JP2023081671A - ガス流量測定方法及びガス流量用測定治具 - Google Patents

ガス流量測定方法及びガス流量用測定治具 Download PDF

Info

Publication number
JP2023081671A
JP2023081671A JP2021195567A JP2021195567A JP2023081671A JP 2023081671 A JP2023081671 A JP 2023081671A JP 2021195567 A JP2021195567 A JP 2021195567A JP 2021195567 A JP2021195567 A JP 2021195567A JP 2023081671 A JP2023081671 A JP 2023081671A
Authority
JP
Japan
Prior art keywords
gas
space
pressure
flow rate
showerhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021195567A
Other languages
English (en)
Inventor
太一 中川
Taichi Nakagawa
健次 天野
Kenji Amano
英人 末木
Hideto Sueki
貴史 大森
Takashi Omori
健一 遠藤
Kenichi Endo
尚宏 富田
Naohiro Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2021195567A priority Critical patent/JP2023081671A/ja
Publication of JP2023081671A publication Critical patent/JP2023081671A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

【課題】処理容器内の処理空間にシャワーヘッドから供給されるガスの流量を正確に測定するガス流量測定方法及びガス流量用測定治具を提供する。【解決手段】処理容器内の処理空間に設けられたシャワーヘッドから供給されるガスのガス流量を測定する方法であって、シャワーヘッドは、内部に設けられたガス空間24と、ガス導入部23aと、複数のガス噴出孔22aと、を有し、内部に圧力測定空間S11を有する封止部材500により、複数のガス噴出孔の一部を、処理空間側から封止して封止ガス噴出孔とすると共に、圧力測定空間とガス空間とを連通させる工程と、ガス導入部からガス空間にガスを導入する工程と、圧力測定空間において第1の圧力を測定する工程と、処理空間における封止部材の外側において第2の圧力を測定する工程と、第1の圧力及び第2の圧力に基づいて、ガス流量を算出する工程と、を含む。【選択図】図3

