JP2023094005A - Transient voltage protection component and mounting structure for the same - Google Patents

Transient voltage protection component and mounting structure for the same Download PDF

Info

Publication number
JP2023094005A
JP2023094005A JP2021209195A JP2021209195A JP2023094005A JP 2023094005 A JP2023094005 A JP 2023094005A JP 2021209195 A JP2021209195 A JP 2021209195A JP 2021209195 A JP2021209195 A JP 2021209195A JP 2023094005 A JP2023094005 A JP 2023094005A
Authority
JP
Japan
Prior art keywords
component
transient voltage
electrode
voltage protection
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021209195A
Other languages
Japanese (ja)
Inventor
悠介 今井
Yusuke Imai
壮司 簗田
Soji Yanada
和彦 梅田
Kazuhiko Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2021209195A priority Critical patent/JP2023094005A/en
Publication of JP2023094005A publication Critical patent/JP2023094005A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

To provide a transient voltage protection component that can enhance transient voltage protection characteristics.SOLUTION: A transient voltage protection component 1 includes coil components 9, varistor components 10, a first terminal electrode 3, and a second terminal electrode 4. The coil components 9 and the varistor components 10 are connected in parallel between the first terminal electrode 3 and the second terminal electrode 4. The coil component 9 is configured to magnetically saturate when a voltage higher than a predetermined voltage is applied.SELECTED DRAWING: Figure 1

Description

本発明は、過渡電圧保護部品に関する。 The present invention relates to transient voltage protection components.

半導体等を含む電子回路において、素子を静電気放電(ESD:Electrostatic Discharge)等の各種サ-ジ(過渡電圧)から保護する目的で、バリスタが用いられている(例えば、特許文献1参照)。 BACKGROUND ART Varistors are used in electronic circuits including semiconductors and the like for the purpose of protecting elements from various surges (transient voltages) such as electrostatic discharge (ESD) (see, for example, Patent Document 1).

特開平6-267713号公報JP-A-6-267713

本発明の一側面は、過渡電圧保護特性の向上が図れる過渡電圧保護部品及び過渡電圧保護部品の実装構造を提供することを目的とする。 An object of one aspect of the present invention is to provide a transient voltage protection component and a mounting structure of the transient voltage protection component that can improve transient voltage protection characteristics.

本発明の一側面に係る過渡電圧保護部品は、コイル部と、第一過渡電圧保護部と、第一電極及び第二電極と、を備え、コイル部及び第一過渡電圧保護部は、第一電極及び第二電極との間に並列に接続されており、コイル部は、所定電圧よりも高い電圧が印加されたときに磁気飽和するように構成されている。 A transient voltage protection component according to one aspect of the present invention comprises a coil section, a first transient voltage protection section, a first electrode and a second electrode, wherein the coil section and the first transient voltage protection section It is connected in parallel between the electrode and the second electrode, and the coil section is configured to be magnetically saturated when a voltage higher than a predetermined voltage is applied.

本発明の一側面に係る過渡電圧保護部品は、所定電圧よりも高い電圧が印加されたときに磁気飽和するように構成されているコイル部を備えている。コイル部は、高い周波数成分を有する信号に対しては高抵抗(インピーダンス)であるが、ESDのような大電圧(負荷)に対しては磁気飽和を生じる。このように、コイル部では、磁気飽和が生じると、低抵抗となるため、電流を流す。そのため、過渡電圧保護回路では、ESD等の大電圧をグランドに逃がすことができる。これにより、過渡電圧保護部品では、クランプ電圧の低減が図れる。また、過渡電圧保護回路では、コイル部と第一過渡電圧保護部とを備えているため、ESD等によるエネルギーをコイル部と第一過渡電圧保護部とに配分することができる。そのため、過渡電圧保護回路では、過渡電圧に対する耐性の向上を図れる。以上により、過渡電圧保護回路では、過渡電圧保護特性の向上が図れる。 A transient voltage protection component according to one aspect of the present invention includes a coil portion configured to be magnetically saturated when a voltage higher than a predetermined voltage is applied. The coil section has a high resistance (impedance) with respect to a signal having a high frequency component, but magnetic saturation occurs with respect to a large voltage (load) such as ESD. In this way, when magnetic saturation occurs in the coil portion, the resistance becomes low, so that current flows. Therefore, in the transient voltage protection circuit, a large voltage such as ESD can be released to the ground. As a result, the transient voltage protection component can reduce the clamp voltage. Moreover, since the transient voltage protection circuit includes the coil section and the first transient voltage protection section, the energy due to ESD or the like can be distributed to the coil section and the first transient voltage protection section. Therefore, the transient voltage protection circuit can improve resistance to transient voltages. As described above, the transient voltage protection circuit can improve the transient voltage protection characteristics.

一実施形態においては、所定電圧は、第一過渡電圧保護部が動作する動作電圧以下であってもよい。この構成では、第一過渡電圧保護素部が動作する前に、コイル部において磁気飽和を生じさせることができる。 In one embodiment, the predetermined voltage may be less than or equal to the operating voltage at which the first transient voltage protector operates. In this configuration, magnetic saturation can be caused in the coil section before the first transient voltage protection element section operates.

一実施形態においては、コイル部及び第一過渡電圧保護部のそれぞれは、チップ部品であり、第一電極及び第二電極が配置されている基部と、基部に配置されていると共に、第一電極に接続されている第一ランド電極と、基部に配置されていると共に、第二電極に接続されている第二ランド電極と、コイル部及び第一過渡電圧保護部を封止する封止部と、を備え、コイル部及び第一過渡電圧保護部のそれぞれは、第一ランド電極及び第二ランド電極のそれぞれに接続されていてもよい。この構成では、過渡電圧保護部品を一つの部品として構成することができる。 In one embodiment, each of the coil section and the first transient voltage protection section is a chip component, a base on which the first electrode and the second electrode are arranged, and a base on which the first electrode and the first electrode are arranged. a second land electrode disposed on the base and connected to the second electrode; and a sealing portion sealing the coil portion and the first transient voltage protection portion; , and each of the coil section and the first transient voltage protection section may be connected to each of the first land electrode and the second land electrode. In this configuration, the transient voltage protection component can be constructed as one component.

一実施形態においては、コイル部及び過渡電圧保護部との間の距離は、第一ランド電極と第二ランド電極との間の距離よりも小さくてもよい。この構成では、コイル部と過渡電圧保護部との間に発生する寄生インダクタンスを減少させることができるため、特性(Sパラメータ)を良好にすることができる。 In one embodiment, the distance between the coil portion and the transient voltage protection portion may be smaller than the distance between the first land electrode and the second land electrode. With this configuration, the parasitic inductance generated between the coil section and the transient voltage protection section can be reduced, so that the characteristics (S parameter) can be improved.

一実施形態においては、コイル部及び第一過渡電圧保護部のそれぞれは、チップ部品であり、コイル部と第一過渡電圧保護部とは、樹脂からなる接合部によって接合されていてもよい。この構成では、コイル部及びバリスタ部品22の線膨張を接合部によって吸収し得る。そのため、熱特性の向上を図ることができる。 In one embodiment, each of the coil section and the first transient voltage protection section may be a chip component, and the coil section and the first transient voltage protection section may be joined by a joint made of resin. In this configuration, linear expansion of the coil portion and the varistor component 22 can be absorbed by the joint portion. Therefore, it is possible to improve the thermal characteristics.

一実施形態においては、第一電極及び第二電極のそれぞれが配置されていると素体を備え、コイル部及び第一過渡電圧保護部は、素体内に配置されていてもよい。この構成では、過渡電圧保護部品を一つの部品として構成することができる。 In one embodiment, each of the first electrode and the second electrode may comprise a body in which the coil section and the first transient voltage protector are located in the body. In this configuration, the transient voltage protection component can be constructed as one component.

一実施形態においては、電流電圧特性において、第一閾値電圧において特性が切り替わると共に、第一閾値電圧よりも小さい第二閾値電圧において特性が切り替わってもよい。 In one embodiment, the current-voltage characteristic may switch at a first threshold voltage and switch at a second threshold voltage lower than the first threshold voltage.

一実施形態においては、第二過渡電圧保護部を備え、第一過渡電圧保護部とコイル部及び第二過渡電圧保護部とは、第一電極及び第二電極との間に並列に接続されており、コイル部及び第二過渡電圧保護部は、第一電極側から第二過渡電圧保護部及びコイル部の順に直列に接続されていてもよい。この構成では、過渡電圧に対する耐性の向上をより一層図れる。 In one embodiment, a second transient voltage protector is provided, and the first transient voltage protector, the coil unit and the second transient voltage protector are connected in parallel between the first electrode and the second electrode. The coil section and the second transient voltage protection section may be connected in series in the order of the second transient voltage protection section and the coil section from the first electrode side. With this configuration, it is possible to further improve resistance to transient voltages.

一実施形態においては、コイル部が磁気飽和する磁気飽和電圧は、第一過渡電圧保護部が動作する動作電圧よりも小さくてもよい。この構成では、第一過渡電圧保護素部が動作する前に、コイル部において磁気飽和を生じさせることができる。 In one embodiment, the magnetic saturation voltage at which the coil section is magnetically saturated may be lower than the operating voltage at which the first transient voltage protection section operates. In this configuration, magnetic saturation can be caused in the coil section before the first transient voltage protection element section operates.

本発明の一側面に係る過渡電圧保護部品の実装構造は、上記の過渡電圧保護回路の実装構造であって、第一電極を信号ラインに接続すると共に、第二電極をグランドに接続する。 A mounting structure for a transient voltage protection component according to one aspect of the present invention is the mounting structure for the transient voltage protection circuit described above, in which the first electrode is connected to the signal line and the second electrode is connected to the ground.

本発明の一側面に係る過渡電圧保護部品の実装構造では、過渡電圧保護部品においてコイル部を備えている。コイル部は、高い周波数成分を有する信号に対しては高抵抗(インピーダンス)であるが、ESDのような大電圧(負荷)に対しては磁気飽和を生じる。このように、コイル部では、磁気飽和が生じると、低抵抗となるため、電流を流す。そのため、過渡電圧保護部品の実装構造では、信号ラインに入力されたESD等の大電圧をグランドに逃がすことができる。これにより、過渡電圧保護部品の実装構造では、クランプ電圧の低減が図れる。また、過渡電圧保護部品では、コイル部と第一過渡電圧保護部とを備えているため、ESD等によるエネルギーをコイル部と第一過渡電圧保護部とに配分することができる。そのため、過渡電圧保護部品の実装構造では、過渡電圧に対する耐性の向上を図れる。以上により、過渡電圧保護部品の実装構造では、過渡電圧保護特性の向上が図れる。 In a transient voltage protection component mounting structure according to one aspect of the present invention, the transient voltage protection component includes a coil portion. The coil section has a high resistance (impedance) with respect to a signal having a high frequency component, but magnetic saturation occurs with respect to a large voltage (load) such as ESD. In this way, when magnetic saturation occurs in the coil portion, the resistance becomes low, so that current flows. Therefore, in the mounting structure of the transient voltage protection component, a large voltage such as ESD input to the signal line can be released to the ground. As a result, the clamp voltage can be reduced in the mounting structure of the transient voltage protection component. Moreover, since the transient voltage protection component includes the coil portion and the first transient voltage protection portion, the energy due to ESD or the like can be distributed to the coil portion and the first transient voltage protection portion. Therefore, in the mounting structure of the transient voltage protection component, it is possible to improve resistance to transient voltages. As described above, the transient voltage protection characteristic can be improved in the mounting structure of the transient voltage protection component.

本発明の一側面によれば、過渡電圧保護特性の向上が図れる。 According to one aspect of the present invention, it is possible to improve transient voltage protection characteristics.

図1は、第一実施形態に係る過渡電圧保護部品の斜視図である。FIG. 1 is a perspective view of the transient voltage protection component according to the first embodiment. 図2(a)は、図1においてa-a線に沿った断面図であり、図2(b)は、図2においてb-b線に沿った断面図である。2(a) is a cross-sectional view taken along line aa in FIG. 1, and FIG. 2(b) is a cross-sectional view taken along line bb in FIG. 図3は、図1に示す過渡電圧保護部品の回路図である。FIG. 3 is a circuit diagram of the transient voltage protection component shown in FIG. 図4は、コイル及びバリスタのそれぞれの電流-電圧特性の一例を示す図である。FIG. 4 is a diagram showing an example of current-voltage characteristics of a coil and a varistor. 図5は、図1に示す過渡電圧保護回路の電流-電圧特性を示す図である。FIG. 5 is a diagram showing current-voltage characteristics of the transient voltage protection circuit shown in FIG. 図6は、クランプ波形を示す図である。FIG. 6 is a diagram showing clamp waveforms. 図7は、第二実施形態に係る過渡電圧保護部品の斜視図である。FIG. 7 is a perspective view of the transient voltage protection component according to the second embodiment. 図8は、図7に示す過渡電圧保護部品の断面図である。8 is a cross-sectional view of the transient voltage protection component shown in FIG. 7. FIG. 図9は、図7に示す過渡電圧保護部品の回路図である。9 is a circuit diagram of the transient voltage protection component shown in FIG. 7. FIG. 図10は、第三実施形態に係る過渡電圧保護部品の断面図である。FIG. 10 is a cross-sectional view of the transient voltage protection component according to the third embodiment. 図11は、図10に示す過渡電圧保護部品の回路図である。11 is a circuit diagram of the transient voltage protection component shown in FIG. 10. FIG. 図12は、図11に示す過渡電圧保護回路の電流-電圧特性を示す図である。FIG. 12 is a diagram showing current-voltage characteristics of the transient voltage protection circuit shown in FIG. 図13は、第四実施形態に係る過渡電圧保護部品の斜視図である。FIG. 13 is a perspective view of a transient voltage protection component according to the fourth embodiment. 図14は、図13に示す過渡電圧保護部品の分解斜視図である。14 is an exploded perspective view of the transient voltage protection component shown in FIG. 13. FIG. 図15は、図13に示す過渡電圧保護部品の回路図である。15 is a circuit diagram of the transient voltage protection component shown in FIG. 13. FIG. 図16は、第五実施形態に係る過渡電圧保護部品の斜視図である。FIG. 16 is a perspective view of a transient voltage protection component according to a fifth embodiment. 図17は、図16に示す過渡電圧保護部品の側面図である。17 is a side view of the transient voltage protection component shown in FIG. 16; FIG. 図18は、図16に示す過渡電圧保護部品の上面図である。18 is a top view of the transient voltage protection component shown in FIG. 16. FIG. 図19は、図16に示す過渡電圧保護部品の端面図である。19 is an end view of the transient voltage protection component shown in FIG. 16; FIG. 図20は、図16に示す過渡電圧保護部品の回路図である。20 is a circuit diagram of the transient voltage protection component shown in FIG. 16; FIG. 図21は、変形例に係る過渡電圧保護回路の電流-電圧特性を示す図である。FIG. 21 is a diagram showing current-voltage characteristics of a transient voltage protection circuit according to a modification.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。 Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and overlapping descriptions are omitted.

