JP2023080958A - Measurement device having sensor for detecting water - Google Patents

Measurement device having sensor for detecting water Download PDF

Info

Publication number
JP2023080958A
JP2023080958A JP2021194553A JP2021194553A JP2023080958A JP 2023080958 A JP2023080958 A JP 2023080958A JP 2021194553 A JP2021194553 A JP 2021194553A JP 2021194553 A JP2021194553 A JP 2021194553A JP 2023080958 A JP2023080958 A JP 2023080958A
Authority
JP
Japan
Prior art keywords
electrode
soil
measuring device
measurement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021194553A
Other languages
Japanese (ja)
Inventor
直規 白石
Naoki Shiraishi
智史 大野
Tomohito Ono
有加 中野
Yuuka Nakano
康也 三宅
Yasunari Miyake
晋太朗 野田
Shintaro Noda
将行 小越
Masayuki Ogoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2021194553A priority Critical patent/JP2023080958A/en
Publication of JP2023080958A publication Critical patent/JP2023080958A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a technique for stably measuring the concentration or the physical property of a measurement target substance in soil even if the soil contains a small amount of water.SOLUTION: A measurement device according to an aspect of the present disclosure is a measurement device having a sensor for detecting water. The measurement device includes: a plurality of electrodes provided in soil at least partially; a sensor for detecting water; and a measurement unit for measuring the potentials of two of the electrodes on the basis of a signal output from the sensor and measuring the concentration or the physical property of the measurement target substance in the soil on the basis of the measured potentials.SELECTED DRAWING: Figure 1

Description

本発明は、水分を検出するセンサを備える測定装置に関する。 The present invention relates to a measuring device equipped with a sensor for detecting moisture.

イオンまたは分子の濃度や物性等を測定可能な測定装置が開示されている(例えば特許文献1-3)。また、雨または雪を検知してそれらに含まれるイオン濃度等を測定する装置が開示されている(例えば特許文献4-7)。 Measuring devices capable of measuring the concentration, physical properties, etc. of ions or molecules have been disclosed (eg, Patent Documents 1 to 3). Further, a device for detecting rain or snow and measuring the concentration of ions contained therein has been disclosed (for example, Patent Documents 4 to 7).

特許第4195938号公報Japanese Patent No. 4195938 特許第5267824号公報Japanese Patent No. 5267824 特開昭60-259947号公報JP-A-60-259947 特許第3018726号公報Japanese Patent No. 3018726 特開平5-273172号公報JP-A-5-273172 特開昭63-180837号公報JP-A-63-180837 実全昭59-071161号公報Japanese Utility Model No. 59-071161

例えば特許文献1に記載される測定装置の場合、作用電極に溶液が接触することで作用電極と参照電極との間の電位差を測定し、測定された電位差に基づいて溶液中の測定対象のイオンの濃度または物性を算出する。よって、このような測定装置を土壌中に設置し、土壌中の測定対象物質の濃度または物性を測定する場合、土壌中の含水率が低いと測定が不安定となることが考えられる。 For example, in the case of the measurement device described in Patent Document 1, the potential difference between the working electrode and the reference electrode is measured by contacting the solution with the working electrode, and based on the measured potential difference, the ions to be measured in the solution Calculate the concentration or physical properties of Therefore, when such a measuring device is installed in soil to measure the concentration or physical properties of the substance to be measured in the soil, it is conceivable that the measurement becomes unstable if the water content in the soil is low.

本発明は、このような実情を鑑みてなされたものであり、その目的は、含水率が低い土壌についても土壌中の測定対象物質の濃度または物性を安定的に測定可能な技術を提供することである。 The present invention has been made in view of such circumstances, and its object is to provide a technique capable of stably measuring the concentration or physical properties of a substance to be measured in soil even when the water content is low. is.

本発明は、上述した課題を解決するために、以下の構成を採用する。 The present invention adopts the following configurations in order to solve the above-described problems.

すなわち本発明の一側面に係る測定装置は、複数の電極であって、電極の少なくとも一部分が土壌中に設けられる複数の電極と、水分を検知するセンサと、前記センサから出力された信号に基づいて、複数の前記電極のうちの少なくとも何れか二つの電極の電位を計測し、計測された前記電位に基づいて前記土壌に含まれる測定対象物質の濃度または物性を測定する測定部と、を備える。 That is, a measuring device according to one aspect of the present invention includes a plurality of electrodes, at least a part of which is provided in soil, a sensor for detecting moisture, and a signal output from the sensor. a measuring unit that measures the potential of at least two of the plurality of electrodes and measures the concentration or physical properties of the substance to be measured contained in the soil based on the measured potential. .

