JP2023091996A - Filler laminate for concrete structure, and concrete structure - Google Patents

Filler laminate for concrete structure, and concrete structure Download PDF

Info

Publication number
JP2023091996A
JP2023091996A JP2021206931A JP2021206931A JP2023091996A JP 2023091996 A JP2023091996 A JP 2023091996A JP 2021206931 A JP2021206931 A JP 2021206931A JP 2021206931 A JP2021206931 A JP 2021206931A JP 2023091996 A JP2023091996 A JP 2023091996A
Authority
JP
Japan
Prior art keywords
water
concrete structure
filler
filler laminate
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021206931A
Other languages
Japanese (ja)
Inventor
紀夫 西村
Norio Nishimura
満幸 神崎
Mitsuyuki Kanzaki
博美 入江
Hiromi Irie
理恵 山崎
Rie Yamazaki
幸司 植村
Koji Uemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2021206931A priority Critical patent/JP2023091996A/en
Priority to CN202211523751.2A priority patent/CN116284922A/en
Publication of JP2023091996A publication Critical patent/JP2023091996A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a filler laminate for a concrete structure which has excellent interlayer adhesion and can retain excellent flexibility for a long time even under open air conditions, and a concrete structure in which a gap is filled by the filler laminate for a concrete structure.SOLUTION: The present invention relates to a filler laminate for concrete structures characterized by having a coating film (B) obtained from a water-based paint on an organic-inorganic composite hydrogel layer (A), and concrete structures characterized by having a gap filled by the filler laminate for concrete structures are used.SELECTED DRAWING: None

Description

本発明は、コンクリート構造体用充填材積層体、及びコンクリート構造体に関する。 TECHNICAL FIELD The present invention relates to a filler laminate for a concrete structure and a concrete structure.

従来、コンクリート構造物継目やひび割れに対し、各種の充填材が提案されてきた。しかしながら、複雑形状部や湿潤面では付着自体が難しく、また、構造物の季節変動による伸縮に追従できず、剥離、脆性破壊が生じる問題があった。 Conventionally, various fillers have been proposed for joints and cracks in concrete structures. However, it is difficult to adhere to complex-shaped parts and wet surfaces, and it cannot follow expansion and contraction due to seasonal fluctuations of structures, resulting in peeling and brittle fracture.

これらの問題に対し、水溶性有機モノマーの重合体及び水膨潤性粘度鉱物により形成された高分子ヒドロゲルからなるコンクリート構造体用充填材が提案されている(例えば、特許文献1参照。)。しかしながら、この充填材は、大気開放条件下で水が蒸散することにより、最終的に脆い材料へと変化し、コンクリート構造体と剥離してしまう問題があった。 In order to address these problems, a filler for concrete structures comprising a polymer hydrogel formed from a polymer of a water-soluble organic monomer and a water-swellable clay mineral has been proposed (see, for example, Patent Document 1). However, this filler has the problem that it eventually turns into a brittle material and separates from the concrete structure as water evaporates under open air conditions.

そこで、大気開放条件下においても柔軟性を長期間保持できるコンクリート構造体用充填材が求められていた。 Therefore, there has been a demand for a filler for concrete structures that can retain its flexibility for a long period of time even under atmospheric open conditions.

WO2017/169002号WO2017/169002

本発明が解決しようとする課題は、大気開放条件下においても、層間密着性に優れ、優れた柔軟性を長期間保持可能なコンクリート構造体用充填材積層体を提供することである。 The problem to be solved by the present invention is to provide a filler laminate for a concrete structure that has excellent interlaminar adhesion and is capable of maintaining excellent flexibility for a long period of time even under atmospheric open conditions.

本発明者等は、有機無機複合ヒドロゲル層の上に水性塗料から得られる塗膜を有するコンクリート構造体用充填材積層体によって、上記課題を解決できることを見出し、本発明を完成した。 The present inventors have found that the above problems can be solved by a filler laminate for a concrete structure having a coating film obtained from a water-based paint on an organic-inorganic composite hydrogel layer, and have completed the present invention.

すなわち、本発明は、有機無機複合ヒドロゲル層(A)の上に水性塗料から得られる塗膜(B)を有することを特徴とするコンクリート構造体用充填材積層体を提供するものである。 That is, the present invention provides a filler laminate for concrete structures, comprising a coating film (B) obtained from a water-based paint on an organic-inorganic composite hydrogel layer (A).

本発明のコンクリート構造体用充填材積層体は、層間密着性に優れ、優れた柔軟性を長期間保持可能なことから、トンネル、道路、橋梁、軌道、ビル、護岸、上下水道等のコンクリート構造物の充填材として、また、それらの補修材として用いることができる。 The filler laminate for concrete structures of the present invention has excellent interlayer adhesion and can maintain excellent flexibility for a long period of time. It can be used as a filling material for objects and as a repairing material for them.

本発明のコンクリート構造体用充填材積層体は、有機無機複合ヒドロゲル層(A)の上に水性塗料から得られる塗膜(B)を有するものである。 The filler laminate for concrete structures of the present invention has a coating film (B) obtained from a water-based paint on an organic-inorganic composite hydrogel layer (A).

前記ヒドロゲル層(A)は、柔軟性に優れることから、水溶性有機モノマーの重合体、水膨潤性粘土鉱物、及び水を含有するものが好ましい。 The hydrogel layer (A) preferably contains a polymer of a water-soluble organic monomer, a water-swelling clay mineral, and water, since it has excellent flexibility.

前記水溶性有機モノマーの重合体は、水溶性有機モノマーの重合により得られるが、前記水溶性有機モノマーとしては、例えば、(メタ)アクリルアミド基を有するモノマー、(メタ)アクリロイルオキシ基を有するモノマー、ヒドロキシル基を有するアクリルモノマー等が挙げられる。 The polymer of the water-soluble organic monomer is obtained by polymerizing the water-soluble organic monomer. Examples of the water-soluble organic monomer include a monomer having a (meth)acrylamide group, a monomer having a (meth)acryloyloxy group, Examples include acrylic monomers having hydroxyl groups.

