JP2023087161A - Operating method for engine - Google Patents

Operating method for engine Download PDF

Info

Publication number
JP2023087161A
JP2023087161A JP2021201386A JP2021201386A JP2023087161A JP 2023087161 A JP2023087161 A JP 2023087161A JP 2021201386 A JP2021201386 A JP 2021201386A JP 2021201386 A JP2021201386 A JP 2021201386A JP 2023087161 A JP2023087161 A JP 2023087161A
Authority
JP
Japan
Prior art keywords
gas
engine
ammonia
hydrogen
ammonia gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021201386A
Other languages
Japanese (ja)
Other versions
JP7079890B1 (en
Inventor
努 原田
Tsutomu Harada
雅則 伊藤
Masanori Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hit Kenkyusho Co Ltd
Original Assignee
Hit Kenkyusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hit Kenkyusho Co Ltd filed Critical Hit Kenkyusho Co Ltd
Priority to JP2021201386A priority Critical patent/JP7079890B1/en
Application granted granted Critical
Publication of JP7079890B1 publication Critical patent/JP7079890B1/en
Priority to PCT/JP2022/043516 priority patent/WO2023112637A1/en
Publication of JP2023087161A publication Critical patent/JP2023087161A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

To provide an operating method for an engine capable of promoting mixing of ammonia gas and air in a cylinder.SOLUTION: Hydrogen gas supplied into a cylinder simultaneously with fuel gas is ignited along with ignition of ammonia gas. Since flame propagation speed (relative moving speed of a flame front) of the hydrogen gas is extremely faster than that of the ammonia gas, the movement of the flame front of the hydrogen gas promotes mixing of ammonia gas and air in the cylinder, so as to promote complete combustion of the ammonia gas.SELECTED DRAWING: Figure 1

Description

本発明は、アンモニアを燃料とするエンジンの運転方法に関する。 The present invention relates to a method of operating an engine using ammonia as fuel.

IMO(国際海事機関)は、2050年のCO総排出量を2008年比で半減させる目標を掲げている。
これに呼応し、燃料を重油から液化天然ガス(LNG)に切り替えた船舶が使用され始めている。しかしながら、液化天然ガス(LNG)を使用してもCOの排出量は重油と比べて25%程度しか削減できない。
そこで、燃焼してもCOを発生しないアンモニア(NH)を用いる提案がいくつかなされている。
The IMO (International Maritime Organization) has set a goal of halving total CO2 emissions in 2050 compared to 2008 levels.
In response to this, ships that switch fuel from heavy oil to liquefied natural gas (LNG) are beginning to be used. However, even if liquefied natural gas (LNG) is used, CO 2 emissions can only be reduced by about 25% compared to heavy oil.
Therefore, several proposals have been made to use ammonia (NH 3 ), which does not generate CO 2 even when burned.

特許文献1には、エンジンの燃焼室を主燃焼室と副燃焼室に分け、アンモニアを分解して得られた窒素ガスと水素ガスを、分解ガスに含まれる水素の当量比が所定の下限値以上となるように調節した後に副燃焼室に供給し、燃料過剰条件下で点火して燃焼させ、未燃水素の混じる過濃燃焼ガスを噴出孔から噴流トーチ火炎として主燃焼室に噴出させ、噴流トーチ火炎による未燃水素の燃焼により主燃焼室に供給されたアンモニアと空気の予混合気体に点火して燃焼させる内容が開示されている。 In Patent Document 1, the combustion chamber of an engine is divided into a main combustion chamber and a sub-combustion chamber, and nitrogen gas and hydrogen gas obtained by decomposing ammonia are mixed with each other so that the equivalence ratio of hydrogen contained in the cracked gas is a predetermined lower limit. After adjusting to the above, it is supplied to the sub-combustion chamber, ignited and burned under fuel excess conditions, and the over-concentrated combustion gas mixed with unburned hydrogen is ejected from the ejection port as a jet torch flame into the main combustion chamber, It discloses that a premixed gas of ammonia and air supplied to a main combustion chamber is ignited and burned by burning unburned hydrogen with a jet torch flame.