[第一実施形態]
図1は、第一実施形態に係る過渡電圧保護部品1を示す図である。図1に示されるように、過渡電圧保護部品1は、基部2と、第一端子電極(第一電極)3と、第二端子電極(第二電極)4と、第一ランド電極5と、第二ランド電極6と、第三ランド電極(第一ランド電極)7と、第四ランド電極(第二ランド電極)8と、コイル部品(コイル部)9と、バリスタ部品(第一過渡電圧保護部)10と、封止部11と、を備えている。説明の便宜のため、図1において、X方向及びY方向をそれぞれ設定した。
[First embodiment]
FIG. 1 is a diagram showing a transient voltage protection component 1 according to the first embodiment. As shown in FIG. 1, the transient voltage protection component 1 includes a base 2, a first terminal electrode (first electrode) 3, a second terminal electrode (second electrode) 4, a first land electrode 5, A second land electrode 6, a third land electrode (first land electrode) 7, a fourth land electrode (second land electrode) 8, a coil component (coil portion) 9, and a varistor component (first transient voltage protection part) 10 and a sealing part 11 . For convenience of explanation, in FIG. 1, the X direction and the Y direction are set respectively.

基部2は、略直方体形状を呈している。基部2は、たとえば、PCB(Printed Circuit Board)である。基部2は、第一主面2aと、第一主面2aと対向している第二主面2bと、第一主面2aと第二主面2bとを接続している側面2cと、を有している。 The base 2 has a substantially rectangular parallelepiped shape. The base 2 is, for example, a PCB (Printed Circuit Board). The base 2 has a first principal surface 2a, a second principal surface 2b facing the first principal surface 2a, and a side surface 2c connecting the first principal surface 2a and the second principal surface 2b. have.

第一端子電極3は、基部2の第二主面2bとX方向での一方の側面2cとにわたって配置されている。図2(a)及び図2(b)に示されるように、第一端子電極3は、L字形状を呈している。第一端子電極3は、導電性材料(たとえば、Ni又はCu等)からなる。第一端子電極3は、基部2の第二主面2bのみに配置されていてもよい。 The first terminal electrode 3 is arranged over the second main surface 2b of the base 2 and one side surface 2c in the X direction. As shown in FIGS. 2(a) and 2(b), the first terminal electrode 3 is L-shaped. The first terminal electrode 3 is made of a conductive material (for example, Ni or Cu). The first terminal electrode 3 may be arranged only on the second main surface 2 b of the base 2 .

第二端子電極4は、基部2の第二主面2bとX方向での他方の側面2cとにわたって配置されている。第二端子電極4は、X方向において第一端子電極3と離間して配置されている。第二端子電極4は、L字形状を呈している。導電性材料(たとえば、Ni又はCu等)からなる。第二端子電極4は、基部2の第二主面2bのみに配置されていてもよい。 The second terminal electrode 4 is arranged over the second main surface 2b of the base 2 and the other side surface 2c in the X direction. The second terminal electrode 4 is arranged apart from the first terminal electrode 3 in the X direction. The second terminal electrode 4 is L-shaped. It is made of a conductive material (for example, Ni or Cu, etc.). The second terminal electrode 4 may be arranged only on the second main surface 2 b of the base 2 .

第一ランド電極5は、基部2の第一主面2a上に配置されている。第一ランド電極5は、第一端子電極3と接続導体12によって電気的に接続されている。第二ランド電極6は、基部2の第一主面2a上に配置されている。第二ランド電極6は、第二端子電極4と接続導体13によって電気的に接続されている。第一ランド電極5と第二ランド電極6とは、X方向において所定の間隔をあけて配置されている。 The first land electrode 5 is arranged on the first main surface 2 a of the base 2 . The first land electrode 5 is electrically connected to the first terminal electrode 3 by a connection conductor 12 . The second land electrode 6 is arranged on the first main surface 2a of the base 2 . The second land electrode 6 is electrically connected to the second terminal electrode 4 by a connection conductor 13 . The first land electrode 5 and the second land electrode 6 are arranged with a predetermined gap in the X direction.

第三ランド電極7は、基部2の第一主面2a上に配置されている。第三ランド電極7は、第一端子電極3と接続導体14によって電気的に接続されている。第四ランド電極8は、基部2の第一主面2a上に配置されている。第四ランド電極8は、第二端子電極4と接続導体15によって電気的に接続されている。第三ランド電極7と第四ランド電極8とは、X方向において所定の間隔をあけて配置されている。第一ランド電極5と第三ランド電極7とは、Y方向において所定の間隔をあけて配置されている。第二ランド電極6と第四ランド電極8とは、Y方向において所定の間隔をあけて配置されている。 The third land electrode 7 is arranged on the first main surface 2 a of the base 2 . The third land electrode 7 is electrically connected to the first terminal electrode 3 by a connection conductor 14 . A fourth land electrode 8 is arranged on the first main surface 2 a of the base 2 . The fourth land electrode 8 is electrically connected to the second terminal electrode 4 by a connection conductor 15 . The third land electrode 7 and the fourth land electrode 8 are arranged with a predetermined gap in the X direction. The first land electrode 5 and the third land electrode 7 are arranged with a predetermined gap in the Y direction. The second land electrode 6 and the fourth land electrode 8 are arranged with a predetermined gap in the Y direction.

図2(b)は、図1においてb-b線に沿った断面図である。図2(b)に示されるように、コイル部品9は、素体9aと、第一外部電極9bと、第二外部電極9cと、コイル9dと、を備えている。コイル部品9は、チップ部品である。 FIG. 2(b) is a cross-sectional view taken along line bb in FIG. As shown in FIG. 2(b), the coil component 9 includes a base body 9a, a first external electrode 9b, a second external electrode 9c, and a coil 9d. The coil component 9 is a chip component.

素体9aは、直方体形状を呈している。素体9aは、複数の誘電体層が積層されて構成されている。各誘電体層は、たとえば磁性材料により構成されている。磁性材料は、たとえば、Ni-Cu-Zn系フェライト材料、Ni-Cu-Zn-Mg系フェライト材料、及び、Ni-Cu系フェライト材料から選択された少なくとも一つを含んでいる。素体9aを構成する磁性材料には、Fe合金等が含まれていてもよい。素体9aは、非磁性材料から構成されていてもよい。非磁性材料は、たとえば、ガラスセラミック材料、及び、誘電体材料から選択された少なくとも一つを含んでいる。 The element body 9a has a rectangular parallelepiped shape. The element body 9a is constructed by laminating a plurality of dielectric layers. Each dielectric layer is made of, for example, a magnetic material. The magnetic material includes, for example, at least one selected from Ni--Cu--Zn system ferrite material, Ni--Cu--Zn--Mg system ferrite material, and Ni--Cu system ferrite material. The magnetic material forming the element body 9a may contain an Fe alloy or the like. The element body 9a may be made of a non-magnetic material. The non-magnetic material includes at least one selected from, for example, glass-ceramic materials and dielectric materials.

第一外部電極9bは、素体9aの一方の端面側に配置されている。第二外部電極9cは、素体9aの他方の端面側に配置されている。第一外部電極9b及び第二外部電極9cは、導電性材料(たとえば、Ni又はCu等)からなる。 The first external electrode 9b is arranged on one end face side of the element body 9a. The second external electrode 9c is arranged on the other end face side of the element body 9a. The first external electrode 9b and the second external electrode 9c are made of a conductive material (for example, Ni or Cu).

コイル9dは、素体9a内に配置されている。コイル9dは、複数のコイル導体が接続されて構成されている。複数のコイル導体は、コイルの導体として通常用いられる導電性材料(たとえば、Ni又はCu等)からなる。 The coil 9d is arranged inside the element body 9a. The coil 9d is configured by connecting a plurality of coil conductors. The plurality of coil conductors are made of a conductive material (for example, Ni or Cu, etc.) that is commonly used as a coil conductor.

コイル部品9は、第三ランド電極7と第四ランド電極8とに配置されている。具体的には、コイル部品9の第一外部電極9bは、第三ランド電極7に配置されており、コイル部品9の第二外部電極9cは、第四ランド電極8に配置されている。第一外部電極9bと第三ランド電極7とは、はんだHによって接合されている。これにより、第一外部電極9bは、第一端子電極3と電気的に接続されている。第二外部電極9cと第四ランド電極8とは、はんだHによって接合されてる。これにより、第二外部電極9cは、第二端子電極4と電気的に接続されている。 A coil component 9 is arranged on the third land electrode 7 and the fourth land electrode 8 . Specifically, the first external electrode 9 b of the coil component 9 is arranged on the third land electrode 7 , and the second external electrode 9 c of the coil component 9 is arranged on the fourth land electrode 8 . The first external electrode 9b and the third land electrode 7 are joined with solder H. As shown in FIG. Thereby, the first external electrode 9 b is electrically connected to the first terminal electrode 3 . The second external electrode 9c and the fourth land electrode 8 are joined by solder H. Thereby, the second external electrode 9 c is electrically connected to the second terminal electrode 4 .

図2(a)は、図1においてa-a線に沿った断面図である。図2(a)に示されるように、バリスタ部品10は、素体10aと、第一外部電極10bと、第二外部電極10cと、内部電極10dと、を備えている。バリスタ部品10は、チップ部品である。 FIG. 2(a) is a cross-sectional view taken along line aa in FIG. As shown in FIG. 2(a), the varistor component 10 includes an element body 10a, a first external electrode 10b, a second external electrode 10c, and an internal electrode 10d. The varistor component 10 is a chip component.

素体10aは、直方体形状を呈している。素体10aは、複数の誘電体層が積層されて構成されている。各誘電体層は、たとえば、ZnO(酸化亜鉛)を主成分として含むと共に、副成分としてCo、希土類金属元素、IIIb族元素(B、Al、Ga、In)、Si、Cr、Mo、アルカリ金属元素(K、Rb、Cs)及びアルカリ土類金属元素(Mg、Ca、Sr、Ba)等の金属単体、及び、これらの酸化物を含み得る。 The element body 10a has a rectangular parallelepiped shape. The element body 10a is configured by laminating a plurality of dielectric layers. Each dielectric layer contains, for example, ZnO (zinc oxide) as a main component, and Co, rare earth metal elements, group IIIb elements (B, Al, Ga, In), Si, Cr, Mo, and alkali metals as subcomponents. Metal simple substances such as elements (K, Rb, Cs) and alkaline earth metal elements (Mg, Ca, Sr, Ba), and oxides thereof may be included.

第一外部電極10bは、素体10aの一方の端面側に配置されている。第二外部電極10cは、素体10aの他方の端面側に配置されている。第一外部電極10b及び第二外部電極10cは、導電性材料(たとえば、Ni又はCu等)からなる。 The first external electrode 10b is arranged on one end face side of the element body 10a. The second external electrode 10c is arranged on the other end face side of the element body 10a. The first external electrode 10b and the second external electrode 10c are made of a conductive material (such as Ni or Cu, for example).

内部電極10dは、素体10a内に配置されている。内部電極10dは、二つ配置されている。一方の内部電極10dは、第一外部電極10bに接続されている。他方の内部電極10dは、第二外部電極10cに接続されている。内部電極10dは、導電性材料(たとえば、Ni又はCu等)からなる。 The internal electrode 10d is arranged inside the element body 10a. Two internal electrodes 10d are arranged. One internal electrode 10d is connected to the first external electrode 10b. The other internal electrode 10d is connected to the second external electrode 10c. The internal electrode 10d is made of a conductive material (eg, Ni or Cu, etc.).

バリスタ部品10は、第一ランド電極5と第二ランド電極6とに配置されている。具体的には、バリスタ部品10の第一外部電極10bは、第一ランド電極5に配置されており、バリスタ部品10の第二外部電極10cは、第二ランド電極6に配置されている。第一外部電極10bと第一ランド電極5とは、はんだHによって接合されている。これにより、第一外部電極10bは、第一端子電極3と電気的に接続されている。第二外部電極10cと第二ランド電極6とは、はんだHによって接合されてる。これにより、第二外部電極10cは、第二端子電極4と電気的に接続されている。 The varistor component 10 is arranged between the first land electrode 5 and the second land electrode 6 . Specifically, the first external electrode 10 b of the varistor component 10 is arranged on the first land electrode 5 , and the second external electrode 10 c of the varistor component 10 is arranged on the second land electrode 6 . The first external electrode 10b and the first land electrode 5 are joined by solder H. As shown in FIG. Thereby, the first external electrode 10 b is electrically connected to the first terminal electrode 3 . The second external electrode 10c and the second land electrode 6 are joined by solder H. Thereby, the second external electrode 10 c is electrically connected to the second terminal electrode 4 .

なお、第一ランド電極5及び第三ランド電極7は、一つの部材であってもよい。すなわち、一つのランド電極に、コイル部品9の第一外部電極9b及びバリスタ部品10の第一外部電極10bが配置されてもよい。第二ランド電極6及び第四ランド電極8は、一つの部材であってもよい。すなわち、一つのランド電極に、コイル部品9の第二外部電極9c及びバリスタ部品10の第二外部電極10cが配置されてもよい。 The first land electrode 5 and the third land electrode 7 may be one member. That is, the first external electrode 9b of the coil component 9 and the first external electrode 10b of the varistor component 10 may be arranged on one land electrode. The second land electrode 6 and the fourth land electrode 8 may be one member. That is, the second external electrode 9c of the coil component 9 and the second external electrode 10c of the varistor component 10 may be arranged on one land electrode.

