JP2023082065A - ユーザのバイオメトリック特性を有する画像中の物体を識別して、画像のうちバイオメトリック特性を含む部分を他の部分から分離することにより当該ユーザのidを検証するための方法 - Google Patents
ユーザのバイオメトリック特性を有する画像中の物体を識別して、画像のうちバイオメトリック特性を含む部分を他の部分から分離することにより当該ユーザのidを検証するための方法 Download PDFInfo
- Publication number
- JP2023082065A JP2023082065A JP2023050810A JP2023050810A JP2023082065A JP 2023082065 A JP2023082065 A JP 2023082065A JP 2023050810 A JP2023050810 A JP 2023050810A JP 2023050810 A JP2023050810 A JP 2023050810A JP 2023082065 A JP2023082065 A JP 2023082065A
- Authority
- JP
- Japan
- Prior art keywords
- image
- matrix
- processing
- neural network
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 238000013528 artificial neural network Methods 0.000 claims abstract description 112
- 238000012545 processing Methods 0.000 claims abstract description 107
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims description 151
- 230000008569 process Effects 0.000 claims description 22
- 230000009467 reduction Effects 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 12
- 230000002829 reductive effect Effects 0.000 claims description 11
- 239000000284 extract Substances 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 2
- 238000012549 training Methods 0.000 description 26
- 230000006870 function Effects 0.000 description 18
- 238000007781 pre-processing Methods 0.000 description 15
- 239000013598 vector Substances 0.000 description 14
- 230000009466 transformation Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002085 persistent effect Effects 0.000 description 4
- 238000000844 transformation Methods 0.000 description 4
- 230000003190 augmentative effect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 241000023320 Luma <angiosperm> Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1365—Matching; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1312—Sensors therefor direct reading, e.g. contactless acquisition
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/30—Collimators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0283—Price estimation or determination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/141—Control of illumination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1318—Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Human Computer Interaction (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Business, Economics & Management (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Development Economics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Finance (AREA)