特許文献2には、船舶からの温室効果ガス排出規制に対応できるようにするため、燃焼反応時に窒素と水だけ生成されるアンモニアを燃料として用いるための、アンモニア貯蔵タンクから液体状態のアンモニアをメインエンジンに、気体状態のアンモニアをサブエンジンへ供給する回路が開示されている。 In Patent Document 2, in order to comply with greenhouse gas emission regulations from ships, ammonia, which is produced only by nitrogen and water during the combustion reaction, is used as fuel. An engine is disclosed with a circuit for supplying gaseous ammonia to a sub-engine.

特許文献3には、排気再循(EGR)装置として、EGRガスをアンモニア噴出部から噴出する液状アンモニアの気化熱により冷却した後、吸気路内の吸気へと環流し、コンプレッサにより加圧して燃焼室に掃気として供給する内容が記載されている。 In Patent Document 3, as an exhaust gas recirculation (EGR) device, EGR gas is cooled by the heat of vaporization of liquid ammonia ejected from an ammonia ejection portion, then circulated to the intake air in the intake passage, and compressed by a compressor for combustion. The content to be supplied to the chamber as scavenging air is described.

非特許文献1には、船舶用SCRシステムについての記載がなされている。具体的にはIMOによるNO排出規制が2016年には80%削減になること、また、SCRシステムの説明として、触媒の上流側に尿素水を吹き込み、この尿素水を排ガスの熱でアンモニアに分解し、更に触媒反応によってNOとアンモニアは無害な窒素と水に変換されるが、触媒で反応しきれないアンモニアや余剰アンモニア(アンモニアスリップ)は大気に放出することが記載されている。 Non-Patent Document 1 describes a marine SCR system. Specifically, the IMO NO X emission regulation will be reduced by 80% in 2016, and as an explanation of the SCR system, urea water is blown into the upstream side of the catalyst, and this urea water is converted to ammonia with the heat of exhaust gas. It is described that NO X and ammonia are decomposed and further converted into harmless nitrogen and water by a catalytic reaction, but ammonia that cannot be completely reacted by the catalyst and surplus ammonia (ammonia slip) are released into the atmosphere.

特開2021-161921号公報Japanese Patent Application Laid-Open No. 2021-161921 実用新案登録第3234399号公報Utility Model Registration No. 3234399 特開2012-145007号公報JP 2012-145007 A

「海上技術安全研究所における船舶用SCRシステムに関する研究」海上技術安全研究所報告 第11巻 第2号 平成23年度基礎論文"Research on Marine SCR Systems at the National Maritime Research Institute" Report of the National Maritime Research Institute Vol.11 No.2 2011 Basic Paper

特許文献1~3には、温室効果ガス排出規制に対応するためアンモニア燃料を用いることは提案しているが、燃焼時に必ず発生するアンモニアスリップ(未燃アンモニア)についての対処について記載されていない。 Patent Documents 1 to 3 propose the use of ammonia fuel in order to comply with greenhouse gas emission regulations, but do not describe how to deal with ammonia slip (unburned ammonia) that always occurs during combustion.

一方、非特許文献1ではアンモニアスリップが発生することは認めた上で、大気に放出するとしている。アンモニアは極めて刺激性の強い毒性ガスであり、そのまま大気に放出するのはエネルギー効率のみならず環境衛生上も好ましくない。 On the other hand, Non-Patent Document 1 acknowledges that ammonia slip occurs and states that it is discharged into the atmosphere. Ammonia is an extremely irritating and toxic gas, and it is undesirable not only in energy efficiency but also in terms of environmental hygiene to release it into the atmosphere as it is.

上記の課題を解決するため本発明に係るエンジンンの運転方法は、エンジンの回転数を一定範囲に収めるために設けたガバナーから制御装置にエンジンンの回転数に対応する信号を送り、この信号を受けた制御装置から燃料としてのアンモニアガス供給ラインに設けた調整バルブに対し、爆発限界以下の範囲で且つエンジンにかかる負荷に対応した量の水素ガスを供給する開度となる信号を送るようにした。 In order to solve the above problems, an engine operating method according to the present invention is to send a signal corresponding to the engine speed to a control device from a governor provided to keep the engine speed within a certain range. From the control device that received the signal, send a signal to the adjustment valve installed in the ammonia gas supply line as fuel, so that it will supply an amount of hydrogen gas within the range below the explosion limit and corresponding to the load applied to the engine. made it

前記水素ガスの供給源は、水素ボンベ、水素吸蔵合金ボンベ或いは水の電気分解装置など任意である。 The supply source of the hydrogen gas is arbitrary, such as a hydrogen cylinder, a hydrogen absorbing alloy cylinder, or a water electrolyzer.