図1に示されるように、封止部11は、コイル部品9及びバリスタ部品10を覆っている。封止部11は、直方体形状を呈している。封止部11は、樹脂で形成されている。封止部11は、コイル部品9及びバリスタ部品10を保護するために設けられている。封止部11は、コイル部品9及びバリスタ部品10に外的な力が加わることを抑制する機能、コイル部品9及びバリスタ部品10と外部とを電気的に絶縁する機能、コイル部品9及びバリスタ部品10を塵や埃等から保護する機能を有している。 As shown in FIG. 1 , the sealing portion 11 covers the coil component 9 and the varistor component 10 . The sealing portion 11 has a rectangular parallelepiped shape. The sealing portion 11 is made of resin. The sealing portion 11 is provided to protect the coil component 9 and the varistor component 10 . The sealing portion 11 has a function of suppressing the application of an external force to the coil component 9 and the varistor component 10, a function of electrically insulating the coil component 9 and the varistor component 10 from the outside, and a function of electrically insulating the coil component 9 and the varistor component 10 from the outside. It has a function to protect 10 from dust, dirt and the like.

過渡電圧保護部品1では、バリスタ部品10とコイル部品9とは、第一端子電極3と第二端子電極4との間において電気的に並列に接続されている。過渡電圧保護部品1では、Y方向におけるコイル部品9とバリスタ部品10との間の距離G1(図1参照)は、X方向における第一ランド電極5(第三ランド電極7)と第二ランド電極6(第四ランド電極8)との間の距離G2(図2(a)参照)よりも小さい。 In transient voltage protection component 1 , varistor component 10 and coil component 9 are electrically connected in parallel between first terminal electrode 3 and second terminal electrode 4 . In the transient voltage protection component 1, the distance G1 (see FIG. 1) between the coil component 9 and the varistor component 10 in the Y direction is the distance between the first land electrode 5 (third land electrode 7) and the second land electrode 7 in the X direction. 6 (fourth land electrode 8) (see FIG. 2A).

図3は、図1に示す過渡電圧保護部品1の回路図である。図3に示されるように、過渡電圧保護部品1は、信号ラインL1とグランドラインL2との間に接続される。過渡電圧保護部品1は、第一端子電極3が信号ラインL1に接続され、第二端子電極4がグランドラインL2に接続される。すなわち、過渡電圧保護部品1は、第一端子電極3が信号ラインL1に接続され、第二端子電極4がグランドラインL2に接続されるように実装される。すなわち、図3では、過渡電圧保護部品1の実装構造を示している。過渡電圧保護部品1は、ESD等に起因して大電圧(サージ電圧)が信号ラインL1に流入した場合に、保護対象となる機器(たとえば、IC(Integrated Circuit))を保護するための回路である。信号ラインL1は、保護対象となる機器に接続されている。グランドラインL2は、グランドGに接続されている。 FIG. 3 is a circuit diagram of the transient voltage protection component 1 shown in FIG. As shown in FIG. 3, transient voltage protection component 1 is connected between signal line L1 and ground line L2. The transient voltage protection component 1 has a first terminal electrode 3 connected to a signal line L1 and a second terminal electrode 4 connected to a ground line L2. That is, the transient voltage protection component 1 is mounted such that the first terminal electrode 3 is connected to the signal line L1 and the second terminal electrode 4 is connected to the ground line L2. That is, FIG. 3 shows the mounting structure of the transient voltage protection component 1. As shown in FIG. The transient voltage protection component 1 is a circuit for protecting a device to be protected (for example, an IC (Integrated Circuit)) when a large voltage (surge voltage) flows into the signal line L1 due to ESD or the like. be. The signal line L1 is connected to the equipment to be protected. The ground line L2 is connected to the ground G.

過渡電圧保護部品1のコイル部品9とバリスタ部品10とは、信号ラインL1とグランドラインL2との間において、電気的に並列に接続されている。 Coil component 9 and varistor component 10 of transient voltage protection component 1 are electrically connected in parallel between signal line L1 and ground line L2.

コイル部品9は、所定電圧以上が印加された場合に磁気飽和が生じるように構成されている。所定電圧は、磁気飽和電圧であり、信号ラインL1を流れる信号電圧の最大値よりも高い電圧である。信号電圧は、信号ラインL1を流れる制御信号等の電圧である。 The coil component 9 is configured such that magnetic saturation occurs when a predetermined voltage or higher is applied. The predetermined voltage is the magnetic saturation voltage, which is higher than the maximum value of the signal voltage flowing through the signal line L1. A signal voltage is a voltage of a control signal or the like that flows through the signal line L1.

バリスタ部品10は、所定電圧以上が印加された場合に動作するように構成されている。所定電圧は、バリスタ電圧(動作電圧)である。バリスタ電圧は、ブレイクダウン電圧であるともいえる。 The varistor component 10 is configured to operate when a predetermined voltage or higher is applied. The predetermined voltage is the varistor voltage (operating voltage). The varistor voltage can also be said to be the breakdown voltage.

過渡電圧保護部品1において、コイル部品9が磁気飽和する磁気飽和電圧は、バリスタ部品10が動作するバリスタ電圧以下(磁気飽和電圧≦バリスタ電圧)である。本実施形態では、磁気飽和電圧は、バリスタ電圧よりも小さい。この構成では、過渡電圧保護部品1において、コイル部品9の磁気飽和の方が、バリスタ部品10の動作よりも先に生じる。 In the transient voltage protection component 1, the magnetic saturation voltage at which the coil component 9 is magnetically saturated is equal to or lower than the varistor voltage at which the varistor component 10 operates (magnetic saturation voltage≦varistor voltage). In this embodiment, the magnetic saturation voltage is smaller than the varistor voltage. In this configuration, magnetic saturation of the coil component 9 occurs before the operation of the varistor component 10 in the transient voltage protection component 1 .

図4は、コイル部品9及びバリスタ部品10のそれぞれの電流-電圧特性の一例を示す図である。図4では、横軸は電圧(Voltage)[V]、縦軸は、電流(Current)[A]を示している。図4では、コイル部品9の特性を実線で示し、バリスタ部品10の特性を破線で示している。図4に示されるように、コイル部品9では、磁気飽和電圧(スナップバック電圧)においてスナップバック動作し(スナップバック現象が発現し)、磁気飽和する。すなわち、コイル部品9は、スナップバック動作を有しているともいえる。コイル部品9では、磁気飽和が生じることで低抵抗になり、電流が流れる。バリスタ部品10では、バリスタ電圧以上になるとブレイクダウンする。バリスタ部品10では、バリスタ電圧以上になると低抵抗になり、電流が流れる。 FIG. 4 is a diagram showing an example of current-voltage characteristics of the coil component 9 and the varistor component 10, respectively. In FIG. 4, the horizontal axis indicates voltage [V], and the vertical axis indicates current [A]. In FIG. 4, the characteristics of the coil component 9 are indicated by a solid line, and the characteristics of the varistor component 10 are indicated by a broken line. As shown in FIG. 4, the coil component 9 performs a snapback operation (a snapback phenomenon occurs) at a magnetic saturation voltage (snapback voltage) and is magnetically saturated. That is, it can be said that the coil component 9 has a snapback action. In the coil component 9, magnetic saturation occurs, the resistance becomes low, and current flows. The varistor component 10 breaks down when the voltage exceeds the varistor voltage. In the varistor component 10, when the varistor voltage is exceeded, the resistance becomes low and current flows.

図5は、過渡電圧保護部品1の電流-電圧特性を示す図である。図5では、横軸は電圧(Voltage)[V]、縦軸は、電流(Current)[A]を示している。図5では、TLP(Transmission Line Pulse)測定によって測定した結果を示している。 FIG. 5 is a diagram showing current-voltage characteristics of the transient voltage protection component 1. As shown in FIG. In FIG. 5, the horizontal axis indicates voltage [V], and the vertical axis indicates current [A]. FIG. 5 shows the results measured by TLP (Transmission Line Pulse) measurement.

図5に示されるように、過渡電圧保護部品1の電流-電圧特性(電流電圧特性)では、特性(インピーダンス)が切り替わる部分(以下、「切替部分」と称する。)を二か所有している。切替部分を起点として、電流-電圧特性のグラフに主たる変化が生じる。過渡電圧保護部品1では、第一閾値電圧V1において一回目の切替部分が発生し、電流が流れる。一回目の切替部分の後、電流がそれ以前よりも流れる。一回目の切替部分までのグラフの傾きよりも、一回目の切替部分の後のグラフの傾きの方が大きい。続いて、過渡電圧保護部品1では、第二閾値電圧V2において二回目の切替部分が発生する。これにより、過渡電圧保護部品1は、低抵抗となり、電流が更に流れる。一回目の切替部分から二回目の切替部分までのグラフの傾きよりも、二回目の切替部分の後のグラフの傾きの方が大きい。一回目の切替部分(第一閾値電圧V1)と二回目の切替部分(第二閾値電圧V2)との間では、時間幅を持って徐々に低抵抗となる(徐々に電流が流れる)。第一閾値電圧V1は、第二閾値電圧V2よりも大きい。第一閾値電圧V1は、信号電圧よりも大きい。第一閾値電圧V1は、磁気飽和電圧であるともいえる。 As shown in FIG. 5, the current-voltage characteristics (current-voltage characteristics) of the transient voltage protection component 1 have two portions where the characteristics (impedance) are switched (hereinafter referred to as “switching portions”). . Starting from the switching portion, the main changes occur in the current-voltage characteristic graph. In the transient voltage protection component 1, the first switching portion occurs at the first threshold voltage V1, and current flows. After the first switching portion, more current flows than before. The slope of the graph after the first switching portion is larger than the slope of the graph up to the first switching portion. Subsequently, in the transient voltage protection component 1, a second switching portion occurs at the second threshold voltage V2. As a result, the transient voltage protection component 1 has a low resistance and more current flows. The slope of the graph after the second switching portion is larger than the slope of the graph from the first switching portion to the second switching portion. Between the first switching portion (first threshold voltage V1) and the second switching portion (second threshold voltage V2), the resistance gradually becomes low (current gradually flows) over a period of time. The first threshold voltage V1 is greater than the second threshold voltage V2. The first threshold voltage V1 is greater than the signal voltage. It can also be said that the first threshold voltage V1 is the magnetic saturation voltage.

以上説明したように、本実施形態に係る過渡電圧保護部品1は、コイル部品9を備えている。コイル部品9は、高い周波数成分を有する信号に対しては高抵抗(インピーダンス)であるが、ESDのような大電圧(負荷)に対しては磁気飽和を生じる。このように、コイル部品9では、磁気飽和が生じると、低抵抗となるため、電流を流す。そのため、過渡電圧保護部品1では、信号ラインL1に入力されたESD等の大電圧をグランドラインL2(グランドG)に逃がすことができる。これにより、過渡電圧保護部品1では、クランプ電圧の低減が図れる。 As described above, the transient voltage protection component 1 according to this embodiment includes the coil component 9 . The coil component 9 has a high resistance (impedance) to a signal having a high frequency component, but magnetic saturation occurs to a large voltage (load) such as ESD. In this way, when magnetic saturation occurs in the coil component 9, the resistance becomes low, so that a current flows. Therefore, in the transient voltage protection component 1, a large voltage such as ESD input to the signal line L1 can escape to the ground line L2 (ground G). As a result, the transient voltage protection component 1 can reduce the clamp voltage.

図6は、クランプ特性を示す図である。図6では、横軸は時間(Time)[ns]、縦軸は電圧(Voltage)[V]を示している。図6では、コイル部品9の測定結果を一点鎖線で示し、バリスタ部品10の測定結果を破線で示し、過渡電圧保護部品1の測定結果を実線で示している。図6では、ESDガンにより所定のESD波形を印加したときの測定結果(波形)を示している。 FIG. 6 is a diagram showing clamping characteristics. In FIG. 6, the horizontal axis indicates time (Time) [ns], and the vertical axis indicates voltage (Voltage) [V]. In FIG. 6, the measurement results of the coil component 9 are indicated by a dashed line, the measurement results of the varistor component 10 are indicated by broken lines, and the measurement results of the transient voltage protection component 1 are indicated by a solid line. FIG. 6 shows measurement results (waveforms) when a predetermined ESD waveform is applied by an ESD gun.

図6に示されるように、コイル部品9では、電圧が印加された場合、印加直後において電圧のピーク値(たとえば、1800V程度)は高くなるが、ピークの後に直ぐ電圧は低くなる。コイル部品9では、時間に対する電圧の平均値は低くなる。バリスタ部品10では、電圧が印加された場合、印加直後における電圧のピーク値(たとえば、800V程度)はコイル部品9に比べて低くなるが、ピークの後においてもコイル部品9に比べて電圧は高い。コイル部品9では、時間に対する電圧の平均値はコイル部品9に比べて高くなる。過渡電圧保護部品1では、電圧が印加された場合、印加直後において電圧のピーク値を抑えつつ、時間に対する電圧の平均値を低くすることができる。過渡電圧保護部品1では、コイル部品9及びバリスタ部品10のクランプ特性の良い所を活かしたクランプ特性となる。 As shown in FIG. 6, when a voltage is applied to the coil component 9, the peak value of the voltage (for example, about 1800 V) increases immediately after the application, but the voltage decreases immediately after the peak. The coil component 9 has a low average voltage over time. In the varistor component 10, when a voltage is applied, the peak value of the voltage (for example, about 800 V) immediately after the application is lower than that of the coil component 9, but the voltage is higher than that of the coil component 9 even after the peak. . In the coil component 9, the average value of the voltage with respect to time is higher than in the coil component 9. In the transient voltage protection component 1, when a voltage is applied, it is possible to reduce the average value of the voltage with respect to time while suppressing the peak value of the voltage immediately after the application. The transient voltage protection component 1 has clamping characteristics that take advantage of the good clamping characteristics of the coil component 9 and the varistor component 10 .

また、過渡電圧保護部品1では、コイル部品9とバリスタ部品10とを備えているため、ESD等のエネルギーをコイル部品9とバリスタ部品10とに配分することができる。そのため、過渡電圧保護部品1では、過渡電圧に対する耐性の向上を図れる。したがって、過渡電圧保護部品1では、過渡電圧保護特性の向上が図れる。 Moreover, since the transient voltage protection component 1 includes the coil component 9 and the varistor component 10 , energy such as ESD can be distributed to the coil component 9 and the varistor component 10 . Therefore, the transient voltage protection component 1 can improve resistance to transient voltages. Therefore, the transient voltage protection component 1 can improve the transient voltage protection characteristics.