前記(メタ)アクリルアミド基を有するモノマーとしては、例えば、アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-イソプロピルアクリルアミド、N-シクロプロピルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミド、アクリロイルモルフォリン、メタクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-イソプロピルメタクリルアミド、N-シクロプロピルメタクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N,N-ジエチルアミノプロピルメタクリルアミド等が挙げられる。 Examples of monomers having a (meth)acrylamide group include acrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, N-methylacrylamide, N-ethylacrylamide, N-isopropylacrylamide, and N-cyclopropylacrylamide. , N,N-dimethylaminopropylacrylamide, N,N-diethylaminopropylacrylamide, acryloylmorpholine, methacrylamide, N,N-dimethylmethacrylamide, N,N-diethylmethacrylamide, N-methylmethacrylamide, N-ethyl methacrylamide, N-isopropylmethacrylamide, N-cyclopropylmethacrylamide, N,N-dimethylaminopropylmethacrylamide, N,N-diethylaminopropylmethacrylamide and the like.

前記(メタ)アクリロイルオキシ基を有するモノマーとしては、例えば、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレート、メトキシメチルアクリレート、エトキシメチルアクリレート等が挙げられる。 Examples of the (meth)acryloyloxy group-containing monomer include methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate, methoxymethyl acrylate, and ethoxymethyl acrylate.

前記ヒドロキシル基を有するアクリルモノマーとしては、例えば、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート等が挙げられる。 Examples of acrylic monomers having a hydroxyl group include hydroxyethyl acrylate and hydroxyethyl methacrylate.

これらの中でも、溶解性及び得られる有機無機ヒドロゲル層の物性の観点から、(メタ)アクリルアミド基を有するモノマーを用いることが好ましく、アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、アクリロイルモルフォリンを用いることがより好ましく、N,N-ジメチルアクリルアミド、アクリロイルモルフォリンを用いることがさらに好ましく、重合が進行しやすい観点から、N,N-ジメチルアクリルアミドが特に好ましい。 Among these, from the viewpoint of solubility and physical properties of the resulting organic-inorganic hydrogel layer, it is preferable to use a monomer having a (meth)acrylamide group, such as acrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, N -Isopropylacrylamide and acryloylmorpholine are more preferably used, N,N-dimethylacrylamide and acryloylmorpholine are more preferably used, and N,N-dimethylacrylamide is particularly preferable from the viewpoint of easy progress of polymerization.

上述の水溶性有機モノマーは単独で用いてもよいし、2種以上を併用してもよい。 The water-soluble organic monomers described above may be used alone, or two or more of them may be used in combination.

前記水溶性有機モノマーの重合体は、必要に応じて、前記水溶性有機モノマー以外のその他のモノマーを共重合することもできる。 If necessary, the water-soluble organic monomer polymer can be copolymerized with monomers other than the water-soluble organic monomer.

前記ヒドロゲル層(A)中の前記水溶性有機モノマーの重合体の含有量は、1~50質量%であることが好ましく、5~30質量%であることがより好ましい。前記水溶性有機モノマーの重合体の含有量が1質量%以上であると、力学物性に優れるヒドロゲルを得ることができることから好ましい。一方、前記水溶性有機モノマーの重合体(A)が50質量%以下であると、重合前のヒドロゲル前駆体組成物の調製が容易にできることから好ましい。 The content of the water-soluble organic monomer polymer in the hydrogel layer (A) is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. When the content of the polymer of the water-soluble organic monomer is 1% by mass or more, it is preferable because a hydrogel having excellent mechanical properties can be obtained. On the other hand, when the polymer (A) of the water-soluble organic monomer is 50% by mass or less, the hydrogel precursor composition can be easily prepared before polymerization, which is preferable.

前記水膨潤性粘土鉱物は、上記水溶性有機モノマーの重合体とともに三次元網目構造を形成し、前記ヒドロゲル層(A)の構成要素となる。 The water-swelling clay mineral forms a three-dimensional network structure together with the polymer of the water-soluble organic monomer, and serves as a component of the hydrogel layer (A).

前記水膨潤性粘土鉱物としては、特に制限されないが、水膨潤性スメクタイト、水膨潤性雲母等が挙げられる。 Examples of the water-swelling clay mineral include, but are not limited to, water-swelling smectite and water-swelling mica.

前記水膨潤性スメクタイトとしては、例えば、水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト等が挙げられる。 Examples of the water-swellable smectite include water-swellable hectorite, water-swellable montmorillonite, and water-swellable saponite.

前記水膨潤性雲母としては、例えば、水膨潤性合成雲母等が挙げられる。 Examples of the water-swellable mica include water-swellable synthetic mica.

これらの中でも、ヒドロゲル前駆体組成物の安定性の観点から、水膨潤性ヘクトライト、水膨潤性モンモリロナイトを用いることが好ましく、水膨潤性ヘクトライトを用いることがより好ましい。 Among these, from the viewpoint of the stability of the hydrogel precursor composition, it is preferable to use water-swellable hectorite and water-swellable montmorillonite, and it is more preferable to use water-swellable hectorite.

前記水膨潤性粘土鉱物は、天然由来のもの、合成されたもの、および表面を修飾されたものを用いることもできる。表面を修飾された水膨潤性粘土鉱物としては、例えば、ホスホン酸変性ヘクトライト、フッ素変性ヘクトライト等が挙げられるが、得られる有機無機複合ヒドロゲルの強度及び接着性の観点から、ホスホン酸変性ヘクトライトを用いることが好ましい。 The water-swelling clay mineral may be naturally derived, synthesized, or surface-modified. Examples of surface-modified water-swelling clay minerals include phosphonic acid-modified hectorite and fluorine-modified hectorite. It is preferred to use lights.

前記ホスホン酸変性ヘクトライトとしては、例えば、ピロリン酸変性ヘクトライト、エチドロン酸変性ヘクトライト、アレンドロン酸変性ヘクトライト、メチレンジホスホン酸変性ヘクトライト、フィチン酸変性ヘクトライト等を用いることができる。これらのホスホン酸変性ヘクトライトは、単独で用いてもよいし、2種以上を併用してもよい。 Examples of the phosphonic acid-modified hectorite include pyrophosphate-modified hectorite, etidronic acid-modified hectorite, alendronic acid-modified hectorite, methylenediphosphonic acid-modified hectorite, and phytic acid-modified hectorite. These phosphonic acid-modified hectorites may be used alone or in combination of two or more.

なお、上述の水膨潤性粘土鉱物は、単独で用いてもよいし、2種以上を併用してもよい。 The water-swelling clay minerals described above may be used alone, or two or more of them may be used in combination.

