JP2023084596A - Vibration control structure - Google Patents

Vibration control structure Download PDF

Info

Publication number
JP2023084596A
JP2023084596A JP2021198880A JP2021198880A JP2023084596A JP 2023084596 A JP2023084596 A JP 2023084596A JP 2021198880 A JP2021198880 A JP 2021198880A JP 2021198880 A JP2021198880 A JP 2021198880A JP 2023084596 A JP2023084596 A JP 2023084596A
Authority
JP
Japan
Prior art keywords
vibration
rigidity
axial direction
isolating
suspension member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021198880A
Other languages
Japanese (ja)
Inventor
仁士 松下
Hitoshi Matsushita
恭章 佐藤
Yasuaki Sato
裕樹 松永
Hiroki Matsunaga
奈央子 中島
Naoko Nakajima
一幸 三浦
Kazuyuki Miura
竜太 井上
Ryuta Inoue
洋一郎 古賀
Yoichiro Koga
海斗 船場
Kaito Funaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
3D Printing Corp
Original Assignee
Takenaka Komuten Co Ltd
3D Printing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, 3D Printing Corp filed Critical Takenaka Komuten Co Ltd
Priority to JP2021198880A priority Critical patent/JP2023084596A/en
Publication of JP2023084596A publication Critical patent/JP2023084596A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a vibration control structure having small bending deformation and shear deformation with respect to an axial direction while exhibiting a vibration control effect with respect to the axial direction.SOLUTION: A suspending member 50 is composed of a vibration control member 100, and an upper suspension member 52 and a lower suspension member 53 which are joined to both sides of the vibration control member 100 in an axial direction and coaxially arranged. The axial rigidity of the vibration control member 100 is smaller than the axial rigidity of the upper suspension member 52 and the lower suspension member 53, and the bending rigidity and shear rigidity of the vibration control member 100 are equal to or larger than those of the upper suspension member 52 and the lower suspension member 53.SELECTED DRAWING: Figure 2

Description

本発明は、防振構造に関する。 The present invention relates to an anti-vibration structure.

特許文献1には、分離される構造体の機械的な原因による振動振幅を減衰およびフィルタリングする方法に関する技術開示されている。この先行技術では、構造体に付与される非常に広範な周波数帯域および振幅範囲の機械応力に、構造体に伝達されるフィルタリングされた振動波の減衰をもたらすことによって、減衰に組み合わされた入射振動波のフィルタリングを実施することを特徴としている。 Japanese Patent Laid-Open No. 2002-200001 discloses a technique relating to a method of damping and filtering vibration amplitude due to mechanical causes of a structure to be separated. In this prior art, incident vibration coupled with damping is applied to mechanical stresses in a very broad frequency band and amplitude range imparted to the structure by providing damping of the filtered vibratory wave transmitted to the structure. It is characterized by performing wave filtering.

特許文献2には、プレス装置などの振動が発生する機器が載置されて、該機器の振動を低減させることができる防振部材に関する技術が開示されている。この先行技術では、上部に機器が載置される機器載置部と、支持部と機器載置部との間に介装され上下方向に重ねられた複数の皿ばねと、該複数の皿ばねの上下方向以外の変位および変形を拘束して支持する皿ばね支持部と、を備えることを特徴としている。 Patent Literature 2 discloses a technique related to a vibration isolating member on which a vibration-generating device such as a press device is placed and capable of reducing the vibration of the device. In this prior art, a device mounting portion on which a device is mounted, a plurality of disc springs interposed between the supporting portion and the device mounting portion and superimposed in the vertical direction, and the plurality of disc springs and a disk spring supporting portion that restrains and supports displacement and deformation in directions other than the vertical direction.

特許文献3には、人工フォノニックメタマテリアルを構築するための人工フォノニック結晶の単位セルに関する技術が開示されている。 Patent Literature 3 discloses a technique related to a unit cell of an artificial phononic crystal for constructing an artificial phononic metamaterial.

特許5105875号Patent No. 5105875 特開2013-53720号公報JP 2013-53720 A 特開2019-522151号公報JP 2019-522151 A

防振部材は、スプリングやゴムを用いて軸方向の剛性を小さくすることで防振性能を発揮させることが多い。しかし、スプリングやゴムは、軸方向に対するせん断剛性及び曲げ剛性も小さい。よって、例えば、地震時に防振部材で吊り下げられている天井等の水平変位等が大きくなる。 Vibration-isolating members often exhibit vibration-isolating performance by reducing rigidity in the axial direction using springs or rubber. However, springs and rubber also have low shear stiffness and bending stiffness in the axial direction. Therefore, for example, the horizontal displacement of the ceiling suspended by the anti-vibration member increases during an earthquake.

本発明は、上記事実を鑑み、軸方向に対する防振効果を発揮しつつ、曲げ方向及びせん断方向の力が作用した場合の曲げ変形及びせん断変形が小さい防振構造を提供することが目的である。 SUMMARY OF THE INVENTION In view of the above facts, it is an object of the present invention to provide an anti-vibration structure that exerts anti-vibration effects in the axial direction while reducing bending deformation and shear deformation when forces act in bending and shear directions. .

第一態様は、防振部材と、前記防振部材の軸方向の両側に接合され同軸上に配置された支持部材と、で構成された防振構造であって、前記防振部材の軸方向の剛性が、前記支持部材の軸方向の剛性よりも小さく、前記防振部材の曲げ剛性及びせん断剛性が、前記支持部材の曲げ剛性及びせん断剛性と同等以上である、防振構造である。 A first aspect is a vibration-isolating structure composed of a vibration-isolating member and support members joined to both sides of the vibration-isolating member in the axial direction and arranged coaxially, wherein is smaller than the axial rigidity of the support member, and the flexural rigidity and shear rigidity of the vibration damper are equal to or greater than the flexural rigidity and shear rigidity of the support member.

第一態様に記載の防振構造では、一方の支持部材と他方の支持部材との間の軸方向の振動に対しては、防振部材の軸方向の剛性を支持部材の軸方向の剛性よりも小さくすることで防振性能が発揮される。また、一方の支持部材と他方の支持部材との間に曲げ方向及びせん断方向の力が作用した場合に対しては、防振部材の曲げ剛性及びせん断剛性が支持部材の曲げ剛性及びせん断剛性と同等以上とすることで、剛性が同等よりも小さい場合と比較し、曲げ変形及びせん断変形が小さくなる。 In the anti-vibration structure according to the first aspect, with respect to axial vibration between one support member and the other support member, the axial rigidity of the anti-vibration member is greater than the axial rigidity of the support member. Vibration-proof performance can be demonstrated by reducing . In addition, when a force in the bending direction and the shearing direction acts between one supporting member and the other supporting member, the bending rigidity and shearing rigidity of the vibration isolating member differ from the bending rigidity and shearing rigidity of the supporting member. When the stiffness is the same or higher, the bending deformation and the shear deformation are smaller than when the stiffness is less than the same.

ここで、「防振部材の軸方向の剛性が支持部材の軸方向の剛性よりも小さい」とは、防振部材と支持部材とで構成された防振構造の軸方向の剛性が、防振構造が支持部材のみで構成されていると仮定した場合の軸方向の剛性よりも小さいことを意味している。 Here, "the axial rigidity of the vibration-isolating member is smaller than the axial rigidity of the supporting member" means that the axial rigidity of the vibration-isolating structure composed of the vibration-isolating member and the supporting member It means that the stiffness in the axial direction is less than if the structure were assumed to consist only of supporting members.

また、「防振部材の曲げ剛性及びせん断剛性が支持部材の曲げ剛性及びせん断剛性と同等以上」とは、防振部材と支持部材とで構成された防振構造の曲げ剛性及びせん断剛性が、防振構造が支持部材のみで構成されていると仮定した場合の曲げ剛性及びせん断剛性と同等以上であることを意味している。 Further, "the flexural rigidity and shear rigidity of the vibration-isolating member are equal to or greater than those of the supporting member" means that the flexural rigidity and shear rigidity of the vibration-isolating structure composed of the vibration-isolating member and the supporting member are It means that the bending stiffness and shear stiffness are equal to or higher than those in the case where the vibration isolation structure is assumed to be composed only of supporting members.

防振構造に複数の防振部材がある場合は、複数の防振部材全体を一つの防振部材とみなした場合の鉛直方向の軸心を防振部材の軸心とする。 When the vibration-isolating structure includes a plurality of vibration-isolating members, the vertical axis of the vibration-isolating members is defined as the axis of the vibration-isolating members when the entirety of the plurality of vibration-isolating members are regarded as one vibration-isolating member.