本実施形態に係る過渡電圧保護部品1では、コイル部品9及びバリスタ部品10のそれぞれは、チップ部品である。過渡電圧保護部品1は、第一端子電極3及び第二端子電極4が配置されている基部2と、基部2に配置されていると共に、第一端子電極3に接続されている第一ランド電極5及び第三ランド電極7と、基部2に配置されていると共に、第二端子電極4に接続されている第二ランド電極6及び第四ランド電極8と、コイル部品9及びバリスタ部品10を封止する封止部11と、を備えている。コイル部品9は、第三ランド電極7及び第四ランド電極8のそれぞれに接続されており、バリスタ部品10は、第一ランド電極5及び第二ランド電極6のそれぞれに接続されている。この構成では、過渡電圧保護部品1を一つの部品として構成することができる。そのため、過渡電圧保護部品1では、過渡電圧保護特性の向上を図りつつ、小型化を図ることができる。 In the transient voltage protection component 1 according to this embodiment, each of the coil component 9 and the varistor component 10 is a chip component. The transient voltage protection component 1 includes a base 2 on which a first terminal electrode 3 and a second terminal electrode 4 are arranged, and a first land electrode arranged on the base 2 and connected to the first terminal electrode 3. 5 and third land electrode 7, second land electrode 6 and fourth land electrode 8 arranged on base 2 and connected to second terminal electrode 4, coil component 9 and varistor component 10 are sealed. and a sealing portion 11 for stopping. The coil component 9 is connected to the third land electrode 7 and the fourth land electrode 8 respectively, and the varistor component 10 is connected to the first land electrode 5 and the second land electrode 6 respectively. In this configuration, the transient voltage protection component 1 can be configured as one component. Therefore, the transient voltage protection component 1 can be miniaturized while improving the transient voltage protection characteristics.

本実施形態に係る過渡電圧保護部品1では、コイル部品9は、信号ラインL1の信号電圧よりも高い電圧が印加された場合に磁気飽和する。コイル部品9が磁気飽和する磁気飽和電圧は、バリスタ部品10のバリスタ電圧よりも小さい。この構成では、バリスタ部品10が動作する前に、コイル部品9において磁気飽和を生じさせることができる。 In the transient voltage protection component 1 according to this embodiment, the coil component 9 is magnetically saturated when a voltage higher than the signal voltage of the signal line L1 is applied. A magnetic saturation voltage at which the coil component 9 is magnetically saturated is smaller than the varistor voltage of the varistor component 10 . In this configuration, magnetic saturation can occur in coil component 9 before varistor component 10 operates.

本実施形態に係る過渡電圧保護部品1では、コイル部品9のインダクタンスとバリスタ部品10の静電容量とのマッチングにより、Sパラメータをコントロールすることができる。そのため、過渡電圧保護部品1において、コイル部品9のインダクタンスとバリスタ部品10の静電容量とを適切にマッチングさせることによって、所望のインピーダンス特性を得ることが可能となる。これにより、過渡電圧保護部品1では、低静電容量とすることができる。 In the transient voltage protection component 1 according to this embodiment, S-parameters can be controlled by matching the inductance of the coil component 9 and the capacitance of the varistor component 10 . Therefore, in the transient voltage protection component 1, by appropriately matching the inductance of the coil component 9 and the capacitance of the varistor component 10, desired impedance characteristics can be obtained. As a result, the transient voltage protection component 1 can have a low capacitance.

本実施形態に係る過渡電圧保護部品1では、図5に示されるように、電流-電圧特性において、第一閾値電圧V1において切替部分を有すると共に、第二閾値電圧V2において切替部分を有する。このとき、第一閾値電圧V1と第二閾値電圧V2との間において、徐々に低抵抗となるなるように波形が連続している。そのため、第一閾値電圧V1と第二閾値電圧V2との間において、グランドGに対して一気に電流が流れない。これにより、グランドGの基準電位にずれが生じることを抑制できる。 In the transient voltage protection component 1 according to the present embodiment, as shown in FIG. 5, the current-voltage characteristics have a switching portion at the first threshold voltage V1 and a switching portion at the second threshold voltage V2. At this time, the waveform continues so that the resistance gradually decreases between the first threshold voltage V1 and the second threshold voltage V2. Therefore, the current does not flow to the ground G at once between the first threshold voltage V1 and the second threshold voltage V2. As a result, it is possible to prevent the ground G from deviating from the reference potential.

本実施形態に係る過渡電圧保護部品1では、コイル部品9とバリスタ部品10との間の距離G1(図1参照)は、第一ランド電極5(第三ランド電極7)と第二ランド電極6(第四ランド電極8)との間の距離G2(図2(a)参照)よりも小さい。この構成では、コイル部品9とバリスタ部品10との間に発生する寄生インダクタンスを減少させることができるため、特性(Sパラメータ)を良好にすることができる。 In the transient voltage protection component 1 according to this embodiment, the distance G1 (see FIG. 1) between the coil component 9 and the varistor component 10 is the first land electrode 5 (third land electrode 7) and the second land electrode 6 (the fourth land electrode 8) is smaller than the distance G2 (see FIG. 2A). With this configuration, the parasitic inductance generated between the coil component 9 and the varistor component 10 can be reduced, so the characteristics (S parameter) can be improved.

[第二実施形態]
続いて、第二実施形態について説明する。図7は、第二実施形態に係る過渡電圧保護部品を示す図である。図7に示されるように、過渡電圧保護部品20は、コイル部品(コイル部)21と、バリスタ部品(第一過渡電圧保護部)22と、第一外部電極(第一電極)23と、第二外部電極(第二電極)24と、を備えている。
[Second embodiment]
Next, a second embodiment will be described. FIG. 7 is a diagram showing a transient voltage protection component according to the second embodiment. As shown in FIG. 7, the transient voltage protection component 20 includes a coil component (coil portion) 21, a varistor component (first transient voltage protection portion) 22, a first external electrode (first electrode) 23, and a second Two external electrodes (second electrodes) 24 are provided.

図8は、図7に示す過渡電圧保護部品20の断面図である。図8に示されるように、コイル部品21は、素体21aと、第一外部電極21bと、第二外部電極21cと、コイル21dと、を備えている。コイル部品21は、フェライトビーズである。 FIG. 8 is a cross-sectional view of the transient voltage protection component 20 shown in FIG. As shown in FIG. 8, the coil component 21 includes a base body 21a, a first external electrode 21b, a second external electrode 21c, and a coil 21d. Coil component 21 is a ferrite bead.

素体21aは、直方体形状を呈している。素体21aは、複数の誘電体層が積層されて構成されている。各誘電体層は、たとえば磁性材料により構成されている。磁性材料は、たとえば、Ni-Cu-Zn系フェライト材料、Ni-Cu-Zn-Mg系フェライト材料、及び、Ni-Cu系フェライト材料から選択された少なくとも一つを含んでいる。素体21aを構成する磁性材料には、Fe合金等が含まれていてもよい。素体21aは、非磁性材料から構成されていてもよい。非磁性材料は、たとえば、ガラスセラミック材料、及び、誘電体材料から選択された少なくとも一つを含んでいる。 The element body 21a has a rectangular parallelepiped shape. The element body 21a is configured by laminating a plurality of dielectric layers. Each dielectric layer is made of, for example, a magnetic material. The magnetic material includes, for example, at least one selected from Ni--Cu--Zn system ferrite material, Ni--Cu--Zn--Mg system ferrite material, and Ni--Cu system ferrite material. The magnetic material forming the element body 21a may contain an Fe alloy or the like. The element body 21a may be made of a non-magnetic material. The non-magnetic material includes at least one selected from, for example, glass-ceramic materials and dielectric materials.

第一外部電極21bは、素体21aの一方の端面側に配置されている。第二外部電極21cは、素体21aの他方の端面側に配置されている。第一外部電極21b及び第二外部電極21cは、焼付電極であり、導電性材料(たとえば、Ni又はCu等)からなる。 The first external electrode 21b is arranged on one end face side of the element body 21a. The second external electrode 21c is arranged on the other end face side of the element body 21a. The first external electrode 21b and the second external electrode 21c are baked electrodes and are made of a conductive material (for example, Ni or Cu).

コイル21dは、素体21a内に配置されている。コイル21dは、複数のコイル導体が接続されて構成されている。複数のコイル導体は、コイルの導体として通常用いられる導電性材料(たとえば、Ni又はCu等)からなる。 The coil 21d is arranged inside the element body 21a. The coil 21d is configured by connecting a plurality of coil conductors. The plurality of coil conductors are made of a conductive material (for example, Ni or Cu, etc.) that is commonly used as a coil conductor.

バリスタ部品22は、素体22aと、第一外部電極22bと、第二外部電極22cと、内部電極22dと、を備えている。 The varistor component 22 includes an element body 22a, a first external electrode 22b, a second external electrode 22c, and an internal electrode 22d.

素体22aは、直方体形状を呈している。素体22aは、複数の誘電体層が積層されて構成されている。各誘電体層は、たとえば、ZnO(酸化亜鉛)を主成分として含むと共に、副成分としてCo、希土類金属元素、IIIb族元素(B、Al、Ga、In)、Si、Cr、Mo、アルカリ金属元素(K、Rb、Cs)及びアルカリ土類金属元素(Mg、Ca、Sr、Ba)等の金属単体、及び、これらの酸化物を含み得る。 The element body 22a has a rectangular parallelepiped shape. The element body 22a is configured by laminating a plurality of dielectric layers. Each dielectric layer contains, for example, ZnO (zinc oxide) as a main component, and Co, rare earth metal elements, group IIIb elements (B, Al, Ga, In), Si, Cr, Mo, and alkali metals as subcomponents. Metal simple substances such as elements (K, Rb, Cs) and alkaline earth metal elements (Mg, Ca, Sr, Ba), and oxides thereof may be included.

第一外部電極22bは、素体22aの一方の端面側に配置されている。第二外部電極22cは、素体22aの他方の端面側に配置されている。第一外部電極22b及び第二外部電極22cは、焼付電極であり、導電性材料(たとえば、Ni又はCu等)からなる。 The first external electrode 22b is arranged on one end face side of the element body 22a. The second external electrode 22c is arranged on the other end face side of the element body 22a. The first external electrode 22b and the second external electrode 22c are baked electrodes and are made of a conductive material (for example, Ni or Cu).

内部電極22dは、素体22a内に配置されている。内部電極22dは、二つ配置されている。一方の内部電極22dは、第一外部電極22bに接続されている。他方の内部電極22dは、第二外部電極22cに接続されている。二つの内部電極22dは、対向して配置されている。内部電極22dは、導電性材料(たとえば、Ni又はCu等)からなる。 The internal electrode 22d is arranged inside the element body 22a. Two internal electrodes 22d are arranged. One internal electrode 22d is connected to the first external electrode 22b. The other internal electrode 22d is connected to the second external electrode 22c. The two internal electrodes 22d are arranged to face each other. The internal electrode 22d is made of a conductive material (eg, Ni or Cu, etc.).

第一外部電極23は、コイル部品21の第一外部電極21bとバリスタ部品22の第一外部電極22bとに接続されている。第一外部電極21bと第一外部電極22bとは接触しており、第一外部電極23は、第一外部電極21b及び第一外部電極22bを覆うように形成されている。 The first external electrode 23 is connected to the first external electrode 21 b of the coil component 21 and the first external electrode 22 b of the varistor component 22 . The first external electrode 21b and the first external electrode 22b are in contact with each other, and the first external electrode 23 is formed to cover the first external electrode 21b and the first external electrode 22b.

第二外部電極24は、コイル部品21の第二外部電極21cとバリスタ部品22の第二外部電極22cとに接続されている。第二外部電極21cと第二外部電極22cとは接触しており、第二外部電極24は、第二外部電極21c及び第二外部電極22cを覆うように形成されている。第一外部電極23及び第二外部電極24は、たとえば電解めっき又は無電解めっきにより形成されるめっき(めっき層)であり、導電性材料(たとえば、Ni又はCu等)からなる。 The second external electrode 24 is connected to the second external electrode 21 c of the coil component 21 and the second external electrode 22 c of the varistor component 22 . The second external electrode 21c and the second external electrode 22c are in contact with each other, and the second external electrode 24 is formed to cover the second external electrode 21c and the second external electrode 22c. The first external electrode 23 and the second external electrode 24 are plated (plated layers) formed by, for example, electrolytic plating or electroless plating, and are made of a conductive material (eg, Ni, Cu, etc.).

コイル部品21とバリスタ部品22とは、接合部25によって接合されている。接合部25は、コイル部品21の第一外部電極21b及びバリスタ部品22の第一外部電極22bと、コイル部品21の第二外部電極21c及びバリスタ部品22の第二外部電極22cと、コイル部品21の主面及びバリスタ部品22の主面と、によって形成されている空間に充填されている。接合部25は、コイル部品21の素体21aの主面とバリスタ部品22の素体22aの主面とを主として接合している。接合部25は、たとえば樹脂接着剤等である。 Coil component 21 and varistor component 22 are joined by a joint portion 25 . The joint portion 25 includes the first external electrode 21b of the coil component 21 and the first external electrode 22b of the varistor component 22, the second external electrode 21c of the coil component 21 and the second external electrode 22c of the varistor component 22, the coil component 21 and the main surface of the varistor component 22 are filled. The joint portion 25 mainly joins the main surface of the element body 21 a of the coil component 21 and the main surface of the element body 22 a of the varistor component 22 . The joint portion 25 is, for example, a resin adhesive or the like.

過渡電圧保護部品20では、コイル部品21とバリスタ部品22とは、第一外部電極23と第二外部電極24との間において電気的に並列に接続されている。 In transient voltage protection component 20 , coil component 21 and varistor component 22 are electrically connected in parallel between first external electrode 23 and second external electrode 24 .

過渡電圧保護部品20を製造する場合には、コイル部品21とバリスタ部品22とを準備し、コイル部品21とバリスタ部品22とを接合部25によって接合する。その後、第一外部電極21b及び第一外部電極22bを覆うように第一外部電極23(めっき)を形成すると共に、第二外部電極21c及び第二外部電極22cを覆うように第二外部電極24(めっき)を形成する。これにより、過渡電圧保護部品20は、コイル部品21及びバリスタ部品22を含む一つの部品として製造される。 When manufacturing the transient voltage protection component 20 , the coil component 21 and the varistor component 22 are prepared, and the coil component 21 and the varistor component 22 are joined together by the joining portion 25 . After that, a first external electrode 23 (plating) is formed so as to cover the first external electrode 21b and the first external electrode 22b, and a second external electrode 24 is formed so as to cover the second external electrode 21c and the second external electrode 22c. (plating) is formed. Thereby, the transient voltage protection component 20 is manufactured as one component including the coil component 21 and the varistor component 22 .

