JP2023078711A - Core-shell type composite granule, inorganic composite material prepared using core-shell type composite granule and manufacturing method thereof - Google Patents

Core-shell type composite granule, inorganic composite material prepared using core-shell type composite granule and manufacturing method thereof Download PDF

Info

Publication number
JP2023078711A
JP2023078711A JP2021191967A JP2021191967A JP2023078711A JP 2023078711 A JP2023078711 A JP 2023078711A JP 2021191967 A JP2021191967 A JP 2021191967A JP 2021191967 A JP2021191967 A JP 2021191967A JP 2023078711 A JP2023078711 A JP 2023078711A
Authority
JP
Japan
Prior art keywords
particles
core
inorganic material
inorganic
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021191967A
Other languages
Japanese (ja)
Inventor
浩行 武藤
Hiroyuki Muto
大聖 中園
Taisei Nakazono
敦史 横井
Atsushi Yokoi
ワイ キアン タン
Kian Tan Wai
優作 佐藤
Yusaku Sato
剛 河村
Takeshi Kawamura
厚範 松田
Atsunori Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2021191967A priority Critical patent/JP2023078711A/en
Publication of JP2023078711A publication Critical patent/JP2023078711A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

To provide composite powder particles capable of suitably utilizing raw powder of inorganic materials such as ceramics with controlled structure, and structurally-controlled inorganic composite material produced thereby.SOLUTION: Core-shell type composite granules have a core that is composed of particles of matrix material and a shell that is formed in a rod or plate shape oriented in the circumferential direction and is composed of functional particles and particles of matrix material. A composite inorganic material has a sea-island structure formed by forming a green body with the core-shell type composite granules and then sintering and is structurally controlled in two steps such that the functional particles in a sea part are oriented.SELECTED DRAWING: Figure 1

Description

本発明は、セラミックスや金属などの焼結体の原料粉体となるコアシェル型複合顆粒、コアシェル型複合顆粒を用いて作製した無機複合材料及びそれらの製造方法に関し、詳しくは、シェル部に機能性粒子が配向したコアシェル型複合顆粒、該コアシェル型複合顆粒を用いて作製した、機能性粒子の配置、配向を制御した無機複合材料及びそれらの製造方法に関する。 The present invention relates to core-shell type composite granules that serve as raw material powder for sintered bodies such as ceramics and metals, inorganic composite materials produced using core-shell type composite granules, and methods for producing them. The present invention relates to core-shell type composite granules in which particles are oriented, inorganic composite materials prepared using the core-shell type composite granules in which arrangement and orientation of functional particles are controlled, and methods for producing the same.

セラミックス材料は構造材として、また耐熱材として様々な分野において用いられており、集積回路の基板やパッケージ、焼成用容器やセッター、電気炉の炉心管などとして広く普及している。このセラミックス材料は、一般に、原料粉末を乾式や湿式の成形法によってグリーン体を成形し、グリーン体を焼結して製造される。さらに、近年、機能性を有する微粒子(機能性微粒子)をマトリックスとなるセラミック粉末と混合して、セラミックス材料を高機能化、高特性化する検討が盛んに行われている。 Ceramic materials are used in various fields as structural materials and heat-resistant materials, and are widely used as substrates and packages for integrated circuits, firing vessels and setters, and core tubes of electric furnaces. This ceramic material is generally produced by molding raw material powder into a green body by a dry or wet molding method and sintering the green body. Furthermore, in recent years, studies have been actively conducted to improve the functionality and properties of ceramic materials by mixing fine particles having functionality (functional fine particles) with ceramic powder as a matrix.

一般にマトリックス中に機能性微粒子を添加した機能性を有する複合材料において、例えば電子伝導性や熱導電性などを付与するにはマトリックス中で機能性微粒子が接触してパスを形成することが必要でマトリックス中の機能性微粒子の比率が閾値を超えると急激に機能が発現する(パーコレーション転移)。パーコレーション転移を起こすには機能性微粒子の形状や配置が大きく影響する。ポリマー材料の複合材料の例では、特許文献1には短軸平均粒子径が0.005~0.05μmであり、長軸平均粒子径が0.1~3μmであり、かつアスペクト比が5以上である針状導電性酸化錫微粉末が開示され、少量の導電性付与剤でも導電路を有効に形成することが可能であることが記載されている。非特許文献1には、PMMA( ポリメタクリル酸メチル)、熱伝導性フィラーとしてh-BN(六方晶窒化ホウ素)を原料とし、それぞれ高分子電解質で逆の表面電荷に調整し、PMMA粒子表面にh-BN粒子を吸着させた複合粒子が開示され、得られた複合粒子を成形することで、h-BN粒子添加量が極めて少量であっても高い熱伝導性が発現することが開示されている。 In general, functional composite materials with functional fine particles added to the matrix need to form paths by contacting the functional fine particles in the matrix in order to impart electronic or thermal conductivity, for example. When the ratio of functional fine particles in the matrix exceeds a threshold value, the function suddenly appears (percolation transition). The shape and arrangement of functional fine particles have a great influence on the occurrence of percolation transition. As an example of a composite material of a polymer material, in Patent Document 1, the short axis average particle size is 0.005 to 0.05 μm, the long axis average particle size is 0.1 to 3 μm, and the aspect ratio is 5 or more. is disclosed, and it is stated that even a small amount of a conductivity-imparting agent can effectively form a conductive path. In Non-Patent Document 1, PMMA (polymethyl methacrylate) and h-BN (hexagonal boron nitride) as a thermally conductive filler are used as raw materials, and each is adjusted to have an opposite surface charge with a polymer electrolyte, and the PMMA particle surface Composite particles to which h-BN particles are adsorbed are disclosed, and by molding the resulting composite particles, it is disclosed that high thermal conductivity is exhibited even if the amount of h-BN particles added is extremely small. there is

セラミックス材料においても、こうした機能性を発現させるためにはグリーン体における機能性微粒子の配置が非常に重要である。非特許文献2には、正の表面電荷を有するアルミナ粒子とアニオン性高分子電解質により表面電荷を負に調整したジルコニア粒子を用いて造粒操作によりコア部、さらにアルミナ粒子、ジルコニア粒子に加えて活性剤により電荷調整したCNT(カーボンナノチューブ)を加えて造粒操作することによりコア部表面にアルミナ粒子、ジルコニア粒子、CNT粒子からなるシェル部を形成したコアシェル型複合顆粒とこれを用いて焼結した複合材料は、CNT局所的、かつ連続的に導入されて、偏析三次元ネットワークを形成し、少量のCNTで機能発現することが開示されている。 In ceramic materials as well, the arrangement of functional fine particles in the green bodies is very important in order to develop such functionality. In Non-Patent Document 2, alumina particles having a positive surface charge and zirconia particles whose surface charge is adjusted to be negative by an anionic polymer electrolyte are used to granulate the core portion, and in addition to the alumina particles and zirconia particles, Core-shell type composite granules in which a shell portion composed of alumina particles, zirconia particles and CNT particles is formed on the surface of the core portion by adding CNTs (carbon nanotubes) charge-adjusted with an activator and performing a granulation operation, and sintering using the same. It is disclosed that CNTs are locally and continuously introduced into the resulting composite material to form a segregated three-dimensional network, and that a small amount of CNTs functions.

特開平08-217445Japanese Patent Laid-Open No. 08-217445

黒田太一、Nguyen Huu Huy Phuc、河村剛、松田厚範、武藤浩行 日本セラミックス協会2014年年会「h-BN添加高熱伝導高分子複合材料の作製」予稿集 1P005Taichi Kuroda, Nguyen Huu Huy Phuc, Tsuyoshi Kawamura, Atsunori Matsuda, Hiroyuki Muto The Ceramic Society of Japan 2014 Annual Meeting "Fabrication of h-BN Addition High Thermal Conductive Polymer Composite Materials" Proceedings 1P005 佐藤 優作、横井 敦史、Tan Wai Kian、河村 剛、武藤 浩行、松田 厚範 粉体粉末冶金協会 2021年度秋季大会(第128回講演大会)「複合顆粒を用いた偏析三次元導電ネットワーク構造を有する セラミクス複合材料の開発」予稿集 2-7AYusaku Sato, Atsushi Yokoi, Tan Wai Kian, Tsuyoshi Kawamura, Hiroyuki Muto, Atsunori Matsuda Japan Society of Powder and Powder Metallurgy 2021 Autumn Meeting (128th Lecture Meeting) "Ceramics with Segregated Three-Dimensional Conductive Network Structure Using Composite Granules" "Development of Composite Materials" Proceedings 2-7A

しかしながら、非特許文献1はポリマーマトリックスに関する技術であり、単純にセラミックス等の無機材料には転用できない。例えば、セラミックスの母粒子にh-BN粒子を付着させた複合粒子は作製可能であるが、この複合粒子からグリーン体を作製して加熱しても焼結しない。ポリマーマトリックスの場合は高温に加熱したポリマーはある程度の流動性があるためh-BN粒子間、さらには複合粒子の表面に流動してh-BN粒子を保持、また、複合粒子どうしを接着させるが、セラミックス等の無機材料ではマトリックスとなる材料が流動せず機能性粒子の保持や隣り合う顆粒の接着に寄与出来ないためである。 However, Non-Patent Document 1 is a technique relating to a polymer matrix and cannot be simply applied to inorganic materials such as ceramics. For example, it is possible to produce composite particles in which h-BN particles are attached to ceramic base particles, but even if a green body is produced from these composite particles and heated, it will not be sintered. In the case of a polymer matrix, since the polymer heated to a high temperature has a certain degree of fluidity, it flows between the h-BN particles and on the surface of the composite particles to hold the h-BN particles and bond the composite particles together. In the case of inorganic materials such as ceramics, the matrix material does not flow and cannot contribute to the retention of the functional particles or the adhesion of adjacent granules.