- Accounting & Taxation (AREA)
- Strategic Management (AREA)
- Optics & Photonics (AREA)
- Marketing (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Quality & Reliability (AREA)
- Neurology (AREA)
- General Business, Economics & Management (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Signal Processing (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Collating Specific Patterns (AREA)
Abstract
Description
モバイル装置の光学センサによって物体の画像を取得するステップと、
画像又は画像の一部をニューラルネットワークへ供給するステップと、
前記ニューラルネットワークによって、前記画像又は前記画像の一部のうち関心領域(以下「ROI」という)を含む部分を当該画像の他の部分から区別することを含む、前記画像又は前記画像の一部をニューラルネットワークによって処理するステップと、
前記画像又は前記画像の一部からROIを抽出するステップと、
ROIを含む部分を記憶装置に記憶し、及び/又は、ROIを含む部分を入力として識別手段へ供給するステップと、を有し、
識別手段は、ROIのバイオメトリック特性を抽出することと、抽出したバイオメトリック特性がユーザを識別するか否かを判定するため、抽出したバイオメトリック特性を処理することと、を含む。
又はモバイル装置に設けられるものとすることができる。さらに、ニューラルネットワークはモバイル装置上に設けるか、又はモバイル装置から遠隔の場所とすることができることに留意すべきである。後者の場合、画像はニューラルネットワークにより処理される前にモバイル装置から、ニューラルネットワークが設けられている遠隔の場所に転送される。
を関連付け、前記区別は、
を有する画素について行うことができる。
間符号化出力を生成することと、エンコーダの各先行層の符号化出力をエンコーダの各後続層によって処理することと、を有し、各エンコーダ層は、各層における入力の処理順に、深度畳み込み層と、第1のバッチ正規化部と、第1の整流線形ユニットと、点畳み込み層と、第2のバッチ正規化部と、第2の整流線形ユニットとをそれぞれ有する、深度で分離可能な畳み込みであり、複数の層を用いて入力を処理することにより、エンコーダは符号化済み画像を得られ、符号化済み画像はデコーダへ供給され、符号化済み画像をデコーダによって処理することにより復号化済み出力画像を得ることは、当該デコーダの第1層によって入力を処理することにより第1の中間復号化出力を生成することと、デコーダの各先行層の復号化出力をデコーダの各後続層によって処理することと、を有し、各デコーダ層は、逆畳み込み層及び/又はバイリニアアップサンプリング層を有し、入力された符号化済み画像を複数の層を用いて処理することにより、デコーダは復号化済み出力画像を得られる。この説明全体において「復号化済み画像」及び「符号化済み画像」並びに「復号化済み出力画像」及び「符号化入力画像」との用語を用いるが、これらの「画像」との用語は、通常の意味で解される画像ではない場合があることに留意すべきである。実際にはその画像情報は、ニューラルネットワークの各層による処理により変わり、符号化済み「画像」及び復号化済み「画像」の各画像が、人間により通常認識可能な情報を含まなくなることがある。よって、これら各用語はあくまで説明目的で用いられるものであると解すべきである。一般に、符号化済み「画像」及び復号化済み「画像」の各画像はテンソル又は特定のサイズのマトリクスである。
一サイズであり、マトリクスZの成分Zcdは、
を生成するものであり、
を生成するためには、
を成分に乗算し、
を組み合わせることによりマトリクスBの各成分Bijを拡張することによって
を得る。
の成分は、エンコーダの深度畳み込み層によって適用される元のカーネルの成分に対して必ず逆又は同一又は他の関係を有しなければならないという訳ではない。
の成分は、最も正確な結果が得られるようにニューラルネットワークの訓練の際に学習することができる。
を得ることができる。また、部分マトリクスを重なり合うように配置して、
を構成する際に第1の部分マトリクスの一部が他のいずれかの部分マトリクスの一部と重なるようにすることもできる。
を用いる際には、逆畳み込みにおいて、削減マトリクスを得るために畳み込みにおいて用いられた画像の符号化の回数と同じ回数の拡張/復号化ステップを用いて