第二態様は、前記防振部材は、一方の前記支持部材に接合されると共に他方の前記支持部材に接続された軸部が内部に設けられた筒体と、前記筒体内に軸方向に間隔をあけて複数枚設けられ、中心部が前記軸部に接合されると共に外縁部が前記筒体の内周面に接合された面材と、を有している、第一態様の防振構造である。 In a second aspect, the vibration-isolating member includes a cylindrical body having a shaft part inside which is joined to one of the supporting members and connected to the other supporting member, and is spaced apart in the cylindrical body in the axial direction. A vibration-damping structure according to the first aspect, comprising: a plurality of face materials provided with a gap between them, the central portion of which is joined to the shaft portion, and the outer edge portion of which is joined to the inner peripheral surface of the cylindrical body; is.

第二態様に記載の防振構造では、一方の支持部材と他方の支持部材との間の軸方向の振動に対しては、他方の支持部材に接合された軸部を介して、筒体内に軸方向に間隔をあけて複数枚設けられた面材が軸方向に面外変形することで、防振性能が発揮される。また、一方の支持部材と他方の支持部材との間に曲げ方向及びせん断方向の力が作用した場合に対しては、他方の支持部材に接合された軸部を介して、外縁部が筒体に接合された面材が抵抗することで、曲げ変形及びせん断変形が小さくなる。 In the anti-vibration structure according to the second aspect, against axial vibration between one support member and the other support member, the A plurality of face materials provided at intervals in the axial direction deform out-of-plane in the axial direction, thereby exhibiting anti-vibration performance. In addition, when a force in a bending direction and a shearing direction acts between one support member and the other support member, the outer edge portion becomes a cylindrical body through the shaft portion joined to the other support member. Bending deformation and shear deformation are reduced by the resistance of the face material joined to the .

第三態様は、前記防振部材は、軸方向の剛性が前記支持部材よりも小さく、曲げ剛性及びせん断剛性が前記支持部材と同等以上となるように肉抜きされ、剛性に異方性を持つ肉抜き構造体である、第一態様に記載の防振構造である。 In a third aspect, the vibration-isolating member is hollowed out so that the rigidity in the axial direction is smaller than that of the supporting member, and the bending rigidity and the shearing rigidity are equal to or higher than those of the supporting member, and have anisotropy in rigidity. The vibration-damping structure according to the first aspect, which is a lightening structure.

第三態様に記載の防振構造では、一方の支持部材と他方の支持部材との間の軸方向の振動に対しては、軸方向の剛性を支持部材よりも小さくなるように肉抜きされた防振部材によって防振性能が発揮される。また、一方の支持部材と他方の支持部材との間に曲げ方向及びせん断方向の力が作用した場合に対しては、曲げ剛性及びせん断剛性が支持部材と同等以上となるように肉抜きされた防振部材によって、剛性が同等よりも小さい場合と比較し、曲げ変形及びせん断変形が小さくなる。 In the vibration isolating structure according to the third aspect, with respect to vibration in the axial direction between one supporting member and the other supporting member, the rigidity in the axial direction is hollowed out so as to be smaller than that of the supporting member. The anti-vibration performance is exhibited by the anti-vibration member. In addition, when a force in the bending direction and the shearing direction acts between one supporting member and the other supporting member, the bending rigidity and the shearing rigidity are reduced to be equal to or higher than that of the supporting member. The damping member results in less bending and shear deformation than would be the case with less than equivalent stiffness.

本発明によれば、防振構造は、軸方向に対する防振効果を発揮しつつ、軸方向に対する曲げ変形及びせん断変形を小さくすることができる。 According to the present invention, the vibration isolation structure can reduce bending deformation and shear deformation in the axial direction while exhibiting a vibration isolation effect in the axial direction.

本発明の第一実施形態の吊部材を用いた吊り天井の正面図である。1 is a front view of a suspended ceiling using suspension members according to a first embodiment of the present invention; FIG. 本発明の第一実施形態の吊部材の防振部材の軸方向に沿った断面図である。FIG. 4 is a cross-sectional view along the axial direction of the vibration isolating member of the hanging member according to the first embodiment of the present invention; 本発明の第一実施形態の吊部材の防振部材の斜視図である。It is a perspective view of the vibration-proof member of the suspension member of 1st embodiment of this invention. (A)は比較例の吊部材の応力分布図であり、(B)は第一実施形態の吊部材の応力分布図である。(A) is a stress distribution diagram of a suspension member of a comparative example, and (B) is a stress distribution diagram of a suspension member of the first embodiment. 本発明の第一実施形態の吊部材の防振特性を示すグラフである。It is a graph which shows the anti-vibration characteristic of the suspension member of 1st embodiment of this invention. 本発明の第二実施形態の吊部材の防振部材を構成するユニットの斜視図である。FIG. 5 is a perspective view of a unit that constitutes a vibration isolating member of the suspension member according to the second embodiment of the present invention; 本発明の第二実施形態の吊部材の防振部材を構成する構造体の斜視図である。FIG. 5 is a perspective view of a structure that constitutes a vibration isolating member of the suspending member according to the second embodiment of the present invention; 本発明の第二実施形態の吊部材の防振部材の斜視図である。It is a perspective view of the vibration-proof member of the suspension member of 2nd embodiment of this invention. 本発明の第二実施形態の第一変形例の構造体の斜視図である。FIG. 11 is a perspective view of a structure of a first modified example of the second embodiment of the present invention; 本発明の第二実施形態の第二変形例の構造体の斜視図である。FIG. 11 is a perspective view of a structure of a second modified example of the second embodiment of the present invention; 本発明の第三実施形態の防振装置の上に設備機器を固定した正面図である。It is the front view which fixed equipment on the vibration isolator of 3rd embodiment of this invention. 本発明の第三実施形態の防振装置を模式的に示す平面図である。FIG. 3 is a plan view schematically showing a vibration isolator according to a third embodiment of the invention; 既存の防振部材を用いた吊部材の正面図である。It is a front view of the suspension member using the existing vibration-proof member.

<第一実施形態>
本発明の第一実施形態の防振構造の一例としての吊部材について説明する。なお、水平方向の直交する二方向をX方向及びY方向とし、それぞれ矢印X及び矢印Yで示す。X方向及びY方向と直交する鉛直方向をZ方向として、矢印Zで示す。また、防振部材は、後述する吊材として使用されている状態における方向である。
<First embodiment>
A suspending member as an example of the anti-vibration structure of the first embodiment of the present invention will be described. Note that the two orthogonal horizontal directions are the X direction and the Y direction, which are indicated by arrows X and Y, respectively. An arrow Z indicates a vertical direction orthogonal to the X direction and the Y direction as the Z direction. Also, the direction of the vibration isolating member is in a state in which it is used as a hanging member, which will be described later.

[構造]
本実施形態の吊部材の構造について説明する。
[structure]
The structure of the suspension member of this embodiment will be described.

図1に示す吊り天井10は、吊部材50と、スラブ20に吊部材50で吊られたTバー30と、Tバー30に接合された天井材32と、を有して構成されている。Tバー30は、平面視格子状に組まれている。なお、吊り天井10の構造は、一例であってこれに限定されるものではない。 The suspended ceiling 10 shown in FIG. 1 includes suspension members 50 , a T-bar 30 suspended from the slab 20 by the suspension members 50 , and a ceiling material 32 joined to the T-bar 30 . The T-bars 30 are arranged in a grid pattern in plan view. In addition, the structure of the suspended ceiling 10 is an example and is not limited to this.

防振構造の一例としての吊部材50は、支持部材の一例として上側吊材52及び下側吊材53と、防振部材100と、で構成されている。上側吊材52、下側吊材53及び防振部材100は鉛直方向の軸心が一致、すなわち同軸上に設けられている。本実施形態における軸方向は鉛直方向である。 A suspension member 50 as an example of a vibration isolation structure includes an upper suspension member 52 and a lower suspension member 53 as an example of a support member, and a vibration isolation member 100 . The upper suspending member 52, the lower suspending member 53, and the vibration isolating member 100 have the same vertical axis, that is, are provided coaxially. The axial direction in this embodiment is the vertical direction.

本実施形態における上側吊材52及び下側吊材53は、同じ太さの鋼製の棒材とされている。なお、上側吊材52は、上端部がスラブ20に固定されると共に下端部54(図2参照)が防振部材100に接合されている。下側吊材53は、上端部55(図2参照)が防振部材100に接合されると共に下端部がTバー30に連結されている。 The upper suspending member 52 and the lower suspending member 53 in this embodiment are steel bars having the same thickness. The upper hanging member 52 has its upper end fixed to the slab 20 and its lower end 54 (see FIG. 2) joined to the vibration isolating member 100 . The lower suspension member 53 has an upper end 55 (see FIG. 2) joined to the vibration isolating member 100 and a lower end connected to the T-bar 30 .