非特許文献2に記載のコアシェル型複合顆粒のシェル部のCNTはランダムに配置しており、配置、配向は制御できない。さらにこのコアシェル型複合顆粒から作製した焼結体においては、CNTを局所的、かつ連続的に導入されて、偏析三次元ネットワークは形成できるが、3次元ネットワーク内のCNTはランダムに存在し、配置、配向までは制御できない。 The CNTs in the shell portion of the core-shell type composite granules described in Non-Patent Document 2 are randomly arranged, and their arrangement and orientation cannot be controlled. Furthermore, in the sintered body produced from this core-shell type composite granule, CNTs can be locally and continuously introduced to form a segregated three-dimensional network, but the CNTs in the three-dimensional network are randomly present and arranged. , the orientation cannot be controlled.

本発明の目的は、構造が制御されたセラミックスなどの無機材料の原料粉末を好適に利用できるような複合粉末粒子とそれにより作製された構造制御された無機複合材料を提供することであり、詳しくは、コアシェル構造を有し、かつ、シェル部に含まれる機能性粒子の配置、配向を制御した粉末粒子を提供するとともに、この粉末粒子から作製した焼結体において、第一段としてマトリックス材料からなる島部と機能性材料が偏析した海部とからなる海島構造を有し、かつ、第二段として海部の機能性粒子が島部の境界線方向に配向した構造を有する二段階の構造制御された無機複合材料を提供することにある。 An object of the present invention is to provide composite powder particles that can suitably use raw material powders of inorganic materials such as ceramics with a controlled structure, and structure-controlled inorganic composite materials produced therefrom. has a core-shell structure and provides powder particles in which the arrangement and orientation of the functional particles contained in the shell part are controlled, and in a sintered body produced from this powder particle, the first stage is from the matrix material It has a sea-island structure consisting of an island part and a sea part where the functional material is segregated, and the second stage is a structure in which the functional particles in the sea part are oriented in the boundary line direction of the island part. It is an object of the present invention to provide an inorganic composite material.

本発明は、以下に示される。
[1]第一の無機材料の粒子からなるコア部と、該コア部の表面に付着されたシェル部とを有するコアシェル型の複合顆粒であって、前記コア部は、第一の無機材料による複数の粒子が球状に凝集された顆粒状であり、前記シェル部は、前記第一の無機材料による複数の粒子と棒状または平板状に形成された第二の無機材料による複数の粒子との混合物によって構成され、前記第二の無機材料による粒子が長軸を前記コア部の周方向に配向した状態で付着されていることを特徴とするコアシェル型の複合顆粒。
[2][1]に記載のコアシェル型の複合顆粒の製造方法であって、
コア部形成工程と、シェル部付着工程とを含み、
前記コア部形成工程は、
第一の無機材料の粒子の表面電荷を正に調整する工程と、
第一の無機材料の粒子の表面電荷を負に調整する工程と、
前記正に帯電した第一の無機材料の粒子の水系溶媒分散液と負に帯電した第一の無機材料の粒子の水系溶媒分散液とを混合し、前記混合液を円筒状の容器に入れ、前記円筒状容器を円周方向に回転して複合顆粒のコア部顆粒を形成する工程とを含み、
前記シェル部付着工程は、
棒状もしくは平板状の第二の無機材料の粒子の表面電荷を正または負に調整する工程と、
表面電荷を正または負に調整した棒状もしくは平板状の第二の無機材料の粒子の水系溶媒分散液と少なくともこれとは逆の電荷に調整した第一の無機材料の粒子の水系溶媒分散液とを水系溶媒中で混合し、この混合液をコア部形成工程で作製したコア部顆粒の水系分散液に加えてさらにこの混合液を円筒状の容器に入れ、前記円筒状容器を円周方向に回転することでコア部顆粒の表面にシェル部を形成する工程とを含むものである
ことを特徴とするコアシェル型の複合顆粒の製造方法。
[3][1]に記載のコアシェル型の複合顆粒を使用する無機複合材料であって、複数の前記複合顆粒によって形成され、前記コア部からなる島部と前記シェル部からなる海部とを有する海島構造であり、
前記海部に含有する棒状または平板状の第二の無機材料の粒子の長軸が前記島部の境界線方向に配向していることを特徴とする無機複合材料。
[4]前記棒状または平板状の第二の無機材料の粒子は、その特性に異方性があり、短軸または厚み方向の特性と長軸または面方向との特性が相互に異なることを特徴とすることを特徴とする[3]に記載の無機複合材料。
[5]前記特性は、熱伝導性または電子伝導性であり、短軸もしくは厚み方向の特性よりも長軸もしくは面方向の熱伝導性または電子伝導性が高いことを特徴とすることを特徴とする[4]に記載の無機複合材料。
[6][3]に記載の無機複合材料の製造方法であって、
前記コアシェル型の複合顆粒を適宜集合させてグリーン体を作製する工程と、前記グリーン体を焼結する工程とを含むことを特徴とする無機複合材料の製造方法。
The present invention is shown below.
[1] A core-shell type composite granule having a core part made of particles of a first inorganic material and a shell part attached to the surface of the core part, wherein the core part is made of the first inorganic material The shell portion is a mixture of a plurality of particles made of the first inorganic material and a plurality of particles made of the second inorganic material formed into a rod or plate shape. wherein the particles of the second inorganic material are attached with their major axes oriented in the circumferential direction of the core portion.
[2] A method for producing the core-shell type composite granules according to [1],
including a core portion forming step and a shell portion attaching step,
The core portion forming step includes:
adjusting the surface charge of the particles of the first inorganic material to be positive;
adjusting the surface charge of the particles of the first inorganic material to be negative;
mixing the aqueous solvent dispersion of the positively charged particles of the first inorganic material and the aqueous solvent dispersion of the negatively charged particles of the first inorganic material, and placing the mixture in a cylindrical container; and rotating the cylindrical container in a circumferential direction to form core granules of composite granules;
The shell attachment step includes:
adjusting the surface charge of the rod-like or plate-like particles of the second inorganic material to be positive or negative;
an aqueous solvent dispersion of rod-like or plate-like particles of a second inorganic material whose surface charge has been adjusted to be positive or negative, and an aqueous solvent dispersion of particles of the first inorganic material whose surface charge has been adjusted to at least the opposite is mixed in an aqueous solvent, this mixed solution is added to the aqueous dispersion of core granules prepared in the core part forming step, and this mixed solution is further placed in a cylindrical container, and the cylindrical container is rotated in the circumferential direction and a step of forming a shell on the surface of the core granule by rotating.
[3] An inorganic composite material using the core-shell type composite granules according to [1], which is formed by a plurality of the composite granules and has an island portion composed of the core portion and a sea portion composed of the shell portion. It has a sea-island structure,
An inorganic composite material, wherein long axes of rod-like or plate-like particles of the second inorganic material contained in the sea portion are oriented in the boundary line direction of the island portion.
[4] The rod-shaped or plate-shaped particles of the second inorganic material are anisotropic in their characteristics, and characterized in that the characteristics in the minor axis or thickness direction and the characteristics in the major axis or plane direction are different from each other. The inorganic composite material according to [3], characterized in that
[5] The characteristic is thermal conductivity or electronic conductivity, and the thermal conductivity or electronic conductivity in the long axis or surface direction is higher than in the short axis or thickness direction. The inorganic composite material according to [4].
[6] A method for producing an inorganic composite material according to [3],
A method for producing an inorganic composite material, comprising the steps of appropriately aggregating the core-shell type composite granules to produce a green body, and sintering the green body.