本発明によれば、アンモニアガスエンジンの完全燃焼を助長し、排ガス中に含まれるアンモニアスリップを大幅に削減することができ、結果として温暖化対策に有効なエンジンンの運転方法を提供できる。 According to the present invention, complete combustion of an ammonia gas engine can be promoted, ammonia slip contained in exhaust gas can be greatly reduced, and as a result, an engine operating method effective against global warming can be provided.

エンジンの回転数を水素ガスの添加量に適用するには、ガバナーではなくエンジンの回転数を直接測定することも考えられる。しかしながら、ガバナーは、エンジンにかかる負荷に応じて供給するガス燃料の量をコントロールしてエンジンの回転数を一定範囲に収めるものであり、同じ回転数でもエンジンに供給されるガス燃料の量は同じではない。この意味で、ガバナーの代わりに、エンジン出力計を使用する事も可能である。 In order to apply the engine speed to the amount of hydrogen gas added, it is conceivable to directly measure the engine speed instead of the governor. However, the governor controls the amount of gas fuel supplied according to the load applied to the engine and keeps the engine speed within a certain range. isn't it. In this sense, it is also possible to use an engine power meter instead of the governor.

即ち、エンジンにかかる負荷が大きいときに同じ回転数を維持するには、より多くの燃料を供給する必要がある。そして、排気ガス中の未燃分の量は供給された燃料の量に比例するため、エンジンンの回転数を直接測定し、これに基づいて水素ガスの添加量を決めるのは、ガバナーからの信号に基づいて制御するよりも正確性に欠ける。
したがって、本願発明による運転方法は実際の運転に則した方法と言える。
That is, more fuel must be supplied to maintain the same rpm when the load on the engine is high. Since the amount of unburned gas in the exhaust gas is proportional to the amount of fuel supplied, directly measuring the engine speed and determining the amount of hydrogen gas to be added based on this is the governor's responsibility. Less accurate than signal based control.
Therefore, it can be said that the driving method according to the present invention is a method suitable for actual driving.

本発明に係る運転方法の全体構成を示す図A diagram showing the overall configuration of the operating method according to the present invention. 排ガス中の未燃焼成分を検出して制御するシステムの構成図Configuration diagram of a system that detects and controls unburned components in exhaust gas 未燃焼成分の自動解消アルゴリズムAutomatic elimination algorithm for unburned components

以下に本発明の実施の形態を添付図面に基づいて説明する。
ガスエンジン1と液体アンモニア貯蔵タンク2との間には、アンモニアガスを供給する供給ライン3が設けられている。
An embodiment of the present invention will be described below with reference to the accompanying drawings.
A supply line 3 for supplying ammonia gas is provided between the gas engine 1 and the liquid ammonia storage tank 2 .

ガスエンジン1にはガバナー4が付設され、このガバナー4によってエンジンの駆動軸にかかる負荷を検出し、エンジンの負荷に応じた信号が制御装置5に送られる。 A governor 4 is attached to the gas engine 1 . The governor 4 detects the load applied to the drive shaft of the engine and sends a signal corresponding to the engine load to the control device 5 .

制御装置5はエンジンの駆動軸にかかる負荷に応じた信号を供給ライン3に設けたバルブ6に送り、エンジン1に供給されるアンモニアガスの量を調整する。例えば、エンジンの駆動軸にかかる負荷が大きくなった場合には供給するアンモニアガスを多くしてエンジンの回転数を一定範囲に保つ。同様に、駆動軸にかかる負荷が小さくなった場合には供給するアンモニアガスを少なくする。 The control device 5 sends a signal corresponding to the load applied to the drive shaft of the engine to the valve 6 provided in the supply line 3 to adjust the amount of ammonia gas supplied to the engine 1 . For example, when the load applied to the drive shaft of the engine increases, the amount of ammonia gas supplied is increased to keep the engine speed within a certain range. Similarly, when the load applied to the drive shaft becomes small, the amount of supplied ammonia gas is reduced.