Description

本開示は、ガス流量測定方法及びガス流量用測定治具に関する。
特許文献1には、処理室と、処理室を減圧する真空排気手段と、被処理体を載置する電極と、電磁波放射電源と、第1のガス導入口と、第2のガス導入口と、ガス分配器を有するプラズマ処理装置が開示されている。このプラズマ処理装置は、ガス分配器と第1のガス導入口との間、および前記ガス分配器と第2のガス導入口との間に、ガス流量計が設けられている。
特開2006-41088号公報
本開示にかかる技術は、処理容器内の処理空間にシャワーヘッドから供給されるガスの流量を正確に取得する。
本開示の一態様は、処理容器内の処理空間に設けられたシャワーヘッドから供給されるガスのガス流量を測定する方法であって、前記シャワーヘッドは、内部に設けられたガス空間と、該ガス空間にガスを導入するガス導入部と、前記ガス空間から前記処理空間に前記ガスを噴出する、複数のガス噴出孔と、を有し、内部に圧力測定空間を有する封止部材により、前記複数のガス噴出孔の一部を、前記処理空間側から封止して封止ガス噴出孔とすると共に、前記圧力測定空間と前記ガス空間とを連通させる工程と、前記ガス導入部から前記ガス空間に前記ガスを導入する工程と、前記圧力測定空間において第1の圧力を測定する工程と、前記処理空間における前記封止部材の外側において第2の圧力を測定する工程と、前記第1の圧力及び前記第2の圧力に基づいて、前記ガス流量を算出する工程と、を含む。
本開示によれば、処理容器内の処理空間にシャワーヘッドから供給されるガスの流量を正確に取得することができる。
本実施形態にかかるガス流量測定方法によりガス流量が測定されるシャワーヘッドを有する基板処理装置としてのプラズマ処理装置の構成の概略を示す縦断面図である。 図1の部分拡大図である。 シャワーヘッドに取り付けた状態の封止部材の断面図である。 シャワーヘッドに取り付けた状態の封止部材の下面図である。 第1部材の断面図である。 第2部材の断面図である。 圧力測定ユニットの側面図である。 取付部材の断面図である。 スペーサの断面図である。 封止部材の変形例を示す図である。
液晶表示装置(LCD)等のフラットパネルディスプレイ(FPD)の製造工程では、ガラス基板等の基板に対し、エッチング処理や成膜処理等の基板処理が行われる。これらの基板処理には、基板処理装置が用いられる。
基板処理装置は、処理対象の基板が収容される処理容器を有する。処理容器内の処理空間に処理ガスを供給するシャワーヘッドからの、基板処理時の供給ガス流量を正確に知ることができれば、基板の処理精度を向上させる上で非常に有益な情報となる。
シャワーヘッドへのガスの供給配管に設けたガス流量計での測定結果に基づいて、シャワーヘッドからの供給ガス流量を推定することは可能である。しかし、ガス流量計からシャワーヘッドのガス噴出孔の処理空間に対する開口まで距離があること等から、上述の供給ガス流量の推定結果は正確でない場合がある。
また、シャワーヘッドのガス噴出孔の処理空間に対する開口に対し流量計を設置すれば供給ガス流量を測定可能である。ただし、基板処理時の供給ガス流量を正確に知るためには、処理空間を基板処理時と同様に真空状態にする必要がある。真空状態の処理空間に既存の流量計を設置するのは現実的には困難である。さらに、ガス流量は、流路のコンダクタンスとその両端の圧力差との積により求めることができるため、ガス噴出孔の両端の圧力を測定すれば正確にガス流量を算出可能と考えられる。しかし、ガス噴出孔の一端は処理空間に位置するため圧力計を設置することにより圧力の測定が可能であるものの、他端はシャワーヘッド内部のガス拡散空間にあり圧力計の設置が難しく圧力測定は困難である。
そこで、本開示にかかる技術は、処理容器内の処理空間にシャワーヘッドから供給されるガスの流量を正確に取得し、より具体的には、処理容器内の真空状態の処理空間にシャワーヘッドから供給されるガスの流量を正確に取得する。
以下、本実施形態にかかるガス流量測定方法及びガス流量用測定治具について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。
<プラズマ処理装置1>
図1は、本実施形態にかかるガス流量測定方法によりガス流量が測定されるシャワーヘッドを有する基板処理装置としてのプラズマ処理装置の構成の概略を示す縦断面図である。図2は、図1の部分拡大図である。
図1のプラズマ処理装置1は、基板としての、矩形のガラス基板G(以下、「基板G」という)に対し、基板処理として、処理ガスのプラズマを用いたプラズマ処理を行う。プラズマ処理装置1が行うプラズマ処理は、例えばFPD用の成膜処理、エッチング処理、アッシング処理等である。これらの処理により、基板G上に、発光素子や発光素子の駆動回路等の電子デバイスが形成される。
プラズマ処理装置1は、角筒形状の容器本体10を備える。容器本体10は、導電性材料、例えばアルミニウムから形成され、電気的に接地されている。プラズマ処理にはしばしば腐食性のガスが用いられるため、容器本体10の内壁面は、耐腐食性を向上させる目的で、陽極酸化処理等の耐腐食コーティング処理が施されている。また、容器本体10の上面には開口が形成されている。この開口は、容器本体10と絶縁されて設けられた矩形状の金属窓20によって気密に塞がれ、具体的には、金属窓20及び後述の金属枠14によって気密に塞がれる。容器本体10及び金属窓20によって囲まれた空間は、プラズマ処理の処理対象の基板Gがプラズマ処理時に位置する処理空間S1となり、金属窓20の上方側の空間は、後述の高周波アンテナ(誘導結合アンテナ)80が配置されるアンテナ室S2となる。容器本体10の側壁には、処理空間S1内に基板Gを搬入出するための搬入出口11及び搬入出口11を開閉するゲートバルブ12が設けられている。