本発明のコアシェル型複合顆粒を無機材料の原料粉末とし、この原料粉末のグリーン体を作製し、焼結して得られる複合材料は、マトリックス材料からなる島部と機能性材料が偏析した海部とからなる海島構造を有し、かつ、海部の機能性粒子が島部の境界線方向に配向した構造を有する二段階の構造を有している。すなわち、原料粉末の設計により、従来の焼結プロセスで、海島構造を有すると同時に海部の機能性粒子の粒子配置、配向も制御した2段の構造制御がなされた複合材料を得ることが可能となる。また、本発明で得られた複合材料はシェル部の焼結、シェル部とコア部の界面の焼結、隣接する複合顆粒のシェル部どうしの焼結も良好で本発明の複合材料はマトリックス材料単独に近い材料強度を得ることが出来る。 A composite material obtained by using the core-shell type composite granules of the present invention as a raw material powder of an inorganic material, preparing a green body from the raw material powder, and sintering the raw material powder consists of an island portion composed of a matrix material and a sea portion in which a functional material is segregated. and a two-step structure in which the functional particles in the sea portion are oriented in the boundary line direction of the island portion. In other words, by designing the raw material powder, it is possible to obtain a composite material with a sea-island structure and a two-step structural control in which the arrangement and orientation of the functional particles in the sea are also controlled by the conventional sintering process. Become. In addition, the composite material obtained in the present invention is excellent in sintering of the shell portion, sintering of the interface between the shell portion and the core portion, and sintering of the shell portions of adjacent composite granules. A material strength close to that of a single material can be obtained.

さらに、機能性微粒子とマトリックス粒子を単純に混合して作製した機能材料では、機能性の発現レベルはパーコレーション転移の前後で急激に変化して発現レベルの制御は難しいが、本発明においては、コアシェル型複合顆粒のコア部とシェル部の比率を調整することで複合材料の機能性の発現レベルを自由に調整できる。 Furthermore, in a functional material prepared by simply mixing functional fine particles and matrix particles, the expression level of functionality changes rapidly before and after percolation transition, making it difficult to control the expression level. The expression level of the functionality of the composite material can be freely adjusted by adjusting the ratio of the core part and the shell part of the type composite granule.

本発明のコアシェル型の複合顆粒の断面模式図である。1 is a schematic cross-sectional view of a core-shell type composite granule of the present invention. FIG. 非特許文献2で作製した焼結体を破砕した断面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a cross section obtained by crushing a sintered body produced in Non-Patent Document 2. FIG. 実施例1のコア部顆粒の光学顕微鏡写真である。1 is an optical micrograph of core granules of Example 1. FIG. 実施例1のコアシェル型複合顆粒の光学顕微鏡写真である。1 is an optical micrograph of core-shell type composite granules of Example 1. FIG. 実施例1のコアシェル型複合顆粒表面を拡大した走査型電子顕微鏡写真である。1 is an enlarged scanning electron micrograph of the surface of core-shell type composite granules of Example 1. FIG. 実施例1の複合材料の破断面の光学顕微鏡写真である。1 is an optical micrograph of a fracture surface of the composite material of Example 1. FIG. 実施例1の複合材料の破断面の走査型電子顕微鏡写真である。1 is a scanning electron micrograph of a fracture surface of the composite material of Example 1. FIG. 実施例1の複合材料の破断面を拡大した走査型電子顕微鏡写真である。1 is an enlarged scanning electron micrograph of a fracture surface of the composite material of Example 1. FIG.

以下に本発明の実施形態について詳細に説明する。 Embodiments of the present invention will be described in detail below.

まず、本発明に係るコアシェル型の複合顆粒について説明する。本発明に係るコアシェル型の複合顆粒は、焼結体を製造するための原料粉末に用いられるものであり、本コアシェル型の複合顆粒によってグリーン体を成形し、グリーン体を焼結することにより無機複合材料を得る。 First, the core-shell type composite granules according to the present invention will be described. The core-shell type composite granules according to the present invention are used as a raw material powder for producing a sintered body. Get a composite material.

本発明において複合顆粒とは異種粒子から構成される集積物を表し、本発明の複合顆粒は球状の形態を有する。ここで球状とは真球に限定されずおおよそ球形であることを表す。図1に本発明のコアシェル型の複合顆粒の模式図を示す。コアシェル型とは球状の形態における球の中心部から動径方向の途中で構成する粒子成分が変わることを表し、中心側をコア部、表面側をシェル部とする。コア部は第一の無機材による複数の粒子から構成される。シェル部は第一の無機材料による複数の粒子と棒状または平板状の第二の無機材料による複数の粒子との混合物によって構成され、前記棒状または平板状の第二の無機材料による粒子の長軸が複合顆粒の周方向に配向している。ここで、第二の無機材料による粒子の長軸が複合顆粒の周方向に配向しているとは、個々の第二の無機材料による粒子の長軸の中心から最も近いコア部との界面の点における法線方向と第二の無機材料による粒子の長軸方向がおおよそ直角であることを表す。おおよそ直角とは60度から120度の範囲であることを表し、第二の無機材料の粒子の7割以上がこの範囲である。 In the present invention, composite granules represent aggregates composed of different types of particles, and the composite granules of the present invention have a spherical morphology. Here, the term “spherical” means not limited to true spheres but roughly spherical. FIG. 1 shows a schematic diagram of the core-shell type composite granules of the present invention. The term "core-shell type" means that the composition of the particles changes in the radial direction from the center of the sphere in the spherical shape, and the center side is the core portion and the surface side is the shell portion. The core portion is composed of a plurality of particles of the first inorganic material. The shell portion is composed of a mixture of a plurality of particles of the first inorganic material and a plurality of rod-shaped or plate-shaped particles of the second inorganic material, and the long axis of the rod-shaped or plate-shaped particles of the second inorganic material are oriented in the circumferential direction of the composite granules. Here, the expression that the long axis of the particles made of the second inorganic material is oriented in the circumferential direction of the composite granule means the interface with the core part closest to the center of the long axis of each particle made of the second inorganic material. It represents that the normal direction at the point and the long axis direction of the particles of the second inorganic material are approximately perpendicular. The term "approximately perpendicular" means that the angle ranges from 60 degrees to 120 degrees, and 70% or more of the particles of the second inorganic material fall within this range.

第一の無機材料による粒子は、セラミックスや金属からなる粒子であり、1種の粒子でも2種以上の粒子であっても良い。なお、複数の種類の粒子を用いる場合、後述の顆粒の形成しやすさから平均の粒子径の比が10倍以内であることが好ましい。セラミックスや金属の種類は特に制限はないが、セラミックスとしては酸化物、炭化物、窒化物等があげられる。尚、酸化物は、単一酸化物であっても複合酸化物であっても良い。かかるセラミックスには、例えば、アルミナ、ジルコニア、窒化ケイ素、炭化ケイ素、マグネシア、カルシア、チタニア、酸化バナジウム、スピネル、フェライトなどが例示でき、これらは単独で用いられても混合物で用いられても良い。更には、これらの固溶体であっても良い。 The particles made of the first inorganic material are particles made of ceramics or metal, and may be particles of one kind or particles of two or more kinds. In addition, when a plurality of types of particles are used, it is preferable that the ratio of the average particle size is within 10 times from the viewpoint of ease of forming granules, which will be described later. There are no particular restrictions on the types of ceramics and metals, but examples of ceramics include oxides, carbides, and nitrides. Incidentally, the oxide may be a single oxide or a composite oxide. Examples of such ceramics include alumina, zirconia, silicon nitride, silicon carbide, magnesia, calcia, titania, vanadium oxide, spinel, and ferrite, and these may be used singly or in combination. Furthermore, a solid solution of these may be used.

更に、金属としては、鉄系、銅系、アルミニウム系、ニッケル系、モリブデン系、チタン系、タングステン系の各粉末などが例示されるがこれに限られるものではない。また、これらは単独で用いられても混合物で用いられても良く、合金であっても良い。合金としては、各種のものを用いることができるが、例えば、鉄合金、合金鋼、銅合金、ニッケル合金、アルミ合金、超鋼合金などが例示される。また、サーメットとしては、TiC-Niサーメットや、Al-Crサーメット、Al-Feサーメットが例示されるが、これに限られるものではない。 Examples of metals include powders of iron, copper, aluminum, nickel, molybdenum, titanium, and tungsten, but are not limited to these. Moreover, these may be used singly or in a mixture, and may be alloys. Various alloys can be used, and examples thereof include iron alloys, steel alloys, copper alloys, nickel alloys, aluminum alloys, and super steel alloys. Examples of the cermet include TiC--Ni cermet, Al 2 O 3 --Cr cermet, and Al 2 O 3 --Fe cermet, but are not limited to these.

