C/min or less, more preferably from immediately after molding to 400°C. Cool at no more than 80°C/min.
This cooling process is carried out by leaving the rotor shaft material 3 in a container closed with a heat insulating material, or by allowing it to cool if the average cooling rate can maintain the above numerical value. be able to.

このように、鋼材を、A1変態点723℃以下の550~650℃の温度まで加熱して、鍛造工程で成形と並行して結晶粒細分化を行う。成形終了と同時に結晶粒細分化も終了する。その後、材料が持っている熱エネルギを利用することにより、省エネルギで、組織の回復と結晶組織の改善を促進させることで、後述の切削加工等の機械加工に適したフェライト・パーライト組織を得ることができ、かつ、焼き入れ・焼き戻し処理と同等の硬度の鍛造熱処理品を得ることができる。 In this way, the steel material is heated to a temperature of 550 to 650° C., which is lower than the A1 transformation point of 723° C., and grain refinement is performed in parallel with forming in the forging process. At the same time as the molding is finished, grain refining is also finished. After that, by utilizing the thermal energy of the material, the recovery of the structure and the improvement of the crystal structure are promoted in an energy-saving manner, thereby obtaining a ferrite/pearlite structure suitable for machining such as cutting, which will be described later. In addition, it is possible to obtain a forged heat-treated product having a hardness equivalent to that of quenching and tempering.

(4)中間加工
ロータシャフト用素材3の深穴32b側の軸部31の内周面を機械加工する。
(4) Intermediate processing The inner peripheral surface of the shaft portion 31 on the side of the deep hole 32b of the rotor shaft material 3 is machined.

(5)冷間スプライン成形
ロータシャフト用素材3の深穴32b側の軸部31の内周面に冷間スプライン成形を行う。
(5) Cold Spline Forming Cold spline forming is performed on the inner peripheral surface of the shaft portion 31 on the deep hole 32b side of the rotor shaft blank 3 .

(6)機械加工
ロータシャフト用素材3の軸部31の両側の外周面を機械加工(ロータコア装着部及び軸受装着部の仕上げ加工並びにナットが螺合する雄ねじ部の形成)するとともに、深穴32a、32b同士を貫通させ、図4(b)に示す、キー溝44を備えたロータシャフト(最終製品)4を得る。
(6) Machining The outer peripheral surface on both sides of the shaft portion 31 of the rotor shaft material 3 is machined (finishing the rotor core mounting portion and the bearing mounting portion, and forming the male thread portion to which the nut is screwed), and the deep hole 32a is formed. , 32b are passed through each other to obtain a rotor shaft (final product) 4 having a keyway 44 shown in FIG. 4(b).

ここで、本発明の鍛造熱処理品の製造方法に使用する鋼材には、JISで定められた標準規格鋼材、例えば、本実施例で用いた構造用工具鋼(SC材)のほか、クロム鋼(SCR材)、クロムモリブデン鋼、ニッケルクロムモリブデン鋼(SNCM材)を用いることができる。 Here, the steel materials used in the method for manufacturing the heat-treated forged product of the present invention include standard steel materials specified by JIS, for example, structural tool steel (SC material) used in this example, chromium steel ( SCR material), chromium molybdenum steel, nickel chromium molybdenum steel (SNCM material) can be used.

ここで、製造したロータシャフト用素材3(図6に示す変形例)の図7に示す各部位の分析結果を、表1及び図8に示す。 Table 1 and FIG. 8 show the analysis results of each part shown in FIG. 7 of the manufactured rotor shaft material 3 (modification shown in FIG. 6).