図1及び図2に示す防振部材100は、軸方向の剛性が上側吊材52及び下側吊材53の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上になるように設定されている合成樹脂製の部材である。 1 and 2, the rigidity in the axial direction is smaller than the rigidity in the axial direction of the upper suspension member 52 and the lower suspension member 53, and the bending rigidity and shear rigidity are lower than those of the upper suspension member 52 and the lower suspension member 53. It is a member made of synthetic resin that is set to be equal to or greater than the flexural rigidity and shear rigidity of the hanging member 53 .

ここで、「防振部材100の軸方向の剛性が上側吊材52及び下側吊材53の軸方向の剛性よりも小さい」とは、上側吊材52と下側吊材53との間に防振部材100が接合された吊部材50全体の軸方向の剛性が、上側吊材52及び下側吊材53を構成する鋼材の棒材のみで構成されている吊部材800(図4(A)参照)の軸方向の剛性よりも小さいことを意味している。 Here, "the axial rigidity of the vibration isolating member 100 is smaller than the axial rigidity of the upper suspension member 52 and the lower suspension member 53" means that The rigidity in the axial direction of the suspension member 50 to which the vibration isolating member 100 is joined is the same as that of the suspension member 800 (Fig. 4 (A ) is less than the axial stiffness of ).

また、「防振部材100の曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上」とは、上側吊材52と下側吊材53の間に防振部材100が接合された吊部材50全体の曲げ剛性及びせん断剛性が、上側吊材52及び下側吊材53を構成する鋼材の棒材のみで構成されている吊部材800(図4(A)参照)の曲げ剛性及びせん断剛性軸方向の剛性と同等以上であることを意味している。 Further, "the flexural rigidity and shear rigidity of the vibration-isolating member 100 are equal to or higher than those of the upper suspension member 52 and the lower suspension member 53" means that The flexural rigidity and shear rigidity of the entire suspension member 50 to which the vibration-isolating member 100 is joined are lower than that of the suspension member 800 (Fig. 4 ( A) It means that the bending stiffness and shear stiffness are equal to or higher than the stiffness in the axial direction of (see A)).

図2に示すように本実施形態の防振部材100は、筒体110と軸部120と面材130とを有して構成されている。なお、本実施形態では、筒体110は円筒形であり(図3参照)、軸部120は円柱状であるが、これに限定されるものではない。例えば、筒体は角筒形で、軸部は角柱状であってもよい。 As shown in FIG. 2, the vibration isolating member 100 of this embodiment includes a tubular body 110, a shaft portion 120, and a face member 130. As shown in FIG. In this embodiment, the cylinder 110 has a cylindrical shape (see FIG. 3) and the shaft portion 120 has a columnar shape, but they are not limited to this. For example, the cylindrical body may be rectangular and the shaft may be prismatic.

筒体110は、筒状の側壁部112と天井部114とを有している。天井部114には、軸方向に沿ったネジ穴142が形成された接合部140が軸心上に形成されている。 The cylindrical body 110 has a cylindrical side wall portion 112 and a ceiling portion 114 . The ceiling portion 114 is formed with a joint portion 140 having a screw hole 142 along the axial direction.

筒体110の内部には、面材130と軸部120とが設けられている。軸部120は、筒体110内の軸心上に設けられ、内部には軸方向に沿ってネジ穴143が形成されている。 A face member 130 and a shaft portion 120 are provided inside the cylindrical body 110 . The shaft portion 120 is provided axially within the cylindrical body 110, and a screw hole 143 is formed therein along the axial direction.

円板状の面材130は、筒体110の内部に軸方向に間隔をあけて複数枚設けられている。また、面材130の軸心部分には、軸部120が貫通するように接合されると共に外縁部132が筒体110の内周面112Aに接合されている。 A plurality of disk-shaped face members 130 are provided inside the cylindrical body 110 at intervals in the axial direction. Further, the shaft portion 120 is joined to the axial center portion of the face member 130 so as to pass therethrough, and the outer edge portion 132 is joined to the inner peripheral surface 112A of the tubular body 110 .

なお、図2では、筒体110の側壁部112、天井部114及び面材130は、同じ板厚で図示されているが、これに限定されるものではない。例えば、後述するように面材130は、面外方向(軸方向)に弾性変形する板バネとして機能するので、面材130の板厚を筒体110の側壁部112及び天井部114の板厚よりも小さくしてもよい。 In addition, in FIG. 2, the side wall portion 112, the ceiling portion 114, and the face member 130 of the cylindrical body 110 are illustrated with the same plate thickness, but the thickness is not limited to this. For example, as will be described later, the face member 130 functions as a leaf spring that elastically deforms in the out-of-plane direction (axial direction). may be smaller than

上側吊材52の下端部54にはネジが切られており、防振部材100の接合部140のネジ穴142に捻じ込むことで、防振部材100の筒体110と接合されている。同様に、下側吊材53の上端部55にはネジが切られており、防振部材100の軸部120のネジ穴143に捻じ込むことで、防振部材100の軸部120と接合されている。 The lower end portion 54 of the upper hanging member 52 is threaded, and is joined to the tubular body 110 of the vibration isolating member 100 by screwing it into the screw hole 142 of the joining portion 140 of the vibration isolating member 100 . Similarly, the upper end portion 55 of the lower hanging member 53 is threaded and is joined to the shaft portion 120 of the vibration isolating member 100 by screwing it into the screw hole 143 of the shaft portion 120 of the vibration isolating member 100 . ing.

なお、上側吊材52及び下側吊材53と防振部材100との接合構造は、一例であってこれに限定されるものではない。 Note that the joint structure between the upper suspension member 52 and the lower suspension member 53 and the vibration isolating member 100 is an example and is not limited to this.

本実施形態の防振部材100は、合成樹脂製とされ、筒体110、軸部120及び面材130が一体となって構成されている。なお、本実施形態の防振部材100は、3Dプリンターによって製造されているが、これに限定されるものではない。例えば、軸方向に見た形状が半円状の部品を製造して、接合して一体化してもよい。 The vibration isolating member 100 of this embodiment is made of synthetic resin, and is constructed by integrating a cylinder 110, a shaft portion 120, and a face member 130. As shown in FIG. In addition, although the anti-vibration member 100 of the present embodiment is manufactured by a 3D printer, it is not limited to this. For example, parts having a semicircular shape when viewed in the axial direction may be manufactured and then joined together to integrate.

前述したように、防振部材100は、軸方向の剛性が上側吊材52及び下側吊材53の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上になるように設定、例えば、筒体110の直径及び板厚等、面材130の板厚、枚数及び間隔等が設定されている。 As described above, the vibration isolating member 100 has an axial rigidity smaller than that of the upper suspension member 52 and the lower suspension member 53, and a bending rigidity and a shear rigidity of the upper suspension member 52 and the lower suspension member 53. For example, the diameter and plate thickness of the cylinder 110, the plate thickness, number of sheets and spacing of the face members 130 are set so as to be equal to or greater than the bending rigidity and shear rigidity of 53.

また、別の観点から説明すると、本実施形態の防振部材100は、軸方向の剛性が上側吊材52及び下側吊材53の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上である剛性に異方性を持つメカニカルメタマテリアルと言える。 From another point of view, the vibration isolating member 100 of the present embodiment has axial rigidity smaller than that of the upper suspension member 52 and the lower suspension member 53, and bending rigidity and shear rigidity of the upper suspension member 52 and the lower suspension member 53. It can be said that it is a mechanical metamaterial having an anisotropic stiffness equal to or greater than the bending stiffness and shear stiffness of the suspension member 52 and the lower suspension member 53 .

[作用]
次に本実施形態の作用について説明する。
[Action]
Next, the operation of this embodiment will be described.

まず、図13に示す従来の防振部材の一例である防振部材600を有する吊部材500について説明する。 First, a suspending member 500 having a vibration isolating member 600, which is an example of a conventional vibration isolating member shown in FIG. 13, will be described.