第一の無機材による粒子の幾何形状に制限はなく、球状、針状、塊状、柱状、扁平状、板状、繊維状、不定形等々が適用可能である。 The geometric shape of the particles of the first inorganic material is not limited, and spherical, needle-like, massive, columnar, flat, plate-like, fibrous, amorphous, and the like can be applied.

シェル部を構成する棒状または平板状の第二の無機材料による粒子について説明する。本発明において棒状とは形状が長さ方向に比べて動径方法の大きさが小さい形状であり棒状、針状、ロッド状とも言われる。動径方向を短軸、長さ方向を長軸とも表現する。棒状の粒子の大きさは径が0.05μmから5μm、長さは0.5μmから50μmであることが好ましい。後述する配向のしやすさからアスペクト比は3以上であることが好ましく5以上であることがより好ましい。なお、本発明において棒状に糸状は含まない。ここで、糸状とはアスペクト比が100以上である材料を表す。非特許文献2で使用するCNTは糸状に該当する。糸状の材料は一般的に柔軟性が高く、後述のシェル部を顆粒化する過程で第一の無機材料の粒子に絡まり配向しない。剛直である場合は、顆粒との吸着が点での接触となり吸着力が弱いために顆粒に取り込まれない。図2に非特許文献2で作製した焼結体を破砕した断面のSEM写真を示す。CNTは配向せずランダムであることがわかる。 The rod-like or plate-like particles of the second inorganic material that constitute the shell portion will be described. In the present invention, the term "rod-like" refers to a shape having a smaller size in the radial direction than in the longitudinal direction, and is also referred to as a rod-like shape, a needle-like shape, or a rod-like shape. The radial direction is also expressed as the short axis and the longitudinal direction as the long axis. The rod-like particles preferably have a diameter of 0.05 μm to 5 μm and a length of 0.5 μm to 50 μm. The aspect ratio is preferably 3 or more, and more preferably 5 or more, for ease of orientation, which will be described later. In the present invention, the rod shape does not include the filament shape. Here, filamentous means a material having an aspect ratio of 100 or more. The CNT used in Non-Patent Document 2 corresponds to filamentous. The filamentous material is generally highly flexible, and is not oriented by being entangled with the particles of the first inorganic material during the process of granulating the shell portion, which will be described later. If it is rigid, it will not be incorporated into the granules due to its weak adsorptive power due to point contact with the granules. FIG. 2 shows an SEM photograph of a cross section obtained by crushing the sintered body produced in Non-Patent Document 2. As shown in FIG. It can be seen that the CNTs are not oriented and are random.

本発明において平板状とは長さ又は幅方向に比べて厚みが小さい形状の粒子であり、板状・薄片状・鱗片状・フレーク状とも言われる。平板状の粒子の大きさは長軸方向での平均粒子径が0.5μmから50μmであることが好ましく、後述する配向のしやすさからアスペクト比は3以上であることが好ましく5以上であることがより好ましい。 In the present invention, the term “flat” refers to particles having a shape smaller in thickness than in the length or width direction, and is also called plate-like, flaky, scale-like, or flake-like. As for the size of the tabular grains, the average grain size in the major axis direction is preferably 0.5 μm to 50 μm, and the aspect ratio is preferably 3 or more, preferably 5 or more, in terms of ease of orientation, which will be described later. is more preferable.

第二の無機材料の粒子は、セラミックスや金属からなる粒子であり、第一の無機材の粒子として挙げた材料を利用できる。本発明において第二の無機材料の粒子は特定の特性が顕著に高い、または、低い材料であることが好ましい実施態様である。特定の特性としては、例えば、電子伝導性、熱伝導性、磁性、誘電性、弾性等をあげることが出来る。本発明において、パーコレーションにより高い性能が発現する高い電子伝導性、高い熱伝導性を有する材料であることが特に好ましい実施態様である。 The particles of the second inorganic material are particles made of ceramics or metal, and the materials listed as the particles of the first inorganic material can be used. In a preferred embodiment of the present invention, the particles of the second inorganic material are materials with remarkably high or low specific properties. Specific properties can include, for example, electronic conductivity, thermal conductivity, magnetism, dielectricity, elasticity, and the like. In the present invention, a particularly preferred embodiment is a material having high electronic conductivity and high thermal conductivity that exhibits high performance by percolation.

高い電子伝導性を有する材料としてはSnO、ZnO、TiO、CeO等やこれらに異種原子をドーピングした材料をあげることができる。高い熱伝導性を有する材料としては、Al、MgO、ZnO、SiO、TiO、マイカ、チタン酸カリウム、酸化鉄、タルク等の酸化物粒子、窒化ホウ素、窒化珪素、窒化アルミニウム等の窒化物粒子、炭化珪素等の炭化物粒子、銅、アルミニウム等の金属粒子、炭酸マグネシウムなどが挙げられる。磁性材料としては鉄、ニッケル、コバルトなどがあげられる。さらに、マルチフェロイック物質に利用される材料も利用でき、BiFeO、BaTiO,Pd(Zr、Ti)O、CaMnO、LaFeO、TbMnOなどをあげることができる。 Materials having high electron conductivity include SnO 2 , ZnO, TiO 2 , CeO 2 and the like, and materials obtained by doping these with heteroatoms. Materials with high thermal conductivity include Al 2 O 3 , MgO, ZnO, SiO 2 , TiO 2 , mica, potassium titanate, iron oxide, oxide particles such as talc, boron nitride, silicon nitride, aluminum nitride, and the like. nitride particles, carbide particles such as silicon carbide, metal particles such as copper and aluminum, and magnesium carbonate. Magnetic materials include iron, nickel, and cobalt. Furthermore, materials used for multiferroic substances can also be used, such as BiFeO 3 , BaTiO 3 , Pd(Zr, Ti)O 3 , CaMnO 3 , LaFeO 3 and TbMnO 3 .

また、棒状においては動径方向と長さ方向の特性が、板状においては厚み方向と長さ又は幅方向の特性が異なる場合、本発明の構造制御が有効であり、棒状においては幅及び厚み方向よりも長さ方向の特性が高いこと、板状においては厚み方向よりも長さ又は幅方向の特性が高い場合、特に有効である。 In addition, the structure control of the present invention is effective when the characteristics in the radial direction and the length direction are different in the rod shape, and the characteristics in the thickness direction and the length or width direction are different in the plate shape. It is particularly effective when the characteristics in the length direction are higher than in the direction, and when the characteristics in the length or width direction are higher than in the thickness direction in the case of a plate.

本発明のコアシェル型複合顆粒の製造方法について説明する。本発明のコアシェル型の複合顆粒の製造方法は、コア部形成工程と、シェル部付着工程からなる。コア部形成工程は、第一の無機材料の粒子の表面電荷を正に調整する工程と、第一の無機材料の粒子の表面電荷を負に調整する工程と、前記正に帯電した第一の無機材料の粒子の水系溶媒分散液と負に帯電した第一の無機材料の粒子の水系溶媒分散液とを混合し、前記混合液を円筒状の容器に入れ、前記円筒状容器を円周方向に回転して複合顆粒のコア部顆粒を形成する工程とを含む。シェル部付着工程は、棒状もしくは平板状の第二の無機材料の粒子の表面電荷を正または負に調整する工程と、表面電荷を正または負に調整した棒状もしくは平板状の第二の無機材料の粒子の水系溶媒分散液と少なくともこれとは逆の電荷に調整した第一の無機材料の粒子の水系溶媒分散液とを水系溶媒中で混合し、この混合液をコア部形成工程で作製したコア部顆粒の水系分散液に加えてさらにこの混合液を円筒状の容器に入れ、前記円筒状容器を円周方向に回転することでコア部顆粒の表面にシェル部を形成する工程を有する。ここで水系溶媒とは水、水に可能な溶剤と水との混合溶媒を表し、水に可能な溶剤とはアルコール系溶剤、ケトン系溶剤等をあげることが出来る。 A method for producing the core-shell type composite granules of the present invention will be described. The method for producing core-shell type composite granules of the present invention comprises a core forming step and a shell adhering step. The core portion forming step includes a step of adjusting the surface charge of the particles of the first inorganic material to be positive, a step of adjusting the surface charge of the particles of the first inorganic material to be negative, and the positively charged first An aqueous solvent dispersion of inorganic material particles and an aqueous solvent dispersion of negatively charged first inorganic material particles are mixed, the mixture is placed in a cylindrical container, and the cylindrical container is rotated in the circumferential direction. to form core granules of composite granules. The step of adhering to the shell portion includes a step of adjusting the surface charge of the particles of the rod-shaped or plate-shaped second inorganic material to be positive or negative, and the rod-shaped or plate-shaped second inorganic material whose surface charge is adjusted to be positive or negative. and an aqueous solvent dispersion of the particles of the first inorganic material adjusted to at least the opposite charge, in an aqueous solvent, and this mixed solution was prepared in the core part forming step. In addition to the aqueous dispersion of the core granules, the mixed liquid is placed in a cylindrical container, and the cylindrical container is rotated in the circumferential direction to form the shell on the surface of the core granules. Here, the term "aqueous solvent" refers to water or a mixed solvent of a water-compatible solvent and water, and the term "water-compatible solvent" includes alcohol-based solvents, ketone-based solvents, and the like.