Figure 2023094650000002
Figure 2023094650000002

表1に示すロータシャフト用素材3の各部位の硬度及び相当ひずみ及び図8に示すロータシャフト用素材3の各部位の硬度及びミクロ組織の結果から、以下のことが分かった。[実施例]
加熱工程の加熱温度:600℃
・硬度について
A部:組織の変形が大きく全体的に硬度が高め。外径側はより組織が潰れており硬度が高い。変態はしておらず加工硬化の影響が大きい。
B部:外径側はA部同様、加工硬化により硬度が高め。内部は変形が少ない。内径側は組織は変形しているが加工発熱で硬度が低下している。
C部:外径側、内部は変態はしておらず加工硬化により硬度が高め。内径側は微細組織となっている。
D部:Cと同じ
E部:Cと同じ
F部:Cと同じ
・ミクロ組織について
全体:粗いフェライト+パーライト組織を呈している。
A部:内外径に亘って全体的に組織が潰れている。
B部:内外径で組織の変形が大きく、内部は変形が小さい。
C部~F部:内径部はA部及びB部よりもさらに強い変形を受け、組織が細かくなったと推測される。内部と外径部は変形が小さく、鋼材時点の組織から少し変形している。
From the hardness and equivalent strain of each portion of the rotor shaft material 3 shown in Table 1 and the hardness and microstructure of each portion of the rotor shaft material 3 shown in FIG. 8, the following was found. [Example]
Heating temperature in heating step: 600°C
・About hardness Part A: The deformation of the structure is large, and the hardness is high overall. The structure is crushed more on the outer diameter side and the hardness is high. There is no transformation and the effect of work hardening is large.
Part B: Similar to Part A, the outer diameter side has a higher hardness due to work hardening. There is little deformation inside. On the inner diameter side, the structure is deformed, but the hardness is reduced due to heat generated during processing.
Part C: The outer diameter side, the inner part is not transformed and has a high hardness due to work hardening. The inner diameter side has a fine structure.
Part D: Same as C Part E: Same as C Part F: Same as C Microstructure Overall: Coarse ferrite + pearlite structure.
Part A: The tissue is totally crushed over the inner and outer diameters.
Part B: The deformation of the structure is large at the inner and outer diameters, and the inner deformation is small.
Part C to F: It is assumed that the inner diameter part received stronger deformation than parts A and B, and the structure became finer. The inner and outer diameter parts have little deformation, and are slightly deformed from the structure at the time of steel material.

以上、本発明の鍛造熱処理品の製造方法について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。 As described above, the method for manufacturing a heat-treated forged product according to the present invention has been described based on the examples. It is configurable.

本発明の鍛造熱処理品の製造方法は、省エネルギで、組織の回復と結晶の改善を促進させることで、切削加工に適した組織を得ることができ、かつ、焼き入れ・焼き戻し処理と同等の硬度の鍛造熱処理品を得ることができることから、回転電機に用いられるロータシャフトのほか、自動車用の構造部材等に使用される鍛造熱処理品を製造するために広く用いることができる。 The method for producing a heat-treated forged product of the present invention saves energy, promotes recovery of the structure and improvement of the crystal structure, thereby obtaining a structure suitable for cutting, and is equivalent to quenching and tempering. Since it is possible to obtain a heat-treated forged product with a hardness of , it can be widely used for manufacturing heat-treated forged products used for structural members for automobiles, etc., in addition to rotor shafts used in rotating electric machines.

1 ビレット(円柱状素材)
2 ブランク
3 ロータシャフト用素材
32a 深穴
32b 深穴
33 フランジ部
34 キー溝
4 ロータシャフト(最終製品)
44 キー溝
1 billet (columnar material)
2 blank 3 raw material for rotor shaft 32a deep hole 32b deep hole 33 flange 34 keyway 4 rotor shaft (final product)
44 keyway

Claims (4)