当該構成によれば、降雨による水分を検知し、複数の電極のうちの少なくとも何れか二つの電極間に電圧を印加することができる。このような場合、土壌に降った水に溶解した測定対象物質は該電極間を移動する。よって、計測される該二つの電極の電位は、測定対象物質の濃度に応じた値となる。よって、含水率が低い土壌についても測定対象物質の濃度または物性の測定は安定的に可能となる。 According to this configuration, it is possible to detect moisture due to rainfall and apply a voltage between at least two of the plurality of electrodes. In such a case, the substance to be measured dissolved in the water falling on the soil moves between the electrodes. Therefore, the measured potentials of the two electrodes are values corresponding to the concentration of the substance to be measured. Therefore, it is possible to stably measure the concentration or physical properties of the substance to be measured even in soil with a low moisture content.

上記一側面に係る測定装置において、複数の前記電極は、一対の第1電極および第2電極からなる電極組を有し、前記第1電極および前記第2電極は、前記土壌中に設けられ、
前記二つの電極とは、前記第1電極と前記第2電極とのことであってもよい。
In the measuring device according to the above aspect, the plurality of electrodes has an electrode set consisting of a pair of a first electrode and a second electrode, the first electrode and the second electrode are provided in the soil,
The two electrodes may be the first electrode and the second electrode.

当該構成によれば、降雨による水分を検知し、第1電極と第2電極との間に電圧を印加することができる。このような場合、土壌に降った水に溶解した測定対象物質は該電極間を移動する。よって、計測される第1電極の電位および第2電極の電位は、測定対象物質の濃度に応じた値となる。よって、含水率が低い土壌についても測定対象物質の濃度または物性の測定は安定的に可能となる。 According to this configuration, it is possible to detect moisture due to rainfall and apply a voltage between the first electrode and the second electrode. In such a case, the substance to be measured dissolved in the water falling on the soil moves between the electrodes. Therefore, the measured potential of the first electrode and the potential of the second electrode are values corresponding to the concentration of the substance to be measured. Therefore, it is possible to stably measure the concentration or physical properties of the substance to be measured even in soil with a low moisture content.

上記一側面に係る測定装置において、前記測定対象物質は、前記第1電極と前記第2電極との間に電圧が印加されることで前記第1電極が存する方向に移動し、前記第1電極を覆うように設けられ、前記測定対象物質が通過可能なフィルタを更に備えてもよい。 In the measuring device according to the above aspect, the substance to be measured is moved in the direction in which the first electrode is present by applying a voltage between the first electrode and the second electrode. and a filter through which the substance to be measured can pass.

当該構成によれば、雨とともに流れる砂や泥が第1電極に接触することを防止できる。よって、第1電極の耐久性は向上し得る。また、砂や泥が第1電極に付着することによる測定精度への影響は低減される。 According to this configuration, it is possible to prevent sand and mud flowing with rain from coming into contact with the first electrode. Therefore, durability of the first electrode can be improved. Also, the influence of sand or mud adhering to the first electrode on the measurement accuracy is reduced.

上記一側面に係る測定装置において、前記測定部に電力を供給する電源を更に備えてもよい。 The measuring device according to the one aspect described above may further include a power supply that supplies power to the measuring unit.

当該構成によれば、測定装置の外部にある電源に接続することなく測定装置は動作可能となる。よって、測定装置の外部にある電源に接続が困難なほど土壌の面積が広大であっても、測定対象物質の濃度または物性の測定が可能となる。 According to this configuration, the measuring device can operate without being connected to a power supply outside the measuring device. Therefore, even if the area of the soil is so large that it is difficult to connect to a power source outside the measuring device, it is possible to measure the concentration or physical properties of the substance to be measured.

上記一側面に係る測定装置において、複数の前記電極は、一対の電極からなる電極組を複数組含んでもよい。 In the measuring device according to the aspect described above, the plurality of electrodes may include a plurality of electrode sets each including a pair of electrodes.

当該構成によれば、複数の電極組の夫々を土壌内部の異なる深さに配置する場合、測定対象物質の濃度または物性の時間的変化と土壌における深さとの関係が得られる。よって、降雨等の環境変化による測定対象物質の土壌からの溶脱を詳細に測定できる。 According to this configuration, when the plurality of electrode sets are arranged at different depths inside the soil, the relationship between the temporal change in the concentration or physical properties of the substance to be measured and the depth in the soil can be obtained. Therefore, leaching of the substance to be measured from the soil due to environmental changes such as rainfall can be measured in detail.

上記一側面に係る測定装置において、前記測定部は、前記センサから出力された信号に基づいて、前記電位の計測間隔を変更してもよい。 In the measuring device according to the above aspect, the measuring section may change the potential measurement interval based on the signal output from the sensor.