表面電荷とは、粒子が有する見かけ上の電位であり、粒子表面に極性を有する層が積層されている場合には、最も外側の層の電荷が表面電荷となる。表面電荷の調整には水系溶媒中で電離して正に帯電するカチオン性高分子電解質、水系溶媒中で電離して負に帯電するアニオン性高分子電解質を好ましく利用できる。水系溶媒中で電離して正に帯電するカチオン性高分子電解質としては例えば、ポリ(ジアリルジメチルアンモニウムクロライド)(PDDA)、ポリエチレンイミン(PEI)、ポリビニルアミン(PVAm)、ポリ(ビニルピロリドン・N,N-ジメチルアミノエチルアクリル酸)共重合等のカチオン性高分子をあげることができる。水系溶媒中で電離して負に帯電するアニオン性高分子電解質としては、例えば、ポリスチレンスルホン酸(PSS)、ポリビニル硫酸(PVS)、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、ポリカルボン酸(PCA)等のアニオン性高分子をあげることができる。 The surface charge is the apparent potential of the particles, and when polar layers are laminated on the particle surface, the surface charge is the charge of the outermost layer. A cationic polymer electrolyte that ionizes in an aqueous solvent and becomes positively charged, and an anionic polymer electrolyte that ionizes in an aqueous solvent and becomes negatively charged can be preferably used to adjust the surface charge. Examples of cationic polymer electrolytes that ionize and positively charge in aqueous solvents include poly(diallyldimethylammonium chloride) (PDDA), polyethyleneimine (PEI), polyvinylamine (PVAm), poly(vinylpyrrolidone N, N-dimethylaminoethylacrylic acid) can be mentioned as cationic polymers such as copolymers. Examples of anionic polymer electrolytes that are ionized and negatively charged in aqueous solvents include polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), polyacrylic acid (PAA), polymethacrylic acid (PMA), polycarboxylic acid Anionic polymers such as acid (PCA) can be mentioned.

第一の無機材料の粒子、第二の無機材料の粒子は、これらの材料を水系溶媒に分散すると正または負の表面電荷をもっている。正の表面電荷をもっていれば、アニオン性高分子電解質を吸着させることで、強い負の表面電荷を付与できる。反対に、負の表面電荷をもっている場合は、カチオン性高分子電解質を吸着させることで強い正の表面電荷を付与できる。また、カチオン性高分子電解質あるいはアニオン性高分子電解質で表面電荷を調整した後、さらに逆の電荷をもった高分子電解質を吸着させることで電荷を反転させることが出来る。この操作により粒子の表面電荷を所望する電荷に調整できる。この操作は正負正、負正負等多数回の処理を行って高分子電解質をより強固に吸着させても良い。なお、高分子電解質等による処理を行わなくても水系溶媒に分散しただけでも十分な表面電荷を有する場合は水系溶媒に分散する処理を表面電荷調整工程とすることができる。 The particles of the first inorganic material and the particles of the second inorganic material have a positive or negative surface charge when these materials are dispersed in an aqueous solvent. If it has a positive surface charge, it can impart a strong negative surface charge by adsorbing an anionic polyelectrolyte. Conversely, when it has a negative surface charge, a strong positive surface charge can be imparted by adsorbing a cationic polymer electrolyte. After adjusting the surface charge with a cationic polymer electrolyte or anionic polymer electrolyte, the charge can be reversed by further adsorbing a polymer electrolyte having an opposite charge. This operation allows the surface charge of the particles to be adjusted to the desired charge. This operation may be repeated many times such as positive/negative/positive/negative/positive/negative to adsorb the polymer electrolyte more firmly. In the case where sufficient surface charge is obtained by just dispersing in an aqueous solvent without performing treatment with a polymer electrolyte or the like, the treatment of dispersing in an aqueous solvent can be used as the surface charge adjustment step.

高分子電解質の吸着に起因する橋架け凝集などにより粒子の分散性が阻害される場合、高分子電解質に代えてイオン性界面活性剤を用いても良い。このイオン性界面活性剤を用いても、その吸着により粒子表面に電荷を付与することができる。 If the dispersibility of the particles is hindered by bridging aggregation due to adsorption of the polymer electrolyte, an ionic surfactant may be used instead of the polymer electrolyte. Even if this ionic surfactant is used, it is possible to charge the particle surface by its adsorption.

各粒子に高分子電解質を吸着させる方法としては、例えば、水系溶媒に高分子電解質を溶解した溶液中電荷調整する粒子を投入、撹拌、分散させることで、粒子表面に高分子電解質を吸着させることができる。ここで、十分な高分子電解質を粒子に吸着させるために、粒子の投入量に比べて過剰量の高分子電解質を溶液中に含ませることが好ましい。この場合は、余剰の高分子電解質を除去する操作、例えば、沈殿、遠心分離、ろ過などの作業により液体と粒子とを分離し、余剰の高分子電解質を除去する。その後、水系溶媒に粒子を再分散することにより水系溶媒に分散した分散液をえる。この分散液の固形分は特に制限はないが、1から20体積%である。 As a method for adsorbing the polymer electrolyte to each particle, for example, the polymer electrolyte is adsorbed on the particle surface by adding, stirring, and dispersing the charge-adjusting particles in a solution in which the polymer electrolyte is dissolved in an aqueous solvent. can be done. Here, in order to allow the particles to adsorb a sufficient amount of the polymer electrolyte, it is preferable that the solution contains an excess amount of the polymer electrolyte relative to the amount of the particles charged. In this case, an operation for removing the excess polymer electrolyte, for example, sedimentation, centrifugation, filtration, or the like, separates the liquid from the particles, and removes the excess polymer electrolyte. After that, the particles are re-dispersed in the aqueous solvent to obtain a dispersion liquid dispersed in the aqueous solvent. The solid content of this dispersion is not particularly limited, but is from 1 to 20% by volume.

あるいは、特願2013-507747号に記載のように水系溶媒に粒子を添加した混合液を撹拌するとともに液物性(ゼータ電位、粘度など)をモニタリングしながら、高分子電解質を溶解した水系溶媒を滴下し、液物性の変化から十分な高分子電解質が粒子に吸着したと判断できるところで滴下をストップする方法も好ましく利用できる。この手法により水系溶媒に分散した分散液が得られる。 Alternatively, as described in Japanese Patent Application No. 2013-507747, while stirring a mixed solution in which particles are added to an aqueous solvent and monitoring the liquid physical properties (zeta potential, viscosity, etc.), an aqueous solvent in which a polymer electrolyte is dissolved is added dropwise. However, it is also possible to preferably use a method of stopping the dropping at a point where it can be judged from changes in liquid properties that a sufficient amount of polymer electrolyte has been adsorbed to the particles. A dispersion in an aqueous solvent is obtained by this technique.

所望の表面電荷が得られたかは、得られた粒子のゼータ電位を測定することで確認できる。ゼータ電位が正なら正の表面電荷、負なら負の表面電荷である。また、正の表面電荷を有することを正に帯電、負の表面電荷を有することを負に帯電とも表現する。表面電荷調整後の粒子の表面電荷の大きさはゼータ電位の絶対値で20mVから150mVであることが好ましく、30mVから100mVであることがより好ましい。 Whether or not the desired surface charge is obtained can be confirmed by measuring the zeta potential of the obtained particles. A positive zeta potential indicates a positive surface charge, and a negative zeta potential indicates a negative surface charge. Moreover, having a positive surface charge is expressed as being positively charged, and having a negative surface charge is expressed as being negatively charged. The magnitude of the surface charge of the particles after surface charge adjustment is preferably 20 mV to 150 mV, more preferably 30 mV to 100 mV, in absolute value of zeta potential.