処理空間S1の下部側には、金属窓20と対向するように、基板Gを支持する基板支持部30が設けられている。基板支持部30は、基板Gが載置される本体部31を有し、本体部31が脚部32を介して容器本体10の底面に設置されている。
本体部31は、導電性材料、例えばアルミニウムで構成されている。本体部31の表面は、絶縁性及び耐腐食性を向上させるため、陽極酸化処理若しくはセラミック溶射処理等のコーティング処理が施されている。また、本体部31には、基板Gを吸着保持する静電チャック(図示せず)が設けられている。
さらに、本体部31には、整合器40を介して高周波電源41が接続されている。高周波電源41は、バイアス用の高周波電力、例えば周波数が3.2MHzの高周波電力を本体部31に供給する。これにより、処理空間S1内に生成されたプラズマ中のイオンを基板Gに引き込むことができる。
なお、本体部31内には、基板Gを温度調節する温度調節機構として、基板Gを冷却するための冷却用の冷媒が通流される冷媒流路(図示せず)を有する冷却機構が設けられている。温度調節機構として、冷却機構に代えて加熱するための加熱機構(例えば抵抗ヒータ)を設けてもよいし、これら冷却機構と加熱機構の両方を設けてもよい。また、本体部31内には、温度センサ(図示せず)や、基板Gの裏面にHeガス等の伝熱ガスを供給するためのガス流路(図示せず)が設けられている。
容器本体10の底面には、排気口13が形成され、この排気口13には真空ポンプ等を有する排気部50が接続されている。処理空間S1は、この排気部50によって減圧される。排気部50は、複数の排気口13のそれぞれに設けられてもよいし、複数の排気口13に共通に設けられてもよい。
容器本体10の側壁の上面側には、アルミニウム等の金属材料から形成された矩形状の枠体である金属枠14が設けられている。容器本体10と金属枠14との間には、処理空間S1を気密に保つためのシール部材15が設けられている。また、容器本体10と金属枠14と金属窓20とが、処理対象の基板Gを収容する処理容器を構成する。
金属窓20は、図1及び図2に示すように、複数の部分窓21に分割され、これらの部分窓21が金属枠14の内側に配置され、全体として矩形状の金属窓20を構成している。部分窓21は、平面視における形状は共通ではなく、例えば、平面視四角形状(例えば、台形)のものや平面視三角形状のものがある。
部分窓21はそれぞれ、処理空間S1に処理ガスを供給するシャワーヘッドとして機能する。例えば、各部分窓21(以下、シャワーヘッド21ということがある。)は、図2に示すように、部分窓本体(ベース部材)23と、シャワープレート22と、を上からこの順に重ねた構成となっている。シャワープレート22には、処理空間S1に処理ガスを噴出する多数のガス噴出孔22aが形成されている。シャワープレート22の厚みは例えば5~20mmである。また、シャワープレート22の外形形状は例えば平面視で数百mm×数百mmの四角形状である。
シャワープレート22と部分窓本体23とにより、処理ガスを拡散させるガス空間24が形成されている。具体的には、例えば、部分窓本体23の下面に凹所が形成されおり、この凹所がシャワープレート22に塞がれることによりガス空間24が形成されている。ガス空間24の厚みは例えば5~20mmである。
また、部分窓本体23には、ガス空間24にガスを導入するガス導入部としてガス導入口23a(後述の図3参照)が設けられている。
シャワープレート22は締結ネジ25によって部分窓本体23に締結されている。
シャワープレート22は、具体的には、締結ネジ25によって、ガス空間24を形成する部分窓本体23の凹部の外側の領域における下面に締結されている。
また、シャワープレート22の周縁部と部分窓本体23の周縁部との間には、ガス空間24を密封するためのOリング(図示せず)が設けられ、シャワープレート22と部分窓本体23とを電気的に接続するためのスパイラルリング(図示せず)がOリングの外側に設けられている。
これらの構成を備えた部分窓21は、保持部(図示せず)を介してアンテナ室S2の天井面側から吊り下げられ保持されている。
図1に示すように、各部分窓21のガス空間24は、ガス供給管60を介して処理ガス供給部61に接続されている。具体的には、各部分窓21のガス導入口23a(後述の図3参照)がガス供給管60を介して処理ガス供給部61に接続されている。処理ガス供給部61は、流量調整弁(図示せず)や開閉弁(図示せず)等を備え、成膜処理、エッチング処理、アッシング処理等に必要な処理ガスをガス空間24に供給する。なお、図示の便宜上、図1には、1つの部分窓21に処理ガス供給部61が接続された状態を示してあるが、実際には各部分窓21のガス空間24に処理ガス供給部61が接続される。
各シャワープレート22及び各部分窓本体23は、非磁性体で導電性の材料、例えばアルミニウムにより構成される。また、シャワープレート22の処理空間S1側の面である下面と、シャワープレート22及び部分窓本体23のガス空間24を形成する面と、シャワープレート22のガス噴出孔22aの内周面とは、処理ガス等に腐食性ガスを用いる場合、耐腐食性を向上させるため、陽極酸化処理等の耐腐食性コーティングが施される。さらに、シャワープレート22の下面は、耐プラズマ性を向上させるため、酸化イットリウム等のセラミックで被覆する処理等の耐プラズマコーティングが施されている。なお、シャワープレート22の周縁部上面及び部分窓本体23の周縁部下面におけるOリングより外側の領域は、耐腐食性コーティングが施されていない。シャワープレート22と部分窓本体23とを電気的に接続し、また、部分窓本体23を介してシャワープレート22の温度調節を行うため、である。
また、部分窓21は、絶縁部材26によって金属枠14から電気的に絶縁されると共に、隣り合う部分窓21同士も絶縁部材26によって互いに電気的に絶縁されている。
絶縁部材26には、当該絶縁部材26を保護するため、当該絶縁部材26の処理空間S1側の面を覆う絶縁部材カバー27が設けられている。