当該構成によれば、降雨等の環境変化のイベントに応じて測定装置を駆動させ、測定対象物質の濃度または物性を測定することができる。又は、降雨等の環境変化のイベントに応じて測定装置の測定頻度を増大させることができる。よって、環境変化が土壌の測定対象物質の濃度または物性に与える影響を測定できる。また、当該構成が更に電源を備えている場合には、電源の消費電力量も低減できる。 According to this configuration, it is possible to drive the measuring device according to an event of environmental change such as rainfall, and measure the concentration or physical properties of the substance to be measured. Alternatively, the measurement frequency of the measurement device can be increased in response to environmental change events such as rainfall. Therefore, it is possible to measure the influence of environmental changes on the concentration or physical properties of the substance to be measured in soil. Also, if the configuration further includes a power supply, the power consumption of the power supply can also be reduced.

本発明によれば、含水率が低い土壌についても土壌中の測定対象物質の濃度または物性を安定的に測定可能な技術を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a technique capable of stably measuring the concentration or physical properties of a substance to be measured in soil even when the water content is low.

図1は、実施形態に係る測定装置の概要を例示する。FIG. 1 illustrates an overview of a measuring device according to an embodiment. 図2は、実施形態に係る測定装置の測定動作のフローチャートの概要を例示する。FIG. 2 illustrates an outline of a flow chart of the measurement operation of the measurement device according to the embodiment. 図3は、第1変形例に係る測定装置の概要を例示する。FIG. 3 illustrates an outline of a measuring device according to a first modified example. 図4は、第1変形例に係る測定装置の測定動作のフローチャートの概要を例示する。FIG. 4 illustrates an outline of a flow chart of the measurement operation of the measurement device according to the first modification. 図5は、第2変形例に係る測定装置の概要を例示する。FIG. 5 illustrates an outline of a measuring device according to a second modified example.

[実施形態]
図1は、本実施形態に係る測定装置1の概要を例示する。図1(A)は、測定装置1の外観斜視図の一例である。図1(B)は、測定装置1の側面図の一例である。測定装置1は、携帯可能なサイズであり、土壌11に差し込むように配置される。そして、土壌11に含まれる農作物の生育に即応する物質の濃度を測定する。農作物の生育に即応する物質は、例えば硝酸態窒素(本開示の「測定対象物質」の一例)である。
[Embodiment]
FIG. 1 illustrates an overview of a measuring device 1 according to this embodiment. FIG. 1A is an example of an external perspective view of the measuring device 1. FIG. FIG. 1B is an example of a side view of the measuring device 1. FIG. The measuring device 1 has a portable size and is arranged to be inserted into the soil 11 . Then, the concentration of the substance contained in the soil 11 that responds immediately to the growth of crops is measured. A substance that immediately responds to the growth of agricultural crops is, for example, nitrate nitrogen (an example of the “measurement target substance” of the present disclosure).

より詳細には、測定装置1は、一対の作用電極2よび参照電極3からなる電極組を有する。よって、作用電極2と参照電極3との間には、土壌11の一部が存在することになる。ここで、土壌11の含水率は例えば20%未満である。また、作用電極2は、いわゆるイオン選択性電極であり、表面が感応膜によって覆われている。感応膜は、硝酸態窒素を選択的に捕捉可能な膜である。感応膜は、例えば漆マトリクス液体膜やPVC(ポリ塩化
ビニル)マトリクス液体膜である。参照電極3は、例えばKCL(塩化カリウム)に液浸させた銀塩化銀電極である。なお、作用電極2は本開示の「第1電極」の一例である。また、参照電極3は、本開示の「第2電極」の一例である。
More specifically, the measurement device 1 has an electrode set consisting of a pair of working electrodes 2 and a reference electrode 3 . Therefore, part of the soil 11 exists between the working electrode 2 and the reference electrode 3 . Here, the water content of the soil 11 is less than 20%, for example. The working electrode 2 is a so-called ion-selective electrode, the surface of which is covered with a sensitive membrane. The sensitive film is a film capable of selectively trapping nitrate nitrogen. The sensitive film is, for example, a lacquer matrix liquid film or a PVC (polyvinyl chloride) matrix liquid film. The reference electrode 3 is, for example, a silver silver chloride electrode immersed in KCL (potassium chloride). In addition, the working electrode 2 is an example of the "first electrode" of the present disclosure. Moreover, the reference electrode 3 is an example of the "second electrode" of the present disclosure.

また、測定装置1は、計測部4を有する。計測部4は、作用電極2および参照電極3から見て上方の土壌の外部である大気中に設けられる。なお、計測部4と作用電極2および参照電極3とは夫々電気的に接続され、接続部分はケース5によって保護される。また、計測部4は、測定装置1の外部の電源と電気的に接続されている(図示略)。なお、ケース5の径は、例えば2cm以下である。また、計測部4は、本開示の「測定部」の一例である。 The measuring device 1 also has a measuring unit 4 . The measurement unit 4 is provided in the atmosphere outside the soil above the working electrode 2 and the reference electrode 3 . The measuring section 4 is electrically connected to the working electrode 2 and the reference electrode 3, respectively, and the connecting portions are protected by the case 5. As shown in FIG. The measuring unit 4 is also electrically connected to a power source outside the measuring device 1 (not shown). Incidentally, the diameter of the case 5 is, for example, 2 cm or less. Also, the measuring unit 4 is an example of the “measuring unit” of the present disclosure.