次にコアシェル型複合顆粒のコア部の作製について説明する。表面電荷調整工程により正に調整した第一の無機材料の粒子の分散液と負に調整した第一の無機材料の粒子の分散液を粒子量が等量となるように混合する。なお、第一の無機材料の粒子が複数の種類の粒子からなる場合は、表面電荷を正に調整した粒子と負に調整した粒子の量が等量となるように表面電荷を調整した粒子の分散液を準備して混合する。例えば、種類の異なる粒子それぞれ半量ずつ表面電を正、負に調整した分散液を準備して混合すれば良い。種類が2種で等量の場合は一方を正、他方を負に調整した分散液を準備して混合しても良い。 Next, preparation of the core portion of the core-shell type composite granules will be described. The dispersion liquid of the particles of the first inorganic material positively adjusted by the surface charge adjusting step and the dispersion liquid of the particles of the first inorganic material negatively adjusted are mixed so that the amount of the particles is equal. In addition, when the particles of the first inorganic material are composed of a plurality of types of particles, the amount of the particles whose surface charge is adjusted to be positive and the amount of particles whose surface charge is adjusted to be negative are equal to each other. Prepare and mix the dispersion. For example, it is possible to prepare dispersion liquids in which the surface charge is adjusted to be positive or negative by half for each of the different kinds of particles, and then mix them. If two types are equal in amount, a dispersion may be prepared in which one is positive and the other is negative, and mixed.

表面電荷を正に調整した分散液と負に調整した分散液を混合すると、静電相互作用により粒子が凝集し様々な大きさの凝集体となって沈降する。この混合液を円筒状の容器に入れ、ローテータ等により円周方向に容器を回転させる。円周方向に容器を回転させるとは容器の上面、下面の円の中心を通る線を軸として回転させることを表す。回転速度は容器の大きさに依存するが、例えば10~50rpmである。特に制限はないが、混合液の量は容器容積の6割以上、静置して粒子を沈降させた際の高さが容器高さの5割以下であることが好ましい。この工程で凝集体となった粒子は回転方向に引き上げられては重力による落下を繰り返す。静電相互作用により凝集体どうしが付着してサイズが大きくなるとともに突起部はくずれるために球状に成長する。さらに、凝集サイズにより外力の受け方が異なるために外力がそろう、すなわち、粒子径がそろうようになってくる。その結果、凝集体は粒子径が比較的そろった球状となる。こうして得られた粒子径が比較的そろった球状となった凝集体をコアシェル型複合顆粒のコア部顆粒とする。粒子の種類、容器のサイズ、回転速度にもよるが、回転時間は0.1日から10日である。回転時間が長いほどコア部の単分散性、真球度が高くなる。このようにして作製されたコア部の表面には、表面電荷が正に調整された第一の無機材料と、表面電荷が負に調整された第一の無機材料とが混在した状態となり、後述のシェル部の吸着を可能にしている。 When a dispersion in which the surface charge is adjusted to be positive and a dispersion in which the surface charge is adjusted to be negative are mixed, the particles aggregate due to electrostatic interaction and settle as aggregates of various sizes. This mixture is placed in a cylindrical container, and the container is rotated in the circumferential direction by a rotator or the like. Rotating the container in the circumferential direction means rotating around a line passing through the centers of the circles on the upper and lower surfaces of the container. The rotation speed depends on the size of the container, but is, for example, 10-50 rpm. Although there is no particular limitation, it is preferable that the amount of the mixed liquid is 60% or more of the volume of the container, and that the height of the particles when the particles are allowed to settle is 50% or less of the height of the container. Particles aggregated in this process are pulled up in the direction of rotation and fall repeatedly due to gravity. Aggregates adhere to each other due to electrostatic interaction, and as the size increases, the projections collapse and grow into a spherical shape. Furthermore, since the way of receiving the external force differs depending on the aggregate size, the external force becomes uniform, that is, the particle diameter becomes uniform. As a result, the aggregates have a spherical shape with relatively uniform particle diameters. The thus obtained spherical aggregates with relatively uniform particle diameters are used as core granules of core-shell type composite granules. The rotation time is 0.1 to 10 days, depending on the type of particles, the size of the container and the speed of rotation. The longer the rotation time, the higher the monodispersity and sphericity of the core. On the surface of the core portion thus produced, the first inorganic material having a positive surface charge and the first inorganic material having a negative surface charge are mixed, which will be described later. The adsorption of the shell part of is possible.

コアシェル型複合顆粒のシェル部付着工程について説明する。 The step of adhering the core-shell type composite granules to the shell will be described.

第一の無機材料の粒子と第二の無機材料の粒子を所望量準備し、これらの粒子の表面電荷を正に調整した粒子と負に調整した粒子の量が等量となるように第一の無機材料と第二の無機材料の表面電荷を調整した粒子の分散液を準備して混合する。第一および第二の無機材料は、それぞれ正および負に調整した双方を使用することができる。すなわち、第一の無機材料と第二の無機材料を混合したときの全体における表面電荷が正または負の一方に偏らず均等な状態となるように調整するのである。例えば、第一の無機材料の粒子と第二の無機材料の粒子それぞれ半量ずつ表面電荷を正、負に調整した分散液を準備して混合する。第一の無機材料と第二の無機材料の粒子の量が等しい場合は一方を正、他方を負に調整して混合してもよい。一方が多い場合は、多い方の粒子についてシェル部粒子トータルの半量分を正または負に調整し、残りの粒子と他方の粒子を逆の電荷に調整して混合しても良い。 A desired amount of the particles of the first inorganic material and the particles of the second inorganic material are prepared, and first A dispersion of surface-charge-adjusted particles of the first inorganic material and the second inorganic material is prepared and mixed. The first and second inorganic materials can be used both positively and negatively tuned, respectively. That is, when the first inorganic material and the second inorganic material are mixed, adjustment is made so that the surface charge of the entire mixture is not biased to either positive or negative and is in a uniform state. For example, the particles of the first inorganic material and the particles of the second inorganic material are prepared and mixed with half of each of the particles of the second inorganic material, the surface charges of which are adjusted to be positive and negative. When the amount of particles of the first inorganic material and the second inorganic material is equal, one may be adjusted to be positive and the other to be negative and mixed. If one of the particles is more than one, half of the total shell portion particles may be adjusted to be positive or negative, and the remaining particles and the other particles may be adjusted to have opposite charges and mixed.

こうして得られた混合液を、所望量のコアシェル型複合顆粒のコア部粒子を水系溶媒に分散した分散液と混合する。 The mixed liquid thus obtained is mixed with a dispersion liquid obtained by dispersing a desired amount of core particles of core-shell type composite granules in an aqueous solvent.

この混合液を円筒状の容器に入れ、コア部を作製したのと同様にローテータ等により円周方向に容器を回転させる。コア部の表面は、複数の第一の無機材料によって構成されており、これらの表面電荷は正に調整されたものと、負に調整されたものとの双方が存在し、シェル部を構成する第一または第二の無機材料は、調整された表面電荷の極性に応じてコア部の表面に吸着されることとなる。このように、コア部粒子の表面に第一の無機材料の粒子と第二の無機材料の粒子の凝集物が付着して顆粒が成長するが、この時、顆粒は回転、落下を繰り返す。棒状または平板状の第二の無機材料の粒子が球状の顆粒の動径方向に長軸方向が向いて吸着した場合、回転の流速により円周方向に倒す力が働き、また、落下の際の衝突においても円周方向に倒す力が働く。円周方向に配向した粒子は顆粒との接点面積が広いため顆粒に強く吸着して固定される。周囲の粒子との位置関係等で円周方向に配向できない場合はその倒そうとする力で顆粒から脱落し、再度、顆粒に付着することを繰り返す。その結果、コア部粒子の表面に第一の無機材料の粒子と第二の無機材料の粒子の凝集体からなり、第二の無機材料の長軸が複合顆粒の円周方向に配向したシェル部が形成される。シェル部を形成する回転時間は1時間から100時間である。 This mixed liquid is placed in a cylindrical container, and the container is rotated in the circumferential direction by a rotator or the like in the same manner as in the production of the core portion. The surface of the core portion is composed of a plurality of first inorganic materials, the surface charges of which are both positively adjusted and negatively adjusted, and constitute the shell portion. The first or second inorganic material is adsorbed on the surface of the core portion according to the adjusted polarity of the surface charge. In this way, aggregates of the particles of the first inorganic material and the particles of the second inorganic material adhere to the surface of the core particles, and the granules grow. At this time, the granules are repeatedly rotated and dropped. When rod-shaped or plate-shaped particles of the second inorganic material are adsorbed with their major axis directed in the radial direction of the spherical granules, the flow velocity of the rotation causes a force to fall in the circumferential direction. Even in the collision, a force acts in the circumferential direction. Particles oriented in the circumferential direction have a large contact area with granules, and thus are strongly adsorbed and fixed to granules. If it cannot be oriented in the circumferential direction due to the positional relationship with surrounding particles, etc., it falls off from the granules due to the force of falling down, and adheres to the granules again. As a result, the surface of the core part particle is composed of aggregates of the particles of the first inorganic material and the particles of the second inorganic material, and the long axis of the second inorganic material is oriented in the circumferential direction of the composite granule. is formed. The rotation time for forming the shell part is from 1 hour to 100 hours.