また、図2に示すように、絶縁部材カバー27は、締結ネジ25が処理空間S1に露出するのを防ぐため、当該締結ネジ25の処理空間S1側を覆っている。
さらに、図1に示すように、金属窓20の上方側には天板部70が配置されている。天板部70は、金属枠14上に設けられた側壁部71によって支持されている。
上述の金属窓20、側壁部71及び天板部70にて囲まれた空間はアンテナ室S2を構成し、アンテナ室S2の内部には、部分窓21に面するように高周波アンテナ80が配置されている。
高周波アンテナ80は、例えば、絶縁材料から形成されるスペーサ(図示せず)を介して部分窓21から離間して配置される。高周波アンテナ80は、各部分窓21に対応する面に沿い、矩形状の金属窓20の周方向に沿って周回するように、例えば渦巻状に、同心状に複数形成され多環状のアンテナを構成する。
各高周波アンテナ80には、整合器42を介して高周波電源43が接続されている。各高周波アンテナ80には、高周波電源43から整合器42を介して、例えば13.56MHzの高周波電力が供給される。これにより、プラズマ処理の間、部分窓21それぞれの表面の上面から下面に循環する渦電流が誘起され、この渦電流のうち下面に流れる電流によって処理空間S1の内部に誘導電界が形成される。ガス噴出孔22aから吐出された処理ガスは、誘導電界によって処理空間S1の内部においてプラズマ化される。
さらに、プラズマ処理装置1には、処理空間S1の圧力を測定する圧力計90が設けられている。
また、プラズマ処理装置1には制御部Uが設けられている。制御部Uは、例えばCPU等のプロセッサやメモリ等を備えたコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、プラズマ処理装置1における基板Gの処理を制御するプログラムが格納されている。上述のプログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から制御部Uにインストールされたものであってもよい。プログラムの一部または全ては専用ハードウェア(回路基板)で実現してもよい。
<基板処理>
次に、プラズマ処理装置1における基板処理について説明する。
まず、ゲートバルブ12が開かれ、基板Gが、搬入出口11を介して処理空間S1内に搬入され、基板支持部30上に載置される。その後、ゲートバルブ12が閉じられる。
続いて、処理ガス供給部61から、各部分窓21のガス空間24及びガス噴出孔22aを介して処理空間S1内に処理ガスが供給される。また、排気部50による処理空間S1の排気が行われ、処理空間S1内が所望の圧力に調節される。
次いで、高周波電源43から高周波アンテナ80に高周波電力が供給され、これにより金属窓20を介して処理空間S1内に誘導電界が生じる。その結果、誘導電界により、処理空間S1内の処理ガスがプラズマ化し、高密度の誘導結合プラズマが生成される。そして、高周波電源41から基板支持部30の本体部31に供給されたバイアス用の高周波電力により、プラズマ中のイオンが基板Gに引き込まれ、基板Gが処理される。
プラズマによる処理の完了後、高周波電源41、43からの電力供給、処理ガス供給部61からの処理ガス供給が停止され、搬入時とは逆の順序で基板Gが搬出される。
これにより一連の基板処理が終了する。
<封止部材500>
本実施形態では、シャワーヘッド21から処理空間S1に供給される処理ガスの流量の測定、具体的には、ガス噴出孔22aから供給される処理ガスの流量の測定は、封止部材500を用いて行われる。以下、この封止部材500について図3~図9を用いて説明する。図3及び図4はそれぞれ、シャワーヘッド21に取り付けた状態の封止部材500の断面図及び下面図である。なお、図3では、図2の締結ネジ25のネジ頭が収まるザグリ部の図示は省略している。図5は、後述の第1部材の断面図である。図6は、後述の第2部材の断面図である。図7は、後述の圧力測定ユニットの側面図である。図8は、後述の取付部材の断面図である。図9は、後述のスペーサの断面図である。図5~図9では、後述のネジN1~N3が通されるネジ穴の図示が省略されている。
封止部材500は、図3に示すように、内部に圧力測定空間S11を有する。封止部材500は、シャワーヘッド21の複数のガス噴出孔22aの一部(具体的にはシャワープレート22の複数のガス噴出孔22aの一部)を処理空間S1側から封止し、封止ガス噴出孔とする。図の例では、1つのガス噴出孔22aを封止しているが、2以上のガス噴出孔22aを封止して封止ガス噴出孔としてもよい。封止部材500によって封止した際、封止部材500の圧力測定空間S11とガス空間24とが上記複数のガス噴出孔22aの一部(封止ガス噴出孔)を介して連通される。
封止部材500は、封止の際、シャワーヘッド21のガス噴出面20aと密着する。ガス噴出面20aは、シャワーヘッド21の下面であり、複数のガス噴出孔22aの下流側が開口する面である。
また、封止部材500は、図3及び図4に示すように、圧力測定空間S11を形成する空間形成部材501と、空間形成部材501のシャワーヘッド21側端とは反対側端に接続され圧力測定空間S11の圧力を測定する圧力測定ユニット502と、を有する。
空間形成部材501は、第1部材510と第2部材520とを含む。
第1部材510は、図3及び図5に示すように、円筒状に形成された円筒部511をシャワーヘッド21側に有し、円筒部511の外径より大きい矩形平板状に形成された平板部512をシャワーヘッド21と反対側に有する。円筒部511の中空部と、平板部512に設けられた孔512aは連通して圧力測定空間S11を形成する。平板部512は、圧力測定ユニット502が接続される接続部の一例である。
第1部材510のシャワーヘッド21側端すなわち先端とシャワーヘッド21との間を密閉するために、密閉部材としてのOリング513が設けられている。