を得ることができる。これにより、エンコーダにより行われる変換回数とデコーダにより行われる変換回数とが異なることによるアーティファクトやコンフリクトを低減することができる。最も好適なのは、ニューラルネットワークの訓練の際にカーネルの特定の成分の値を学習することである。
を算出し、
は出力として供給され、及び/又は、点畳み込み層は、先行層から受け取ったマトリクスの各成分に重みαを乗じることにより、マトリクスに重みαを適用する。
きにプロセッサに請求項1から19までのいずれか1項記載の方法を実行させる。
るように、他の前処理手法も可能である。
切な接続を用いて、ニューラルネットワークが設けられている遠隔の場所に画像を供給する。
徴を抽出する。よって、これらのステップは少なくとも、図2にて説明したように、識別された物体からバイオメトリック特性又はROIを抽出するステップの後に行われる。
体的な種類のみを抽出することも可能である(例えば、指紋における2つ以上の線の交差等)。
PhはT-1に等しくすることができ、これにより、Zとカーネルとで算出されたいかなる内積も、元のマトリクスIの少なくとも1つの成分を含むこととなる。よって、これにより得られるマトリクスZのサイズは(N+2Pw)×(M+2Ph)となる。このことから、マトリクスZは以下の成分を有することとなる:
の削減マトリクスまで行われ、この最後の削減マトリクスは、S=3の場合にはi=N-S+1,N-S+2,N-S+3となる。上述のことは列についても同様に行われ、j=M-S+1,M-S+2,M-S+3となる。これらの内積を計算することにより、サイズが(N-S+1)×(M-S+1)の新たなマトリクスであるマトリクスPが算出される。その成分Pijは、元のN×Mマトリクスの各削減マトリクスとカーネルKとから計算された各内積に相当する。なお、実際にはこのサイズのマトリクスが層400の点畳み込み層へ転送される。
に大きい値又は極端に小さい値)がフィルタリング除去される。
を得るために整流関数が適用され、この結果/マトリクスはニューラルネットワークにおける次の層へ転送され、又は、ニューラルネットワークにおいて次の層がもはや無い場合には、結果436は出力符号化画像として、エンコーダにより処理されるために、図5にて説明するように出力される。
3個設けるのが最も好適である。というのも、指先の識別精度及びその位置の識別精度が比較的高くなると同時に、各方法の実装に必要なコンピュータリソースが削減され、このことによってモバイル装置により適用しやすくなるからである。
を得るため、エンコーダの深度畳み込み層のカーネルのように
を有するマトリクスの形態の
を、マトリクスの各成分に乗算する。検討を簡単化するため、
を任意の値とすることができる。これには、デコーダにおいて用いられるカーネルの
が、エンコーダにおいて用いられるS及び/又はTと異なることが含まれる。
を設けることが可能ではあるが、説明を簡単化するため、使用される
は逆畳み込み部の中では同一であると仮定する。これが意味するところは、
ということである。しかし、デコーダの他の逆畳み込みに対しては、上述のことは当てはまらず、カーネルのサイズ及び/又は成分を別のものとすることができる。
に戻ると、これ以降の手順は下記のようになる。入力マトリクスBの各成分Bijについて、部分マトリクスが上記にて説明したように算出される。逆畳み込みから合理的な出力を得るため、これらの部分マトリクスを特殊な態様で組み合わせることにより、
を得る。これは、多数の手法で達成することができる。
を組み合わせると共に、
を組み合わせる。さらに、対角線上に
を設ける。このようにして、B00からパターンを開始して入力マトリクスの元の成分B
ij全てとその部分マトリクスとに対して上述のパターンを続けることにより、拡張マトリクスが得られる。
を重ね合わせて組み合わせることもできる。具体的には、部分マトリクスを上記のように互いにくっつけるのではなく、(上記段落の場合のように)各カーネルの
より小さいストライド幅Wで
をシフトさせるのみで、
とを組み合わせる。これにより、
において1つ又は複数の
の組み合わせから成分が得られる。この重なり合いは、どの方向にも設けることができることが明らかである。つまり、(マトリクス表現を考えると)左右方向、上下方向及び対角方向に設けることができる。
となり、これは、
に簡素化する。これは、上記にて説明したように
を互いに横に配置する場合に当てはまり、これは
と等価である。重なり合いが設けられ、これによりストライド幅Wがカーネルの
より小さい場合、拡張マトリクスの合成サイズは(N’+(N’-1)W)×(M’+(M’-1)W)となることが容易に分かる。これはもちろん、ストライド幅Wが左右方向と上下方向とで同一である場合にのみ当てはまる。それ以外の場合には、各幅を算出するために異なる値Wa及びWbを用いることができる。
に対応する中間拡張画像が、バイリニアアップサンプリングユニット511に転送される。
このユニットでは、周知のバイリニアアップサンプリング技術を用いて
がアップサンプリングされる。これは、バイリニアアップサンプリングを用いて、隣り合う画素間に新たな画素を設けるということである。つまり、中間画素の値は周知のバイリニアアップサンプリング技術を用いて算出される。一例として、
を考える。バイリニアアップサンプリングでは、