計測部4には、例えばCPU等のプロセッサ、RAMやROM等の記憶装置等が設けられる。記憶装置には、各種プログラム等が格納されている。そして、格納されているプログラムが主記憶装置の作業領域にロードされて実行される。そして、プログラムの実行を通じて、作用電極2と参照電極3との間への電圧の印加、作用電極2および参照電極3の電位の計測、および作用電極2と参照電極3との間の電位差から硝酸態窒素の濃度の算出等を行う各構成部等が制御されることで、所定の目的に合致した各機能を実現することができる。 The measurement unit 4 is provided with a processor such as a CPU, a storage device such as a RAM and a ROM, and the like. Various programs and the like are stored in the storage device. Then, the stored program is loaded into the working area of the main memory and executed. Then, through execution of the program, a voltage is applied between the working electrode 2 and the reference electrode 3, the potentials of the working electrode 2 and the reference electrode 3 are measured, and the potential difference between the working electrode 2 and the reference electrode 3 is used as nitric acid. It is possible to realize each function that meets a predetermined purpose by controlling each component that performs the calculation of the nitrogen concentration.

また、測定装置1は、感雨センサ6を有する。感雨センサ6は、例えば光学式のセンサである。また、感雨センサ6は、大気中に露出するように計測部4の上に設けられる。そして、感雨センサ6は計測部4と電気的に接続されている。なお、感雨センサ6は、他の方式により水を検知できるセンサによって代替されてもよい。なお、感雨センサ6は、本開示の「センサ」の一例である。 The measuring device 1 also has a rain sensor 6 . The rain sensor 6 is, for example, an optical sensor. Moreover, the rain sensor 6 is provided on the measurement part 4 so that it may be exposed to the atmosphere. The rain sensor 6 is electrically connected to the measuring section 4 . The rain sensor 6 may be replaced by a sensor capable of detecting water by another method. The rain sensor 6 is an example of the "sensor" of the present disclosure.

[動作例]
次に測定装置1の測定動作の概要を例示する。図2は、測定装置1の測定動作のフローチャートの概要を例示する。
[Example of operation]
Next, an outline of the measurement operation of the measurement device 1 will be illustrated. FIG. 2 illustrates an outline of a flow chart of the measurement operation of the measurement device 1. As shown in FIG.

(S01)
ステップS01では、計測部4は、感雨センサ6からの出力により雨が降っているか否かを判定する。
(S01)
In step S<b>01 , the measurement unit 4 determines whether or not it is raining based on the output from the rain sensor 6 .

(S02)
ステップS02では、ステップS01において計測部4が雨が降っていると判定した場
合、作用電極2と参照電極3との間に電圧が印加される。なお、電圧は、作用電極2が陽極、参照電極3が陰極となるように印加される。すると、作用電極2と参照電極3との間に存在し、土壌11に含まれる水分と結合した硝酸態窒素は陰イオンであるため、陽極である作用電極2の方向に移動する。そして、硝酸態窒素は、作用電極2の外表面を被覆する感応膜に捕捉される。
(S02)
In step S<b>02 , voltage is applied between the working electrode 2 and the reference electrode 3 when the measurement unit 4 determines in step S<b>01 that it is raining. The voltage is applied such that the working electrode 2 is the anode and the reference electrode 3 is the cathode. Then, since the nitrate nitrogen present between the working electrode 2 and the reference electrode 3 and bound to the moisture contained in the soil 11 is an anion, it moves toward the working electrode 2, which is the anode. Nitrate nitrogen is captured by the sensitive film covering the outer surface of the working electrode 2 .

(S03)
ステップS03では、計測部4は、作用電極2および参照電極3の夫々の電位を計測し、二つの電位の電位差を算出する。そして、計測部4は、算出された電位差と基準電位差とを比較することで、硝酸態窒素の基準濃度に対して土壌11に含まれる硝酸態窒素の濃度を相対的に算出する。なお、算出された電位差を基準電位差と比較せずに電位差の絶対値から土壌11に含まれる硝酸態窒素の濃度を算出してもよい。
(S03)
In step S03, the measurement unit 4 measures the potentials of the working electrode 2 and the reference electrode 3, and calculates the potential difference between the two potentials. Then, the measurement unit 4 compares the calculated potential difference with the reference potential difference to calculate the concentration of nitrate nitrogen contained in the soil 11 relative to the reference concentration of nitrate nitrogen. The concentration of nitrate nitrogen contained in the soil 11 may be calculated from the absolute value of the potential difference without comparing the calculated potential difference with the reference potential difference.