第2部材520は、図3及び図6に示すように、平板状に形成され、第1部材510の円筒部511が挿通される挿通孔521を有する。
第1部材510と第2部材520とは、第1部材の円筒部511が第2部材520の挿通孔521に挿通された状態で、ネジN1により固定される。
円筒部511は、挿通孔521に挿通された状態で、空間形成部材501のシャワーヘッド21側の面(具体的には第2部材520のシャワーヘッド21側の面)から突出し圧力測定空間S11のシャワーヘッド21側の部分を形成する筒状部となる。
圧力測定ユニット502は、本体部530と連通部540とを有する。
本体部530には、圧力を測定する圧力センサ531と、圧力センサ531等に電力を供給する電源532と、圧力センサ531による測定結果等を記録するロガー533とを有する。ロガー533は、例えば、各種情報を記憶するメモリ(図示せず)と、圧力センサ531による測定結果と測定時刻とを対応付けてメモリに記憶させるプロセッサ(図示せず)とを有する。
連通部540は、圧力測定空間S11と本体部530の圧力センサ531が設けられた空間とを連通させる部材であり、空間形成部材501側端にフランジ541を有する円筒状に形成されている。
圧力測定ユニット502は、図8に示すような一対の取付部材503を介して第1部材510の平板部512に取り付けられる。例えば、平板部512と一対の取付部材503との間にフランジ541を挟んだ状態で、平板部512と一対の取付部材503とをネジN2により締結することにより、第1部材510の平板部512に圧力測定ユニット502が固定される。
なお、フランジ541とシャワーヘッド21との間を密閉するためにOリング550が設けられている。
さらに、封止部材500は図3及び図9に示すように一対のスペーサ504を有する。スペーサ504はそれぞれ、第2部材520のシャワーヘッド21側の面における円筒部511が突出していない部分(すなわち空間形成部材501の前述の筒状部が設けられていない部分)とシャワーヘッド21との間に挟み込まれて用いられる。スペーサ504はそれぞれ、例えば直方体状に形成されている。
第2部材520、スペーサ504を貫通するネジN3により、第2部材520はスペーサ504を介してシャワーヘッド21に固定される。
なお、第1部材510、第2部材520、取付部材503、スペーサ504等の材料には、例えばシャワープレート22と同じ材料を用いることができる。
(ガス流量の測定方法)
次いで、本実施形態にかかるシャワーヘッド21から処理空間S1に供給される処理ガスの流量の測定方法の一例、具体的には、ガス噴出孔22aから真空状態の処理空間S1に供給される処理ガスの流量の測定方法の一例を説明する。
(ステップK1:封止)
まず、封止部材500により、複数のガス噴出孔22aの一部を処理空間S1側から封止して封止ガス噴出孔とすると共に圧力測定空間S11とガス空間24とを連通させる。
具体的には、作業者が、圧力測定ユニット502が取り付けられた空間形成部材501をシャワーヘッド21に密着するように取り付けて、圧力測定空間S11とガス空間24とをガス噴出孔22aを介して連通させる。
より具体的には、作業者が、第1部材510の円筒部511がシャワーヘッド21に密着するように空間形成部材501をシャワーヘッド21に取り付けて、圧力測定空間S11とガス空間24とをガス噴出孔22aを介して連通させる。この際、空間形成部材501のシャワーヘッド21側の面における円筒部511が突出していない部分とシャワーヘッド21との間にスペーサ504を挟んだ状態で、空間形成部材501を取り付ける。
なお、封止部材500により封止するガス噴出孔22aの数は少ない方が好ましく、例えばシャワープレート22が有するガス噴出孔22aの総数の1~3%である。ガス噴出孔22aから処理空間S1へのガス流量を、基板処理時と極力等しくするためである。
(ステップK2:排気)
その後、処理空間S1が排気され、真空状態とされる。
(ステップK3:ガス導入)
次いで、ガス導入口23aからガス空間24にガスが導入される。ガス空間24に導入されたガスは、複数のガス噴出孔22aのうち、封止部材500により封止されたガス噴出孔22a(封止ガス噴出孔)を介して圧力測定空間S11に供給されると共に、封止部材500により封止されていないガス噴出孔22aを介して処理空間S1における封止部材500の外側に供給される。
(ステップK4:圧力測定空間S11の圧力測定)
ガス空間24内の圧力が安定すると予測される所定の時間経過後、ガス導入口23aからガス空間24へのガスの導入を継続したまま、圧力測定空間S11の圧力である第1の圧力が圧力測定ユニット502(具体的には圧力センサ531)により測定される。測定結果は、ロガー533に記録される。
定常状態では、圧力測定空間S11から外に流れ出るガスがないため圧力測定空間S11の圧力はガス空間24と略等しくなり、ガス空間24から圧力測定空間S11へのガス流は0となる。また、ガス噴出孔22aが細く、そのコンダクタンスが小さいため、少数のガス噴出孔22aが封止されてもガス空間24と処理空間S1との圧力差に及ぼす影響は小さく、基板処理時における圧力差とほぼ同じと見ることができる。なお、ガス噴出孔22aの内径は例えば0.5mm~3mmである。
(ステップK5:処理空間S1の圧力の測定)
また、ガス導入の開始後、処理空間S1における封止部材500の外側の圧力である第2の圧力が安定すると予測される所定の時間経過後、上記第2の圧力が圧力計90により測定される。
第2の圧力の測定は、第1の圧力の測定より後に行ってもよいし、前に行ってもよいし、同時に行ってもよい。
(ステップK6:大気開放及び封止部材500の取り外し)
その後、処理空間S1が大気開放され、作業者により封止部材500が取り外される。
(ステップK7:ガス流量算出)