本発明のコアシェル型複合顆粒は必要に応じて他の成分を含有しても良い。例えば、脱脂工程の阻害とならないレベルでグリーン体(未焼結の成形体)の強度を上げる目的でポリマー樹脂を含んでも良い。この場合、顆粒化の工程で表面電荷を調整したポリマー樹脂の粒子を混合することで顆粒に取り込まれる。 The core-shell type composite granules of the present invention may contain other ingredients as necessary. For example, a polymer resin may be included for the purpose of increasing the strength of the green body (unsintered molded body) to a level that does not hinder the degreasing process. In this case, the granules are incorporated by mixing particles of a polymer resin with a controlled surface charge during the granulation process.

次に本発明のコアシェル型の複合顆粒を用いた無機複合材料の製造方法について説明する。本発明のコアシェル型複合顆粒を無機材料の原料粉末とし、この原料粉末のグリーン体を作製し、焼結して無機複合材料を得る。グリーン体の成形は、原料の粉末粒子を焼成前に所望の形態に成形する工程である。例えば、型に投入しプレスして成形するプレス成形、原料の粉末粒子を含むスラリーを用いた鋳込み成形や、ドクターブレードによるテープ成形や、3Dプリンタによる積層造形などが例示される。スラリーを用いた場合には乾燥が行われ、焼結体の原型形状を有するグリーン体が造形される。 Next, a method for producing an inorganic composite material using the core-shell type composite granules of the present invention will be described. Using the core-shell type composite granules of the present invention as a raw material powder of an inorganic material, a green body of this raw material powder is produced and sintered to obtain an inorganic composite material. Forming the green body is the process of forming the raw material powder particles into a desired shape before firing. Examples include press molding in which the material is placed in a mold and pressed to form a mold, cast molding using a slurry containing raw material powder particles, tape molding using a doctor blade, and layered molding using a 3D printer. When a slurry is used, drying is performed to form a green body having the original shape of the sintered body.

次に、グリーン体を焼結する工程について説明する。焼結とは加熱によりグリーン体を形成する粒子同士の表面が接合し、緻密化した焼結体とする工程である。焼結方法は従来知られている方法を利用可能で、無機材料に合わせて適宜選択する。焼結温度は材料により適宜選択すればよく、本発明においては第一の無機材料の粒子の一般的な焼結温度を選択すればよい。焼成炉は、可燃性ガスを燃焼させる燃焼炉、黒鉛発熱体、金属発熱体、セラミックス発熱体等の発熱体に通電することで加熱する電気炉などを用いることが出来る。焼結は必要に応じて大気下、真空化、不活性、酸化性、還元性などの制御雰囲気下で行うことが出来る。なお、焼結工程の前に有機物を取り除く脱脂工程を設けても良い。有機物を除去するため、400℃程度までゆっくり温度を上げて試料を加熱し、その後、高温で加熱して焼結を行う。 Next, the step of sintering the green body will be described. Sintering is a process in which surfaces of particles forming a green body are bonded to each other by heating to form a densified sintered body. A conventionally known method can be used as the sintering method, and the method is appropriately selected according to the inorganic material. The sintering temperature may be appropriately selected according to the material, and in the present invention, a general sintering temperature for particles of the first inorganic material may be selected. As the firing furnace, a combustion furnace that burns combustible gas, an electric furnace that heats by energizing a heating element such as a graphite heating element, a metal heating element, a ceramics heating element, or the like can be used. Sintering can be carried out under controlled atmospheres such as air, vacuum, inert, oxidizing and reducing atmospheres, if desired. A degreasing step for removing organic substances may be provided before the sintering step. In order to remove the organic substances, the temperature is slowly raised to about 400° C. to heat the sample, and then the sample is sintered by heating at a high temperature.

また、焼結工程として、加圧しながら焼結する加圧焼結も好ましく利用できる。例えば、型を使って加圧しながら焼結するホットプレス法を利用できる。さらに、加圧しながら被加工物にパルス通電し、電磁的エネルギーや被加工物の自己発熱および粒子間に発生する放電プラズマエネルギーなどを複合的に焼結の駆動力とする放電プラズマ焼結法も好ましく利用できる。これらの加圧しながら焼結する方法では、グリーン体の加圧成形を兼ねることが出来る。加圧により成形され、加圧を開放することなくそのまま加圧を継続して焼結する。圧力は一般的に20~100MPaである。 As the sintering step, pressure sintering in which sintering is performed while applying pressure can also be preferably used. For example, a hot press method of sintering while applying pressure using a mold can be used. Furthermore, there is also a discharge plasma sintering method in which a pulse is applied to the workpiece while pressurizing it, and electromagnetic energy, self-heating of the workpiece, and discharge plasma energy generated between particles are used as driving forces for sintering. Can be used preferably. These methods of sintering while pressurizing can also serve as press molding of the green body. It is shaped by pressurization and sintered by continuing the pressurization without releasing the pressurization. The pressure is generally 20-100 MPa.

次に、本発明の無機複合材料について説明する。本発明の無機複合材料は本発明のコアシェル型の複合顆粒を使用する無機複合材料であって、複数の前記複合顆粒によって形成され、焼結後に前記シェル部が連続相を形成して海部となり、個々のコア部は海部により独立した島部となる海島構造となっている。このときの海部は、シェル部によって形成されるところ、前述のとおり、シェル部が第一の無機材料と第二の無機材料との混合物で構成されていることから、海部は両者が混合している領域によって形成されるものである。従って、第二の無機材料は、海部を形成する領域に存在するものとなる。さらに、前記海部において棒状または平板状の第二の無機材料の粒子の長軸が前記島部の境界線方向に配向している。ここで、第二の無機材料の粒子の長軸が前記島部の境界線方向に配向しているとは、個々の第二の無機材料の粒子の長軸の中心から最も近い海部との界面の点における法線方向と第二の無機材料の粒子の長軸方向がおおよそ直角であることを表す。おおよそ直角とは60度から120度の範囲であることを表し、第二の無機材料の粒子の7割以上がこの範囲である。 Next, the inorganic composite material of the present invention will be explained. The inorganic composite material of the present invention is an inorganic composite material that uses the core-shell type composite granules of the present invention, is formed by a plurality of the composite granules, and after sintering, the shell portion forms a continuous phase and becomes a sea portion, Each core part has a sea-island structure that becomes an independent island part by the sea part. At this time, the sea portion is formed by the shell portion, and as described above, the shell portion is composed of a mixture of the first inorganic material and the second inorganic material. It is formed by the area where Therefore, the second inorganic material is present in the region forming the sea. Further, in the sea portion, the long axes of the rod-like or plate-like particles of the second inorganic material are oriented in the boundary line direction of the island portion. Here, the expression that the long axis of the particles of the second inorganic material is oriented in the boundary line direction of the island portion means that the interface with the sea portion closest to the center of the long axis of each particle of the second inorganic material and the long axis direction of the particles of the second inorganic material are approximately perpendicular to each other. The term "approximately perpendicular" means that the angle ranges from 60 degrees to 120 degrees, and 70% or more of the particles of the second inorganic material fall within this range.

海部において棒状または平板状の第二の無機材料の粒子の長軸が前記島部の境界線方向に配向することで少量でも第二の無機材料の粒子どうしの接触頻度が高くなりパーコレーション転移となる。さらに、海島構造の島部には第二の無機材料の粒子を含まないので、大幅に第二の無機材料の量を低減しても第二の無機材料の特性を発現させることが出来る。さらに通常パーコレーション転移では粒子の比率に対して性能の発現が急速に立ち上がるため、性能の制御が難しい。本発明の無機複合材料においては、海部でパーコレーション転移を発現すれば、島部と海部の比率で複合材料全体としての性能を制御できる。このように本発明のコアシェル型の複合顆粒を使用することにより海島構造の導入と海部の粒子配向の2段階の構造制御が可能となることが本発明の大きな特徴である。 In the sea part, the long axes of the rod-like or plate-like particles of the second inorganic material are oriented in the boundary line direction of the island part, so that the frequency of contact between the particles of the second inorganic material increases even if the amount is small, resulting in percolation transition. . Furthermore, since the island portions of the sea-island structure do not contain particles of the second inorganic material, the properties of the second inorganic material can be exhibited even if the amount of the second inorganic material is greatly reduced. Furthermore, in the normal percolation transition, the performance is difficult to control because the performance rises rapidly with respect to the particle ratio. In the inorganic composite material of the present invention, if percolation transition occurs in the sea portion, the performance of the composite material as a whole can be controlled by the ratio of the island portion to the sea portion. Thus, it is a major feature of the present invention that the use of the core-shell type composite granules of the present invention enables two-stage structural control of introduction of a sea-island structure and particle orientation of the sea portion.