[作用・効果]
上記のような測定装置1によれば、降雨による水分を検知し、硝酸態窒素の濃度測定を開始することで、土壌11中の水分量が増加した状態で硝酸態窒素の濃度を計測することとなる。体積含水率が低い土壌11においても安定して硝酸態窒素の濃度を測定できる。よって、硝酸態窒素の濃度をリアルタイムで精密に制御し、農作物の収量および品質の向上を図ることができる。
[Action/effect]
According to the measuring device 1 as described above, the concentration of nitrate nitrogen can be measured in a state in which the amount of water in the soil 11 has increased by detecting moisture due to rainfall and starting to measure the concentration of nitrate nitrogen. becomes. The concentration of nitrate nitrogen can be stably measured even in soil 11 having a low volumetric water content. Therefore, the concentration of nitrate nitrogen can be precisely controlled in real time, and the yield and quality of agricultural products can be improved.

[変形例1]
図3は、第1変形例に係る測定装置1Aの概要を例示する。第1変形例に係る測定装置1Aは、実施形態に係る測定装置1と同様の構成である。さらに、測定装置1は自立電源12を有する。自立電源12は、例えば計測部4Aと感雨センサ6Aとの間に設けられる。そして、自立電源12は、計測部4Aおよび感雨センサ6Aに電力を供給する。
[Modification 1]
FIG. 3 illustrates an overview of a measuring device 1A according to a first modified example. A measuring device 1A according to the first modification has the same configuration as the measuring device 1 according to the embodiment. Furthermore, the measuring device 1 has an independent power supply 12 . The independent power source 12 is provided, for example, between the measuring section 4A and the rain sensor 6A. And the independent power supply 12 supplies electric power to the measurement part 4A and the rain sensor 6A.

また、測定装置1Aは、作用電極2Aを被覆するフィルタ7を有する。フィルタ7は、土壌11に含まれる砂や泥等が作用電極2Aに付着することを防止する一方で、硝酸態窒素は通過させる。 The measuring device 1A also has a filter 7 covering the working electrode 2A. The filter 7 prevents sand, mud, etc. contained in the soil 11 from adhering to the working electrode 2A, while allowing nitrate nitrogen to pass through.

[動作例]
次に測定装置1Aの測定動作の概要を例示する。図4は、測定装置1Aの測定動作のフローチャートの概要を例示する。
[Example of operation]
Next, an outline of the measurement operation of the measurement device 1A is illustrated. FIG. 4 exemplifies an outline of a flow chart of the measurement operation of the measurement device 1A.

(S1)
ステップS1では、計測部4Aが、感雨センサ6Aにおいて雨を検知したか否かを判定する。
(S1)
In step S1, the measurement unit 4A determines whether or not the rain sensor 6A has detected rain.

(S2)
ステップS2では、ステップS1において雨が検知されたと判定された場合、計測部4Aは、現在の測定モードが通常モードであるか、あるいは雨モードであるかを判定する。なお、通常モードとは、例えば一日に1回(所定のタイミングの一例)硝酸態窒素の濃度測定を行うモードである。また、雨モードとは、通常モードよりも測定頻度が高く、例えば一時間に1回(所定のタイミングの一例)硝酸態窒素の濃度測定を行うモードである。
(S2)
In step S2, when it is determined that rain has been detected in step S1, the measurement unit 4A determines whether the current measurement mode is the normal mode or the rain mode. The normal mode is a mode in which the concentration of nitrate nitrogen is measured, for example, once a day (an example of predetermined timing). The rain mode is a mode in which the measurement frequency is higher than in the normal mode, for example, once an hour (an example of a predetermined timing) the concentration of nitrate nitrogen is measured.

(S3)
ステップS3では、ステップS2において測定モードが通常モードであると判定された場合、計測部4Aは測定モードを測定間隔が短い雨モードに変更する。
(S3)
In step S3, if the measurement mode is determined to be the normal mode in step S2, the measurement unit 4A changes the measurement mode to the rain mode with short measurement intervals.

(S4)
ステップS4では、ステップS2において測定モードが雨モードであると判定された場合、計測部4Aは測定モードを雨モードのまま維持する。
(S4)
In step S4, if the measurement mode is determined to be the rain mode in step S2, the measurement unit 4A maintains the rain mode as the measurement mode.

(S5)
ステップS5では、ステップS1において雨が検知されなかったと判定された場合、計測部4Aは、現在の測定モードが通常モードであるか、または雨モードであるか否かを判定する。
(S5)
In step S5, if it is determined in step S1 that rain has not been detected, the measurement unit 4A determines whether the current measurement mode is the normal mode or the rain mode.

(S6)
ステップS6では、ステップS5において測定モードが通常モードであると判定された場合、計測部4Aは測定モードを通常モードのまま維持する。
(S6)
In step S6, if the measurement mode is determined to be the normal mode in step S5, the measurement section 4A maintains the normal mode as the measurement mode.