そして、ステップK4で測定されロガー533に記録された第1の圧力P1(Pa)と、ステップK5で測定された第2の圧力P2(Pa)とに基づいて、ガス噴出孔22aから供給されるガスの流量が算出される。
算出には、以下の式が用いられる。
Q=C*(P1-P2)
Q:流量(Pa・m/s)
C:コンダクタンス(m/s)
コンダクタンスCは、例えば、シャワーヘッド21の組み付け前すなわちシャワープレート22を部分窓本体23に取り付ける前に、圧力の測定値から計算される。具体的には、部分窓本体23に取り付ける前のシャワープレート22のガス噴出孔22aに所定の流量でガスを通流させ、その時のガス噴出孔22aの上流端と下流端との圧力差から算出される。封止ガス噴出孔となる予定のガス噴出孔22aにのみガスを通流させるようにすれば、直接にコンダクタンスCの値を得ることができる。複数のガス噴出孔22aの全体にガスを通流させる場合には、封止ガス噴出孔となる予定のガス噴出孔22aの数に換算すればよい。
また、コンダクタンスCは、ガス噴出孔22aの寸法から算出してもよい。
以上のステップK1~K7は、例えば、シャワープレート22毎に行われる。また、シャワープレート22毎にステップK1~K7を行う場合、複数のシャワープレート22(例えば全てのシャワープレート22)についてステップK1~K6までをまとめて行った後、ステップK7をシャワープレート22毎に行ってもよい。
さらに、封止部材500をシャワープレート22の枚数分、用意しておけば、全シャワープレート22について同時に測定することもできる。
ステップK1の封止部材500による封止の際、封止部材500はネジN3により固定される。このネジN3による固定は、シャワープレート22を締結ネジ25により部分窓本体23に固定するためのネジ穴を用いて行われる。したがって、第2部材520の固定のために、すなわち封止部材500の固定のために、シャワープレート22に対する加工すなわちネジN3用のネジ穴の加工が不要である。また、シャワープレート22を部分窓本体23に固定するためのネジ穴を用いる場合に、シャワープレート22毎にガス流量を測定するときは、封止部材500の第2部材が、シャワープレート22の形状に合った形状を有すると共にシャワープレート22のネジ穴に対応する位置にネジ穴を有すものに適宜付け替えられる。その上で封止部材500が取り付けられる。シャワープレート22の外形形状が1種類でない場合に、圧力測定ユニット502が取り付けられた第1部材510をシャワープレート22間で共通とし、シャワープレート22の形状とネジ穴の位置に応じて第2部材520を変更できるように、第1部材510と第2部材520とは別体とされている。つまり、封止部材500であれば、第2部材520を変更することで、様々な形状、大きさのシャワープレート22に対応可能である。
<主な効果>
以上のように、本実施形態では、圧力測定空間S11を有する封止部材500でガス空間24に通じるガス噴出孔22aを封止する。封止することにより圧力測定空間S11とガス空間24とが同じ圧力となるため、本実施形態では、圧力測定空間S11の圧力を測定し、この測定結果をガス空間24の圧力とする。そして、本実施形態では、この測定結果と、別途測定される処理空間S1の圧力との圧力差に基づいて、シャワーヘッド21からのガス流量を求めることとした。ガス噴出孔22aのコンダクタンスが小さく、封止部材500が塞ぐガス噴出孔22aは一部であるため、封止部材500で塞ぐ場合と塞がない場合とで、ガス空間24と処理空間S1の圧力差は略同じである。したがって、本実施形態に係る方法によれば、処理空間S1にシャワーヘッド21から供給されるガスの流量を正確に求めることができる。特に、電源532とロガー533を有する圧力測定ユニット502を用いること等により、外部から圧力測定ユニット502へ電力供給する必要が無く、また、圧力測定ユニット502から外部へ測定データの送信を行う必要も無い。このことにより、圧力測定ユニット502は自立して動作が可能となり、処理空間S1が真空状態でもシャワーヘッド21から供給されるガスの流量を正確に測定することができる。
また、本実施形態では、スペーサ504を用いているため、封止部材500により封止されていないガス噴出孔22aからのガス噴出が第2部材520により阻害されるのを抑制することができる。
<変形例>
以上の例では、圧力測定ユニット502が、ロガー533に圧力測定結果を記録するものとした。しかし、処理空間S1を形成する処理容器が通信波を遮断する材料で形成されていない場合は、圧力測定ユニット502が圧力測定結果を無線通信で作業者の端末(例えばPC)に送信するようにしてもよい。これによりシャワーヘッド21からのガス供給流量をリアルタイムで監視することができる。
また、ステップK1の封止部材500の取り付け後、ステップK2の排気の前に、図10に示すように、カバー部材600と空間形成部材501(具体的には第1部材510)により圧力測定ユニット502を密閉してもよい。これにより、処理空間S1を真空状態にしても、圧力測定ユニット502の周囲は大気状態となる。したがって、圧力測定ユニット502の選定に幅を持たせることができる。例えば、使用するガス種に適した圧力測定ユニットを、真空対応か否かを問わず、使用することができる。
なお、本開示にかかる流量の測定方法は、処理容器内のシャワーヘッド21以外の構造物に形成された孔から処理空間S1へのガス流量の測定にも適用することができる。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
10 容器本体
14 金属枠
20 金属窓
21 部分窓(シャワーヘッド)
22a ガス噴出孔
23a ガス導入口
24 ガス空間
500 封止部材
501 空間形成部材
502 圧力測定ユニット
504 スペーサ
511 円筒部
512 平板部
S1 処理空間
S11 圧力測定空間