前記ヒドロゲル層(A)中の水膨潤性粘土鉱物の含有量は、得られるヒドロゲルの力学物性がより向上することから、1質量%以上であることが好ましく、2質量%以上であることがより好ましい。また、前記ヒドロゲル層(A)中の水膨潤性粘土鉱物の含有量は、ヒドロゲル前駆体組成物の粘度上昇をより抑制することができることから、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。 The content of the water-swellable clay mineral in the hydrogel layer (A) is preferably 1% by mass or more, more preferably 2% by mass or more, because the mechanical properties of the obtained hydrogel are further improved. preferable. In addition, the content of the water-swelling clay mineral in the hydrogel layer (A) is preferably 20% by mass or less, and 10% by mass, because the increase in viscosity of the hydrogel precursor composition can be further suppressed. The following are more preferable.

また、前記ヒドロゲル層(A)は、水以外の有機溶媒を含んでいてもよく、大気開放条件下においても質量変化が小さく、基材密着性、破断強度等の力学物性を安定して保持できるヒドロゲルが得られることから、揮発性が60℃1気圧の開放系において1cm・1時間あたり、0.1g以下(0.1g/cm・hr・60℃・1atm以下)のものが好ましく、0.05g以下のものがより好ましく、0.01g以下のものがさらに好ましい。具体的には、水と混和しやすい溶媒が好ましいことからグリセリン(0.001g以下/cm・hr・60℃・1atm)、ジグリセリン(0.001g以下/cm・hr・60℃・1atm)、エチレングリコール(0.01g以下/cm・hr・60℃・1atm)、プロピレングリコール(0.001g以下/cm・hr・60℃・1atm)、ポリエチレングリコール(0.001g以下/cm・hr・60℃・1atm)等の揮発性が60℃1気圧の開放系において1cm・1時間あたり、0.01g以下の多価アルコールが好ましく、グリセリン、ジグリセリンがより好ましい。これらの有機溶媒は、単独で用いてもよいし、2種以上を併用してもよい。また、これらの有機溶媒は、本発明の有機無機複合ヒドロゲルに均一に含まれることが望ましい。 In addition, the hydrogel layer (A) may contain an organic solvent other than water, has a small change in mass even under atmospheric open conditions, and can stably maintain mechanical properties such as substrate adhesion and breaking strength. Since a hydrogel can be obtained, the volatility is preferably 0.1 g or less per 1 cm 2 hour in an open system at 60 ° C. 1 atm (0.1 g/cm 2 hr 60 ° C. 1 atm or less), 0.05 g or less is more preferable, and 0.01 g or less is even more preferable. Specifically, since solvents that are easily miscible with water are preferable, glycerin (0.001 g or less/cm 2 ·hr · 60 ° C. · 1 atm), diglycerin (0.001 g or less / cm 2 · hr · 60 ° C. · 1 atm ), ethylene glycol (0.01 g or less/cm 2 hr, 60°C, 1 atm), propylene glycol (0.001 g or less/cm 2 hr, 60°C, 1 atm), polyethylene glycol (0.001 g or less/cm 2 ·hr·60°C·1 atm), polyhydric alcohols having a volatility of 0.01 g or less per 1 cm 2 ·1 hour in an open system of 60°C and 1 atm are more preferable, and glycerin and diglycerin are more preferable. These organic solvents may be used alone or in combination of two or more. Moreover, it is desirable that these organic solvents are uniformly contained in the organic-inorganic composite hydrogel of the present invention.

前記ヒドロゲル層(A)中の水と前記有機溶媒との質量比(水/有機溶媒)は、大気開放条件下においても質量変化が小さく、基材密着性、破断強度等の各種物性に優れる有機無機ヒドロゲルが得られることから、60/40~20/80であることが重要であり、50/50~30/70であることが好ましい。 The mass ratio (water/organic solvent) between the water and the organic solvent in the hydrogel layer (A) is an organic solvent that has a small change in mass even under open-air conditions and is excellent in various physical properties such as substrate adhesion and breaking strength. It is important to be between 60/40 and 20/80, preferably between 50/50 and 30/70, to obtain an inorganic hydrogel.

前記ヒドロゲル層(A)の製造方法としては、簡便に三次元網目構造を有するヒドロゲルが得られることから、水溶性有機モノマー、水膨潤性粘度鉱物、水、及び、必要に応じて有機溶媒の混合液と、重合開始剤と、重合促進剤とを含むヒドロゲル前駆体組成物中で、前記水溶性有機モノマーを重合させる方法が好ましい。得られた水溶性有機モノマーの重合体は水膨潤性粘土鉱物ととともに三次元網目構造を形成し、ヒドロゲルの構成要素となる。 As a method for producing the hydrogel layer (A), since a hydrogel having a three-dimensional network structure can be easily obtained, a water-soluble organic monomer, a water-swellable clay mineral, water, and, if necessary, an organic solvent are mixed. A method of polymerizing the water-soluble organic monomer in a hydrogel precursor composition containing a liquid, a polymerization initiator, and a polymerization accelerator is preferred. The obtained polymer of the water-soluble organic monomer forms a three-dimensional network structure together with the water-swellable clay mineral, and becomes a component of hydrogel.

前記重合開始剤は、空気雰囲気下においても、前記水溶性有機モノマーの重合を十分に進行させることができることから、20℃における水への溶解度が50g/100ml以上であることが好ましい。 The polymerization initiator preferably has a solubility in water of 50 g/100 ml or more at 20° C. because the polymerization of the water-soluble organic monomer can proceed sufficiently even in an air atmosphere.

前記重合開始剤としては、例えば、20℃における水への溶解度が50g/100ml以上である水溶性の過酸化物、水溶性のアゾ化合物等が挙げられる。 Examples of the polymerization initiator include water-soluble peroxides and water-soluble azo compounds having a solubility in water of 50 g/100 ml or more at 20°C.

前記水溶性の過酸化物としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム、t-ブチルヒドロペルオキシド等が挙げられる。 Examples of the water-soluble peroxide include ammonium persulfate, sodium persulfate, t-butyl hydroperoxide and the like.

前記水溶性のアゾ化合物としては、2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩、4,4’-アゾビス(4-シアノバレリン酸)等が挙げられる。 Examples of the water-soluble azo compound include 2,2'-azobis(2-methylpropionamidine) dihydrochloride and 4,4'-azobis(4-cyanovaleric acid).