をさらに拡張して他のマトリクス(例えば
として示す)に達するため、隣り合う画素間の1つ又は複数の画素を算出することができる。このバイリニアアップサンプリングにより、算出された中間値は、逆畳み込みを用いて算出されたマトリクスの成分間のより「滑らか」な接続を表現することとなる。
を処理した後は、さらなる中間復号化画像533が得られ、その後、デコーダにおける次の層に転送される。上記の手順はデコーダの全ての層において繰り返され、最終的に復号化出力画像536が得られる。
失われているからである。
各値に対し、
が得られ、ここで、値x<0から導出される
は全て約0となり、これに対して、元の値x>0から得られる
は約1となる。
を有する成分は白であり、
を有する成分及び修正後マトリクスは黒と考えることができる。その逆も可能であり、「白黒」画像についての言及はあくまで例示目的である。
のいずれかに一致することとなるからである。画像の他の部分はフェードアウトし(これは、それぞれ
をとることに相当する)、これにより関心領域と画像の他の部分又は一部とを区別することができる。
つの逆畳み込み部を設け、その後に1つのバイリニアアップサンプリングユニットをもうけることができる。その後、もう一度逆畳み込み部を1つだけ設け、その直後に1つのバイリニアアップサンプリングユニットを設けることができる。他の組み合わせも可能である。
1の位置は、各グリッドセルにおける中心点630すなわち各座標系の原点を基準とする境界ボックス631の中心点の位置によって表されることとなる。よって、グリッドセル611における各境界ボックスの位置は2つの座標x及びyによって表すことができる。境界ボックスの幅及び高さは、0より大きい2つの値によって表すことができる当該境界ボックスの幾何学的特性を表すと考えられる。
これは、∇xyd=0の場合に当てはまる。
を判断するため、位置M’における当該境界ボックスのサイズを増加又は減少することができる。この関数は、位置M’を有し高さhf及び幅bfを有する特定の境界ボックスと学習済みのパターンとの差が最小になるように最小化される。
の値と、をニューラルネットワークが学習するために、ニューラルネットワークをどのようにして適切に訓練できるかを説明する。
に、セクション704において
を使用することにより、図7に示されているステップ又はセクション703及び704を図4及び図5にて説明したように実行する、ということである。項目403及び404の第1及び第2のバッチ正規化部並びに整流線形ユニットは、上記にて図4を参照して説明したように動作する。これらは訓練可能なパラメータを有しないので、以下では詳細な説明を割愛する。
の対応する成分を修正する。これは具体的には、ネットワークの全ての層に対して同時に、又は各層ごとに別個に、点畳み込み層の重みαと深度畳み込み層のカーネルK及び
の成分を操作する、ということになる。
、図6で説明したように元の画像を複数のグリッドセルに分離して各対応する境界ボックスをオプションとして特定することにより、小さい容量のアプリケーションを提供することができ、これによりインターネット等を介して他のデータソースに何らアクセスしなくても、モバイル装置単独で使用することができる。これにより、無線ネットワーク等へのアクセスが不可能である環境下での適用に適したものとなる。さらに、この用途を実行するために必要なプロセッサ性能を最小限に抑えつつ、例えば、上記にて説明したように、後で指先の指紋によって行われるユーザの識別に使用できるROIの適切な識別結果を得ることができる。
には値1、否定的な識別結果の場合には値0によって表すことができる。ベクトルbに含まれる他の値とは異なり、クラスは離散値であり、クラスの数に相当する限られた数の異なる値しかとれないことが明らかである。
Claims (20)
- ユーザの例えば1つの指紋又は複数の指先の指紋のセット等のバイオメトリック特性を有する当該ユーザの物体の画像を用いて当該ユーザを識別するための方法であって、
モバイル装置の光学センサによって前記物体の前記画像を取得するステップと、
前記画像又は前記画像の一部をニューラルネットワークへ供給するステップと、
前記ニューラルネットワークによって、前記画像又は前記画像の前記一部のうち関心領域(以下「ROI」という)を含む部分を当該画像の他の部分から区別することを含む、前記画像又は前記画像の前記一部を前記ニューラルネットワークによって処理するステップと、
前記画像又は前記画像の前記一部から前記ROIを抽出するステップと、
前記ROIを含む前記部分を記憶装置に記憶し、及び/又は、前記ROIを含む前記部分を入力として識別手段へ供給するステップと、を有し、
前記識別手段は、前記ROIのバイオメトリック特性を抽出することと、抽出した前記バイオメトリック特性が前記ユーザを識別するか否かを判定するため、抽出した前記バイオメトリック特性を処理することと、を含む
ことを特徴とする方法。 - 前記物体は少なくとも1つの指先であり、
前記バイオメトリック特性は前記指先の指紋であり、
前記識別手段によって前記入力を処理することは、
前記指紋からバイオメトリック特徴を、例えば細かい特徴の位置及び種類等を抽出するステップと、
抽出された前記バイオメトリック特徴を、記憶装置に記憶されたバイオメトリック特徴と比較するステップと、
を含み、