Claims (9)

  1. 処理容器内の処理空間に設けられたシャワーヘッドから供給されるガスのガス流量を測定する方法であって、
    前記シャワーヘッドは、
    内部に設けられたガス空間と、
    該ガス空間にガスを導入するガス導入部と、
    前記ガス空間から前記処理空間に前記ガスを噴出する、複数のガス噴出孔と、を有し、
    内部に圧力測定空間を有する封止部材により、前記複数のガス噴出孔の一部を、前記処理空間側から封止して封止ガス噴出孔とすると共に、前記圧力測定空間と前記ガス空間とを連通させる工程と、
    前記ガス導入部から前記ガス空間に前記ガスを導入する工程と、
    前記圧力測定空間において第1の圧力を測定する工程と、
    前記処理空間における前記封止部材の外側において第2の圧力を測定する工程と、
    前記第1の圧力及び前記第2の圧力に基づいて、前記ガス流量を算出する工程と、を含む、ガス流量測定方法。
  2. 前記シャワーヘッドは、前記複数のガス噴射孔の下流側が開口するガス噴出面を有し、
    前記封止部材は、前記ガス噴出面と密着する、請求項1に記載のガス流量測定方法。
  3. 前記算出する工程は、前記封止ガス噴出孔について、前記シャワーヘッドの組み付け前に計算された、または、寸法に基づいて算出されたコンダクタンスと、前記第1の圧力及び前記第2の圧力とから、前記ガス流量を算出する、請求項1または2に記載のガス流量測定方法。
  4. 前記封止部材は、前記圧力測定空間を形成する空間形成部材と、前記空間形成部材の前記シャワーヘッド側端とは反対側端に接続され前記第1の圧力を測定する圧力測定ユニットと、を有し、
    前記連通させる工程は、前記空間形成部材を前記シャワーヘッドに密着するように取り着けて、前記圧力測定空間と前記ガス空間とを前記封止ガス噴出孔を介して連通させる、請求項1~3のいずれか1項に記載のガス流量測定方法。
  5. 前記空間形成部材は、前記シャワーヘッド側の面から突出し、前記圧力測定空間の前記シャワーヘッド側の部分を形成する筒状部を有し、
    前記連通させる工程は、前記筒状部が前記シャワーヘッドに密着するように前記空間形成部材を取り付けて、前記圧力測定空間と前記ガス空間とを前記封止ガス噴出孔を介して連通させる、請求項4に記載のガス流量測定方法。
  6. 前記封止部材は、スペーサを有し、
    前記連通させる工程は、前記空間形成部材の前記シャワーヘッド側の面における前記筒状部が設けられていない部分と前記シャワーヘッドとの間に前記スペーサを挟んだ状態で、前記筒状部が前記シャワーヘッドに密着するように前記空間形成部材を取り付けて、前記圧力測定空間と前記ガス空間とを前記封止ガス噴出孔を介して連通させる、請求項5に記載のガス流量測定方法。
  7. 前記圧力測定ユニットをカバー部材と前記封止部材とにより密閉する工程を含む、請求項4~6のいずれか1項に記載のガス流量測定方法。
  8. 処理容器の内の処理空間に設けられたシャワーヘッドに取り付けられるガス流量測定用治具であって、
    前記シャワーヘッドのガス噴射孔に連通する圧力測定空間を形成する空間形成部材を有し、
    前記空間形成部材は、
    前記シャワーヘッド側の面から突出し、前記圧力測定空間の前記シャワーヘッド側の部分を形成する筒状部と、
    前記シャワーヘッド側とは反対側に、前記圧力測定空間の圧力を測定する圧力測定ユニットが接続される接続部と、を有し、
    前記空間形成部材の前記シャワーヘッド側の面における前記筒状部が設けられていない部分と前記シャワーヘッドとの間に挟み込まれるスペーサをさらに有する、ガス流量測定用治具。
  9. 前記筒状部の先端と前記シャワーヘッドとの間を密閉する密閉部材を有する、請求項8に記載のガス流量測定用治具。
JP2021195567A 2021-12-01 2021-12-01 ガス流量測定方法及びガス流量用測定治具 Pending JP2023081671A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021195567A JP2023081671A (ja) 2021-12-01 2021-12-01 ガス流量測定方法及びガス流量用測定治具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021195567A JP2023081671A (ja) 2021-12-01 2021-12-01 ガス流量測定方法及びガス流量用測定治具