これらの中でも、前記水膨潤性粘度鉱物との相互作用の観点から、水溶性の過酸化物を用いることが好ましく、過硫酸アンモニウム、過硫酸ナトリウムを用いることがより好ましい。 Among these, water-soluble peroxides are preferably used, and ammonium persulfate and sodium persulfate are more preferably used, from the viewpoint of interaction with the water-swelling clay mineral.

なお、前記重合開始剤は、単独で用いてもよいし、2種以上を併用してもよい。 In addition, the said polymerization initiator may be used independently and may use 2 or more types together.

前記ヒドロゲル前駆体組成物中の前記水溶性有機モノマーに対する前記重合開始剤のモル比は、空気雰囲気下においても、前記水溶性有機モノマーの重合を十分に進行させることができることから、0.01~0.1の範囲が好ましく、0.01~0.05の範囲がより好ましい。 The molar ratio of the polymerization initiator to the water-soluble organic monomer in the hydrogel precursor composition is 0.01 to 0.01 because the polymerization of the water-soluble organic monomer can be sufficiently progressed even in an air atmosphere. A range of 0.1 is preferred, and a range of 0.01 to 0.05 is more preferred.

前記重合促進剤としては、例えば、3級アミン化合物、チオ硫酸塩、アスコルビン酸類等が挙げられる。 Examples of the polymerization accelerator include tertiary amine compounds, thiosulfates, and ascorbic acids.

前記3級アミン化合物としては、N,N,N’,N’-テトラメチルエチレンジアミン、3-ジメチルアミノプロピオニトリルが挙げられる。 Examples of the tertiary amine compound include N,N,N',N'-tetramethylethylenediamine and 3-dimethylaminopropionitrile.

前記チオ硫酸塩としては、チオ硫酸ナトリウム、チオ硫酸アンモニウムが挙げられる。 Examples of the thiosulfate include sodium thiosulfate and ammonium thiosulfate.

前記アスコルビン酸類としては、L-アスコルビン酸、L-アスコルビン酸ナトリウムが挙げられる。 Examples of the ascorbic acids include L-ascorbic acid and sodium L-ascorbate.

これらのうち、水膨潤性粘土鉱物との親和性及び相互作用の観点から、3級アミン化合物を用いることが好ましく、N,N,N’,N’-テトラメチルエチレンジアミンを用いることがより好ましい。 Among these, tertiary amine compounds are preferably used, and N,N,N',N'-tetramethylethylenediamine is more preferably used, from the viewpoint of affinity and interaction with water-swelling clay minerals.

なお、前記重合促進剤は、単独で用いてもよいし、2種以上を併用してもよい。 In addition, the said polymerization accelerator may be used independently and may use 2 or more types together.

前記ヒドロゲル前駆体組成物中の前記重合促進剤の含有量は、0.01~1質量%であることが好ましく、0.05~0.5質量%であることがより好ましい。0.01質量%以上であると、得られるヒドロゲルの有機モノマーの合成を効率よく促進できることから好ましい。一方、1質量%以下であると、前記ヒドロゲル前駆体組成物が重合前に凝集せずに使用することができて、取扱性が向上することから好ましい。 The content of the polymerization accelerator in the hydrogel precursor composition is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass. When it is 0.01% by mass or more, it is preferable because the synthesis of the organic monomer of the obtained hydrogel can be promoted efficiently. On the other hand, when the amount is 1% by mass or less, the hydrogel precursor composition can be used without agglomeration before polymerization, and the handleability is improved, which is preferable.

前記ヒドロゲル前駆体組成物は、必要に応じて、有機架橋剤、防腐剤、増粘剤等をさらに含んでいてもよい。 The hydrogel precursor composition may further contain an organic cross-linking agent, a preservative, a thickening agent, etc., if necessary.

前記水溶性有機モノマーの重合温度としては、10~80℃であることが好ましく、20~80℃であることがより好ましい。重合温度が10℃以上であると、ラジカル反応が連鎖的に進行できることから好ましい。一方、重合温度が80℃以下であると、水が沸騰せずに重合できることから好ましい。 The polymerization temperature of the water-soluble organic monomer is preferably 10 to 80°C, more preferably 20 to 80°C. A polymerization temperature of 10° C. or higher is preferable because the radical reaction can proceed in a chain reaction. On the other hand, a polymerization temperature of 80° C. or lower is preferable because water can be polymerized without boiling.

前記重合時間としては、前記重合開始剤や前記重合促進剤の種類によって異なるが、数十秒~24時間の間で実施される。特に、加熱やレドックスを利用するラジカル重合の場合は、1~24時間であることが好ましく、5~24時間であることがより好ましい。重合時間が1時間以上であると、前記水膨潤性粘土鉱物と前記水溶性有機モノマーの重合物が三次元網目を形成できることから好ましい。一方、重合反応は24時間以内にほぼ完了するので、重合時間は24時間以下が好ましい。 The polymerization time varies depending on the types of the polymerization initiator and the polymerization accelerator, but is carried out from several tens of seconds to 24 hours. In particular, in the case of radical polymerization using heat or redox, the time is preferably 1 to 24 hours, more preferably 5 to 24 hours. A polymerization time of 1 hour or more is preferable because the polymer of the water-swelling clay mineral and the water-soluble organic monomer can form a three-dimensional network. On the other hand, since the polymerization reaction is almost completed within 24 hours, the polymerization time is preferably 24 hours or less.

前記塗膜(B)は、前記ヒドロゲル層(A)上に水性塗料を塗装することにより得られるものであるが、前記ヒドロゲル層(A)と水性塗料との親和性が優れることから、前記ヒドロゲル層(A)と前記塗膜(B)は、優れた層間密着性を発現する。 The coating film (B) is obtained by applying a water-based paint on the hydrogel layer (A). The layer (A) and the coating film (B) exhibit excellent interlayer adhesion.

前記水性塗料は、樹脂が水性媒体中に溶解又は分散しているものである。 The water-based paint has a resin dissolved or dispersed in an aqueous medium.

前記樹脂は、塗膜形成用途に使用されるものであれば特に限定されないが、例えば、アクリル樹脂、ウレタン変性アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、アルキド樹脂、エポキシエステル樹脂、エポキシ樹脂等が挙げられる。これらの中でも、前記ヒドロゲル層(A)との親和性に優れ、層間密着性に優れることから、アクリル樹脂、ウレタン変性アクリル樹脂等のアクリル系樹脂が好ましい。なお、これらの樹脂は、単独で用いてもよいし、2種以上を併用してもよい。 The resin is not particularly limited as long as it is used for coating film formation, and examples thereof include acrylic resins, urethane-modified acrylic resins, urethane resins, polyester resins, alkyd resins, epoxy ester resins, and epoxy resins. . Among these, acrylic resins such as acrylic resins and urethane-modified acrylic resins are preferable because they have excellent affinity with the hydrogel layer (A) and excellent interlayer adhesion. In addition, these resins may be used independently and may use 2 or more types together.