(1)鋼材を550~650℃に加熱する工程と、
(2)前記加熱した鋼材に対して、相当ひずみが0.05~7.00となる鍛造を行い、鍛造成形素材を得る工程と、
(3)前記素材を、成形直後から400℃の間の平均冷却速度を100℃/分以下で冷却する冷却工程と
を備えることを特徴とする鍛造熱処理品の製造方法。
(1) a step of heating a steel material to 550 to 650°C;
(2) a step of forging the heated steel material with an equivalent strain of 0.05 to 7.00 to obtain a forged material;
(3) A method for manufacturing a heat-treated forged product, comprising: a cooling step of cooling the material at an average cooling rate of 100°C/min or less from immediately after molding to 400°C.
前記冷却工程は、放冷又は断熱材で閉じられた容器の中に放置することを特徴とする請求項1に記載の鍛造熱処理品の製造方法。 2. The method for manufacturing a heat-treated forged product according to claim 1, wherein the cooling step is performed by allowing the product to cool or leaving it in a container closed with a heat insulating material. 前記鋼材は、構造用工具鋼(SC材)、クロム鋼(SCR材)、クロムモリブデン鋼、ニッケルクロムモリブデン鋼(SNCM材)のいずれかであることを特徴とする請求項1又は2に記載の鍛造熱処理品の製造方法。 3. The steel material according to claim 1 or 2, wherein the steel material is any one of structural tool steel (SC material), chromium steel (SCR material), chromium molybdenum steel, and nickel chromium molybdenum steel (SNCM material). A method for manufacturing a forged heat-treated product. 前記鍛造熱処理品は、回転電機に用いられるロータシャフト用素材であることを特徴とする請求項1、2又は3に記載の鍛造熱処理品の製造方法。 4. The method for manufacturing a heat-treated forged product according to claim 1, wherein the heat-treated forged product is a material for a rotor shaft used in a rotating electric machine.
JP2021210068A 2021-12-24 2021-12-24 Manufacturing method of forging heat-treated article Pending JP2023094650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021210068A JP2023094650A (en) 2021-12-24 2021-12-24 Manufacturing method of forging heat-treated article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021210068A JP2023094650A (en) 2021-12-24 2021-12-24 Manufacturing method of forging heat-treated article

Publications (1)

Publication Number Publication Date
JP2023094650A true JP2023094650A (en) 2023-07-06

Family

ID=87002272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021210068A Pending JP2023094650A (en) 2021-12-24 2021-12-24 Manufacturing method of forging heat-treated article

Country Status (1)

Country Link
JP (1) JP2023094650A (en)

Similar Documents

Publication Publication Date Title
EP2135962B1 (en) Case-hardened steel pipe excellent in workability and process for production thereof
CN102581145B (en) Method for manufacturing high-hardness and high-abrasion-resistant pre-bending machine lower die
JP6282545B2 (en) Method for thermomechanical processing of tool steel and tools made from thermomechanically processed tool steel
US9186716B2 (en) Method of production of pressed sheet parts with integrated preparation of blanks of non-uniform thickness
CN103447784A (en) Driving shaft processing technique
CN103981451A (en) Hot-rolling and tempering type Mo-free plastic die steel plate and manufacturing method thereof
JP2012125838A (en) Method for producing hot-forged product for case hardened steel
CN107475501A (en) A kind of Micro Alloying brake camshaft and its manufacture method
CN104704135A (en) Wire rod having good strength and ductility and method for producing same
CN106435370A (en) High-speed steel roller special for cold-rolled high-strength car plate and manufacturing method thereof
JP2012066279A (en) Method for producing bearing race
CN104099517B (en) A kind of manufacture method of 225MPa ranks low-yield building aseismicity steel
CN107470852A (en) A kind of Micro Alloying semiaxis and its manufacture method
CN110904324B (en) Heat treatment process for planetary gear
JP4500246B2 (en) Steel pipe for machine structural member and manufacturing method thereof
JP6597077B2 (en) Steel pipe for machine structural members with excellent machinability and manufacturing method thereof
JP2023094650A (en) Manufacturing method of forging heat-treated article
JP2017048441A (en) Steel pipe for machine construction member excellent in machinability and manufacturing method therefor
CN106048455B (en) A kind of processing method of mold materials for high intensity forging
JP4500193B2 (en) Manufacturing method of steel pipe for machine structural member
RU2544730C1 (en) Method of thermomechanical treatment of low alloyed steel
CN104275575A (en) Cold-drawing machining process for lead-containing free-cutting steel wire rods
JP2004169178A (en) Method for manufacturing member formed of hardened steel, in particular, member formed of rolling bearing steel
CN107419174A (en) Economical high-carbon steel and its manufacture method
CN104313473A (en) Manufacturing method of bending die working at high temperatures