Publications (1)

Publication Number Publication Date
JP2023081671A true JP2023081671A (ja) 2023-06-13

Family

ID=86728222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021195567A Pending JP2023081671A (ja) 2021-12-01 2021-12-01 ガス流量測定方法及びガス流量用測定治具

Country Status (1)

Country Link
JP (1) JP2023081671A (ja)

Similar Documents

Publication Publication Date Title
US8038833B2 (en) Plasma processing apparatus
US10249478B2 (en) Substrate processing apparatus
US11692732B2 (en) Air cooled faraday shield and methods for using the same
KR200478069Y1 (ko) 플라즈마 처리 장치의 교체가능한 상부 체임버 부품
KR100929449B1 (ko) 기판 처리 장치 및 포커스 링
JP6335229B2 (ja) 基板温度制御方法及びプラズマ処理装置
US20050274324A1 (en) Plasma processing apparatus and mounting unit thereof
TWI772430B (zh) 電漿處理裝置及氣體噴淋頭
TW201301433A (zh) 具有基材加熱器及對稱rf回路之基材支撐件
JP2017022216A (ja) プラズマ処理装置
TWI772200B (zh) 溫度控制裝置及溫度控制方法
TW201809689A (zh) 取得表示靜電電容之數據的方法
TWI558840B (zh) Plasma processing device
TWI670747B (zh) 高頻電漿處理裝置及高頻電漿處理方法
JP2023081671A (ja) ガス流量測定方法及びガス流量用測定治具
TWI258187B (en) Gas introduction system for controlling temperature of object to be processed
JP2006253204A (ja) プラズマ処理装置の試料載置電極
KR102423951B1 (ko) 제 1 도전성 부재와 제 2 도전성 부재의 접합 구조체와 접합 방법 및 기판 처리 장치
TWI837393B (zh) 第一導電性構件與第二導電性構件之接合構造與接合方法及基板處理裝置
KR102433474B1 (ko) 플라즈마 처리 장치 및 제어 방법
TW202233023A (zh) 電漿處理裝置與其製造方法及電漿處理方法
TW202034364A (zh) 噴淋頭及氣體處理裝置