本例における従来の防振部材600は、鋼製のフレーム部610とゴム部620とを有して構成されている。フレーム部610は板材を矩形枠状に成型した構造とされ、天井部612と底面部613とには、それぞれ貫通穴614、615が形成されている。フレーム部610の底面部613の上には、ゴム部620が設けられている。ゴム部620にも貫通穴622が形成されている。 A conventional vibration isolating member 600 in this example includes a steel frame portion 610 and a rubber portion 620 . The frame portion 610 has a structure in which a plate material is molded into a rectangular frame shape, and through holes 614 and 615 are formed in a ceiling portion 612 and a bottom portion 613, respectively. A rubber portion 620 is provided on the bottom portion 613 of the frame portion 610 . A through hole 622 is also formed in the rubber portion 620 .

フレーム部610の天井部612の貫通穴614には上側吊材52の下端部54が挿通され、ナット700によって締結されている。フレーム部610の底面部613及びゴム部620の貫通穴615、622には下側吊材53の上端部55が挿通され、ナット700によって固定されている。 The lower end portion 54 of the upper hanging member 52 is inserted through the through hole 614 of the ceiling portion 612 of the frame portion 610 and fastened with a nut 700 . The upper end portion 55 of the lower hanging member 53 is inserted through the through holes 615 and 622 of the bottom surface portion 613 of the frame portion 610 and the rubber portion 620 and fixed by the nut 700 .

このような構成の吊部材500の防振部材600のゴム部620は、上側吊材52及び下側吊材53よりも軸方向の剛性が小さく軸方向に弾性変形する。よって、スラブ20(図1参照)と天井材32(図1参照)との間で吊部材500を介して伝達される軸方向の振動は、ゴム部620が軸方向に弾性変形することで低減する。 The rubber portion 620 of the anti-vibration member 600 of the suspension member 500 configured as described above has less rigidity in the axial direction than the upper suspension member 52 and the lower suspension member 53 and is elastically deformed in the axial direction. Therefore, the axial vibration transmitted between the slab 20 (see FIG. 1) and the ceiling material 32 (see FIG. 1) through the hanging member 500 is reduced by elastic deformation of the rubber portion 620 in the axial direction. do.

一方で、ゴム部620は、上側吊材52及び下側吊材53よりも軸方向に対するせん断剛性及び曲げ剛性も小さく、せん断方向(水平方向)及び曲げ方向にも弾性変形する。よって、図13(B)に示すように、地震時において、下側吊材53の軸方向に対する水平方向及び曲げ方向の変位が大きく、天井材32(図1参照)の横揺れが大きくなる。なお、図13(B)は、判り易くするため、実際よりも変位を大きく図示している。 On the other hand, the rubber portion 620 has smaller shear rigidity and bending rigidity in the axial direction than the upper suspension member 52 and the lower suspension member 53, and is elastically deformed in the shear direction (horizontal direction) and bending direction. Therefore, as shown in FIG. 13B, during an earthquake, the displacement of the lower suspension member 53 in the horizontal direction and the bending direction with respect to the axial direction is large, and the lateral shaking of the ceiling member 32 (see FIG. 1) is large. It should be noted that FIG. 13B shows the displacement larger than the actual one for easy understanding.

これに対して、図1~図3に示す本実施形態の吊部材50の防振部材100は、軸方向の剛性が上側吊材52及び下側吊材53の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上になるように設定されている。 On the other hand, the vibration isolating member 100 of the suspension member 50 of the present embodiment shown in FIGS. The flexural rigidity and shear rigidity are set to be equal to or greater than those of the upper suspension member 52 and the lower suspension member 53 .

よって、スラブ20(図1参照)と天井材32(図1参照)との間で吊部材50を介して伝達される軸方向の振動は、防振部材100によって低減する。具体的には、防振部材100の軸方向に間隔をあけて複数枚設けられた面材130が軸方向(面外方向)に弾性変形することで、軸方向の振動が低減する。 Therefore, vibration in the axial direction transmitted between the slab 20 (see FIG. 1) and the ceiling material 32 (see FIG. 1) through the suspending member 50 is reduced by the anti-vibration member 100. FIG. Specifically, a plurality of face members 130 provided at intervals in the axial direction of the vibration isolating member 100 are elastically deformed in the axial direction (out-of-plane direction), thereby reducing vibration in the axial direction.

一方で、防振部材100の曲げ剛性及びせん断剛性は、上側吊材52及び下側吊材53と同等以上になるように設定されている。よって、地震時において、下側吊材53の軸方向に対する水平方向及び曲げ方向の変位が小さいので、天井材32(図1参照)の横揺れが小さくなる。具体的には、下側吊材53に接合された軸部120が中心部分に接合された面材130が、水平方向の抵抗要素となることで、軸部120の水平方向の変位が小さくなる。また、防振部材100の軸部120の上端部と下端部とが面材130によって固定されているので、軸部120の曲げ方向の変位が小さくなる。 On the other hand, the bending rigidity and shear rigidity of the vibration isolating member 100 are set to be equal to or greater than those of the upper suspension members 52 and the lower suspension members 53 . Therefore, in the event of an earthquake, the displacement of the lower suspension member 53 in the horizontal direction and the bending direction with respect to the axial direction is small, so that the lateral vibration of the ceiling member 32 (see FIG. 1) is reduced. Specifically, the face member 130, to which the shaft portion 120 joined to the lower hanging member 53 is joined to the central portion, serves as a horizontal resistance element, thereby reducing the horizontal displacement of the shaft portion 120. . Further, since the upper end portion and the lower end portion of the shaft portion 120 of the vibration isolating member 100 are fixed by the face member 130, displacement of the shaft portion 120 in the bending direction is reduced.

[実験]
次に、本実施形態の吊部材50の曲げ剛性と軸方向の振動に対する防振効果についての実験について説明する。
[experiment]
Next, experiments on the bending rigidity of the hanging member 50 of the present embodiment and the anti-vibration effect against vibration in the axial direction will be described.

図4(A)は比較例の吊部材800であり、図4(B)は3Dプリンターで製作した本実施形態の防振部材100を用いた吊部材50である。 FIG. 4A shows a suspension member 800 of a comparative example, and FIG. 4B shows a suspension member 50 using the vibration isolating member 100 of this embodiment manufactured by a 3D printer.

図4(A)の比較例の吊部材800は、上側吊材52及び下側吊材53と同じ鋼製の棒材のみで構成されている。比較例の吊部材800の軸方向の全長と本実施形態の吊部材50の軸方向の全長とは同じである。 A suspension member 800 of a comparative example shown in FIG. 4A is composed only of the same steel bar material as the upper suspension member 52 and the lower suspension member 53 . The overall axial length of the suspension member 800 of the comparative example is the same as the overall length of the axial direction of the suspension member 50 of the present embodiment.

図4(A)は比較例の吊部材(棒材)800の上端部を固定して下端部に水平方向に荷重をかけた場合の応力分布と変形量L1が示されている。図4(B)は本実施形態の吊部材50上端部を固定して下端部に水平方向に荷重をかけた場合の応力分布と変形量L2と、を示している。なお、ドットが密であるほど応力が大きい。そして、この図からわかるように、比較例の吊部材800の応力分布及び変形量L1と本実施形態の吊部材50の応力分布と変形量L2とは同等であることが判る。 FIG. 4A shows the stress distribution and the amount of deformation L1 when the upper end portion of the suspension member (bar member) 800 of the comparative example is fixed and the lower end portion is horizontally loaded. FIG. 4B shows the stress distribution and the amount of deformation L2 when the upper end of the suspension member 50 of this embodiment is fixed and the lower end is horizontally loaded. Note that the denser the dots, the greater the stress. As can be seen from this figure, the stress distribution and deformation amount L1 of the suspension member 800 of the comparative example and the stress distribution and deformation amount L2 of the suspension member 50 of this embodiment are the same.

なお、水平荷重の大きさを0~10Nまで実験したが、いずれの場合も応力分布と変形量とは本実施形態の吊部材50は、比較例の吊部材800と同等かそれ以上であった。 It should be noted that experiments were conducted with horizontal loads ranging from 0 to 10 N. In all cases, the stress distribution and deformation amount of the suspension member 50 of the present embodiment were equal to or greater than those of the suspension member 800 of the comparative example. .

これから防振部材100は、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上であることが判る。 From this, it can be seen that the vibration isolating member 100 has bending rigidity and shear rigidity equal to or greater than those of the upper suspension member 52 and the lower suspension member 53 .