前記抽出されたバイオメトリック特徴と前記記憶されたバイオメトリック特徴との差が閾値を下回る場合、前記識別手段は前記指紋によって前記ユーザが識別されると判定し、
前記バイオメトリック特徴と前記記憶されたバイオメトリック特徴との差が閾値を上回る場合、前記識別手段は前記指紋によって前記ユーザが識別されないと判定する、
請求項1記載の方法。 - 前記画像は複数の指先を有し、
前記方法はさらに、前記画像中における各指先に対応する部分を抽出し、前記識別手段による前記ユーザの識別のために各指先の前記指紋を使用することを含む、
請求項2記載の方法。 - 前記識別手段は、前記画像中の全ての指先の指紋の組み合わされた識別精度が特定の閾値を上回ると判定することによって、前記指先の前記指紋によりユーザが識別されると判定し、又は、
前記識別手段は、前記指先ごとに前記指紋のバイオメトリック特徴と当該指先の当該指紋の記憶されたバイオメトリック特徴との差が閾値を下回るか否かを判定し、判定された全ての差が対応する前記閾値を下回る場合にのみ前記指先の前記指紋によってユーザが識別されると判定することにより、前記指先の前記指紋によりユーザが識別されると判定する、
請求項3記載の方法。 - 前記画像は、前記モバイル装置の光学センサとしてのカメラによって取得される、
請求項1から4までのいずれか1項記載の方法。 - 前記画像又は前記画像の前記一部を前記ニューラルネットワークによって処理するステップは、
エンコーダによって前記画像を処理することにより符号化済み画像を得ることと、
その後、前記符号化済み画像をデコーダによって処理することにより復号化済み出力画像を得ることと、
を含む、
請求項1から5までのいずれか1項記載の方法。 - 処理のために前記ニューラルネットワークへ供給される前記画像又は前記画像の前記一部はN×M個の画素を有し、
前記符号化済み画像はn×m個の画素を有し、ここでn<N、m<Mであり、
前記復号化済み出力画像はN×M個の画素を有する、
請求項6記載の方法。 - 前記画像又は前記画像の前記一部のうち前記部分を区別することは、前記復号化済み出力画像の一部を他の部分から区別することを含む、
請求項6又は7記載の方法。 - 前記バイオメトリック特性を含む前記部分を抽出することは、前記復号化済み出力画像において、区別された前記部分内にある画素を識別し、その後、前記復号化済み出力画像における区別された前記部分内にある画素を、元の前記画像又は前記画像の前記一部に含まれる対応する画素を用いて識別することと、元の前記画像又は前記画像の前記一部から、前記画像又は前記画像の前記一部のうち前記バイオメトリック特性を含む部分に該当する対応する画素を抽出することと、を含む、
請求項8記載の方法。 - 前記ニューラルネットワークは、エンコーダ層のセットとデコーダ層のセットとを有し、
前記エンコーダによって前記画像又は前記画像の前記一部を処理することにより符号化済み画像を得ることは、当該エンコーダの第1層によって入力を処理することにより第1の中間符号化出力を生成することと、前記エンコーダの各先行層の符号化出力を前記エンコーダの各後続層によって処理することと、を有し、
前記各エンコーダ層は、各層における前記入力の処理順に、深度畳み込み層と、第1のバッチ正規化部と、第1の整流線形ユニットと、点畳み込み層と、第2のバッチ正規化部と、第2の整流線形ユニットとをそれぞれ有する、深度で分離可能な畳み込みであり、
前記複数の層を用いて前記入力を処理することにより、前記エンコーダは前記符号化済み画像を得られ、
前記符号化済み画像は前記デコーダへ供給され、
前記符号化済み画像を前記デコーダによって処理することにより復号化済み出力画像を得ることは、当該デコーダの第1層によって入力を処理することにより第1の中間復号化出力を生成することと、前記デコーダの各先行層の復号化出力を前記デコーダの各後続層によって処理することと、を有し、
前記各デコーダ層は、逆畳み込み層及び/又はバイリニアアップサンプリング層を有し、
入力された前記符号化済み画像を前記複数の層を用いて処理することにより、前記デコーダは前記復号化済み出力画像を得られる、
請求項6から10までのいずれか1項記載の方法。 - 前記画像を前記ニューラルネットワークにより処理するステップは、前記画像又は前記画像の前記一部から、前記画像又は前記画像の前記一部の各画素の色値を表す少なくとも1つのマトリクスIを生成するステップと、前記マトリクスを前記ニューラルネットワークへ入力として供給するステップと、を含み、
前記画像又は前記画像の前記一部はN×M個の画素を有し、
前記マトリクスIはN×M個の値を有するマトリクスであり、
前記マトリクスIの成分はIijによって与えられ、ここでi及びjは整数であり、i=1・・・Nかつj=1・・・Mである、
請求項11記載の方法。 - 前記エンコーダの各深度畳み込み層は、サイズS×Tのマトリクスである予め定められたカーネルKであって成分Sabを有するカーネルKを、
前記カーネルを前記マトリクスに適用することは、
サイズ(N+2Pw)×(M+2Ph)を有するマトリクスZのサイズ(N×M)S,Tの各削減マトリクスRと前記マトリクスKとの内積を算出することを含み、
前記マトリクスRは前記カーネルKと同一サイズであり、
前記マトリクスZの成分Zcdは、