また、バルブ6よりも下流側の供給ライン3には水素ガス源7からの水素を燃料ガスに添加するためのバルブ8を設けている。このバルブ8にも前記制御装置5からの開度を調整する信号が送られる。 Further, a valve 8 for adding hydrogen from a hydrogen gas source 7 to the fuel gas is provided in the supply line 3 on the downstream side of the valve 6 . A signal for adjusting the degree of opening is sent from the control device 5 to this valve 8 as well.

前記バルブ8を介して燃料ガスに添加される水素ガスの量は、燃料ガスの容量に対して爆発限界値未満でエンジンにかかる負荷に対応した量とする。爆発限界値未満としたのは、本発明では水素ガスは燃料として機能するのではなく燃焼空間を攪拌する手段として機能するためである The amount of hydrogen gas added to the fuel gas through the valve 8 should be less than the explosion limit for the volume of the fuel gas and correspond to the load applied to the engine. The reason why the value is less than the explosion limit is that in the present invention, the hydrogen gas does not function as a fuel, but functions as a means of stirring the combustion space.

前記バルブ6を設ける箇所は供給ライン3に限らず、例えば、エンジンのシリンダの周囲に水素ガスの噴射弁を設け、この噴射弁に供給する水素の量を調整する位置にバルブを設けてもよい。 The position where the valve 6 is provided is not limited to the supply line 3. For example, a hydrogen gas injection valve may be provided around the cylinder of the engine, and the valve may be provided at a position for adjusting the amount of hydrogen supplied to this injection valve. .

以上において、ガスエンジンのシリンダ内に供給されたアンモニアガスは、着火装置により着火燃焼し体積を急激に膨張することでピストンを押し下げクランクを介して駆動軸を回転せしめる。 In the above, the ammonia gas supplied into the cylinder of the gas engine is ignited and combusted by the ignition device and rapidly expands in volume, thereby pushing down the piston and rotating the drive shaft via the crank.

この時、燃料ガスとともにシリンダ内に同時に供給された水素ガスは、アンモニアガスの着火とともに着火する。そして、水素ガスの火炎伝播速度(火炎面の相対移動速度)は他のガスと比べて極めて速いため、水素ガスの火炎面の移動によってシリンダ内で燃料ガスと空気との混合が助長され、燃料ガスの完全燃焼が促進される。 At this time, the hydrogen gas supplied into the cylinder together with the fuel gas ignites together with the ignition of the ammonia gas. Since the flame propagation speed of hydrogen gas (the relative movement speed of the flame surface) is extremely fast compared to other gases, the movement of the hydrogen gas flame surface promotes the mixing of the fuel gas and air in the cylinder, Complete combustion of gas is promoted.

図3及び図4は別実施例を示すものであり、この実施例では排ガス中のアンモニアスリップをセンサで検出し、検出した未燃アンモニア(アンモニアスリップ)の量に基づいて水素供給量を調整する。 3 and 4 show another embodiment. In this embodiment, ammonia slip in the exhaust gas is detected by a sensor, and the amount of hydrogen supply is adjusted based on the detected amount of unburned ammonia (ammonia slip). .

以下に、別実施例の内容を説明する。
この実施例では、必要最小限の水素量で、アンモニアガスエンジンにおける不完全燃焼を解決する自動制御方法を示す。水素の爆発限界は空気量に対する割合で決まる。即ち、単位時間にエンジンに取り込まれる空気量と同じ時間で投入される水素量の比が爆発限界値以下でアンモニアガスを完全燃焼させる最小の水素量となるよう自動制御するものである。
The contents of another embodiment will be described below.
This example demonstrates an automatic control method for solving incomplete combustion in an ammonia gas engine with the minimum amount of hydrogen required. The explosion limit of hydrogen is determined by the ratio to the air volume. In other words, the ratio of the amount of air taken into the engine per unit time and the amount of hydrogen introduced in the same time is automatically controlled so that the ratio is below the explosion limit and is the minimum amount of hydrogen for complete combustion of the ammonia gas.