また、前記樹脂は、前記水性媒体への溶解性や分散性がより向上することから、親水性基を有することが好ましい。 Moreover, the resin preferably has a hydrophilic group, since the solubility and dispersibility in the aqueous medium are further improved.

前記親水性基としては、例えば、アニオン性基、カチオン性基、ノニオン性基等が挙げられる。 Examples of the hydrophilic group include an anionic group, a cationic group, and a nonionic group.

また、前記樹脂中に架橋性官能基を導入することで、2液硬化型の水性塗料として使用することもできる。 In addition, by introducing a crosslinkable functional group into the resin, it can be used as a two-liquid curing water-based paint.

前記水性媒体としては、例えば、水、親水性有機溶剤、及びこれらの混合物が挙げられるが、前記ヒドロゲル(A)との親和性に優れることから、水、又は、水と親水性有機溶剤の混合物が好ましい。 Examples of the aqueous medium include water, hydrophilic organic solvents, and mixtures thereof. Since the affinity with the hydrogel (A) is excellent, water or a mixture of water and a hydrophilic organic solvent can be used. is preferred.

前記親水性有機溶剤としては、水と分離することなく混和する水混和性有機溶剤が好ましく、これらの中でも水に対する溶解度(水100gに溶解する有機溶剤のグラム数)が25℃において3g以上の有機溶剤が好ましい。これら水混和性有機溶剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール、3-メトキシブタノール、3-メチル-3-メトキシブタノール等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、モノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル等のグリコールエーテル溶剤などが挙げられる。これら水混和性有機溶剤は、単独で用いてもよいし、2種以上を併用してもよい。 The hydrophilic organic solvent is preferably a water-miscible organic solvent that is miscible with water without separating. Solvents are preferred. Examples of these water-miscible organic solvents include alcohol solvents such as methanol, ethanol, propanol, butanol, 3-methoxybutanol and 3-methyl-3-methoxybutanol; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol monomethyl ether; Ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, diethylene glycol monoisopropyl ether , diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether and other glycol ethers Examples include solvents. These water-miscible organic solvents may be used alone or in combination of two or more.

前記水性塗料中の前記樹脂と前記水性媒体の質量比(樹脂/水性媒体)は、塗工性及び層間密着性が優れることから、20/80~60/40が好ましく、30/70~50/50がより好ましい。 The mass ratio (resin/aqueous medium) of the resin and the aqueous medium in the water-based paint is preferably 20/80 to 60/40, and 30/70 to 50/ 50 is more preferred.

前記水性塗料は、前記ヒドロゲル層(A)と前記塗膜(B)との層間密着性がより向上することから、親水性可塑剤を含有することが好ましい。 The water-based paint preferably contains a hydrophilic plasticizer because the interlayer adhesion between the hydrogel layer (A) and the coating film (B) is further improved.

前記親水性可塑剤としては、前記ヒドロゲル層(A)との親和性に優れることから、グリセリン、ジグリセリン、エチレングリコール、プロピレングリコール、ポリエチレングリコール等のポリオール可塑剤が好ましく、これらの中でも、グリセリン、ジグリセリンが好ましい。 As the hydrophilic plasticizer, polyol plasticizers such as glycerin, diglycerin, ethylene glycol, propylene glycol, and polyethylene glycol are preferable because they have excellent affinity with the hydrogel layer (A). Diglycerin is preferred.

前記親水性可塑剤の含有量は、前記ヒドロゲル層(A)と前記塗膜(B)との層間密着性がより向上することから、前記樹脂の1~30質量%が好ましく、3~20質量%がより好ましい。 The content of the hydrophilic plasticizer is preferably 1 to 30% by mass, more preferably 3 to 20% by mass of the resin, because the interlayer adhesion between the hydrogel layer (A) and the coating film (B) is further improved. % is more preferred.

また、前記水性塗料は、必要に応じて、界面活性剤、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、消泡剤、耐光安定剤、耐候安定剤、耐熱安定剤、顔料等の各種の添加剤を含有することができる。 In addition, the water-based paint may optionally contain surfactants, leveling agents, rheology control agents, ultraviolet absorbers, antioxidants, antifoaming agents, light stabilizers, weather stabilizers, heat stabilizers, pigments, etc. Various additives can be contained.

前記水性塗料の前記ヒドロゲル層(A)への塗装方法としては、公知各種の塗装方法を用いることができるが、前記ヒドロゲル層(A)が複雑な形状を有する場合にも容易に塗装できることから、刷毛、スプレー、ローラーによる塗装が好ましい。 As a method for coating the hydrogel layer (A) with the water-based paint, various known coating methods can be used. Application by brush, spray or roller is preferred.

また、前記水性塗料を塗装後、塗膜とする方法としては、常温下で0.5~7日間程度養生する方法が挙げられるが、40~80℃に加温し、養生時間を短縮することもできる。 In addition, as a method of forming a coating film after applying the water-based paint, there is a method of curing at room temperature for about 0.5 to 7 days, but heating to 40 to 80 ° C. and shortening the curing time. can also

前記水性塗料の塗布量は、前記ヒドロゲル層(A)との層間密着性に優れ、前記ヒドロゲル層(A)からの水の蒸散をより抑制することができることから、塗布量が多く、膜厚を厚く形成できる方が好ましいが、塗布量が多くなると乾燥性が遅くなることから、0.05~0.5kg/mが好ましい。 The coating amount of the water-based paint is excellent in interlayer adhesion with the hydrogel layer (A), and can further suppress water evaporation from the hydrogel layer (A). Although it is preferable to form a thick layer, the drying property becomes slow when the coating amount is large, so 0.05 to 0.5 kg/m 2 is preferable.