ここでWw及びWhはストライド幅を定義し、前記マトリクスPの各成分Pijは、ij番目の前記削減マトリクスRと前記カーネルKとの内積の値であり、
前記マトリクスPは前記深度畳み込み層から出力として供給される、
請求項12記載の方法。 - 前記方法は、前記ニューラルネットワークに前記画像の一部を供給するステップを有し、
前記ニューラルネットワークに前記画像の一部を供給するステップは、
Q×R個のグリッドセルを有するグリッドに前記画像を分離し、各グリッドセル内に、当該グリッドセルにおける予め定められた位置と予め定められた幾何学的特性とを有する少なくとも1つの境界ボックスを作成することと、
前記境界ボックスの位置及び幾何学的特性を修正することにより、前記物体の位置に最も一致する修正後位置と修正後幾何学的特性とを有する修正後境界ボックスを得ることと、
前記境界ボックスに含まれる前記画像の画素を前記画像の一部として前記ニューラルネットワークに供給することと、
を含む、
請求項1から16までのいずれか1項記載の方法。 - 前記境界ボックスの位置は、前記グリッドセルの中心を基準として二次元で算出され、
前記境界ボックスの幾何学的特性は、当該境界ボックスの高さ及び幅を含み、さらに、前記物体が前記境界ボックス内にある確率が各境界ボックスに関連付けられる、
請求項17記載の方法。 - 前記方法の各ステップを前記モバイル装置上で行う、
請求項1から18までのいずれか1項記載の方法。 - 光学センサと、プロセッサと、実行可能な指令を記憶する記憶ユニットと、を備えたモバイル装置であって、
前記指令は、前記モバイル装置の前記プロセッサによって実行されたときに前記プロセッサに請求項1から19までのいずれか1項記載の方法を実行させる
ことを特徴とするモバイル装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19382137.8A EP3702958B1 (en) | 2019-02-26 | 2019-02-26 | Method for verifying the identity of a user by identifying an object within an image that has a biometric characteristic of the user and separating a portion of the image comprising the biometric characteristic from other portions of the image |
EP19382137.8 | 2019-02-26 | ||
JP2021549736A JP7258375B2 (ja) | 2019-02-26 | 2020-02-24 | ユーザのバイオメトリック特性を有する画像中の物体を識別して、画像のうちバイオメトリック特性を含む部分を他の部分から分離することにより当該ユーザのidを検証するための方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021549736A Division JP7258375B2 (ja) | 2019-02-26 | 2020-02-24 | ユーザのバイオメトリック特性を有する画像中の物体を識別して、画像のうちバイオメトリック特性を含む部分を他の部分から分離することにより当該ユーザのidを検証するための方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023082065A true JP2023082065A (ja) | 2023-06-13 |
JP7519127B2 JP7519127B2 (ja) | 2024-07-19 |
Family
ID=65766948
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021549736A Active JP7258375B2 (ja) | 2019-02-26 | 2020-02-24 | ユーザのバイオメトリック特性を有する画像中の物体を識別して、画像のうちバイオメトリック特性を含む部分を他の部分から分離することにより当該ユーザのidを検証するための方法 |
JP2023050810A Active JP7519127B2 (ja) | 2019-02-26 | 2023-03-28 | ユーザのバイオメトリック特性を有する画像中の物体を識別して、画像のうちバイオメトリック特性を含む部分を他の部分から分離することにより当該ユーザのidを検証するための方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021549736A Active JP7258375B2 (ja) | 2019-02-26 | 2020-02-24 | ユーザのバイオメトリック特性を有する画像中の物体を識別して、画像のうちバイオメトリック特性を含む部分を他の部分から分離することにより当該ユーザのidを検証するための方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US11783625B2 (ja) |
EP (2) | EP3702958B1 (ja) |