(S7)
ステップS7では、ステップS5において測定モードが雨モードであると判定された場合、計測部4Aは測定モードを測定間隔が長く、電池12の消耗を抑制できる通常モードに変更する。
(S7)
In step S7, if the measurement mode is determined to be the rain mode in step S5, the measurement unit 4A changes the measurement mode to the normal mode, which has a longer measurement interval and can suppress battery 12 consumption.

(S8)
ステップS8では、計測部4Aは、各測定モードの所定のタイミングで作用電極2Aと参照電極3Aとの間に電圧が印加される。なお、電圧は、作用電極2Aが陽極、参照電極3Aが陰極となるように印加される。すると、作用電極2Aと参照電極3Aとの間に存在し、水と結合した硝酸態窒素が作用電極2Aの方向に移動する。そして、硝酸態窒素は、作用電極2Aの外表面を被覆する感応膜に捕捉される。
(S8)
In step S8, the measurement unit 4A applies a voltage between the working electrode 2A and the reference electrode 3A at a predetermined timing in each measurement mode. The voltage is applied such that the working electrode 2A serves as an anode and the reference electrode 3A serves as a cathode. Then, nitrate nitrogen present between the working electrode 2A and the reference electrode 3A and bound to water moves toward the working electrode 2A. Nitrate nitrogen is captured by the sensitive film covering the outer surface of the working electrode 2A.

(S9)
ステップS9では、計測部4Aは、作用電極2Aの電位と参照電極3Aの電位を計測し、二つの電位の電位差を算出する。そして、計測部4Aは、算出された電位差と基準電位差とを比較することで、硝酸態窒素の基準濃度に対して土壌11に含まれる硝酸態窒素の濃度を相対的に算出する。なお、算出された電位差を基準電位差と比較せずに電位差の絶対値から土壌11に含まれる硝酸態窒素の濃度を算出してもよい。
(S9)
In step S9, the measuring unit 4A measures the potential of the working electrode 2A and the potential of the reference electrode 3A, and calculates the potential difference between the two potentials. Then, the measurement unit 4A calculates the concentration of nitrate nitrogen contained in the soil 11 relative to the reference concentration of nitrate nitrogen by comparing the calculated potential difference and the reference potential difference. The concentration of nitrate nitrogen contained in the soil 11 may be calculated from the absolute value of the potential difference without comparing the calculated potential difference with the reference potential difference.

[作用・効果]
上記のような測定装置1Aによれば、測定装置1Aの外部にある電源に接続することなく測定装置1Aは動作可能となる。よって、体積含水率が低く、外部電源からの電力供給が困難な広い土壌11においても硝酸態窒素の濃度測定が可能となる。
[Action/effect]
According to the measuring apparatus 1A as described above, the measuring apparatus 1A can operate without being connected to a power supply outside the measuring apparatus 1A. Therefore, it is possible to measure the concentration of nitrate nitrogen even in a large area of soil 11 that has a low volumetric water content and is difficult to supply power from an external power source.

また、上記のような測定装置1Aによれば、降雨等による水分を検知した場合には硝酸態窒素の濃度測定の頻度を増大させ、逆に水分を検知しない場合には硝酸態窒素の濃度測定の頻度を低下させている。よって、降雨等の環境変化のイベントに応じて測定装置1Aによる測定間隔を調整することで自立電源12の消費電力量を低減しつつ、降雨等の環境変化のイベントが土壌11の硝酸体窒素濃度等に与える影響を測定できる。 Further, according to the measuring device 1A as described above, when moisture due to rainfall or the like is detected, the frequency of nitrate nitrogen concentration measurement is increased, and conversely, when moisture is not detected, nitrate nitrogen concentration measurement is performed. reducing the frequency of Therefore, by adjusting the measurement interval of the measuring device 1A according to the event of environmental change such as rainfall, the power consumption of the independent power supply 12 can be reduced, and the event of environmental change such as rainfall can increase the concentration of nitrate nitrogen in the soil 11. You can measure the impact on

また、上記のような測定装置1Aによれば、作用電極2Aがフィルタ7により覆われることで、雨とともに流れる砂や泥が作用電極2Aに接触することを防止できる。よって、作用電極2Aの耐久性は向上し得る。また、砂や泥が作用電極2Aに付着することによる測定精度への影響は低減される。 Moreover, according to the measuring device 1A as described above, the working electrode 2A is covered with the filter 7, thereby preventing sand and mud that flow with rain from coming into contact with the working electrode 2A. Therefore, the durability of the working electrode 2A can be improved. In addition, the influence of sand or mud adhering to the working electrode 2A on the measurement accuracy is reduced.