図9は、図7に示す過渡電圧保護部品20の回路図である。図9に示されるように、過渡電圧保護部品20は、信号ラインL1とグランドラインL2との間に接続される。過渡電圧保護部品20は、第一外部電極23が信号ラインL1に接続され、第二外部電極24がグランドラインL2に接続される。すなわち、過渡電圧保護部品20は、第一外部電極23が信号ラインL1に接続され、第二外部電極24がグランドラインL2に接続されるように実装される。 FIG. 9 is a circuit diagram of transient voltage protection component 20 shown in FIG. As shown in FIG. 9, transient voltage protection component 20 is connected between signal line L1 and ground line L2. The transient voltage protection component 20 has a first external electrode 23 connected to the signal line L1 and a second external electrode 24 connected to the ground line L2. That is, the transient voltage protection component 20 is mounted such that the first external electrode 23 is connected to the signal line L1 and the second external electrode 24 is connected to the ground line L2.

過渡電圧保護部品20のコイル部品21とバリスタ部品22とは、信号ラインL1とグランドラインL2との間において、電気的に並列に接続されている。 Coil component 21 and varistor component 22 of transient voltage protection component 20 are electrically connected in parallel between signal line L1 and ground line L2.

コイル部品21は、所定電圧以上が印加された場合に磁気飽和が生じるように構成されている。所定電圧は、磁気飽和電圧であり、信号ラインL1を流れる信号電圧の最大値よりも高い電圧である。信号電圧は、信号ラインL1を流れる制御信号等の電圧である。 The coil component 21 is configured such that magnetic saturation occurs when a predetermined voltage or higher is applied. The predetermined voltage is the magnetic saturation voltage, which is higher than the maximum value of the signal voltage flowing through the signal line L1. A signal voltage is a voltage of a control signal or the like that flows through the signal line L1.

バリスタ部品22は、所定電圧以上が印加された場合に動作するように構成されている。所定電圧は、バリスタ電圧(動作電圧)である。バリスタ電圧は、ブレイクダウン電圧であるともいえる。 The varistor component 22 is configured to operate when a predetermined voltage or higher is applied. The predetermined voltage is the varistor voltage (operating voltage). The varistor voltage can also be said to be the breakdown voltage.

過渡電圧保護部品20において、コイル部品21が磁気飽和する磁気飽和電圧は、バリスタ部品22が動作するバリスタ電圧以下(磁気飽和電圧≦バリスタ電圧)である。本実施形態では、磁気飽和電圧は、バリスタ電圧よりも小さい。この構成では、過渡電圧保護部品20において、コイル部品21の磁気飽和の方が、バリスタ部品22の動作よりも先に生じる。 In the transient voltage protection component 20, the magnetic saturation voltage at which the coil component 21 is magnetically saturated is equal to or lower than the varistor voltage at which the varistor component 22 operates (magnetic saturation voltage≦varistor voltage). In this embodiment, the magnetic saturation voltage is smaller than the varistor voltage. In this configuration, magnetic saturation of coil component 21 occurs before operation of varistor component 22 in transient voltage protection component 20 .

以上説明したように、本実施形態に係る過渡電圧保護部品20は、コイル部品21を備えている。コイル部品21は、高い周波数成分を有する信号に対しては高抵抗(インピーダンス)であるが、ESDのような大電圧(負荷)に対しては磁気飽和を生じる。このように、コイル部品21では、磁気飽和が生じると、低抵抗となるため、電流を流す。そのため、過渡電圧保護部品20では、信号ラインL1に入力されたESD等の大電圧をグランドラインL2(グランドG)に逃がすことができる。これにより、過渡電圧保護部品20では、クランプ電圧の低減が図れる。また、過渡電圧保護部品20では、コイル部品21とバリスタ部品22とを備えているため、ESD等のエネルギーをコイル部品21とバリスタ部品22とに配分することができる。そのため、過渡電圧保護部品20では、過渡電圧に対する耐性の向上を図れる。したがって、過渡電圧保護部品20では、過渡電圧保護特性の向上が図れる。 As described above, the transient voltage protection component 20 according to this embodiment includes the coil component 21 . The coil component 21 has a high resistance (impedance) to a signal having a high frequency component, but causes magnetic saturation to a large voltage (load) such as ESD. In this way, when magnetic saturation occurs in the coil component 21, the resistance becomes low, so that a current flows. Therefore, in the transient voltage protection component 20, a large voltage such as ESD input to the signal line L1 can escape to the ground line L2 (ground G). As a result, the transient voltage protection component 20 can reduce the clamp voltage. Moreover, since transient voltage protection component 20 includes coil component 21 and varistor component 22 , energy such as ESD can be distributed to coil component 21 and varistor component 22 . Therefore, the transient voltage protection component 20 can improve resistance to transient voltages. Therefore, the transient voltage protection component 20 can improve the transient voltage protection characteristics.

本実施形態に係る過渡電圧保護部品20では、コイル部品21とバリスタ部品22とが接合部25によって接合されている。接合部25は樹脂からなる。そのため、過渡電圧保護部品20では、コイル部品21及びバリスタ部品22の線膨張を接合部25によって吸収し得る。そのため、過渡電圧保護部品20では、熱特性の向上を図ることができる。 In the transient voltage protection component 20 according to this embodiment, the coil component 21 and the varistor component 22 are joined together by the joining portion 25 . The joint portion 25 is made of resin. Therefore, in the transient voltage protection component 20 , linear expansion of the coil component 21 and the varistor component 22 can be absorbed by the joint portion 25 . Therefore, in the transient voltage protection component 20, the thermal characteristics can be improved.

[第三実施形態]
続いて、第三実施形態について説明する。図10は、第三実施形態に係る過渡電圧保護部品の断面図である。図10に示されるように、過渡電圧保護部品20Aは、コイル部品(コイル部)21と、第一バリスタ部品(第一過渡電圧保護部)22と、第二バリスタ部品(第二過渡電圧保護部)26と、第一外部電極23と、第二外部電極24と、を備えている。第一バリスタ部品22は、第二実施形態のバリスタ部品22と同じ構成である。
[Third Embodiment]
Next, a third embodiment will be described. FIG. 10 is a cross-sectional view of the transient voltage protection component according to the third embodiment. As shown in FIG. 10, the transient voltage protection component 20A includes a coil component (coil portion) 21, a first varistor component (first transient voltage protection portion) 22, and a second varistor component (second transient voltage protection portion). ) 26 , a first external electrode 23 and a second external electrode 24 . The first varistor component 22 has the same configuration as the varistor component 22 of the second embodiment.

第二バリスタ部品26は、素体26aと、第一外部電極26bと、第二外部電極26cと、内部電極26dと、を備えている。 The second varistor component 26 includes an element body 26a, a first external electrode 26b, a second external electrode 26c, and an internal electrode 26d.

素体26aは、直方体形状を呈している。素体26aは、複数の誘電体層が積層されて構成されている。各誘電体層は、たとえば、ZnO(酸化亜鉛)を主成分として含むと共に、副成分としてCo、希土類金属元素、IIIb族元素(B、Al、Ga、In)、Si、Cr、Mo、アルカリ金属元素(K、Rb、Cs)及びアルカリ土類金属元素(Mg、Ca、Sr、Ba)等の金属単体、及び、これらの酸化物を含み得る。 The element body 26a has a rectangular parallelepiped shape. The element body 26a is constructed by laminating a plurality of dielectric layers. Each dielectric layer contains, for example, ZnO (zinc oxide) as a main component, and Co, rare earth metal elements, group IIIb elements (B, Al, Ga, In), Si, Cr, Mo, and alkali metals as subcomponents. Metal simple substances such as elements (K, Rb, Cs) and alkaline earth metal elements (Mg, Ca, Sr, Ba), and oxides thereof may be included.

第一外部電極26bは、素体26aの一方の端面側に配置されている。第二外部電極26cは、素体26aの他方の端面側に配置されている。第一外部電極26b及び第二外部電極26cは、焼付電極であり、導電性材料(たとえば、Ni又はCu等)からなる。 The first external electrode 26b is arranged on one end face side of the element body 26a. The second external electrode 26c is arranged on the other end face side of the element body 26a. The first external electrode 26b and the second external electrode 26c are baked electrodes and are made of a conductive material (for example, Ni or Cu).

内部電極26dは、素体26a内に配置されている。内部電極26dは、六つ配置されている。複数(三つ)の内部電極26dは、第一外部電極26bに接続されている。複数(三つ)の内部電極26dは、第二外部電極26cに接続されている。内部電極26dは、対向して配置されている。内部電極26dは、導電性材料(たとえば、Ni又はCu等)からなる。 The internal electrode 26d is arranged inside the element body 26a. Six internal electrodes 26d are arranged. A plurality (three) of internal electrodes 26d are connected to the first external electrode 26b. A plurality (three) of internal electrodes 26d are connected to the second external electrode 26c. The internal electrodes 26d are arranged to face each other. The internal electrode 26d is made of a conductive material (eg, Ni or Cu, etc.).

第一外部電極23は、第一バリスタ部品22の第二外部電極22cと第二バリスタ部品26の第二外部電極26cとに接続されている。第二外部電極22cと第二外部電極26cとは接触しており、第一外部電極23は、第二外部電極22c及び第二外部電極26cを覆うように形成されている。 The first external electrode 23 is connected to the second external electrode 22 c of the first varistor component 22 and the second external electrode 26 c of the second varistor component 26 . The second external electrode 22c and the second external electrode 26c are in contact with each other, and the first external electrode 23 is formed to cover the second external electrode 22c and the second external electrode 26c.

第二外部電極24は、コイル部品21の第一外部電極21bと第一バリスタ部品22の第一外部電極22bとに接続されている。第一外部電極21bと第一外部電極22bとは接触しており、第二外部電極24は、第一外部電極22b及び第一外部電極22bを覆うように形成されている。第一外部電極23及び第二外部電極24は、たとえば電解めっき又は無電解めっきにより形成されるめっき(めっき層)であり、導電性材料(たとえば、Ni又はCu等)からなる。 The second external electrode 24 is connected to the first external electrode 21 b of the coil component 21 and the first external electrode 22 b of the first varistor component 22 . The first external electrode 21b and the first external electrode 22b are in contact with each other, and the second external electrode 24 is formed to cover the first external electrode 22b and the first external electrode 22b. The first external electrode 23 and the second external electrode 24 are plated (plated layers) formed by, for example, electrolytic plating or electroless plating, and are made of a conductive material (eg, Ni, Cu, etc.).

過渡電圧保護部品20Aでは、第一バリスタ部品22の素体22aの主面には、接続電極22eが配置されている。過渡電圧保護部品20Aでは、コイル部品21の第二外部電極21c及び第二バリスタ部品26の第一外部電極26bは、その端面同士が対向して配置されると共に、接続電極22eに配置されている。 In the transient voltage protection component 20A, a connection electrode 22e is arranged on the main surface of the element body 22a of the first varistor component 22. As shown in FIG. In the transient voltage protection component 20A, the second external electrode 21c of the coil component 21 and the first external electrode 26b of the second varistor component 26 are arranged so that their end faces face each other and are arranged on the connection electrode 22e. .

過渡電圧保護部品20Aでは、第一バリスタ部品22とコイル部品21及び第二バリスタ部品26とは、第一外部電極23と第二外部電極24との間において電気的に並列に接続されている。コイル部品21と第二バリスタ部品26とは、第一外部電極23と第二外部電極24との間において電気的に直列に接続されている。 In transient voltage protection component 20</b>A, first varistor component 22 , coil component 21 and second varistor component 26 are electrically connected in parallel between first external electrode 23 and second external electrode 24 . Coil component 21 and second varistor component 26 are electrically connected in series between first external electrode 23 and second external electrode 24 .

過渡電圧保護部品20Aを製造する場合には、コイル部品21、第一バリスタ部品22及び第二バリスタ部品26を準備し、コイル部品21と第一バリスタ部品22とを接合部25によって接合すると共に、第二バリスタ部品26と第一バリスタ部品22とを接合部25によって接合する。その後、第一外部電極21b及び第一外部電極22bを覆うように第一外部電極23を形成すると共に、第二外部電極26c及び第二外部電極22cを覆うように第二外部電極24を形成する。 When manufacturing the transient voltage protection component 20A, the coil component 21, the first varistor component 22 and the second varistor component 26 are prepared, and the coil component 21 and the first varistor component 22 are joined by the joining portion 25, The second varistor component 26 and the first varistor component 22 are joined by the joining portion 25 . After that, the first external electrode 23 is formed to cover the first external electrode 21b and the first external electrode 22b, and the second external electrode 24 is formed to cover the second external electrode 26c and the second external electrode 22c. .

図11は、図10に示す過渡電圧保護部品の回路図である。図11に示されるように、過渡電圧保護部品20Aは、信号ラインL1とグランドラインL2との間に接続される。過渡電圧保護部品20Aは、第一外部電極23が信号ラインL1に接続され、第二外部電極24がグランドラインL2に接続される。すなわち、過渡電圧保護部品20Aは、第一外部電極23が信号ラインL1に接続され、第二外部電極24がグランドラインL2に接続されるように実装される。 11 is a circuit diagram of the transient voltage protection component shown in FIG. 10. FIG. As shown in FIG. 11, transient voltage protection component 20A is connected between signal line L1 and ground line L2. The transient voltage protection component 20A has the first external electrode 23 connected to the signal line L1 and the second external electrode 24 connected to the ground line L2. That is, the transient voltage protection component 20A is mounted such that the first external electrode 23 is connected to the signal line L1 and the second external electrode 24 is connected to the ground line L2.