図5は、3Dプリンターで製作した防振部材100を用いた吊部材50の上端部を固定し、下端部に10kgの錘をぶら下げて、振動試験を行った結果のグラフである。具体的には、上側吊材52から防振部材100に入力される振動の大きさと、防振部材100から下側吊材53に透過していく振動の大きさの比を計測した結果のグラフである。 FIG. 5 is a graph showing the results of a vibration test performed by fixing the upper end of the hanging member 50 using the anti-vibration member 100 manufactured by a 3D printer and hanging a weight of 10 kg from the lower end. Specifically, a graph of the result of measuring the ratio of the magnitude of vibration input from the upper suspension member 52 to the vibration isolation member 100 and the magnitude of vibration transmitted from the vibration isolation member 100 to the lower suspension member 53. is.

このグラフから1つの明瞭なピークと、ピークが生じている振動数より高い振動数帯域において、振動の大きさが低減されていることが読み取れるので、防振部材100は軸方向の振動に対して、一質点系の理想的な防振特性を発揮していることが判る。 From this graph, it can be read that there is one clear peak and that the magnitude of vibration is reduced in a frequency band higher than the frequency at which the peak occurs. , it can be seen that the ideal anti-vibration characteristics of a single-mass point system are exhibited.

これから、防振部材100は、軸方向の振動に対して高い防振効果を有していることが判る。 From this, it can be seen that the anti-vibration member 100 has a high anti-vibration effect against vibration in the axial direction.

<第二実施形態>
本発明の第二実施形態の防振構造の一例としての吊部材について説明する。なお、第一実施形態と同一の部材には同一の符号を付し、重複する説明は省略又は簡略化する。
<Second embodiment>
A suspending member as an example of the anti-vibration structure of the second embodiment of the present invention will be described. The same reference numerals are given to the same members as in the first embodiment, and overlapping explanations are omitted or simplified.

[構造]
本実施形態の吊部材の構造について説明する。なお、防振部材以外は、第一実施形態と同じであるので、主に防振部材について説明する。
[structure]
The structure of the suspension member of this embodiment will be described. Note that the components other than the vibration-isolating member are the same as those of the first embodiment, so the vibration-isolating member will be mainly described.

図8に示す本実施形態の吊部材60を構成する防振部材200は、軸方向の剛性が上側吊材52及び下側吊材53の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上になるように設定されている樹脂製の部材である。 The vibration isolating member 200 that constitutes the suspension member 60 of this embodiment shown in FIG. It is a member made of resin that is set to have bending rigidity and shear rigidity equal to or higher than those of the upper suspension member 52 and the lower suspension member 53 .

本実施形態の防振部材200は、複数のユニット210(図6参照)で構成されている。図6に示すユニット210は、軸方向に対向して配置された一対の平面視略矩形状の第一プレート212と、一対の第一プレート212の各辺部214A、214B、214C、214D同士を繋ぎ面外方向に湾曲した第二プレート220と、を有している。なお、辺部214A、214B、214C、214Dを区別しないで説明する場合は、単に辺部214とする。 The vibration isolating member 200 of this embodiment is composed of a plurality of units 210 (see FIG. 6). A unit 210 shown in FIG. 6 includes a pair of substantially rectangular first plates 212 arranged to face each other in the axial direction, and side portions 214A, 214B, 214C, and 214D of the pair of first plates 212. and a second plate 220 curved in the outboard direction of the joint surface. Note that the side portions 214A, 214B, 214C, and 214D are simply referred to as the side portion 214 when the description is made without distinguishing them.

第一プレート212は、平面視で正方形の角部が円弧状に切りかかれた板状とされ、板厚方向が軸方向である。第二プレート220は、板厚方向がX方向又はY方向とされ、平面視において、第一プレート212の中心部側に向かって面外方向に湾曲している。なお、第一プレート212の角部は、円弧状に切りかかれていなくてもよい。例えば、第一プレート212の角部は、直線上に切りかかれていてもよいし、切りかかれておらず真に矩形状であってもよい。また、第一プレート212は、平面視で正方形でなくてもよく、矩形状であればよい。 The first plate 212 has a plate-like shape in which the corners of a square in plan view are cut into arcs, and the plate thickness direction is the axial direction. The thickness direction of the second plate 220 is the X direction or the Y direction, and is curved in the out-of-plane direction toward the central portion of the first plate 212 in plan view. Note that the corners of the first plate 212 may not be cut in an arc shape. For example, the corners of the first plate 212 may be straight cut, or may be truly rectangular with no cut. Also, the first plate 212 does not have to be square in plan view, and may have a rectangular shape.

図7に示すように、ユニット210は、軸方向と直交するX方向及びY方向に並べられ、隣り合う第一プレート212の辺部214(図6参照)同士が接合している。具体的には、図6に示す辺部214Aと辺部214Cとが接合し、辺部214Cと辺部214Dとが接合している。なお、図7に示すユニット210がX方向及びY方向に並べられたものを構造体250とする、 As shown in FIG. 7, the units 210 are arranged in the X direction and the Y direction perpendicular to the axial direction, and the side portions 214 (see FIG. 6) of adjacent first plates 212 are joined to each other. Specifically, the side portion 214A and the side portion 214C shown in FIG. 6 are joined, and the side portion 214C and the side portion 214D are joined. A structure 250 in which the units 210 shown in FIG. 7 are arranged in the X direction and the Y direction.

図7の複数のユニット210が並べられた構造体250の上面252を構成する第一プレート212(図6参照)と下面254を構成する第一プレート212(図6参照)とには、図8に示すように、それぞれ上側固定部260と下側固定部270とが接合されている。 The first plate 212 (see FIG. 6) forming the upper surface 252 and the first plate 212 (see FIG. 6) forming the lower surface 254 of the structure 250 in which the plurality of units 210 of FIG. , the upper fixing portion 260 and the lower fixing portion 270 are joined together.

図8に示すように、上側固定部260は、平面視矩形状の板状とされ、軸心上にネジ穴(図示略)が形成された上側接合部262が設けられている。同様に、下側固定部270は、平面視矩形状の板状とされ、軸心上にネジ穴(図示略)が形成された下側接合部272が設けられている。 As shown in FIG. 8, the upper fixing portion 260 has a rectangular plate shape in plan view, and is provided with an upper joining portion 262 having a screw hole (not shown) formed on the axis. Similarly, the lower fixing portion 270 has a rectangular plate shape in plan view, and is provided with a lower joint portion 272 having a screw hole (not shown) formed on the axis.

本実施形態の防振部材200は、複数のユニット210で構成された構造体250、上側固定部260及び下側固定部270が一体となっており、全体を3Dプリンターによって製造されているが、これに限定されるものではない。例えば、ユニット210で構成された構造体250を3Dプリンターで製造し、上側固定部260及び下側固定部270と、型成型で製造して接合してもよい。或いは、ユニット210のみを3Dプリンターで製造し、これらを並べて接合して構造体250としてもよい。また、ユニット210も3Dプリンター以外の方法で製造してもよい。 The vibration isolating member 200 of the present embodiment is integrated with a structure 250 composed of a plurality of units 210, an upper fixing portion 260 and a lower fixing portion 270, and is manufactured entirely by a 3D printer. It is not limited to this. For example, the structure 250 composed of the units 210 may be manufactured by a 3D printer, and the upper fixing part 260 and the lower fixing part 270 may be manufactured by molding and joined. Alternatively, only the unit 210 may be manufactured by a 3D printer, and these may be arranged and joined to form the structure 250 . Moreover, the unit 210 may also be manufactured by a method other than a 3D printer.

図8に示すように、上側吊材52は、ネジが切られた下端部54が防振部材200の上側固定部260の上側接合部262のネジ穴(図示略)に捻じ込まれることで防振部材200と接合される。同様に、下側吊材53は、ネジが切られた上端部55が防振部材200の下側固定部270の下側接合部272のネジ穴(図示略)に捻じ込まれることで防振部材200と接合される。 As shown in FIG. 8, the upper hanging member 52 is prevented by screwing the threaded lower end portion 54 into a screw hole (not shown) of the upper joint portion 262 of the upper fixing portion 260 of the anti-vibration member 200 . It is joined with the vibration member 200 . Similarly, the threaded upper end 55 of the lower hanging member 53 is screwed into a screw hole (not shown) of the lower joint portion 272 of the lower fixing portion 270 of the vibration isolating member 200, thereby providing vibration isolation. It is joined with member 200 .