[変形例2]
図5は、第2変形例に係る測定装置1Bの概要を例示する。第2変形例に係る測定装置1Bは、一対の作用電極および参照電極からなる電極組を二組有する。すなわち、測定装
置1Bは、一対の作用電極2Bおよび参照電極3Bからなる電極組と、一対の作用電極2Cおよび参照電極3Cから電極組と、を有する。作用電極2Bおよび参照電極3Bは、深さ方向の途中でケース5Bの内側から外側の土壌11に向けて突出している。また、作用電極2Cおよび参照電極3Cは、作用電極2Bおよび参照電極3Bよりも土壌11の深部寄りに配置されている。
[Modification 2]
FIG. 5 illustrates an overview of a measuring device 1B according to a second modified example. A measuring device 1B according to the second modification has two electrode sets each including a pair of working electrode and a reference electrode. That is, the measuring device 1B has an electrode set consisting of a pair of working electrode 2B and reference electrode 3B, and an electrode set consisting of a pair of working electrode 2C and reference electrode 3C. The working electrode 2B and the reference electrode 3B protrude from the inside of the case 5B toward the outside soil 11 in the middle of the depth direction. In addition, the working electrode 2C and the reference electrode 3C are arranged deeper in the soil 11 than the working electrode 2B and the reference electrode 3B.

[作用・効果]
上記のような測定装置1Bによれば、作用電極2Bおよび参照電極3B、ならびに作用電極2Cおよび参照電極3Cを土壌11において異なる深さに夫々設けることで、硝酸態窒素の濃度の時間的変化と土壌11における深さとの関係が得られる。よって、降雨等の環境変化のイベントによる硝酸態窒素の土壌11からの溶脱をより詳細に測定できる。
[Action/effect]
According to the measuring device 1B as described above, by providing the working electrode 2B and the reference electrode 3B, and the working electrode 2C and the reference electrode 3C at different depths in the soil 11, the concentration of nitrate nitrogen changes with time and A relationship with depth in the soil 11 is obtained. Therefore, leaching of nitrate nitrogen from the soil 11 due to environmental change events such as rainfall can be measured in more detail.

[その他変形例]
第1変形例に係る測定装置1Aにおいて、降雨等による水分を検知した場合に硝酸態窒素の濃度測定の頻度を変更する形態は上記に記載した例に限定されない。例えば水分を検知しない場合には硝酸態窒素の濃度測定を行わず、水分を検知した場合には所定間隔で硝酸態窒素の濃度測定を行ってもよい。このような測定装置であっても、自立電源12の消費電力量を低減しつつ、降雨等の環境変化のイベントが土壌11の硝酸体窒素濃度等に与える影響を測定できる。また、測定間隔も適宜調整可能である。
[Other Modifications]
In the measuring device 1A according to the first modified example, the form of changing the frequency of concentration measurement of nitrate nitrogen when moisture due to rainfall or the like is detected is not limited to the example described above. For example, when moisture is not detected, the concentration of nitrate nitrogen may not be measured, and when moisture is detected, the concentration of nitrate nitrogen may be measured at predetermined intervals. Even with such a measuring device, it is possible to measure the influence of environmental change events such as rainfall on the nitrate nitrogen concentration and the like of the soil 11 while reducing the power consumption of the self-sustaining power supply 12 . Also, the measurement interval can be adjusted as appropriate.

また、上記の実施形態では、硝酸態窒素の濃度を測定する例を示したが、他の物質の濃度を測定してもよい。このような場合、感応膜は、他の物質を選択的に捕捉する膜に変更される。また、作用電極2と参照電極3との間の電位差情報を利用し、硝酸態窒素の拡散係数等の物性が測定されてもよい。また、作用電極2の電位情報のみを利用して硝酸態窒素の濃度または物性が測定されてもよい。また、測定装置1は、携帯可能なサイズでなくともよい。 Also, in the above embodiment, an example of measuring the concentration of nitrate nitrogen was shown, but the concentration of other substances may be measured. In such cases, the sensitive membrane is changed to a membrane that selectively traps other substances. Also, physical properties such as the diffusion coefficient of nitrate nitrogen may be measured using potential difference information between the working electrode 2 and the reference electrode 3 . Alternatively, the concentration or physical properties of nitrate nitrogen may be measured using only the potential information of the working electrode 2 . Moreover, the measuring device 1 does not have to be of a portable size.

以上で開示した実施形態および変形例に記載される事項はそれぞれ組み合わせる事ができる。 The items described in the embodiments and modifications disclosed above can be combined.