本発明のコンクリート構造体用充填材積層体の製造方法としては、複雑形状部等にも容易に充填することができ、土木工事現場や建築工事現場等での作業性がより向上することから、前記ヒドゲル前駆体組成物をコンクリート構造体の間隙又は表面上に注入し、間隙内又は表面上で前記有機無機複合ヒドロゲルを生成させ、その上に前記水性塗料を塗装する方法が好ましい。 As the method for manufacturing the filler laminate for a concrete structure of the present invention, it is possible to easily fill even a complicated shape part, etc., and the workability at civil engineering construction sites, building construction sites, etc. is further improved. A preferred method is to inject the hydrogel precursor composition into the gaps or onto the surface of a concrete structure, generate the organic-inorganic composite hydrogel in the gaps or on the surface, and apply the water-based paint thereon.

本発明のコンクリート構造体用充填材積層体は、コンクリートとの親和性により毛細管現象で多孔質に入り密着する。 Due to its affinity with concrete, the filler laminate for concrete structures of the present invention enters into the porous structure and adheres to it by capillary action.

本発明のコンクリート構造体用充填材積層体は、大気開放条件下においても、層間密着性に優れ、優れた柔軟性を長期間保持可能であることから、各種工業材料に用いることができる。例えば、トンネル、道路、橋梁、軌道、ビル、護岸、上下水道等のコンクリート構造物の充填材として、また、それらの補修材として用いることができる。 INDUSTRIAL APPLICABILITY The filler laminate for a concrete structure of the present invention can be used for various industrial materials because it has excellent interlaminar adhesion and can maintain excellent flexibility for a long period of time even under atmospheric open conditions. For example, it can be used as a filling material for concrete structures such as tunnels, roads, bridges, tracks, buildings, revetments, water supply and sewage systems, and as a repairing material for them.

以下に、本発明を具体的な実施例を挙げてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with specific examples, but the present invention is not limited to these examples.

(調製例1:ヒドロゲル前駆体組成物(1)の調製)
平底ガラス容器に、純水40g、精製グリセリン63g、ホスホン酸変性合成ヘクトライト(ビックケミー・ジャパン株式会社製「ラポナイトRDS」)4.8g、ジメチルアクリルアミド(以下、「DMAA」と略記する。)20g、N,N’-メチレンビスアクリルアミド20mgを入れて、撹拌により均一透明な組成物(1)を調製した。この組成物(1)を水温25℃恒温槽に保持した後の粘度をB型粘度計(東機産業株式会社製「VISCOMETER TV-20」)を用いて測定したところ、50mPa・sであった。
次いで、別の平底ガラス容器に精製グリセリン12.6g、テトラメチルエチレンジアミン(以下、「TEMED」と略記する。)80μLを入れて撹拌し、均一なTEMED溶液を調製した。
200mLのガラスビーカーに前記組成物(1)を全量入れ、そこに過硫酸ナトリウム(以下、「NPS」と略記する。)0.5gを入れて、溶解するまで撹拌した。さらに上記で調製したTEMED溶液を加えていき、均一に混合するまで撹拌を続け、ヒドロゲル前駆体組成物(1)を調製した。
(Preparation Example 1: Preparation of hydrogel precursor composition (1))
In a flat-bottom glass container, 40 g of pure water, 63 g of purified glycerin, 4.8 g of phosphonic acid-modified synthetic hectorite ("Laponite RDS" manufactured by BYK-Chemie Japan Co., Ltd.), 20 g of dimethylacrylamide (hereinafter abbreviated as "DMAA"), 20 mg of N,N'-methylenebisacrylamide was added and stirred to prepare a uniform transparent composition (1). The viscosity of this composition (1) after being kept in a constant temperature bath at a water temperature of 25° C. was measured using a Brookfield viscometer (“VISCOMETER TV-20” manufactured by Toki Sangyo Co., Ltd.), and was 50 mPa·s. .
Next, 12.6 g of purified glycerin and 80 μL of tetramethylethylenediamine (hereinafter abbreviated as “TEMED”) were placed in another flat-bottomed glass container and stirred to prepare a uniform TEMED solution.
The entire amount of the composition (1) was placed in a 200 mL glass beaker, and 0.5 g of sodium persulfate (hereinafter abbreviated as "NPS") was added and stirred until dissolved. Further, the TEMED solution prepared above was added, and stirring was continued until the mixture was uniformly mixed to prepare a hydrogel precursor composition (1).

(調製例2:ヒドロゲル前駆体組成物(2)の調製)
調製例1で用いたN,N’-メチレンビスアクリルアミド20mgを、ポリエチレングリコールジアクリレート(共栄社化学株式会社製「ライトアクリレート4EG-A」)0.05gに変更した以外は調製例1同様にして、ヒドロゲル前駆体組成物(2)を調製した。
(Preparation Example 2: Preparation of hydrogel precursor composition (2))
In the same manner as in Preparation Example 1, except that 20 mg of N,N'-methylenebisacrylamide used in Preparation Example 1 was changed to 0.05 g of polyethylene glycol diacrylate ("Light Acrylate 4EG-A" manufactured by Kyoeisha Chemical Co., Ltd.). A hydrogel precursor composition (2) was prepared.

アクリルエマルジョン(DIC株式会社製「バーノック WE-317」、不揮発分:45質量%、溶剤:水)を水性塗料(1)として用いた。 An acrylic emulsion (“Barnock WE-317” manufactured by DIC Corporation, non-volatile matter: 45% by mass, solvent: water) was used as a water-based paint (1).

ウレタン変性アクリルエマルジョン(DIC株式会社製「ボンコート HY-364」:不揮発分45質量%、溶剤:水)を水性塗料(2)として用いた。 A urethane-modified acrylic emulsion (“Boncoat HY-364” manufactured by DIC Corporation: 45% by mass of non-volatile matter, solvent: water) was used as the water-based paint (2).

アクリルエマルジョン(DIC株式会社製「バーノック WE-317」、不揮発分:45質量%、溶剤:水)100質量部に、グリセリン5質量部を加え、均一に混合するまで撹拌し、水性塗料(3)を調製した。 Add 5 parts by mass of glycerin to 100 parts by mass of acrylic emulsion (“Barnock WE-317” manufactured by DIC Corporation, non-volatile content: 45% by mass, solvent: water), stir until uniformly mixed, water-based paint (3) was prepared.