コイル部品21は、所定電圧以上が印加された場合に磁気飽和が生じるように構成されている。所定電圧は、第一バリスタ部品22が動作する動作電圧(バリスタ電圧)及び第二バリスタ部品26が動作する動作電圧(バリスタ電圧)よりも小さい。所定電圧は、信号電圧よりも低くてもよい。 The coil component 21 is configured such that magnetic saturation occurs when a predetermined voltage or higher is applied. The predetermined voltage is lower than the operating voltage (varistor voltage) at which the first varistor component 22 operates and the operating voltage (varistor voltage) at which the second varistor component 26 operates. The predetermined voltage may be lower than the signal voltage.

第一バリスタ部品22は、所定電圧以上が印加された場合に動作するように構成されている。所定電圧は、バリスタ電圧(動作電圧)である。バリスタ電圧は、ブレイクダウン電圧であるともいえる。 The first varistor component 22 is configured to operate when a predetermined voltage or higher is applied. The predetermined voltage is the varistor voltage (operating voltage). The varistor voltage can also be said to be the breakdown voltage.

第二バリスタ部品26は、所定電圧以上が印加された場合に動作するように構成されている。第二バリスタ部品26が動作するバリスタ電圧は、信号ラインL1の信号電圧よりも高い。第二バリスタ部品26のバリスタ電圧及びコイル部品21の磁気飽和電圧の合計の電圧は、第一バリスタ部品22のバリスタ電圧よりも小さい。 The second varistor component 26 is configured to operate when a predetermined voltage or higher is applied. The varistor voltage at which the second varistor component 26 operates is higher than the signal voltage of the signal line L1. The total voltage of the varistor voltage of the second varistor component 26 and the magnetic saturation voltage of the coil component 21 is smaller than the varistor voltage of the first varistor component 22 .

過渡電圧保護部品20Aでは、第一バリスタ部品22と第二バリスタ部品26及びコイル部品21とは、信号ラインL1とグランドラインL2との間において、電気的に並列に接続されている。第二バリスタ部品26とコイル部品21とは、信号ラインL1とグランドラインL2との間において、第二バリスタ部品26及びコイル部品21の順に電気的に直列に接続されている。 In transient voltage protection component 20A, first varistor component 22, second varistor component 26 and coil component 21 are electrically connected in parallel between signal line L1 and ground line L2. The second varistor component 26 and the coil component 21 are electrically connected in series in the order of the second varistor component 26 and the coil component 21 between the signal line L1 and the ground line L2.

図12は、過渡電圧保護部品20Aの電流-電圧特性を示す図である。図12では、横軸は電圧(Voltage)[V]、縦軸は、電流(Current)[A]を示している。図12では、TLP(Transmission Line Pulse)測定によって測定した結果を示している。図12に示されるように、過渡電圧保護部品20Aでは、電圧に対して、電流が非線形に増加する。過渡電圧保護部品20Aでは、コイル部品21及び第二バリスタ部品26が直列に接続されているため、バリスタの特性が表れている。 FIG. 12 is a diagram showing current-voltage characteristics of the transient voltage protection component 20A. In FIG. 12, the horizontal axis indicates voltage (Voltage) [V], and the vertical axis indicates current (Current) [A]. FIG. 12 shows the results measured by TLP (Transmission Line Pulse) measurement. As shown in FIG. 12, in transient voltage protection component 20A, current increases nonlinearly with respect to voltage. In the transient voltage protection component 20A, since the coil component 21 and the second varistor component 26 are connected in series, the characteristic of a varistor appears.

以上説明したように、本実施形態に係る過渡電圧保護部品20Aは、コイル部品21を備えている。コイル部品21は、高い周波数成分を有する信号に対しては高抵抗(インピーダンス)であるが、ESDのような大電圧(負荷)に対しては磁気飽和を生じる。このように、コイル部品21では、磁気飽和が生じると、低抵抗となるため、電流を流す。そのため、過渡電圧保護部品20Aでは、信号ラインL1に入力されたESD等の大電圧をグランドラインL2(グランドG)に逃がすことができる。これにより、過渡電圧保護部品20Aでは、クランプ電圧の低減が図れる。また、過渡電圧保護部品20Aでは、コイル部品21、第一バリスタ部品22及び第二バリスタ部品26を備えているため、ESD等のエネルギーをコイル部品21、第一バリスタ部品22及び第二バリスタ部品26に配分することができる。そのため、過渡電圧保護部品20Aでは、過渡電圧に対する耐性の向上を図れる。したがって、過渡電圧保護部品20Aでは、過渡電圧保護特性の向上が図れる。 As described above, the transient voltage protection component 20A according to this embodiment includes the coil component 21. As shown in FIG. The coil component 21 has a high resistance (impedance) to a signal having a high frequency component, but causes magnetic saturation to a large voltage (load) such as ESD. In this way, when magnetic saturation occurs in the coil component 21, the resistance becomes low, so that a current flows. Therefore, in the transient voltage protection component 20A, a large voltage such as ESD input to the signal line L1 can be released to the ground line L2 (ground G). Thereby, the clamp voltage can be reduced in the transient voltage protection component 20A. In addition, since the transient voltage protection component 20A includes the coil component 21, the first varistor component 22, and the second varistor component 26, energy such as ESD is can be allocated to Therefore, the transient voltage protection component 20A can improve resistance to transient voltages. Therefore, the transient voltage protection component 20A can improve the transient voltage protection characteristics.

本実施形態に係る過渡電圧保護部品20Aでは、第二バリスタ部品26とコイル部品21とは、信号ラインL1側から第二バリスタ部品26及びコイル部品21の順に直列に接続されている。この構成では、第二バリスタ部品26のバリスタ電圧及びコイル部品21の磁気飽和電圧の二つの合計の電圧よりも高い電圧が印加された場合に、低抵抗となり電流を流す。たとえば、図12に示されるように、数十Vの電圧で動作させようとする場合において、コイル部品21のみで対応しようとすると、数十Vに対応できるコイル部品21を設ける必要がある。この場合、コイル部品21が大型化し得るため、過渡電圧保護部品20Aの小型化を図ることが難しい。過渡電圧保護部品20Aでは、第二バリスタ部品26及びコイル部品21を直列に接続しているため、コイル部品21の磁気飽和電圧が小さくてもよい。そのため、小型のコイル部品21を用いることができるので、部品の小型化を図れる。 In the transient voltage protection component 20A according to this embodiment, the second varistor component 26 and the coil component 21 are connected in series in the order of the second varistor component 26 and the coil component 21 from the signal line L1 side. In this configuration, when a voltage higher than the sum of the varistor voltage of the second varistor component 26 and the magnetic saturation voltage of the coil component 21 is applied, the resistance becomes low and current flows. For example, as shown in FIG. 12, when trying to operate at a voltage of several tens of volts, if only the coil component 21 is used, it is necessary to provide a coil component 21 capable of handling several tens of volts. In this case, since the coil component 21 may become large, it is difficult to reduce the size of the transient voltage protection component 20A. Since the second varistor component 26 and the coil component 21 are connected in series in the transient voltage protection component 20A, the magnetic saturation voltage of the coil component 21 may be small. Therefore, since a small coil component 21 can be used, the size of the component can be reduced.

上記実施形態では、コイル部品21と第二バリスタ部品26とは、第一外部電極23と第二外部電極24との間において電気的に直列に接続されており、第二バリスタ部品26とコイル部品21とは、信号ラインL1とグランドラインL2との間において、第二バリスタ部品26及びコイル部品21の順に電気的に直列に接続されている形態を一例に説明した。しかし、信号ラインL1とグランドラインL2との間において、コイル部品21及び第二バリスタ部品26の順に電気的に直列に接続されていてもよい。 In the above embodiment, the coil component 21 and the second varistor component 26 are electrically connected in series between the first external electrode 23 and the second external electrode 24, and the second varistor component 26 and the coil component 21 is described as an example in which the second varistor component 26 and the coil component 21 are electrically connected in series between the signal line L1 and the ground line L2. However, between the signal line L1 and the ground line L2, the coil component 21 and the second varistor component 26 may be electrically connected in series in this order.

[第四実施形態]
続いて、第四実施形態について説明する。図13は、第四実施形態に係る過渡電圧保護部品の斜視図である。図14は、図13に示す過渡電圧保護部品の分解斜視図である。図13又は図14に示されるように、過渡電圧保護部品30は、素体31と、第一外部電極(第一電極)32と、第二外部電極(第二電極)33と、コイル部34と、バリスタ部(第一過渡電圧保護部)35と、を備えている。
[Fourth embodiment]
Next, a fourth embodiment will be described. FIG. 13 is a perspective view of a transient voltage protection component according to the fourth embodiment. 14 is an exploded perspective view of the transient voltage protection component shown in FIG. 13. FIG. As shown in FIG. 13 or 14, the transient voltage protection component 30 includes an element body 31, a first external electrode (first electrode) 32, a second external electrode (second electrode) 33, and a coil portion 34. and a varistor section (first transient voltage protection section) 35 .

素体31は、複数の誘電体層36が積層されて構成されている。素体31において、コイル部34を構成する各誘電体層36は、たとえば磁性材料により構成されている。磁性材料は、たとえば、Ni-Cu-Zn系フェライト材料、Ni-Cu-Zn-Mg系フェライト材料、及び、Ni-Cu系フェライト材料から選択された少なくとも一つを含んでいる。コイル部34を構成する各誘電体層36の磁性材料には、Fe合金等が含まれていてもよい。コイル部34を構成する各誘電体層36は、非磁性材料から構成されていてもよい。非磁性材料は、たとえば、ガラスセラミック材料、及び、誘電体材料から選択された少なくとも一つを含んでいる。 The element body 31 is configured by laminating a plurality of dielectric layers 36 . In the base body 31, each dielectric layer 36 forming the coil portion 34 is made of, for example, a magnetic material. The magnetic material includes, for example, at least one selected from Ni--Cu--Zn system ferrite material, Ni--Cu--Zn--Mg system ferrite material, and Ni--Cu system ferrite material. The magnetic material of each dielectric layer 36 forming the coil portion 34 may contain an Fe alloy or the like. Each dielectric layer 36 forming the coil portion 34 may be made of a non-magnetic material. The non-magnetic material includes at least one selected from, for example, glass-ceramic materials and dielectric materials.

素体31において、バリスタ部35を構成する各誘電体層36は、たとえば、ZnO(酸化亜鉛)を主成分として含むと共に、副成分としてCo、希土類金属元素、IIIb族元素(B、Al、Ga、In)、Si、Cr、Mo、アルカリ金属元素(K、Rb、Cs)及びアルカリ土類金属元素(Mg、Ca、Sr、Ba)等の金属単体、及び、これらの酸化物を含み得る。 In the element body 31, each dielectric layer 36 constituting the varistor section 35 contains, for example, ZnO (zinc oxide) as a main component, and Co, a rare earth metal element, a Group IIIb element (B, Al, Ga , In), Si, Cr, Mo, alkali metal elements (K, Rb, Cs) and alkaline earth metal elements (Mg, Ca, Sr, Ba), and oxides thereof.

第一外部電極32は、素体31の一方の端面側に配置されている。第二外部電極33は、素体31の他方の端面側に配置されている。第一外部電極32及び第二外部電極33は、導電性材料(たとえば、Ni又はCu等)からなる。 The first external electrode 32 is arranged on one end face side of the element body 31 . The second external electrode 33 is arranged on the other end face side of the element body 31 . The first external electrode 32 and the second external electrode 33 are made of a conductive material (such as Ni or Cu, for example).

コイル部34は、素体31の一方の主面側に設けられている。コイル部34は、第一コイル導体37、第二コイル導体38及び第三コイル導体39により構成されている。第一コイル導体37、第二コイル導体38及び第三コイル導体39は、素体31内に配置されており、コイルを構成している。第一コイル導体37、第二コイル導体38及び第三コイル導体39は、互いに電気的に接続されている。第一コイル導体37の一端部は、第一外部電極32に接続されている。第三コイル導体39の一端部は、第二外部電極33に接続されている。 The coil portion 34 is provided on one main surface side of the base body 31 . The coil portion 34 is composed of a first coil conductor 37 , a second coil conductor 38 and a third coil conductor 39 . The first coil conductor 37, the second coil conductor 38, and the third coil conductor 39 are arranged inside the element body 31 and constitute coils. The first coil conductor 37, the second coil conductor 38 and the third coil conductor 39 are electrically connected to each other. One end of the first coil conductor 37 is connected to the first external electrode 32 . One end of the third coil conductor 39 is connected to the second external electrode 33 .

バリスタ部35は、素体31の他方の主面側に設けられている。バリスタ部35は、第一内部電極40及び第二内部電極41により構成されている。第一内部電極40及び第二内部電極41は、素体31内に配置されている。第一内部電極40は、第一外部電極32に接続されている。第二内部電極41は、第二外部電極33に接続されている。 The varistor portion 35 is provided on the other main surface side of the element body 31 . The varistor section 35 is composed of a first internal electrode 40 and a second internal electrode 41 . The first internal electrode 40 and the second internal electrode 41 are arranged inside the element body 31 . The first internal electrode 40 is connected to the first external electrode 32 . The second internal electrode 41 is connected to the second external electrode 33 .

過渡電圧保護部品30では、コイル部34とバリスタ部35とは、第一外部電極32と第二外部電極33との間において電気的に並列に接続されている。 In the transient voltage protection component 30 , the coil portion 34 and the varistor portion 35 are electrically connected in parallel between the first external electrode 32 and the second external electrode 33 .

図15は、図13に示す過渡電圧保護部品の回路図である。図15に示されるように、過渡電圧保護部品30は、信号ラインL1とグランドラインL2との間に接続される。過渡電圧保護部品30は、第一外部電極32が信号ラインL1に接続され、第二外部電極33がグランドラインL2に接続される。すなわち、過渡電圧保護部品30は、第一外部電極32が信号ラインL1に接続され、第二外部電極33がグランドラインL2に接続されるように実装される。 15 is a circuit diagram of the transient voltage protection component shown in FIG. 13. FIG. As shown in FIG. 15, transient voltage protection component 30 is connected between signal line L1 and ground line L2. The transient voltage protection component 30 has a first external electrode 32 connected to the signal line L1 and a second external electrode 33 connected to the ground line L2. That is, the transient voltage protection component 30 is mounted such that the first external electrode 32 is connected to the signal line L1 and the second external electrode 33 is connected to the ground line L2.

過渡電圧保護部品30のコイル部34とバリスタ部35とは、信号ラインL1とグランドラインL2との間において、電気的に並列に接続されている。 The coil portion 34 and the varistor portion 35 of the transient voltage protection component 30 are electrically connected in parallel between the signal line L1 and the ground line L2.

