JP2023083207A5 - - Google Patents
Info
- Publication number
- JP2023083207A5 JP2023083207A5 JP2022129509A JP2022129509A JP2023083207A5 JP 2023083207 A5 JP2023083207 A5 JP 2023083207A5 JP 2022129509 A JP2022129509 A JP 2022129509A JP 2022129509 A JP2022129509 A JP 2022129509A JP 2023083207 A5 JP2023083207 A5 JP 2023083207A5
- Authority
- JP
- Japan
- Prior art keywords
- neural network
- candidate
- architecture
- loss
- hardware resource
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2021-0171979 | 2021-12-03 | ||
| KR1020210171979A KR20230083716A (ko) | 2021-12-03 | 2021-12-03 | 뉴럴 네트워크의 최적의 아키텍쳐를 탐색하는 장치 및 방법 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2023083207A JP2023083207A (ja) | 2023-06-15 |
| JP2023083207A5 true JP2023083207A5 (enExample) | 2025-08-01 |
Family
ID=83191939
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2022129509A Pending JP2023083207A (ja) | 2021-12-03 | 2022-08-16 | ニューラルネットワークの最適なアーキテクチャーを探索する装置及び方法 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20230177308A1 (enExample) |
| EP (1) | EP4191481A1 (enExample) |
| JP (1) | JP2023083207A (enExample) |
| KR (1) | KR20230083716A (enExample) |
| CN (1) | CN116258183A (enExample) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12353992B2 (en) * | 2018-10-01 | 2025-07-08 | Google Llc | Systems and methods for providing a machine-learned model with adjustable computational demand |
-
2021
- 2021-12-03 KR KR1020210171979A patent/KR20230083716A/ko active Pending
-
2022
- 2022-05-13 US US17/743,906 patent/US20230177308A1/en active Pending
- 2022-06-13 CN CN202210663806.3A patent/CN116258183A/zh active Pending
- 2022-08-16 JP JP2022129509A patent/JP2023083207A/ja active Pending
- 2022-09-02 EP EP22193593.5A patent/EP4191481A1/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TW202341008A (zh) | 具有稀疏權重的專家模型的混合 | |
| WO2022068623A1 (zh) | 一种模型训练方法及相关设备 | |
| WO2019001418A1 (zh) | 数据共享系统及其数据共享方法 | |
| US10607137B2 (en) | Branch predictor selection management | |
| WO2022152104A1 (zh) | 动作识别模型的训练方法及装置、动作识别方法及装置 | |
| JP7158236B2 (ja) | 音声認識方法及び装置 | |
| CN113822318B (zh) | 神经网络的对抗训练方法、装置、计算机设备及存储介质 | |
| CN113469355A (zh) | 分布式系统中的多模型训练管道 | |
| KR20190098671A (ko) | 뉴럴 네트워크의 고속 처리 방법 및 그 방법을 이용한 장치 | |
| KR102561799B1 (ko) | 디바이스에서 딥러닝 모델의 레이턴시를 예측하는 방법 및 시스템 | |
| TW202316321A (zh) | 基於硬體加速器優化分組卷積之神經網路模型 | |
| JP2022546271A (ja) | カーネルチューニングパラメータを予測するための方法及び装置 | |
| CN114491094A (zh) | 一种多媒体资源的确定方法、预测模型的训练方法及装置 | |
| JP2023083207A5 (enExample) | ||
| Bourrasset et al. | Requirements for an enterprise AI benchmark | |
| JP7310927B2 (ja) | 物体追跡装置、物体追跡方法及び記録媒体 | |
| TW202341015A (zh) | 基於困惑度的機器學習模型處理 | |
| WO2023036274A1 (zh) | 视频处理方法、装置、电子设备、介质及程序产品 | |
| CN119987865B (zh) | 虚拟原型平台分支预测方法、装置、设备及介质 | |
| KR20160076896A (ko) | 선점 방식을 선택하는 방법 및 장치. | |
| CN116261734A (zh) | 硬件加速器的神经架构缩放 | |
| US20230215157A1 (en) | Efficient neural-network-based processing of visual content | |
| US12346813B2 (en) | Online knowledge distillation for multi-task learning system, method, device, and program | |
| JP7685116B2 (ja) | 機械学習モデルの分割推論演算の実行 | |
| CN113269320B (zh) | 处理单元、计算装置、片上系统、数据中心和相关方法 |