ここで、図6に示すユニット210単体では、軸方向(鉛直方向)の変形に対しては、湾曲した第二プレート220が面外方向に弾性変形するので剛性が小さい。また、ユニット210は、せん断方向の変形に対しては、せん断方向と直交する方向が板厚方向の第二プレート220が抵抗するので剛性が大きい。例えば、X方向のせん断変形に対して、上下の辺部214C同士と上下の辺部214A同士を繋ぐ第二プレート220が抵抗する。 Here, in the single unit 210 shown in FIG. 6, the rigidity is low with respect to deformation in the axial direction (vertical direction) because the curved second plate 220 is elastically deformed in the out-of-plane direction. In addition, the unit 210 has high rigidity because the second plate 220 having a plate thickness direction that is perpendicular to the shear direction resists deformation in the shear direction. For example, the second plate 220 that connects the upper and lower side portions 214C and the upper and lower side portions 214A resists shear deformation in the X direction.

ユニット210の曲げ方向の変形に対しては、第二プレート220が弾性変形するため剛性が小さい。例えば、図6におけるY軸回りの回転の場合、上下の辺部214B同士を繋ぐ第二プレート220及び上下の辺部214D同士を繋ぐ第二プレート220が弾性変形するため、曲げ剛性は大きくない。 Since the second plate 220 is elastically deformed with respect to the deformation of the unit 210 in the bending direction, the rigidity is small. For example, in the case of rotation around the Y-axis in FIG. 6, the second plate 220 that connects the upper and lower sides 214B and the second plate 220 that connects the upper and lower sides 214D are elastically deformed, so the bending rigidity is not large.

複数のユニット210を並べた構造体250では、軸剛性とせん断剛性は配列したユニット210のユニット数に対して等倍となる。一方、曲げ剛性に関しては、曲げモーメントの軸から離れるにしたがって曲げ方向の抵抗力が大きくなるため、曲げ剛性はユニット数の等倍以上の剛性を有する。よって、ユニット210を多く並べるほど、構造体250の軸方向の剛性と曲げ方向の剛性との差が大きくなる。つまり、軸方向にのみ剛性の低い構造体250となる。 In the structure 250 in which a plurality of units 210 are arranged, the axial stiffness and shear stiffness are equal to the number of the arranged units 210 . On the other hand, with respect to bending rigidity, since resistance in the bending direction increases as the distance from the bending moment axis increases, the bending rigidity has a rigidity equal to or greater than the number of units. Therefore, the more units 210 are arranged, the greater the difference between the rigidity in the axial direction and the rigidity in the bending direction of the structural body 250 . That is, the structure 250 has low rigidity only in the axial direction.

よって、ユニット210の第一プレート212及び第二プレート220の大きさや板厚等及びユニット210を並べる個数等を調整することで、軸方向の剛性が上側吊材52及び下側吊材53の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上になるように設定することができる。 Therefore, by adjusting the size and thickness of the first plate 212 and the second plate 220 of the unit 210 and the number of the units 210 arranged, the rigidity in the axial direction can be adjusted to the axis of the upper suspension member 52 and the lower suspension member 53. It is smaller than the directional rigidity, and can be set so that the bending rigidity and shear rigidity are equal to or greater than the bending rigidity and shear rigidity of the upper suspension member 52 and the lower suspension member 53 .

別の観点から説明すると、防振部材200、構造体250及びユニット210は、上下の第一プレート212及び四方の湾曲した第二プレート220の間が空洞である肉抜き構造である。よって、防振部材200は、軸方向の剛性が上側吊材52及び下側吊材53よりも小さく、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53と同等以上となるように肉抜きされ、剛性に異方性を持つ肉抜き構造体であると言える。 From another point of view, the vibration isolating member 200, the structural body 250, and the unit 210 are hollow structures in which the upper and lower first plates 212 and the four curved second plates 220 are hollow. Therefore, the vibration isolating member 200 has an axial rigidity smaller than that of the upper suspension member 52 and the lower suspension member 53, and a bending rigidity and a shear rigidity equal to or higher than those of the upper suspension member 52 and the lower suspension member 53. It can be said that it is a lightening structure having anisotropy in rigidity.

或いは、防振部材200は、軸方向の剛性が上側吊材52及び下側吊材53の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上である剛性に異方性を持つメカニカルメタマテリアルと言える。 Alternatively, the vibration isolating member 200 has an axial rigidity smaller than that of the upper suspension member 52 and the lower suspension member 53, and a bending rigidity and a shear rigidity that are greater than the bending rigidity of the upper suspension member 52 and the lower suspension member 53. It can be said that it is a mechanical metamaterial with anisotropy in stiffness that is equal to or greater than the stiffness and shear stiffness.

[作用]
次に本実施形態の作用について説明する。
[Action]
Next, the operation of this embodiment will be described.

第一実施形態と同様に、図8に示す本実施形態の吊部材60の防振部材200は、軸方向の剛性が上側吊材52及び下側吊材53の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性が上側吊材52及び下側吊材53の曲げ剛性及びせん断剛性と同等以上になるように設定されている。 As in the first embodiment, the vibration isolation member 200 of the suspension member 60 of this embodiment shown in FIG. 8 has axial rigidity smaller than that of the upper suspension member 52 and the lower suspension member 53. The flexural rigidity and shear rigidity are set to be equal to or greater than those of the upper suspension member 52 and the lower suspension member 53 .

よって、スラブ20(図1参照)と天井材32(図1参照)の間で吊部材60を介して伝達される軸方向の振動は、防振部材200によって低減する。具体的には、防振部材200のユニット210の湾曲した第二プレート220が弾性変形することで、軸方向の振動が低減する。 Therefore, vibration in the axial direction transmitted between the slab 20 (see FIG. 1) and the ceiling material 32 (see FIG. 1) through the suspending member 60 is reduced by the anti-vibration member 200. FIG. Specifically, the elastic deformation of the curved second plate 220 of the unit 210 of the anti-vibration member 200 reduces vibration in the axial direction.

一方で、防振部材200の曲げ剛性及びせん断剛性は、上側吊材52及び下側吊材53と同等以上になるように設定されている。よって、地震時において、下側吊材53の軸方向に対する水平方向及び曲げ方向の変位が小さいので、天井材32(図1参照)の横揺れが小さくなる。 On the other hand, the bending rigidity and shear rigidity of the vibration isolating member 200 are set to be equal to or greater than those of the upper suspension member 52 and the lower suspension member 53 . Therefore, in the event of an earthquake, the displacement of the lower suspension member 53 in the horizontal direction and the bending direction with respect to the axial direction is small, so that the lateral vibration of the ceiling member 32 (see FIG. 1) is reduced.

[変形例]
第二実施形態の構造体の変形例について説明する。
[Modification]
A modification of the structure of the second embodiment will be described.

上記実施形態では、複数のユニット210がX方向及びY方向に並んで接合されていたが、これに限定されるものではない。必要とする軸方向の剛性、曲げ剛性及びせん断剛性となるように、2以上のユニット210が、接合されていればよい。よって、次に、他の例を変形例として説明する。 In the above embodiment, the plurality of units 210 are arranged side by side in the X direction and the Y direction, but are not limited to this. Two or more units 210 may be joined to provide the required axial stiffness, bending stiffness and shear stiffness. Therefore, next, another example will be described as a modified example.

(第一変形例)
図9に示すように、第一変形例の構造体255は、ユニット210が、X方向及びY方向に沿って格子状に並べられて接合されている。更に、X方向に沿った列のみは、ユニット210が積層されている。
(first modification)
As shown in FIG. 9, in the structure 255 of the first modified example, the units 210 are arranged in a lattice along the X direction and the Y direction and joined together. Furthermore, the units 210 are stacked only in rows along the X direction.

(第二変形例)
図10に示すように、第二変形例の構造体257は、ユニット210が、X方向及びY方向に並べられ且つZ方向に積層されて接合されている。別の観点から説明すると構造体250がZ方向に積層された構造である。
(Second modification)
As shown in FIG. 10, in the structure 257 of the second modified example, the units 210 are arranged in the X direction and the Y direction and laminated in the Z direction and joined. From another point of view, the structure 250 is stacked in the Z direction.

<第三実施形態>
本発明の第三実施形態の防振構造の一例としての防振装置70について説明する。
<Third embodiment>
A vibration isolation device 70 as an example of a vibration isolation structure according to a third embodiment of the present invention will be described.

[構造]
図11に示すように、振動源となるモーター等の設備機器82が、スラブ80の上に設置された防振装置70の上に固定されている。
[structure]
As shown in FIG. 11 , equipment 82 such as a motor, which is a source of vibration, is fixed on a vibration isolator 70 installed on the slab 80 .