コイル部34は、所定電圧以上が印加された場合に磁気飽和が生じるように構成されている。所定電圧は、磁気飽和電圧であり、信号ラインL1を流れる信号電圧の最大値よりも高い電圧である。信号電圧は、信号ラインL1を流れる制御信号等の電圧である。 The coil portion 34 is configured so that magnetic saturation occurs when a predetermined voltage or higher is applied. The predetermined voltage is the magnetic saturation voltage, which is higher than the maximum value of the signal voltage flowing through the signal line L1. A signal voltage is a voltage of a control signal or the like that flows through the signal line L1.

バリスタ部35は、所定電圧以上が印加された場合に動作するように構成されている。所定電圧は、バリスタ電圧(動作電圧)である。バリスタ電圧は、ブレイクダウン電圧であるともいえる。 The varistor section 35 is configured to operate when a predetermined voltage or higher is applied. The predetermined voltage is the varistor voltage (operating voltage). The varistor voltage can also be said to be the breakdown voltage.

過渡電圧保護部品30において、コイル部34が磁気飽和する磁気飽和電圧は、バリスタ部35が動作するバリスタ電圧以下(磁気飽和電圧≦バリスタ電圧)である。本実施形態では、磁気飽和電圧は、バリスタ電圧よりも小さい。この構成では、過渡電圧保護部品30において、コイル部34の磁気飽和の方が、バリスタ部35の動作よりも先に生じる。 In the transient voltage protection component 30, the magnetic saturation voltage at which the coil section 34 is magnetically saturated is equal to or lower than the varistor voltage at which the varistor section 35 operates (magnetic saturation voltage≦varistor voltage). In this embodiment, the magnetic saturation voltage is smaller than the varistor voltage. In this configuration, in the transient voltage protection component 30, the magnetic saturation of the coil section 34 occurs before the operation of the varistor section 35. FIG.

以上説明したように、本実施形態に係る過渡電圧保護部品30は、コイル部34を備えている。コイル部34は、高い周波数成分を有する信号に対しては高抵抗(インピーダンス)であるが、ESDのような大電圧(負荷)に対しては磁気飽和を生じる。このように、コイル部34では、磁気飽和が生じると、低抵抗となるため、電流を流す。そのため、過渡電圧保護部品30では、信号ラインL1に入力されたESD等の大電圧をグランドラインL2(グランドG)に逃がすことができる。これにより、過渡電圧保護部品30では、クランプ電圧の低減が図れる。また、過渡電圧保護部品30では、コイル部34とバリスタ部35とを備えているため、ESD等のエネルギーをコイル部34とバリスタ部35とに配分することができる。そのため、過渡電圧保護部品30では、過渡電圧に対する耐性の向上を図れる。したがって、過渡電圧保護部品30では、過渡電圧保護特性の向上が図れる。 As described above, the transient voltage protection component 30 according to this embodiment includes the coil portion 34 . The coil section 34 has a high resistance (impedance) with respect to a signal having a high frequency component, but generates magnetic saturation with respect to a large voltage (load) such as ESD. In this way, when magnetic saturation occurs in the coil section 34, the resistance becomes low, so that a current flows. Therefore, in the transient voltage protection component 30, a large voltage such as ESD input to the signal line L1 can escape to the ground line L2 (ground G). As a result, the transient voltage protection component 30 can reduce the clamp voltage. Moreover, since the transient voltage protection component 30 includes the coil portion 34 and the varistor portion 35 , energy such as ESD can be distributed to the coil portion 34 and the varistor portion 35 . Therefore, the transient voltage protection component 30 can improve resistance to transient voltages. Therefore, the transient voltage protection component 30 can improve the transient voltage protection characteristics.

本実施形態に係る過渡電圧保護部品30は、第一外部電極32及び第二外部電極33のそれぞれが配置されていると素体31を備えている。コイル部34及びバリスタ部35は、素体31内に配置されている。この構成では、過渡電圧保護部品30を一つの部品として構成することができる。そのため、過渡電圧保護部品30では、過渡電圧保護特性の向上を図りつつ、小型化を図ることができる。 A transient voltage protection component 30 according to this embodiment includes a base body 31 on which a first external electrode 32 and a second external electrode 33 are respectively arranged. The coil portion 34 and the varistor portion 35 are arranged inside the element body 31 . In this configuration, transient voltage protection component 30 can be constructed as a single component. Therefore, the transient voltage protection component 30 can be miniaturized while improving the transient voltage protection characteristics.

[第五実施形態]
続いて、第五実施形態について説明する。図16は、第五実施形態に係る過渡電圧保護部品の斜視図である。図17は、図16に示す過渡電圧保護部品の側面図である。図18は、図16に示す過渡電圧保護部品の上面図である。図19は、図16に示す過渡電圧保護部品の端面図である。図16~図19のいずれかに示されるように、過渡電圧保護部品50は、素体51と、第一外部電極(第一電極)52と、第二外部電極(第二電極)53と、接続電極54と、コイル部55と、第一バリスタ部(第一過渡電圧保護部)56と、第二バリスタ部(第二過渡電圧保護部)57と、を備えている。
[Fifth embodiment]
Next, a fifth embodiment will be described. FIG. 16 is a perspective view of a transient voltage protection component according to a fifth embodiment. 17 is a side view of the transient voltage protection component shown in FIG. 16; FIG. 18 is a top view of the transient voltage protection component shown in FIG. 16. FIG. 19 is an end view of the transient voltage protection component shown in FIG. 16; FIG. 16 to 19, the transient voltage protection component 50 includes an element body 51, a first external electrode (first electrode) 52, a second external electrode (second electrode) 53, A connection electrode 54 , a coil portion 55 , a first varistor portion (first transient voltage protection portion) 56 , and a second varistor portion (second transient voltage protection portion) 57 are provided.

素体51は、複数の誘電体層が積層されて構成されている。素体51において、コイル部55を構成する各誘電体層は、たとえば磁性材料により構成されている。磁性材料は、たとえば、Ni-Cu-Zn系フェライト材料、Ni-Cu-Zn-Mg系フェライト材料、及び、Ni-Cu系フェライト材料から選択された少なくとも一つを含んでいる。コイル部55を構成する各誘電体層の磁性材料には、Fe合金等が含まれていてもよい。コイル部55を構成する各誘電体層は、非磁性材料から構成されていてもよい。非磁性材料は、たとえば、ガラスセラミック材料、及び、誘電体材料から選択された少なくとも一つを含んでいる。 The element body 51 is configured by laminating a plurality of dielectric layers. In the base body 51, each dielectric layer forming the coil portion 55 is made of, for example, a magnetic material. The magnetic material includes, for example, at least one selected from Ni--Cu--Zn system ferrite material, Ni--Cu--Zn--Mg system ferrite material, and Ni--Cu system ferrite material. The magnetic material of each dielectric layer forming the coil portion 55 may contain an Fe alloy or the like. Each dielectric layer forming the coil portion 55 may be made of a non-magnetic material. The non-magnetic material includes at least one selected from, for example, glass-ceramic materials and dielectric materials.

素体51において、第一バリスタ部56及び第二バリスタ部57を構成する各誘電体層は、たとえば、ZnO(酸化亜鉛)を主成分として含むと共に、副成分としてCo、希土類金属元素、IIIb族元素(B、Al、Ga、In)、Si、Cr、Mo、アルカリ金属元素(K、Rb、Cs)及びアルカリ土類金属元素(Mg、Ca、Sr、Ba)等の金属単体、及び、これらの酸化物を含み得る。 In the element body 51, each dielectric layer that constitutes the first varistor portion 56 and the second varistor portion 57 contains, for example, ZnO (zinc oxide) as a main component, and Co, a rare earth metal element, and Group IIIb as subcomponents. Metal simple substances such as elements (B, Al, Ga, In), Si, Cr, Mo, alkali metal elements (K, Rb, Cs) and alkaline earth metal elements (Mg, Ca, Sr, Ba), and these may contain oxides of

第一外部電極52は、素体51の一方の端面側に配置されている。第二外部電極53は、素体51の他方の端面側に配置されている。接続電極54は、素体51の側面に配置されている。第一外部電極52、第二外部電極53及び接続電極54は、導電性材料(たとえば、Ni又はCu等)からなる。 The first external electrode 52 is arranged on one end face side of the element body 51 . The second external electrode 53 is arranged on the other end face side of the element body 51 . The connection electrodes 54 are arranged on the side surfaces of the element body 51 . The first external electrode 52, the second external electrode 53, and the connection electrode 54 are made of a conductive material (such as Ni or Cu, for example).

コイル部55は、素体51の中央部に設けられている。コイル部55は、第一コイル導体55a、第二コイル導体55b及び第三コイル導体55cにより構成されている。第一コイル導体55a、第二コイル導体55b及び第三コイル導体55cは、素体51内に配置されており、コイルを構成している。第一コイル導体55a、第二コイル導体55b及び第三コイル導体55cは、互いに電気的に接続されている。第一コイル導体55aの一端部は、接続電極54に接続されている。第三コイル導体55cの一端部は、第二外部電極53に接続されている。 The coil portion 55 is provided in the central portion of the element body 51 . The coil portion 55 is composed of a first coil conductor 55a, a second coil conductor 55b and a third coil conductor 55c. The first coil conductor 55a, the second coil conductor 55b, and the third coil conductor 55c are arranged inside the element body 51 and constitute coils. The first coil conductor 55a, the second coil conductor 55b and the third coil conductor 55c are electrically connected to each other. One end of the first coil conductor 55 a is connected to the connection electrode 54 . One end of the third coil conductor 55 c is connected to the second external electrode 53 .

第一バリスタ部56は、素体51の他方の主面側に設けられている。第一バリスタ部56は、第一内部電極56a及び第二内部電極56bにより構成されている。第一内部電極56a及び第二内部電極56bは、素体51内に配置されている。第一内部電極56aは、第一外部電極52に接続されている。第二内部電極56bは、第二外部電極53に接続されている。 The first varistor portion 56 is provided on the other main surface side of the element body 51 . The first varistor portion 56 is composed of a first internal electrode 56a and a second internal electrode 56b. The first internal electrode 56 a and the second internal electrode 56 b are arranged inside the element body 51 . The first internal electrode 56 a is connected to the first external electrode 52 . The second internal electrode 56 b is connected to the second external electrode 53 .

第二バリスタ部57は、素体51の一方の主面側に設けられている。第二バリスタ部57は、二つの第一内部電極57a及び二つの第二内部電極57bにより構成されている。第一内部電極57a及び第二内部電極57bは、素体51内に配置されている。第一内部電極57aは、接続電極54に接続されている。第二内部電極57bは、第一外部電極52に接続されている。 The second varistor portion 57 is provided on one main surface side of the base body 51 . The second varistor portion 57 is composed of two first internal electrodes 57a and two second internal electrodes 57b. The first internal electrode 57 a and the second internal electrode 57 b are arranged inside the element body 51 . The first internal electrode 57 a is connected to the connection electrode 54 . The second internal electrode 57 b is connected to the first external electrode 52 .

過渡電圧保護部品50では、第一バリスタ部56とコイル部55及び第二バリスタ部57とは、第一外部電極52と第二外部電極53との間において電気的に並列に接続されている。コイル部55と第二バリスタ部57とは、第一外部電極52と第二外部電極53との間において電気的に直列に接続されている。 In the transient voltage protection component 50 , the first varistor section 56 , the coil section 55 and the second varistor section 57 are electrically connected in parallel between the first external electrode 52 and the second external electrode 53 . The coil portion 55 and the second varistor portion 57 are electrically connected in series between the first external electrode 52 and the second external electrode 53 .

図20は、図16に示す過渡電圧保護部品の回路図である。図20に示されるように、過渡電圧保護部品50は、信号ラインL1とグランドラインL2との間に接続される。過渡電圧保護部品50は、第一外部電極52が信号ラインL1に接続され、第二外部電極53がグランドラインL2に接続される。すなわち、過渡電圧保護部品50は、第一外部電極52が信号ラインL1に接続され、第二外部電極53がグランドラインL2に接続されるように実装される。 20 is a circuit diagram of the transient voltage protection component shown in FIG. 16; FIG. As shown in FIG. 20, transient voltage protection component 50 is connected between signal line L1 and ground line L2. The transient voltage protection component 50 has a first external electrode 52 connected to the signal line L1 and a second external electrode 53 connected to the ground line L2. That is, the transient voltage protection component 50 is mounted such that the first external electrode 52 is connected to the signal line L1 and the second external electrode 53 is connected to the ground line L2.

コイル部55は、所定電圧以上が印加された場合に磁気飽和が生じるように構成されている。所定電圧は、第一バリスタ部56が動作する動作電圧(バリスタ電圧)及び第二バリスタ部57が動作する動作電圧(バリスタ電圧)よりも小さい。所定電圧は、信号電圧よりも低くてもよい。 The coil portion 55 is configured such that magnetic saturation occurs when a predetermined voltage or higher is applied. The predetermined voltage is lower than the operating voltage (varistor voltage) at which the first varistor section 56 operates and the operating voltage (varistor voltage) at which the second varistor section 57 operates. The predetermined voltage may be lower than the signal voltage.

第一バリスタ部56は、所定電圧以上が印加された場合に動作するように構成されている。所定電圧は、バリスタ電圧(動作電圧)である。バリスタ電圧は、ブレイクダウン電圧であるともいえる。 The first varistor section 56 is configured to operate when a predetermined voltage or higher is applied. The predetermined voltage is the varistor voltage (operating voltage). The varistor voltage can also be said to be the breakdown voltage.

第二バリスタ部57は、所定電圧以上が印加された場合に動作するように構成されている。第二バリスタ部57が動作するバリスタ電圧は、信号ラインL1の信号電圧よりも高い。第二バリスタ部57のバリスタ電圧及びコイル部55の磁気飽和電圧の合計の電圧は、第一バリスタ部56のバリスタ電圧よりも小さい。 The second varistor section 57 is configured to operate when a predetermined voltage or higher is applied. The varistor voltage at which the second varistor section 57 operates is higher than the signal voltage of the signal line L1. The total voltage of the varistor voltage of the second varistor section 57 and the magnetic saturation voltage of the coil section 55 is smaller than the varistor voltage of the first varistor section 56 .