JP (2) | JP7258375B2 (ja) |
KR (1) | KR102634186B1 (ja) |
BR (1) | BR112021016734A2 (ja) |
ES (1) | ES2943287T3 (ja) |
MX (1) | MX2021009532A (ja) |
WO (1) | WO2020174350A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11301586B1 (en) * | 2019-04-05 | 2022-04-12 | T Stamp Inc. | Systems and processes for lossy biometric representations |
WO2024155087A1 (ko) * | 2023-01-17 | 2024-07-25 | 주식회사 엑스페릭스 | 모바일을 이용한 지문인식 방법 및 이를 이용한 장치 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112015004867B1 (pt) | 2012-09-05 | 2022-07-12 | Element, Inc. | Sistema de prevenção de mistificação de identidade |
US9424458B1 (en) * | 2015-02-06 | 2016-08-23 | Hoyos Labs Ip Ltd. | Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices |
US11157814B2 (en) | 2016-11-15 | 2021-10-26 | Google Llc | Efficient convolutional neural networks and techniques to reduce associated computational costs |
US9968257B1 (en) * | 2017-07-06 | 2018-05-15 | Halsa Labs, LLC | Volumetric quantification of cardiovascular structures from medical imaging |
US10679351B2 (en) * | 2017-08-18 | 2020-06-09 | Samsung Electronics Co., Ltd. | System and method for semantic segmentation of images |
CN108009520B (zh) * | 2017-12-21 | 2020-09-01 | 西安格威西联科技有限公司 | 基于卷积变分自编码器网络的手指静脉识别方法及系统 |
US10726302B2 (en) * | 2018-11-29 | 2020-07-28 | Qualcomm Incorporated | Edge computing |
CN110956654B (zh) * | 2019-12-02 | 2023-09-19 | Oppo广东移动通信有限公司 | 图像处理方法、装置、设备及存储介质 |
-
2019
- 2019-02-26 EP EP19382137.8A patent/EP3702958B1/en active Active
- 2019-02-26 EP EP22163052.8A patent/EP4036795A1/en active Pending
- 2019-02-26 ES ES19382137T patent/ES2943287T3/es active Active
-
2020
- 2020-02-24 JP JP2021549736A patent/JP7258375B2/ja active Active
- 2020-02-24 BR BR112021016734-0A patent/BR112021016734A2/pt unknown
- 2020-02-24 KR KR1020217030968A patent/KR102634186B1/ko active IP Right Grant
- 2020-02-24 US US17/433,318 patent/US11783625B2/en active Active
- 2020-02-24 WO PCT/IB2020/051523 patent/WO2020174350A1/en active Application Filing
- 2020-02-24 MX MX2021009532A patent/MX2021009532A/es unknown
-
2023
- 2023-03-28 JP JP2023050810A patent/JP7519127B2/ja active Active
- 2023-08-16 US US18/450,926 patent/US20230394871A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2022522429A (ja) | 2022-04-19 |
KR20210127257A (ko) | 2021-10-21 |