このシステムの構成は、エンジンの排ガス中の未燃ガス(アンモニアスリップ)を測定する検出器と、この検出器の値に基づき効果のある最小水素量を求める制御器、および、制御器からの指令に基づき水素ガスをエンジンンに送る供給装置からなる。 This system consists of a detector that measures unburned gas (ammonia slip) in the exhaust gas of the engine, a controller that determines the effective minimum amount of hydrogen based on the value of this detector, and commands from the controller. It consists of a feeder that delivers hydrogen gas to the engine based on

制御の内容は、先ず。制御の開始にあたり、エンジンの運転条件に合わせ水素の投入量(Qh)を決め、供給装置を始動する。エンジンの運転条件が安定した状態で、排ガス中の燃料の未燃分の有無を確認し、未燃分が零であれば、水素投入量を一定量(ΔQh)減ずる。その結果、未燃分(Qm)零が続けば、水素投入量低減を維持し、未燃分が発生したとき、その時の水素量(Qh)に未燃分量に比例する水素量(KQm)を加えて供給する。この制御を、エンジン運転中、継続して行う。 The content of the control is first. At the start of control, the supply amount (Qh) of hydrogen is determined according to the operating conditions of the engine, and the supply device is started. When the operating conditions of the engine are stable, the presence or absence of unburned fuel in the exhaust gas is checked. As a result, if the unburned content (Qm) continues to be zero, the reduction in the amount of hydrogen input is maintained, and when the unburned content occurs, the amount of hydrogen (Qh) at that time is proportional to the amount of unburned content (KQm). supply in addition. This control is continued while the engine is running.

1…ガスエンジン、2…液体アンモニアタンク、3…アンモニア供給ライン、4…ガバナー、5…制御装置、6…バルブ、7…水素ガス源、8…バルブ。


DESCRIPTION OF SYMBOLS 1... Gas engine, 2... Liquid ammonia tank, 3... Ammonia supply line, 4... Governor, 5... Control device, 6... Valve, 7... Hydrogen gas source, 8... Valve.


図2及び図3は別実施例を示すものであり、この実施例では排ガス中のアンモニアスリップをセンサで検出し、検出した未燃アンモニア(アンモニアスリップ)の量に基づいて水素供給量を調整する。

2 and 3 show another embodiment. In this embodiment, ammonia slip in the exhaust gas is detected by a sensor, and the amount of hydrogen supply is adjusted based on the amount of detected unburned ammonia (ammonia slip). .

Claims (1)

アンモニアガスを燃料として使用するエンジンの運転方法であって、前記エンジンはエンジン回転数を一定範囲に保持するためのガバナーと、アンモニアガス中への水素ガスの供給を調整する調整バルブとを備え、前記ガバナーからのエンジンにかかる負荷に対応する信号を制御装置に送り、この制御装置から前記調整バルブに、エンジンにかかる負荷に対応し且つ供給されるアンモニアガスに対する割合が爆発限界以下となる量の水素を供給する開度となる信号を送ることを特徴とするエンジンの運転方法。 A method of operating an engine using ammonia gas as fuel, wherein the engine comprises a governor for maintaining the engine speed within a certain range, and an adjustment valve for adjusting the supply of hydrogen gas into the ammonia gas, A signal corresponding to the load applied to the engine from the governor is sent to the control device, and the control device sends to the regulating valve an amount corresponding to the load applied to the engine and the ratio of the supplied ammonia gas to the supplied ammonia gas is below the explosion limit. A method of operating an engine, characterized by sending a signal representing an opening degree for supplying hydrogen.
JP2021201386A 2021-12-13 2021-12-13 How to run the engine Active JP7079890B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021201386A JP7079890B1 (en) 2021-12-13 2021-12-13 How to run the engine
PCT/JP2022/043516 WO2023112637A1 (en) 2021-12-13 2022-11-25 Engine operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021201386A JP7079890B1 (en) 2021-12-13 2021-12-13 How to run the engine

Publications (2)

Publication Number Publication Date
JP7079890B1 JP7079890B1 (en) 2022-06-02
JP2023087161A true JP2023087161A (en) 2023-06-23