過渡電圧保護部品50では、第一バリスタ部56と第二バリスタ部57及びコイル部55とは、信号ラインL1とグランドラインL2との間において、電気的に並列に接続されている。第二バリスタ部57とコイル部55とは、信号ラインL1とグランドラインL2との間において、第二バリスタ部57及びコイル部55の順に電気的に直列に接続されている。 In the transient voltage protection component 50, the first varistor section 56, the second varistor section 57 and the coil section 55 are electrically connected in parallel between the signal line L1 and the ground line L2. The second varistor portion 57 and the coil portion 55 are electrically connected in series in the order of the second varistor portion 57 and the coil portion 55 between the signal line L1 and the ground line L2.

以上説明したように、本実施形態に係る過渡電圧保護部品50は、コイル部55を備えている。コイル部55は、高い周波数成分を有する信号に対しては高抵抗(インピーダンス)であるが、ESDのような大電圧(負荷)に対しては磁気飽和を生じる。このように、コイル部55では、磁気飽和が生じると、低抵抗となるため、電流を流す。そのため、過渡電圧保護部品50では、信号ラインL1に入力されたESD等の大電圧をグランドラインL2(グランドG)に逃がすことができる。これにより、過渡電圧保護部品50では、クランプ電圧の低減が図れる。また、過渡電圧保護部品50では、コイル部55、第一バリスタ部56及び第二バリスタ部57を備えているため、ESD等のエネルギーをコイル部55、第一バリスタ部56及び第二バリスタ部57に配分することができる。そのため、過渡電圧保護部品50では、過渡電圧に対する耐性の向上を図れる。したがって、過渡電圧保護部品50では、過渡電圧保護特性の向上が図れる。 As described above, the transient voltage protection component 50 according to this embodiment includes the coil portion 55 . The coil section 55 has a high resistance (impedance) with respect to a signal having a high frequency component, but generates magnetic saturation with respect to a large voltage (load) such as ESD. In this way, when magnetic saturation occurs in the coil portion 55, the resistance becomes low, so that a current flows. Therefore, in the transient voltage protection component 50, a large voltage such as ESD input to the signal line L1 can escape to the ground line L2 (ground G). As a result, the transient voltage protection component 50 can reduce the clamp voltage. In addition, since the transient voltage protection component 50 includes the coil portion 55 , the first varistor portion 56 and the second varistor portion 57 , energy such as ESD is can be allocated to Therefore, the transient voltage protection component 50 can improve resistance to transient voltages. Therefore, the transient voltage protection component 50 can improve the transient voltage protection characteristics.

本実施形態に係る過渡電圧保護部品50では、第二バリスタ部57とコイル部55とは、信号ラインL1側から第二バリスタ部57及びコイル部55の順に直列に接続されている。この構成では、第二バリスタ部57のバリスタ電圧及びコイル部55の磁気飽和電圧の二つの合計の電圧よりも高い電圧が印加された場合に、低抵抗となり電流を流す。たとえば、数十Vの電圧で動作させようとする場合において、コイル部55のみで対応しようとすると、数十Vに対応できるコイル部55を設ける必要がある。この場合、コイル部55が大型化し得るため、過渡電圧保護部品50の小型化を図ることが難しい。過渡電圧保護部品50では、第二バリスタ部57及びコイル部55を直列に接続しているため、コイル部55の磁気飽和電圧が小さくてもよい。そのため、小型のコイル部55を用いることができるので、部品の小型化を図れる。 In the transient voltage protection component 50 according to this embodiment, the second varistor portion 57 and the coil portion 55 are connected in series in the order of the second varistor portion 57 and the coil portion 55 from the signal line L1 side. In this configuration, when a voltage higher than the sum of the varistor voltage of the second varistor section 57 and the magnetic saturation voltage of the coil section 55 is applied, the resistance becomes low and current flows. For example, when trying to operate with a voltage of several tens of volts, it is necessary to provide a coil section 55 capable of handling several tens of volts if only the coil section 55 is used. In this case, since the coil portion 55 may become large, it is difficult to reduce the size of the transient voltage protection component 50 . In the transient voltage protection component 50, since the second varistor section 57 and the coil section 55 are connected in series, the magnetic saturation voltage of the coil section 55 may be small. Therefore, since a small coil portion 55 can be used, it is possible to reduce the size of the parts.

以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.

上記実施形態では、過渡電圧保護部としてバリスタ部品10を用いる形態を一例に説明した。しかし、過渡電圧保護部は、たとえば、ダイオードであってもよい。 In the above embodiment, an example of using the varistor component 10 as the transient voltage protector has been described. However, the transient voltage protector may also be a diode, for example.

上記実施形態では、図3に示されるように、一回目の切替部分(第一閾値電圧V1)と二回目の切替部分(第二閾値電圧V2)との間では、電流が連続的に流れる形態を一例に説明した。しかし、図21に示されるように、過渡電圧保護回路では、一回目の切替部分(第一閾値電圧V1)と二回目の切替部分(第二閾値電圧V2)との間において、波形が非連続となってもよい。この構成では、一回目の切替部分作の後、直ぐに低抵抗となり、電流を流す。そのため、クランプ特性の向上を図ることができる。 In the above embodiment, as shown in FIG. 3, current flows continuously between the first switching portion (first threshold voltage V1) and the second switching portion (second threshold voltage V2). was explained as an example. However, as shown in FIG. 21, in the transient voltage protection circuit, the waveform is discontinuous between the first switching portion (first threshold voltage V1) and the second switching portion (second threshold voltage V2). can be In this configuration, immediately after the first switching operation, the resistance becomes low and current flows. Therefore, it is possible to improve the clamping characteristics.

1,20,20A,30,50…過渡電圧保護部品、2…基部、3…第一端子電極(第一電極)、4…第二端子電極(第二電極)、5…第一ランド電極、6…第二ランド電極、7…第三ランド電極(第一ランド電極)、8…第四ランド電極(第二ランド電極)、9,21…コイル部品(コイル部)、10,22…バリスタ部品(第一過渡電圧保護部)、11…封止部、23,32,52…第一外部電極(第一電極)、24,33,53…第二外部電極(第二電極)、25…接合部、26…第二バリスタ部品(第二過渡電圧保護部)、34,55…コイル部、35…バリスタ部(第一過渡電圧保護部)、56…第一バリスタ部(第一過渡電圧保護部)、57…第二バリスタ部(第二過渡電圧保護部)、G…グランド、V1…第一閾値電圧、V2…第二閾値電圧。 1, 20, 20A, 30, 50... transient voltage protection component, 2... base, 3... first terminal electrode (first electrode), 4... second terminal electrode (second electrode), 5... first land electrode, 6 Second land electrode 7 Third land electrode (first land electrode) 8 Fourth land electrode (second land electrode) 9, 21 Coil component (coil portion) 10, 22 Varistor component (First transient voltage protector) 11 Sealing part 23, 32, 52 First external electrode (first electrode) 24, 33, 53 Second external electrode (second electrode) 25 Junction Part 26... Second varistor component (second transient voltage protection part) 34, 55... Coil part 35... Varistor part (first transient voltage protection part) 56... First varistor part (first transient voltage protection part ), 57... second varistor section (second transient voltage protection section), G... ground, V1... first threshold voltage, V2... second threshold voltage.

Claims (10)

コイル部と、
第一過渡電圧保護部と、
第一電極及び第二電極と、を備え、
前記コイル部及び前記第一過渡電圧保護部は、前記第一電極及び前記第二電極との間に並列に接続されており、
前記コイル部は、所定電圧よりも高い電圧が印加されたときに磁気飽和するように構成されている、過渡電圧保護部品。
a coil section;
a first transient voltage protector;
A first electrode and a second electrode,
The coil unit and the first transient voltage protection unit are connected in parallel between the first electrode and the second electrode,
The transient voltage protection component, wherein the coil section is configured to be magnetically saturated when a voltage higher than a predetermined voltage is applied.
前記所定電圧は、前記第一過渡電圧保護部が動作する動作電圧以下である、請求項1に記載の過渡電圧保護部品。 2. The transient voltage protection component according to claim 1, wherein said predetermined voltage is below an operating voltage at which said first transient voltage protector operates. 前記コイル部及び前記第一過渡電圧保護部のそれぞれは、チップ部品であり、
前記第一電極及び前記第二電極が配置されている基部と、
前記基部に配置されていると共に、前記第一電極に接続されている第一ランド電極と、
前記基部に配置されていると共に、前記第二電極に接続されている第二ランド電極と、
前記コイル部及び前記第一過渡電圧保護部を封止する封止部と、を備え、
前記コイル部及び前記第一過渡電圧保護部のそれぞれは、前記第一ランド電極及び前記第二ランド電極のそれぞれに接続されている、請求項1又は2に記載の過渡電圧保護部品。
each of the coil unit and the first transient voltage protection unit is a chip component,
a base on which the first electrode and the second electrode are arranged;
a first land electrode disposed on the base and connected to the first electrode;
a second land electrode disposed on the base and connected to the second electrode;
and a sealing portion that seals the coil portion and the first transient voltage protection portion,
3. The transient voltage protection component according to claim 1, wherein each of said coil section and said first transient voltage protection section is connected to each of said first land electrode and said second land electrode.
前記コイル部及び前記過渡電圧保護部との間の距離は、前記第一ランド電極と前記第二ランド電極との間の距離よりも小さい、請求項3に記載の過渡電圧保護部品。 4. The transient voltage protection component according to claim 3, wherein the distance between said coil part and said transient voltage protection part is smaller than the distance between said first land electrode and said second land electrode. 前記コイル部及び前記第一過渡電圧保護部のそれぞれは、チップ部品であり、
前記コイル部と前記第一過渡電圧保護部とは、樹脂からなる接合部によって接合されている、請求項1又は2に記載の過渡電圧保護部品。
each of the coil unit and the first transient voltage protection unit is a chip component,
3. The transient voltage protection component according to claim 1, wherein said coil portion and said first transient voltage protection portion are joined by a joint portion made of resin.
前記第一電極及び前記第二電極のそれぞれが配置されていると素体を備え、
前記コイル部及び前記第一過渡電圧保護部は、前記素体内に配置されている、請求項1又は2に記載の過渡電圧保護部品。
a base body on which each of the first electrode and the second electrode is arranged;
3. The transient voltage protection component according to claim 1, wherein said coil section and said first transient voltage protection section are arranged within said element body.
電流電圧特性において、第一閾値電圧において特性が切り替わると共に、前記第一閾値電圧よりも小さい第二閾値電圧において特性が切り替わる、請求項1~6のいずれか一項に記載の過渡電圧保護部品。 The transient voltage protection component according to any one of claims 1 to 6, wherein the current-voltage characteristics switch at a first threshold voltage and switch at a second threshold voltage lower than the first threshold voltage. 第二過渡電圧保護部を備え、
前記第一過渡電圧保護部と前記コイル部及び前記第二過渡電圧保護部とは、前記第一電極及び前記第二電極との間に並列に接続されており、
前記コイル部及び前記第二過渡電圧保護部は、前記第一電極側から前記第二過渡電圧保護部及び前記コイル部の順に直列に接続されている、請求項1~7のいずれか一項に記載の過渡電圧保護部品。
with a second transient voltage protection unit,
The first transient voltage protection unit, the coil unit and the second transient voltage protection unit are connected in parallel between the first electrode and the second electrode,
The coil section and the second transient voltage protection section are connected in series in the order of the second transient voltage protection section and the coil section from the first electrode side, according to any one of claims 1 to 7 Transient voltage protection components as described.
前記コイル部が磁気飽和する磁気飽和電圧は、前記第一過渡電圧保護部が動作する動作電圧よりも小さい、請求項8に記載の過渡電圧保護部品。 9. The transient voltage protection component according to claim 8, wherein a magnetic saturation voltage at which said coil section is magnetically saturated is lower than an operating voltage at which said first transient voltage protection section operates. 請求項1~9のいずれか一項に記載の過渡電圧保護部品の実装構造であって、
前記第一電極を信号ラインに接続すると共に、前記第二電極をグランドに接続する、過渡電圧保護部品の実装構造。
A mounting structure for a transient voltage protection component according to any one of claims 1 to 9,
A mounting structure for a transient voltage protection component, wherein the first electrode is connected to a signal line and the second electrode is grounded.
JP2021209195A 2021-12-23 2021-12-23 Transient voltage protection component and mounting structure for the same Pending JP2023094005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021209195A JP2023094005A (en) 2021-12-23 2021-12-23 Transient voltage protection component and mounting structure for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021209195A JP2023094005A (en) 2021-12-23 2021-12-23 Transient voltage protection component and mounting structure for the same

Publications (1)

Publication Number Publication Date
JP2023094005A true JP2023094005A (en) 2023-07-05

Family

ID=87001705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021209195A Pending JP2023094005A (en) 2021-12-23 2021-12-23 Transient voltage protection component and mounting structure for the same

Country Status (1)

Country Link
JP (1) JP2023094005A (en)

Similar Documents

Publication Publication Date Title
US20060077646A1 (en) Combined varistor and LC filter device
KR100668977B1 (en) Element for protecting from surge voltage
KR20060136276A (en) Element for protecting from surge voltage
KR20190116115A (en) Electronic component
US20050180091A1 (en) High current feedthru device
US5245412A (en) Low capacitance silicon transient suppressor with monolithic structure
JP2023094005A (en) Transient voltage protection component and mounting structure for the same
US20110141638A1 (en) Electrostatic protection device and electronic apparatus equipped therewith
US6178078B1 (en) Discharge gap device and its mounting structure
KR20190116114A (en) Electronic component
US10743406B2 (en) Galvanic isolation for isolation transformer
KR20170141039A (en) Board and manufacturing method thereof
KR101853229B1 (en) Complex electronic component
JP2009124410A (en) Emi filter, and electronic apparatus
JPH0214288Y2 (en)
JP2016157896A (en) Overvoltage protection component and overvoltage protection material for overvoltage protection component
JP2023094070A (en) Transient voltage protection circuit
CN111223619B (en) Varistor and method for producing a varistor
JP2023094004A (en) Transient voltage protection circuit
KR20170135235A (en) Complex electronic component
JP2760039B2 (en) Method of manufacturing surge absorber
JP4867308B2 (en) Noise suppression parts
JPH0139066Y2 (en)
JP2020102982A (en) Power supply device
JP2008283594A (en) Emi filter