(実施例1)
モルタル平板(70mm×70mm×20mm)2枚の平面同士が平行になるように並べて、その間に40mm幅のポリプロピレン製スペーサーを2個挿入した。2個のスペーサーの距離を30mm開け、ヒドロゲルを充填する空間を作製して、モルタル板とスペーサー全体とをアルミテープで固定した。この型枠に上記で得たヒドロゲル前駆体組成物(1)110gを流し込み、20分間静置し、有機無機複合ヒドロゲルを作製後、型枠を撤去しH型試験体を得た。H型試験体の有機無機複合ヒドロゲルの上に、上記で得た水性塗料(1)を刷毛で塗布(塗布量:0.3kg/m)し、24時間静置し、コンクリート構造体用充填材層(1)、及びコンクリート構造体(1)としてモルタル-ゲル-モルタル構造体(H型試験体)を得た。
(Example 1)
Two flat plates of mortar (70 mm×70 mm×20 mm) were arranged so that their flat surfaces were parallel to each other, and two spacers made of polypropylene having a width of 40 mm were inserted between them. The two spacers were separated by 30 mm to form a space for filling with hydrogel, and the mortar plate and the entire spacer were fixed with aluminum tape. 110 g of the hydrogel precursor composition (1) obtained above was poured into this mold and allowed to stand for 20 minutes to prepare an organic-inorganic composite hydrogel, after which the mold was removed to obtain an H-shaped specimen. On the organic-inorganic composite hydrogel of the H-shaped specimen, the water-based paint (1) obtained above was applied with a brush (application amount: 0.3 kg/m 2 ), left to stand for 24 hours, and filled for concrete structures. A mortar-gel-mortar structure (H-type specimen) was obtained as a material layer (1) and a concrete structure (1).

[層間密着性の評価]
上記で得たコンクリート構造体(1)のH型試験体を5mm/minの速度で、50%の伸度まで伸張し、その後、同速度で0%の伸度(元の位置)まで伸張を戻した。このサイクルを5回連続繰り返した後、さらに50%の伸度まで伸張し、目視により塗膜外観を観察し、層間密着性を下記の基準により評価した。
○:異常なし
×:塗膜に剥離がみられる
[Evaluation of interlayer adhesion]
The H-shaped specimen of the concrete structure (1) obtained above is stretched at a speed of 5 mm / min to an elongation of 50%, and then stretched to an elongation of 0% (original position) at the same speed. returned. After repeating this cycle five times, the film was further stretched to an elongation of 50%.
○: No abnormality ×: Delamination is observed in the coating film

[柔軟性の評価]
上記で得たコンクリート構造体(1)のH型試験体を5mm/minの速度で、50%伸張した試験体を、90日間放置した後の状態を目視により観察し、柔軟性を下記の基準により評価した。
○:異常なし
×:充填材積層体の柔軟性が低下し、モルタルとの剥離がみられる
[Evaluation of flexibility]
The H-shaped specimen of the concrete structure (1) obtained above was stretched by 50% at a speed of 5 mm/min, and the specimen was allowed to stand for 90 days. Evaluated by
○: No abnormality ×: The flexibility of the filler laminate is reduced, and peeling from the mortar is observed

(実施例2)
実施例1で用いた水性塗料(1)を水性塗料(2)に変更した以外は実施例1と同様にして、コンクリート構造体用充填材層(2)、及びコンクリート構造体(2)としてモルタル-ゲル-モルタル構造体(H型試験体)を得た後、各性能を評価した。
(Example 2)
In the same manner as in Example 1 except that the water-based paint (1) used in Example 1 was changed to the water-based paint (2), mortar was used as the concrete structure filler layer (2) and the concrete structure (2). - After obtaining the gel-mortar structure (H type specimen), each performance was evaluated.

(実施例3)
実施例1で用いたヒドロゲル前駆体組成物(1)をヒドロゲル前駆体組成物(2)に変更した以外は実施例1と同様にして、コンクリート構造体用充填材層(3)、及びコンクリート構造体(3)としてモルタル-ゲル-モルタル構造体(H型試験体)を得た後、各性能を評価した。
(Example 3)
In the same manner as in Example 1, except that the hydrogel precursor composition (1) used in Example 1 was changed to the hydrogel precursor composition (2), a concrete structure filler layer (3) and a concrete structure After obtaining a mortar-gel-mortar structure (H type specimen) as the body (3), each performance was evaluated.

(実施例4)
実施例1で用いた水性塗料(1)を水性塗料(3)に変更した以外は実施例1と同様にして、コンクリート構造体用充填材層(4)、及びコンクリート構造体(4)としてモルタル-ゲル-モルタル構造体(H型試験体)を得た後、各性能を評価した。
(Example 4)
In the same manner as in Example 1 except that the water-based paint (1) used in Example 1 was changed to the water-based paint (3), mortar was used as the concrete structure filler layer (4) and the concrete structure (4). - After obtaining the gel-mortar structure (H type specimen), each performance was evaluated.

(比較例1)
実施例1で塗布した水性塗料(1)を塗布しなかった以外は、実施例1と同様にして、コンクリート構造体(R1)としてモルタル-ゲル-モルタル構造体(H型試験体)を得た後、柔軟性を評価した。
(Comparative example 1)
A mortar-gel-mortar structure (H-type specimen) was obtained as a concrete structure (R1) in the same manner as in Example 1, except that the water-based paint (1) applied in Example 1 was not applied. Flexibility was then evaluated.

(比較例2)
実施例1で用いた水性塗料(1)を溶剤系塗料(DIC株式会社製「プライアデック T-46NX」)に変更した以外は、実施例1と同様にして、コンクリート構造体用充填材層(R2)、及びコンクリート構造体(R2)としてモルタル-ゲル-モルタル構造体(H型試験体)を得た後、各性能を評価した。
(Comparative example 2)
A concrete structure filler layer ( R2) and a mortar-gel-mortar structure (H-type specimen) as a concrete structure (R2) were obtained, and each performance was evaluated.

なお、上記の実施例及び比較例の操作は、23℃、50%RH条件の試験室内で行ったものである。 The operations of the above Examples and Comparative Examples were performed in a test room under the conditions of 23° C. and 50% RH.

実施例1~4の組成及び評価結果を表1に示す。 Table 1 shows the compositions and evaluation results of Examples 1 to 4.

Figure 2023091996000001
Figure 2023091996000001

比較例1~2の組成及び評価結果を表2に示す。 Table 2 shows the compositions and evaluation results of Comparative Examples 1 and 2.

Figure 2023091996000002
Figure 2023091996000002

実施例1~4の本発明のコンクリート構造体用充填材層は、層間密着性に優れ、優れた柔軟性を長期間保持可能であることが確認された。 It was confirmed that the filler layers for concrete structures of the present invention of Examples 1 to 4 have excellent interlayer adhesion and can maintain excellent flexibility for a long period of time.

一方、比較例1は、有機無機複合ヒドロゲル層(A)の上に塗膜を有さない例であるが、柔軟性を長期間保持できないことが確認された。 On the other hand, Comparative Example 1 is an example in which no coating film is provided on the organic-inorganic composite hydrogel layer (A), but it was confirmed that the flexibility could not be maintained for a long period of time.

比較例2は、有機無機複合ヒドロゲル層(A)の上に、溶剤系塗料から得られた塗膜を有する例であるが、層間密着性が不十分であり、柔軟性を長期間保持できないことが確認された。 Comparative Example 2 is an example having a coating film obtained from a solvent-based coating material on the organic-inorganic composite hydrogel layer (A). was confirmed.

Claims (6)

有機無機複合ヒドロゲル層(A)の上に水性塗料から得られる塗膜(B)を有することを特徴とするコンクリート構造体用充填材積層体。 A filler laminate for a concrete structure, comprising a coating film (B) obtained from a water-based paint on an organic-inorganic composite hydrogel layer (A). 前記有機無機複合ヒドロゲル層(A)が、水溶性有機モノマーの重合体、水膨潤性粘土鉱物、及び水を含有するものである請求項1記載のコンクリート構造体用充填材積層体。 2. The filler laminate for a concrete structure according to claim 1, wherein said organic-inorganic composite hydrogel layer (A) contains a polymer of water-soluble organic monomers, a water-swelling clay mineral, and water. 前記有機無機複合ヒドロゲル層(A)が、揮発性が60℃1気圧の開放系において1cm・1時間あたり、0.1g以下(0.1g/cm・hr・60℃・1atm以下)である低揮発性溶媒を含有するものである請求項2記載のコンクリート構造体用充填材積層体。 The organic-inorganic composite hydrogel layer (A) has a volatility of 0.1 g or less per 1 cm 2 hour in an open system at 60 ° C. 1 atm (0.1 g / cm 2 hr 60 ° C. 1 atm or less). 3. The filler laminate for concrete structures according to claim 2, which contains a certain low-volatility solvent. 前記水膨潤性粘土鉱物が、ホスホン酸変性ヘクトライトを含むものである請求項2又は3記載のコンクリート構造体用充填材積層体。 The filler laminate for concrete structures according to claim 2 or 3, wherein the water-swellable clay mineral contains phosphonic acid-modified hectorite. 前記水性塗料が、アクリル系樹脂を含有するものである請求項1~4いずれか1項記載のコンクリート構造体用充填材積層体。 The filler laminate for a concrete structure according to any one of claims 1 to 4, wherein the water-based paint contains an acrylic resin. 請求項1~5いずれか1項記載のコンクリート構造体用充填材積層体により間隙を充填されたことを特徴とするコンクリート構造体。 A concrete structure having gaps filled with the filler laminate for a concrete structure according to any one of claims 1 to 5.
JP2021206931A 2021-12-21 2021-12-21 Filler laminate for concrete structure, and concrete structure Pending JP2023091996A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021206931A JP2023091996A (en) 2021-12-21 2021-12-21 Filler laminate for concrete structure, and concrete structure
CN202211523751.2A CN116284922A (en) 2021-12-21 2022-11-28 Filling material laminate for concrete structure and concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021206931A JP2023091996A (en) 2021-12-21 2021-12-21 Filler laminate for concrete structure, and concrete structure

Publications (1)

Publication Number Publication Date
JP2023091996A true JP2023091996A (en) 2023-07-03

Family

ID=86785723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021206931A Pending JP2023091996A (en) 2021-12-21 2021-12-21 Filler laminate for concrete structure, and concrete structure

Country Status (2)

Country Link
JP (1) JP2023091996A (en)
CN (1) CN116284922A (en)

Also Published As

Publication number Publication date
CN116284922A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
US8507587B2 (en) Lightweight wall repair compounds
SA517380924B1 (en) Reactive resin sealing for low-contaminant cold plastic markings
JP2022058381A (en) Multicomponent composition for generating corrosion inhibiting hydrogel
CN105504923B (en) A kind of quick-dry type solventless coatings and preparation method thereof
JP2023091996A (en) Filler laminate for concrete structure, and concrete structure
KR20080038433A (en) Coating agent for hydraulic transfer film, method of hydraulic transfer and hydraulic transfer product
JP7183573B2 (en) Organic-inorganic composite hydrogel precursor composition and organic-inorganic composite hydrogel
JP7419619B2 (en) Waterproofing material composition, waterproofing method and waterproofing film
CN104356341B (en) BOPP (Biaxially-oriented Polypropylene) used photo-curable coating polymer prepared by adopting polyurethane to modify chlorinated polypropylene as well as preparation and application of photo-curable coating polymer
JP6972930B2 (en) Organic-inorganic composite hydrogel precursor composition, organic-inorganic composite hydrogel, and method for producing the same.
KR101812097B1 (en) Water-based emulsified voc-free undercoat materials having a polymer integrated structure with an outstanding intercoat adhesion
JP6713224B2 (en) Dispersion for filler for concrete structure, method for manufacturing filler for concrete structure, and method for manufacturing concrete structure
JP2006160943A5 (en) Curable resin composition for civil engineering and building materials, civil engineering and building materials for application, and civil engineering buildings
JP7012993B2 (en) A method for producing a coating material of a stain coating composition, a photocurable coating composition, a coating material and a porous material.
WO2017169002A1 (en) Concrete structure filler, concrete structure, and method for manufacuring concrete structure filler and concrete structure
JP2010227889A (en) Patterned surface forming method
JP6809650B2 (en) Organic-inorganic composite hydrogel precursor composition, and organic-inorganic composite hydrogel
JP6642765B2 (en) Method for producing organic-inorganic hybrid hydrogel
JP2568420B2 (en) Compounding agent for hydraulic inorganic materials
JP7354780B2 (en) Organic-inorganic composite hydrogel precursor composition, organic-inorganic composite hydrogel, and method for producing the same
KR102275133B1 (en) Composition of paint material for building structure and coating method thereof
ITBO20060575A1 (en) COMPOSED TO APPLY A CLADDING.
KR101430652B1 (en) Resin composition for road coating
JP7111307B2 (en) Solvent-based road paint
WO2016171034A1 (en) Radical polymerizable resin composition and primer for civil engineering and construction