防振装置70は、複数の防振部材300、ボルト74、上側架台72及び下側架台73で構成されている。複数の防振部材300は、鉛直方向の軸心と、上側架台72及び下側架台73の鉛直方向の軸心G(図12参照)と、が一致、すなわち同軸上に設けられている。 The vibration isolation device 70 is composed of a plurality of vibration isolation members 300 , bolts 74 , an upper mount 72 and a lower mount 73 . The plurality of vibration isolating members 300 are provided so that their vertical axes coincide with the vertical axes G (see FIG. 12) of the upper mount 72 and the lower mount 73, that is, coaxially.

なお、後述するように、平面視において、防振部材300は矩形の角部に配置されている。「複数の防振部材300の鉛直方向の軸心」とは、矩形の中心位置である。別の観点から説明すると、複数の防振部材300全体を一つの防振部材とみなした場合の鉛直方向の軸心が、複数の防振部材300の軸心Gである。 As will be described later, the anti-vibration members 300 are arranged at the corners of the rectangle in plan view. The “vertical axis of the plurality of vibration isolating members 300” is the center position of the rectangle. From another point of view, the axis G of the plurality of vibration-isolating members 300 is the axis in the vertical direction when the plurality of vibration-isolating members 300 are regarded as one vibration-isolating member.

上側架台72及び下側架台73は、それぞれ鉄骨材が平面視で矩形枠状に組まれて構成されている(図12も参照)。これら矩形枠状の上側架台72及び下側架台73の角部の間に防振部材300が設けられている。 The upper mount frame 72 and the lower mount frame 73 are each constructed by assembling steel frames in a rectangular frame shape in a plan view (see also FIG. 12). A vibration isolating member 300 is provided between corners of the rectangular frame-shaped upper frame 72 and lower frame 73 .

本実施形態の防振部材300は、第二実施形態の第二変形例の構造体257(図10参照)の上下に上側固定部360及び下側固定部370が設けられた構成となっている。上側固定部360は、平面視矩形状の板状の部材で各角部にネジ穴(図示略)が形成されている。同様に下側固定部370は、平面視矩形状の板状の部材で各角部にネジ穴(図示略)が形成されている。 The vibration isolating member 300 of the present embodiment has a configuration in which an upper fixing portion 360 and a lower fixing portion 370 are provided above and below the structure 257 (see FIG. 10) of the second modified example of the second embodiment. . The upper fixing portion 360 is a plate-like member that is rectangular in plan view, and screw holes (not shown) are formed at each corner. Similarly, the lower fixing portion 370 is a plate-like member that is rectangular in plan view, and screw holes (not shown) are formed at each corner.

上側架台72は防振部材300の上側固定部360の角部のネジ穴(図示略)にボルト74を捻じ込ませることで防振部材300と接合されている。同様に、下側架台73は防振部材300の下側固定部370の角部のネジ穴(図示略)にボルト74を捻じ込ませることで防振部材300と接合されている。 The upper frame 72 is joined to the vibration isolating member 300 by screwing bolts 74 into screw holes (not shown) at the corners of the upper fixing portion 360 of the vibration isolating member 300 . Similarly, the lower frame 73 is joined to the vibration isolating member 300 by screwing bolts 74 into screw holes (not shown) at the corners of the lower fixing portion 370 of the vibration isolating member 300 .

そして、複数の防振部材300全体で、軸方向の剛性が、ボルト74を含む上側架台72及び下側架台73の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性がボルト74を含む上側架台72及び下側架台73の曲げ剛性及びせん断剛性と同等以上になるように設定することができる。 In addition, the rigidity in the axial direction of the plurality of vibration-isolating members 300 as a whole is smaller than the rigidity in the axial direction of the upper frame 72 and the lower frame 73 including the bolts 74, and the bending rigidity and the shear rigidity are lower than the rigidity in the axial direction of the upper frame including the bolts 74. It can be set to be equal to or greater than the bending stiffness and shear stiffness of 72 and lower frame 73 .

ここで、「複数の防振部材300全体の軸方向の剛性がボルト74を含む上側架台72及び下側架台73の軸方向の剛性よりも小さい」とは、上側架台72と下側架台73との間に複数の防振部材300がボルト74で接合された防振装置70全体の軸方向の剛性が、上側架台72及び下側架台73と同じ架台がこれらの間に挟まれてボルト74で接合されている場合の軸方向の剛性よりも小さいことを意味している。 Here, "the axial rigidity of the entire plurality of vibration-isolating members 300 is smaller than the axial rigidity of the upper mount 72 and the lower mount 73 including the bolts 74" means that the upper mount 72 and the lower mount 73 The axial rigidity of the vibration isolator 70 as a whole, in which a plurality of vibration isolating members 300 are joined with bolts 74, is the same as that of the upper pedestal 72 and the lower pedestal 73. It means that the stiffness in the axial direction is less than when it is bonded.

また、「複数の防振部材300全体の曲げ剛性及びせん断剛性がボルト74を含む上側架台72及び下側架台73の曲げ剛性及びせん断剛性と同等以上」とは、上側架台72と下側架台73との間に複数の防振部材300がボルト74で接合された防振装置70全体の曲げ剛性及びせん断剛が、上側架台72及び下側架台73と同じ架台がこれらの間に挟まれてボルト74で接合されている場合の曲げ剛性及びせん断剛性軸方向の剛性と同等以上であることを意味している。なお、この場合の曲げ剛性及びせん断剛性は、これらが最も小さくなるボルト74の接合部位である。 Further, "the flexural rigidity and the shear rigidity of the entire plurality of vibration-isolating members 300 are equal to or greater than the flexural rigidity and the shear rigidity of the upper mount 72 and the lower mount 73 including the bolts 74" means that the upper mount 72 and the lower mount 73 The flexural rigidity and shear rigidity of the entire vibration isolator 70 in which a plurality of vibration isolating members 300 are joined with bolts 74 between and the same mount as the upper mount 72 and the lower mount 73 are sandwiched between these bolts. It means that the bending stiffness and shear stiffness in the case of being joined at 74 are equal to or greater than the stiffness in the axial direction. In this case, the flexural rigidity and the shear rigidity are the joint portion of the bolt 74 where they are the smallest.

[作用]
次に本実施形態の作用について説明する。
[Action]
Next, the operation of this embodiment will be described.

図11に示す本実施形態の防振装置70の複数の防振部材300は、軸方向の剛性がボルト74を含む上側架台72及び下側架台73の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性がボルト74を含む上側架台72及び下側架台73の曲げ剛性及びせん断剛性と同等以上になるように設定されている。 The plurality of vibration isolating members 300 of the vibration isolating device 70 of this embodiment shown in FIG. The shear stiffness is set to be equal to or greater than the bending stiffness and shear stiffness of the upper frame 72 and the lower frame 73 including the bolts 74 .

よって、設備機器82からスラブ80に防振装置70を介して伝達される軸方向(鉛直方向)の振動は、防振部材300によって低減する。具体的には、防振部材300のユニット210の湾曲した第二プレート220が弾性変形することで、軸方向の振動が低減する。 Therefore, vibration in the axial direction (vertical direction) transmitted from the equipment 82 to the slab 80 via the vibration isolator 70 is reduced by the vibration isolator 300 . Specifically, the elastic deformation of the curved second plate 220 of the unit 210 of the anti-vibration member 300 reduces vibration in the axial direction.

一方で、防振部材300の曲げ剛性及びせん断剛性は、ボルト74を含む上側架台72及び下側架台73と同等以上になるように設定されている。よって、地震時において、下側吊材53の軸方向に対する水平方向及び曲げ方向の変位が小さいので、設備機器82の横揺れは小さい。 On the other hand, the bending rigidity and shear rigidity of the vibration isolating member 300 are set to be equal to or greater than those of the upper frame 72 and the lower frame 73 including the bolts 74 . Therefore, in the event of an earthquake, horizontal and bending displacements of the lower suspension members 53 with respect to the axial direction are small, so that the equipment 82 does not sway laterally.

<その他>
尚、本発明は上記実施形態に限定されない。
<Others>
It should be noted that the present invention is not limited to the above embodiments.

例えば、上記実施形態の防振部材100、200、300では、軸方向に弾性変形する部材(面材130又は第二プレート220)によって軸方向の剛性を小さくしていたが、これに限定されない。例えば、防振部材は、曲げ力及びせん断力を負担する部材断面が大きく、軸方向の力を負担する部材断面が小さくなるように肉抜きされ、剛性に異方性を持つ肉抜き構造体であってもよい。或いは、防振部材は、仮想の中実体を、曲げ剛性及びせん断剛性が小さくなるよりも軸剛性が小さくなるように肉抜きした剛性に異方性を持つ肉抜き構造体であってもよい。 For example, in the anti-vibration members 100, 200, and 300 of the above-described embodiments, the rigidity in the axial direction is reduced by a member that elastically deforms in the axial direction (the face member 130 or the second plate 220), but the present invention is not limited to this. For example, the anti-vibration member is a thinned structure having an anisotropic rigidity in which the cross section of the member that bears the bending force and shear force is large and the cross section of the member that bears the force in the axial direction is reduced. There may be. Alternatively, the anti-vibration member may be a thinned structure having an anisotropic rigidity obtained by thinning a virtual solid body so that the axial rigidity becomes smaller than the bending rigidity and the shearing rigidity become smaller.