1、1A、1B :測定装置
2、2A、2B、2C :作用電極
3、3A、3B、3C :参照電極
4、4A :計測部
5、5B :ケース
6、6A :感雨センサ
7 :フィルタ
11 :土壌
12 :自立電源
1, 1A, 1B: measuring devices 2, 2A, 2B, 2C: working electrodes 3, 3A, 3B, 3C: reference electrodes 4, 4A: measuring units 5, 5B: cases 6, 6A: rain sensor 7: filter 11 : Soil 12 : Independent power source

Claims (6)

水分を検出するセンサを備える測定装置であって、
複数の電極であって、電極の少なくとも一部分が土壌中に設けられる複数の電極と、
水分を検知するセンサと、
前記センサから出力された信号に基づいて、複数の前記電極のうちの少なくとも何れか二つの電極の電位を計測し、計測された前記電位に基づいて前記土壌に含まれる測定対象物質の濃度または物性を測定する測定部と、を備える、
測定装置。
A measuring device comprising a sensor for detecting moisture,
a plurality of electrodes, at least a portion of the electrodes being provided in the soil;
a sensor for detecting moisture;
Based on the signal output from the sensor, the potential of at least any two of the plurality of electrodes is measured, and based on the measured potential, the concentration or physical properties of the substance to be measured contained in the soil. a measuring unit that measures
measuring device.
複数の前記電極は、一対の第1電極および第2電極からなる電極組を有し、
前記第1電極および前記第2電極は、前記土壌中に設けられ、
前記二つの電極とは、前記第1電極と前記第2電極とのことである、
請求項1に記載の測定装置。
The plurality of electrodes have an electrode set consisting of a pair of first electrode and second electrode,
The first electrode and the second electrode are provided in the soil,
The two electrodes are the first electrode and the second electrode,
The measuring device according to claim 1.
前記測定対象物質は、前記第1電極と前記第2電極との間に電圧が印加されることで前記第1電極が存する方向に移動し、
前記第1電極を覆うように設けられ、前記測定対象物質が通過可能なフィルタを更に備える、
請求項2に記載の測定装置。
the substance to be measured moves in the direction in which the first electrode exists by applying a voltage between the first electrode and the second electrode;
Further comprising a filter provided to cover the first electrode and through which the substance to be measured can pass;
The measuring device according to claim 2.
前記測定部に電力を供給する電源を更に備える、
請求項2に記載の測定装置。
Further comprising a power supply that supplies power to the measurement unit,
The measuring device according to claim 2.
複数の前記電極は、一対の電極からなる電極組を複数組含む、
請求項2に記載の測定装置。
The plurality of electrodes includes a plurality of electrode sets each consisting of a pair of electrodes,
The measuring device according to claim 2.
前記測定部は、前記センサから出力された信号に基づいて、前記電位の計測間隔を変更する、
請求項4に記載の測定装置。
The measurement unit changes the measurement interval of the potential based on the signal output from the sensor.
The measuring device according to claim 4.
JP2021194553A 2021-11-30 2021-11-30 Measurement device having sensor for detecting water Pending JP2023080958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021194553A JP2023080958A (en) 2021-11-30 2021-11-30 Measurement device having sensor for detecting water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021194553A JP2023080958A (en) 2021-11-30 2021-11-30 Measurement device having sensor for detecting water

Publications (1)

Publication Number Publication Date
JP2023080958A true JP2023080958A (en) 2023-06-09

Family

ID=86656292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021194553A Pending JP2023080958A (en) 2021-11-30 2021-11-30 Measurement device having sensor for detecting water

Country Status (1)

Country Link
JP (1) JP2023080958A (en)

Similar Documents

Publication Publication Date Title
Sutter et al. Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range
Nolan et al. Fabrication and characterization of a solid state reference electrode for electroanalysis of natural waters with ultramicroelectrodes
Vanamo et al. Electrochemical control of the standard potential of solid-contact ion-selective electrodes having a conducting polymer as ion-to-electron transducer
US9568450B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
US7323091B1 (en) Multimode electrochemical sensing array
US9964509B2 (en) Drift compensated ion sensor
Bobacka et al. Equilibrium potential of potentiometric ion sensors under steady-state current by using current-reversal chronopotentiometry
US9279781B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
US20220268728A1 (en) Extensible, multimodal sensor fusion platform for remote, proximal terrain sensing
US20210223197A1 (en) Reference electrode using local environment ph control
US20200268292A1 (en) pH SENSOR AND CALIBRATION METHOD FOR THE pH SENSOR
Mousavi et al. All-solid-state electrochemical platform for potentiometric measurements
JP2023080958A (en) Measurement device having sensor for detecting water
Afshar et al. Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis
Toczyłowska et al. Planar potentiometric sensors based on Au and Ag microelectrodes and conducting polymers for flow-cell analysis
Deyhimi et al. Determination of activity coefficients for NH4Cl in 1-propanol/water mixed solvents by potentiometric measurements
CN114207426A (en) Interrogation of capillary confined sensors
US9588075B2 (en) Sensor for detecting hydrogen ions in an aqueous solution
CN104407041A (en) Method for automatic detection of concentration of heavy metal ions in soil and soil remediation
JP5184877B2 (en) How to monitor electrochemical half-cells
JP2017133935A5 (en)
JP4758752B2 (en) pH electrode
WO1992001219A1 (en) Ion-selective electrochemical sensor device
JP2014169901A (en) Method for measuring exchangeable potassium
Henn et al. Voltammetric Ion‐Selective Electrodes (VISE)