Family

ID=81847748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021201386A Active JP7079890B1 (en) 2021-12-13 2021-12-13 How to run the engine

Country Status (2)

Country Link
JP (1) JP7079890B1 (en)
WO (1) WO2023112637A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201063A (en) * 1984-03-26 1985-10-11 Yanmar Diesel Engine Co Ltd Air-fuel ratio controlling device for gas engine
JPH02174600A (en) * 1988-12-23 1990-07-05 Isuzu Motors Ltd Rotation stabilizer for generator engine
JPH11272901A (en) * 1998-03-18 1999-10-08 Yanmar Diesel Engine Co Ltd Work vehicle
JP2009097421A (en) * 2007-10-16 2009-05-07 Toyota Central R&D Labs Inc Engine system
JP2015135067A (en) * 2014-01-16 2015-07-27 信哉 荒木 Ammonia engine
JP2018021522A (en) * 2016-08-04 2018-02-08 義広 謝花 Combustion method of liquid fuel
JP2021161921A (en) * 2020-03-31 2021-10-11 国立研究開発法人 海上・港湾・航空技術研究所 Ammonia combustion method, ammonia combustion engine and vessel mounted therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201063A (en) * 1984-03-26 1985-10-11 Yanmar Diesel Engine Co Ltd Air-fuel ratio controlling device for gas engine
JPH02174600A (en) * 1988-12-23 1990-07-05 Isuzu Motors Ltd Rotation stabilizer for generator engine
JPH11272901A (en) * 1998-03-18 1999-10-08 Yanmar Diesel Engine Co Ltd Work vehicle
JP2009097421A (en) * 2007-10-16 2009-05-07 Toyota Central R&D Labs Inc Engine system
JP2015135067A (en) * 2014-01-16 2015-07-27 信哉 荒木 Ammonia engine
JP2018021522A (en) * 2016-08-04 2018-02-08 義広 謝花 Combustion method of liquid fuel
JP2021161921A (en) * 2020-03-31 2021-10-11 国立研究開発法人 海上・港湾・航空技術研究所 Ammonia combustion method, ammonia combustion engine and vessel mounted therewith

Also Published As

Publication number Publication date
WO2023112637A1 (en) 2023-06-22
JP7079890B1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
KR102182935B1 (en) Low Pressure Selective Catalytic Reduction System
CN107949689B (en) Engine device
JP2022528443A (en) Ship fuel supply system
KR20060084514A (en) Low emission diesel combustion system with low charge air oxygen concentration levels and high fuel injection pressures
JP6100290B2 (en) Method for operating an internal combustion engine and internal combustion engine operated by the method
CN103502609A (en) Method of operating an internal combustion piston engine in transient load change, a control system for controlling the operating of an internal combustion engine, and a piston engine
CN113250863A (en) High-pressure and pressure-stabilizing injection system of marine gas engine and control method
AU717054B2 (en) Fuel injection timing control for an internal combustion engine using a low cetane quality fuel
CN214741734U (en) High-pressure and pressure-stabilizing injection system of marine gas engine
KR20160097375A (en) Engine system and control method
WO2023112637A1 (en) Engine operation method
JP2010133337A (en) Dual fuel diesel engine
JP2017008900A (en) Natural gas engine and operational method of natural gas engine
KR200398720Y1 (en) Browngas blend engine
WO2019021022A1 (en) Enhanced combustion engine
EP3327280B1 (en) Engine device
US10989085B1 (en) Emission-free cold-start and warm-start of internal combustion engines
KR20130107551A (en) System and method for controlling fuel of dual fuel engine for ship
WO2022092216A1 (en) Engine operation method
Er Overview of NO x Emission Controls in Marine Diesel Engines
KR20120064214A (en) Internal combustion engine using hydrogen and oxygen mixture for higher engine efficiency and lower exhaust gas emission
EP3904663A1 (en) Excess air coefficient control method and device for catalytic converter, vehicle, and storage medium
JPH0544445A (en) Denitrifying device for internal combustion engine with exhaust gas supercharger
KR20170035483A (en) NOx Reduction Method and System of Engine
KR102548535B1 (en) diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7079890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150