また、例えば、上記実施形態の防振部材100、200、300は、メカニカルメタマテリアルの技術を用いていたが、これに限定されるものではない。例えば、防振部材は、トポロジー最適化の技術を用いてもよいし、他の技術を用いてもよい。要は、防振部材は、軸方向の剛性が支持部材の軸方向の剛性よりも小さく、曲げ剛性及びせん断剛性が支持部材の曲げ剛性及びせん断剛性と同等以上であればよい。 Further, for example, the vibration-isolating members 100, 200, and 300 of the above-described embodiments use mechanical metamaterial technology, but the present invention is not limited to this. For example, the anti-vibration member may use topology optimization techniques or other techniques. The point is that the vibration-isolating member has an axial rigidity smaller than that of the support member, and a bending rigidity and a shear rigidity equal to or higher than those of the support member.

また、例えば、上記実施形態の防振部材100、200、300は、合成樹脂製であったが、これに限定されるものではない。例えば、金属製の防振部材であってもよい。 Further, for example, the vibration-isolating members 100, 200, and 300 of the above-described embodiments are made of synthetic resin, but are not limited to this. For example, it may be a metal anti-vibration member.

また、例えば、実施形態では、防振部材は、吊り天井及び設備機器の防振装置に用いたがこれに限定されるものではない。例えば、防音室の横揺れを抑制するために防振部材を用いてもよい。具体的には、入れ子構造の外側の部屋の壁と内側の部屋の壁との間に防振部材を設けてもよい。 Further, for example, in the embodiments, the vibration-isolating member is used for a suspended ceiling and a vibration-isolating device for equipment, but the present invention is not limited to this. For example, a vibration isolation member may be used to suppress rolling of the soundproof room. Specifically, a vibration isolation member may be provided between the wall of the outer room and the wall of the inner room of the nested structure.

また、防振部材の軸方向の一方と他方に接合される支持部材の各剛性が異なる場合は、小さい方の剛性を採用する。 In addition, when each rigidity of the supporting member joined to one and the other axial direction of the vibration isolating member is different, the rigidity of the smaller one is adopted.

また、例えば、上記実施形態の防振部材100、200、300は、合成樹脂製であったが、これに限定されるものではない。例えば、金属製の防振部材であってもよい。 Further, for example, the vibration-isolating members 100, 200, and 300 of the above-described embodiments are made of synthetic resin, but are not limited to this. For example, it may be a metal anti-vibration member.

更に、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。複数の実施形態及び変形例等は、適宜、組み合わされて実施可能である。 Furthermore, various aspects can be implemented without departing from the gist of the present invention. A plurality of embodiments, modifications, and the like can be appropriately combined and implemented.

50 吊部材(防振構造の一例)
52 上側吊材(支持部材の一例)
53 下側吊材(支持部材の一例)
60 吊部材(防振構造の一例)
70 防振装置(防振構造の一例)
72 上側架台(支持部材の一例)
73 下側架台(支持部材の一例)
74 ボルト(支持部材の一例)
100 防振部材
110 筒体
112A 内周面
120 軸部
130 面材
132 外縁部
200 防振部材
210 ユニット
212 第一プレート
220 第二プレート
250 構造体
255 構造体
257 構造体
300 防振部材
50 Suspension member (an example of anti-vibration structure)
52 Upper suspension member (an example of a support member)
53 lower hanging member (an example of a supporting member)
60 Suspension member (an example of anti-vibration structure)
70 anti-vibration device (an example of anti-vibration structure)
72 upper mount (an example of a support member)
73 Lower mount (an example of a support member)
74 bolt (an example of a support member)
REFERENCE SIGNS LIST 100 anti-vibration member 110 cylindrical body 112A inner peripheral surface 120 shaft portion 130 face member 132 outer edge portion 200 anti-vibration member 210 unit 212 first plate 220 second plate 250 structure 255 structure 257 structure 300 anti-vibration member

Claims (3)

防振部材と、前記防振部材の軸方向の両側に接合され同軸上に配置された支持部材と、で構成された防振構造であって、
前記防振部材の軸方向の剛性が、前記支持部材の軸方向の剛性よりも小さく、
前記防振部材の曲げ剛性及びせん断剛性が、前記支持部材の曲げ剛性及びせん断剛性と同等以上である、
防振構造。
A vibration-isolating structure comprising a vibration-isolating member and supporting members joined to both axial sides of the vibration-isolating member and arranged coaxially,
the rigidity in the axial direction of the vibration isolating member is smaller than the rigidity in the axial direction of the supporting member;
The flexural rigidity and shear rigidity of the vibration-isolating member are equal to or greater than the flexural rigidity and shear rigidity of the support member.
Anti-vibration structure.
前記防振部材は、
一方の前記支持部材に接合されると共に他方の前記支持部材に接続された軸部が内部に設けられた筒体と、
前記筒体内に軸方向に間隔をあけて複数枚設けられ、中心部が前記軸部に接合されると共に外縁部が前記筒体の内周面に接合された面材と、
を有している、
請求項1の防振構造。
The anti-vibration member is
a cylindrical body having therein a shaft portion joined to one of the support members and connected to the other support member;
a plurality of face members provided in the cylindrical body at intervals in the axial direction, the central portion of which is joined to the shaft portion and the outer edge portion of which is joined to the inner peripheral surface of the cylindrical body;
have,
The vibration isolation structure according to claim 1.
前記防振部材は、軸方向の剛性が前記支持部材よりも小さく、曲げ剛性及びせん断剛性が前記支持部材と同等以上となるように肉抜きされ、剛性に異方性を持つ肉抜き構造体である、
請求項1に記載の防振構造。
The anti-vibration member is a lightened structure having rigidity anisotropy, which is hollowed out so that the rigidity in the axial direction is smaller than that of the support member, and the bending rigidity and shear rigidity are equal to or higher than those of the support member. be,
The vibration isolation structure according to claim 1.
JP2021198880A 2021-12-07 2021-12-07 Vibration control structure Pending JP2023084596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021198880A JP2023084596A (en) 2021-12-07 2021-12-07 Vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021198880A JP2023084596A (en) 2021-12-07 2021-12-07 Vibration control structure

Publications (1)

Publication Number Publication Date
JP2023084596A true JP2023084596A (en) 2023-06-19

Family

ID=86771879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021198880A Pending JP2023084596A (en) 2021-12-07 2021-12-07 Vibration control structure

Country Status (1)

Country Link
JP (1) JP2023084596A (en)

Similar Documents

Publication Publication Date Title
JP2905890B2 (en) Elastic support
JP4339683B2 (en) Compact vibration canceller
US8770513B2 (en) Resilient aircraft engine mounts and aircraft engine mounting systems including the same
WO1991002921A1 (en) Vibration isolation system
CA2603946A1 (en) Vibration isolation
CN108240415B (en) Large-load high-damping vibration absorber of composite bending beam/plate negative-stiffness dynamic vibration absorber
JPH0552237A (en) Vibration controling device
US9261155B2 (en) Compact vertical-motion isolator
CN112984044B (en) Vibration eliminating device for carrying precision equipment
JP6877720B2 (en) Vibration damping device for structures
JP2023084596A (en) Vibration control structure
JP4648248B2 (en) Vibration reduction device
JPH0526293A (en) Vibration suppressing device
JP2002048192A (en) Vibration damper article and installation method of vibration damper article
JP2014001767A (en) Damper device, base isolation apparatus with the same and vibration isolation mount
CN109155224B (en) Charged particle beam device
JP6148911B2 (en) Anti-vibration stopper structure and anti-vibration stand having the anti-vibration stopper structure
JPH07119794A (en) Dynamic vibration absorber
JP4299695B2 (en) Vibration reduction device
JPH04258549A (en) Dynamic damper
JP3807163B2 (en) Damping device for building structure
JP4624266B2 (en) Dynamic vibration absorber
JPH03156044A (en) Vibration controlling beam and controller for beam
JP3935337B2 (en) Separate shock mount
JPH08326841A (en) Base isolation support device