KR102634186B1 (ko) | 2024-02-06 |
EP4036795A1 (en) | 2022-08-03 |
MX2021009532A (es) | 2021-09-08 |
US20230394871A1 (en) | 2023-12-07 |
ES2943287T3 (es) | 2023-06-12 |
US20220157077A1 (en) | 2022-05-19 |
BR112021016734A2 (pt) | 2021-10-13 |
JP7519127B2 (ja) | 2024-07-19 |
WO2020174350A1 (en) | 2020-09-03 |
EP3702958B1 (en) | 2023-04-05 |
US11783625B2 (en) | 2023-10-10 |
EP3702958A1 (en) | 2020-09-02 |
JP7258375B2 (ja) | 2023-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7386545B2 (ja) | 画像中の物体を識別するための方法、及び当該方法を実施するためのモバイル装置 | |
US20210082136A1 (en) | Extracting information from images | |
CN110796080B (zh) | 一种基于生成对抗网络的多姿态行人图像合成算法 | |
US11941918B2 (en) | Extracting information from images | |
JP4483334B2 (ja) | 画像処理装置 | |
US7970212B2 (en) | Method for automatic detection and classification of objects and patterns in low resolution environments | |
CN108764041B (zh) | 用于下部遮挡人脸图像的人脸识别方法 | |
US20060284837A1 (en) | Hand shape recognition apparatus and method | |
JP2023082065A (ja) | ユーザのバイオメトリック特性を有する画像中の物体を識別して、画像のうちバイオメトリック特性を含む部分を他の部分から分離することにより当該ユーザのidを検証するための方法 | |
CN110728209A (zh) | 一种姿态识别方法、装置、电子设备及存储介质 | |
JP2004086891A (ja) | デジタル画像におけるオブジェクト検出方法 | |
KR20210025020A (ko) | 의사 이미지들을 이용한 얼굴 이미지 인식 | |
EP3799647A1 (en) | Fast and robust friction ridge impression minutiae extraction using feed-forward convolutional neural network | |
CN116229528A (zh) | 一种活体掌静脉检测方法、装置、设备及存储介质 | |
JP7360217B2 (ja) | ユーザのバイオメトリック特性を有する当該ユーザの物体の画像からデータを取得するための方法 | |
Paul et al. | Rotation invariant multiview face detection using skin color regressive model and support vector regression | |
CN116342968B (zh) | 一种双通道人脸识别方法及装置 | |
JP7270304B2 (ja) | ユーザのバイオメトリック特性を有する画像中の物体を識別することにより当該ユーザのidを検証するための方法、及び当該方法を実施するためのモバイル装置 | |
CN113837020B (zh) | 一种化妆进度检测方法、装置、设备及存储介质 | |
Yip et al. | Image pre-processing using OpenCV library on MORPH-II face database | |
Yin et al. | Face Recognition System using Self-Organizing Feature Map and Appearance-Based Approach | |
Jourabloo | Designing Convolutional Neural Networks for Face Alignment and Anti-Spoofing | |
CN117252802A (zh) | 基于牙齿图像的个人识别方法 | |
CN117036179A (zh) | 图像处理方法、装置、存储介质及计算机设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230425 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7519127 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |