JP2023090455A - achromatic lens - Google Patents

achromatic lens Download PDF

Info

Publication number
JP2023090455A
JP2023090455A JP2021205418A JP2021205418A JP2023090455A JP 2023090455 A JP2023090455 A JP 2023090455A JP 2021205418 A JP2021205418 A JP 2021205418A JP 2021205418 A JP2021205418 A JP 2021205418A JP 2023090455 A JP2023090455 A JP 2023090455A
Authority
JP
Japan
Prior art keywords
light
lens
chromatic aberration
focus
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021205418A
Other languages
Japanese (ja)
Inventor
和芳 小川
Kazuyoshi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021205418A priority Critical patent/JP2023090455A/en
Publication of JP2023090455A publication Critical patent/JP2023090455A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide a lens capable of offering almost zero axial chromatic aberration.SOLUTION: Red, blue, and green optical filters are used to separate light into three monochromatic light components, and a multifocal lens fabricated such that the three monochromatic light components are in focus is used.SELECTED DRAWING: Figure 2

Description

本発明は、望遠鏡のレンズで生じる色収差を限りなく取り除く仕組みに関するものである。 The present invention relates to a mechanism for eliminating chromatic aberration produced by telescope lenses as much as possible.

光はレンズを通ると像に色のにじみをもたらす色収差が起こる。
従来では、それを低減するために複数のレンズを重ねたアクロマートやアポクロマートといった色消しレンズが考案されたが更に低減させる方法が本発明である。
When light passes through a lens, it experiences chromatic aberration that causes color to bleed into the image.
Conventionally, in order to reduce it, an achromatic lens such as an achromatic lens or an apochromatic lens in which a plurality of lenses are superimposed has been devised, but the present invention is a method of further reducing it.

図面1の多焦点レンズ1は、内側2、中間3、外側4という構成となっており、正面から見た際には2、3、4の表面積は同一である。
この状態で2、3、4とその光路13はそれぞれ焦点距離が異なる為に劣悪なレンズになっている。
The multifocal lens 1 of FIG. 1 has an inner side 2, an intermediate side 3, and an outer side 4. When viewed from the front, the surface areas of 2, 3, and 4 are the same.
In this state, the lenses 2, 3, 4 and their optical paths 13 have different focal lengths, so they are inferior lenses.

次に1の直径に合う様に光学フィルター8を1の前に設置する
この8は、内側から、波長450-485nmまでの青の光を通すフィルター、中間が波長500-565nmの緑の光を通すフィルター、外側が波長625-780nmの赤の光を通すフィルターという構成になっており、それぞれのフィルターの正面から見た表面積の大きさはレンズ1の2、3、4と同一である。
Next, install an optical filter 8 in front of 1 to match the diameter of 1. This 8 is a filter that allows blue light with a wavelength of 450-485 nm to pass from the inside, and a green light with a wavelength of 500-565 nm in the middle. It consists of a filter through which red light with a wavelength of 625 to 780 nm passes through, and the size of the surface area of each filter seen from the front is the same as 2, 3, and 4 of lens 1.

8を通った光は2、3、4に対して青のみの光、緑のみの光、赤のみの光となっており
それぞれが一つの焦点に重なる。その理由はレンズの焦点が青、緑、赤で異なっており光学フィルター8を通して一つにまとまる様に、三色の焦点のズレを逆算したからである。
The light passing through 8 becomes only blue light, only green light, and only red light for 2, 3, and 4, and each of them overlaps one focal point. The reason for this is that the focus of the lens is different for blue, green, and red, and the focal shifts of the three colors are calculated backward so that they are combined into one through the optical filter 8 .

具体的には以下の様になる。
5を、波長450-485nmの青の光を通す光学フィルターとする
6を、波長500-565nmの緑の光を通す光学フィルターとする
7を、波長625-780nmの赤の光を通す光学フィルターとする
そして3色の焦点14は以下の様になる。
3の焦点は、緑の光6が青の焦点5に合わさる様に加工する
4の焦点は、赤の光7も青の焦点5に合わさる様に加工する
この順番はガラスの屈折率を考慮した際の加工のしやすさを兼ねている。
青い光は屈折率が他の二色よりも大きいため、外周に配置すると焦点を伸ばすために複雑な形になってしまうが、屈折率の低い赤い光を外周に配置すれば、焦点を短くするだけの単純な加工で済むからである。
Specifically, it is as follows.
5 is an optical filter that passes blue light with a wavelength of 450-485 nm; 6 is an optical filter that passes green light with a wavelength of 500-565 nm; and 7 is an optical filter that passes red light with a wavelength of 625-780 nm. Then the three color focal points 14 are as follows.
The focus of 3 is processed so that the green light 6 is aligned with the blue focus 5. The focus of 4 is processed so that the red light 7 is also aligned with the blue focus 5. This order takes into consideration the refractive index of the glass. It also facilitates the actual processing.
Blue light has a higher refractive index than the other two colors, so if it is placed on the outer circumference, the focal point becomes complicated, but if red light, which has a low refractive index, is placed on the outer circumference, the focal point is shortened. This is because it requires only simple processing.

結果、赤、青、緑の光の焦点が一点に収束し色収差を取り除くレンズとなるが、
このままでは図2の9と10の境界線に近い光が内側にずれ込み像が重なってしまう上、倍率色収差も目立ってしまう。倍率色収差は、レンズの外周に出来てしまう色収差で今発明でも消すことはできない。
As a result, the focus of red, blue, and green light converges to a single point to eliminate chromatic aberration.
In this state, the light near the boundary line between 9 and 10 in FIG. 2 shifts inward and the images are superimposed, and chromatic aberration of magnification becomes noticeable. Magnification chromatic aberration is a chromatic aberration that occurs on the periphery of the lens and cannot be eliminated even with the present invention.

この光のずれ込みを解消するためにフィルターの境界中央に遮光(しゃこう)環12を設け、ずれ込む光を遮る必要がある。
12をフィルターの境界中央にする理由は、レンズの内側から入る光による倍率色収差を軽減する為である。
In order to eliminate this shift of light, it is necessary to provide a light blocking ring 12 at the center of the boundary of the filter to block the shifted light.
The reason why 12 is the center of the boundary of the filter is to reduce the chromatic aberration of magnification caused by light entering from the inside of the lens.

環の太さ11は、フィルターとレンズの距離を0とした場合、計算式としては以下の様になる。

遮光環の太さ=フィルターの半径÷焦点距離×レンズの厚さ×2

2、3、4はそれぞれ焦点距離が異なり厳密にはそれぞれの焦点を分けて計算するべきだが、次の計算式で表される値から重要ではないと言える。

焦点距離÷レンズの直径=F値

このF値が1の場合、フィルターは遮光環で覆われてしまう。図1、2では焦点を分かりやすく説明するために焦点を短く設定しているが、遮光環で半分以上覆われるのは光量が乏しく望ましくない。望遠鏡として使用する以上最低でもF値は4以上が望ましい。それを基準にすると、2、3、4の焦点距離を考慮せずとも、上記の計算で遮光の効果は十分に保てるので問題がないと言える。

ただし、これはガラスの屈折率を含まない計算である。
基本的に焦点距離が短いほど環の太さは太くなり、焦点距離が長いほど環の太さは細くなる。
Assuming that the distance between the filter and the lens is 0, the thickness 11 of the ring is calculated as follows.

The thickness of the shielding ring = the radius of the filter / the focal length x the thickness of the lens x 2

2, 3, and 4 have different focal lengths and should be calculated separately for each focus, but it can be said that they are not important from the values expressed by the following formulas.

Focal length ÷ lens diameter = F number

If this f-number is 1, the filter will be covered with a light blocking ring. In FIGS. 1 and 2, the focal point is set to be short for easy understanding of the focal point, but it is not desirable to cover more than half of the focal point with the light shielding ring because the amount of light is poor. As long as it is used as a telescope, it is desirable to have at least an F value of 4 or more. Based on this, it can be said that there is no problem because the above calculation can sufficiently maintain the light shielding effect without considering the focal lengths 2, 3, and 4.

However, this calculation does not include the refractive index of glass.
Basically, the shorter the focal length, the thicker the ring, and the longer the focal length, the thinner the ring.

色収差が消せない原因は、可視光に波長の異なる色が混ざっており、それらが異なる焦点を取ってしまうからである。 The reason why chromatic aberration cannot be eliminated is that colors with different wavelengths are mixed in visible light, and they have different focal points.

可視光には無限ともいえる波長、いわば色があるが光学フィルターで青、赤、緑の三原色に振り分け、それら三色が多焦点レンズを透過した際、焦点が合う様にレンズを加工する。 Visible light has an infinite number of wavelengths, or so to speak, colors, but optical filters are used to divide them into the three primary colors of blue, red, and green.

倍率色収差に関しては収差を取り除くことは無理だが、軸上色収差に関しては、ほぼゼロにすることが可能となる。 Although it is impossible to eliminate lateral chromatic aberration, it is possible to reduce longitudinal chromatic aberration to almost zero.

は、多焦点レンズ1と光学フィルター8の構成と光路と焦点を表している。represents the configuration, optical path and focus of the multifocal lens 1 and the optical filter 8 . は、遮光環12を用いた際と用いなかった際の光路と焦点を表し、遮光環11の太さを表している。represents the optical path and focal point when the light shielding ring 12 is used and not used, and represents the thickness of the light shielding ring 11 .

特定の光の波長のみを取り出せる光学フィルターと多焦点レンズを合わせる事で、
複数のレンズを使用する事なく色消しを実現した望遠鏡。
By combining an optical filter that can extract only specific light wavelengths and a multifocal lens,
A telescope that achieves achromaticity without using multiple lenses.

Claims (1)

特定の波長の光のみを通すフィルターを複数使い、それに多焦点レンズを通す事で
焦点を合わせ色収差をゼロにするレンズ。
A lens that uses multiple filters that only pass light of specific wavelengths and passes them through a multifocal lens to focus and eliminate chromatic aberration.
JP2021205418A 2021-12-17 2021-12-17 achromatic lens Pending JP2023090455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021205418A JP2023090455A (en) 2021-12-17 2021-12-17 achromatic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021205418A JP2023090455A (en) 2021-12-17 2021-12-17 achromatic lens

Publications (1)

Publication Number Publication Date
JP2023090455A true JP2023090455A (en) 2023-06-29

Family

ID=86936930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021205418A Pending JP2023090455A (en) 2021-12-17 2021-12-17 achromatic lens

Country Status (1)

Country Link
JP (1) JP2023090455A (en)

Similar Documents

Publication Publication Date Title
CA3028775C (en) Spatial and spectral filtering apertures and optical imaging systems including the same
JP6587590B2 (en) Zoom lens, projection display device, and imaging device
JP6609639B2 (en) Multi-channel wide-field imaging system and optical system used therein
CN103424856B (en) Projecting zoom lens and projector
TWI574098B (en) Laser light source for projector
JP5934383B2 (en) Endoscope relay set and endoscope
US11520126B2 (en) Projection lens system and image projection device
CN106814443A (en) Zoom lens and camera head
JPH0894926A (en) Apochromatic wide-angle objective lens
JP2023090455A (en) achromatic lens
JP6333417B2 (en) Optical lens
US11513325B2 (en) Projection lens system and image projection device
US7403336B2 (en) Broadband imaging system and method
JP6512851B2 (en) Relay optical system and microscope apparatus
RU186325U1 (en) TWO COMPONENT APOCHROMATIC LENS
US2417330A (en) Lens for optical purposes
CN106814444A (en) Zoom lens and camera head
JP2023083175A (en) achromatic telescope
JP6712932B2 (en) Zoom lens, projection display device, and imaging device
JPH10170822A (en) Image pickup device
US3738739A (en) High light intensity photographic lens of the extended gauss type
US2352026A (en) Bright optical system for color photography
US5121257A (en) Lens for reading original
CN216526480U (en) Miniature projection lens
US3294470A (en) Pancratic condenser for projectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230523