本発明について、以下に実施例を示し更に詳しく説明するが、本発明はこれらの実施例によって制限されるものではない。 The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.

(実施例1)
(複合顆粒のコア部形成)
第一の無機材料の粒子として140nmのアルミナ粒子(TM-DAR、大明化学工業社製)を準備した。アルミナ粒子を脱イオン水に粒子の固形分が9体積%となるように分散させ、この分散液のゼータ電を大塚電子社製ELS-Z1により測定した。ゼータ電位は+51mVで十分な帯電を有していることからこの分散液を正に帯電したアルミナ粒子の水分散液とした。次に、ポリアニオン(高分子電解質;アニオン性高分子)であるポリスチレンスルホン酸ナトリウム(PSS、和光富士フイルム社製)の1質量%水溶液にアルミナ粒子を投入し、ローテーター(タイテック社製)により30分撹拌することでアルミナ粒子表面にPSSを吸着させた。その後、冷却遠心分離機 Model7000(KUBOTA社製、回転速度1万rpm)によりアルミナ粒子を沈降さえて上澄み液を除去した後、脱イオン水で洗浄することで未吸着のPSSを除去して脱イオン水を粒子の固形分が9体積%となるように加えて分散液とした。この分散液のゼータ電位を同様の方法で測定すると-39mVで十分な帯電量を有しており、この分散液を負に帯電したアルミナ粒子の水分散液とした。
(Example 1)
(Formation of core portion of composite granules)
Alumina particles of 140 nm (TM-DAR, manufactured by Taimei Chemical Industry Co., Ltd.) were prepared as particles of the first inorganic material. Alumina particles were dispersed in deionized water so that the solid content of the particles was 9% by volume, and the zeta potential of this dispersion was measured using ELS-Z1 manufactured by Otsuka Electronics Co., Ltd. Since the zeta potential was +51 mV and it was sufficiently charged, this dispersion was used as an aqueous dispersion of positively charged alumina particles. Next, alumina particles are added to a 1% by mass aqueous solution of sodium polystyrene sulfonate (PSS, manufactured by Wako Fuji Film Co., Ltd.), which is a polyanion (polymer electrolyte; anionic polymer). The PSS was adsorbed on the surface of the alumina particles by stirring. After that, the alumina particles are sedimented by a refrigerated centrifuge Model 7000 (manufactured by KUBOTA, rotation speed 10,000 rpm), and the supernatant is removed, followed by washing with deionized water to remove unadsorbed PSS and deionize. Water was added so that the solid content of the particles was 9% by volume to prepare a dispersion. When the zeta potential of this dispersion was measured by the same method, it was −39 mV and had a sufficient amount of charge, and this dispersion was used as an aqueous dispersion of negatively charged alumina particles.

上記正に帯電したアルミナ粒子の水分散液と負に帯電したアルミナ粒子の水分散液を等量混合し、混合液を円筒状のガラス製容器(口内径×胴径×全長:φ10×φ21×45mm)に2mL、脱イオン交換水を8mL加えて固形分を1.8体積%とし、回転ローラー(IBI Scientific社製ROLAAUV1S)を用いて、円周方向に15rpmの回転速度で3時間、20rpmの回転速度で1日、30rpmの回転速度で6日間回転させてコア部顆粒を作製した。図3に、このコア部顆粒の光学顕微鏡写真を示す。コア部顆粒はおおよそ真球で、直径は300~600μmであった。 Equal amounts of the aqueous dispersion of positively charged alumina particles and the aqueous dispersion of negatively charged alumina particles were mixed, and the mixture was placed in a cylindrical glass container (inner diameter x body diameter x total length: φ10 x φ21 x 45 mm), 2 mL and 8 mL of deionized exchange water are added to make the solid content 1.8% by volume, and a rotating roller (ROLAAUV1S manufactured by IBI Scientific) is used to rotate in the circumferential direction at a rotation speed of 15 rpm for 3 hours and 20 rpm. Core granules were prepared by rotating at a rotation speed of 1 day and at a rotation speed of 30 rpm for 6 days. FIG. 3 shows an optical micrograph of this core granule. The core granules were approximately spherical and had a diameter of 300-600 μm.

(複合顆粒のシェル部付着)
棒状あるいは平板粒子として平板状の窒化ホウ素(BN)粒子(デンカ社製、HGP)を準備した。この粒子の平面の平均の直径は5μm、厚みは0.2μmでアスペクト比は25である。この粒子を界面活性剤であるデオキシコール酸ナトリウム(SDC、Sigma-Aldrich社製)の水溶液(0.5質量%)中に投入しローテーター(タイテック社製)により30分撹拌することで粒子表面にSDCを吸着させた。その後、棒状または平板状粒子を水溶液中から回収し、脱イオン水にて洗浄して未吸着のSDCを取り除いた。次いで、得られたSDC被覆された粒子を、ポリカチオン(高分子電解質;カチオン性高分子)であるポリ(ジアリルジメチルアンモニウムクロライド)(PDDA)の1質量%水溶液に投入しローテータ-(タイテック社製)により30分間攪拌することで粒子の最表面にPDDAを吸着させた。その後、冷却遠心分離機 Model7000(KUBOTA社製、回転速度1万rpm)によりBN粒子を沈降さえて上澄み液を除去した後、脱イオン水で洗浄することで未吸着のPDDAを除去して脱イオン水を粒子の固形分が9体積%となるように加えて分散液とした。この分散液のゼータ電位を同様の方法で測定すると+60mVで十分な帯電量を有しており、この分散液を正に帯電したBN粒子の水分散液とした。
(Adherence to shell of composite granules)
Tabular boron nitride (BN) particles (HGP, manufactured by Denka Co., Ltd.) were prepared as rod-like or tabular particles. The particles have an average plane diameter of 5 μm, a thickness of 0.2 μm, and an aspect ratio of 25. The particles were put into an aqueous solution (0.5% by mass) of sodium deoxycholate (SDC, manufactured by Sigma-Aldrich), which is a surfactant, and stirred for 30 minutes with a rotator (manufactured by Taitec). SDC was adsorbed. Thereafter, the rod-shaped or tabular grains were recovered from the aqueous solution and washed with deionized water to remove unadsorbed SDC. Next, the obtained SDC-coated particles are put into a 1% by mass aqueous solution of poly(diallyldimethylammonium chloride) (PDDA), which is a polycation (polyelectrolyte; cationic polymer), and a rotator (manufactured by Taitec Co., Ltd. ) for 30 minutes to adsorb PDDA on the outermost surface of the particles. After that, the BN particles are sedimented by a refrigerated centrifuge Model 7000 (manufactured by KUBOTA, rotation speed 10,000 rpm), and the supernatant is removed, followed by washing with deionized water to remove unadsorbed PDDA and deionize. Water was added so that the solid content of the particles was 9% by volume to prepare a dispersion. When the zeta potential of this dispersion was measured by the same method, it was +60 mV and had a sufficient amount of charge, and this dispersion was used as an aqueous dispersion of positively charged BN particles.

正に帯電したBN粒子の水分散液(9体積%)と正に帯電したアルミナ粒子の水分散液(9体積%)と負に帯電したアルミナ粒子の水分散液(9体積%)を粒子の体積比率が1:4:5となるように混合し、この混合液1.25mLと固形分1.8体積%のコア部顆粒分散液8.75mLを混合(コア部粒子とシェル部粒子の体積比率8:5)して、円筒状のガラス製容器(口内径×胴径×全長:φ10×φ21×45mm)に入れ、回転ローラー(IBI Scientific社製ROLAAUV1S)を用いて、円周方向に30rpmの回転速度で72時間回転させてコア部顆粒の表面にシェル部を付着させた。その後、複合顆粒が含まれる懸濁液を、送風定温恒湿器(YAMATO社製、DKM600)に60℃、3時間乾燥させて複合顆粒を得た。複合顆粒を走査型電子顕微鏡(日立製作所製、S-4800)および光学顕微鏡(Leica製、DMS1000)で観察した。光学顕微鏡写真を図4に示す。複合顆粒はおおよそ球状で、直径は300~600μmであった。走査型電子顕微鏡による複合顆粒の表面拡大写真を図5に示す。板状粒子(黒く見ている粒子)が周方向に配向した状態であり、また、法線方向に立った板状粒子は見られない。 An aqueous dispersion of positively charged BN particles (9% by volume), an aqueous dispersion of positively charged alumina particles (9% by volume), and an aqueous dispersion of negatively charged alumina particles (9% by volume) were added to the particles. Mix so that the volume ratio is 1:4:5, and mix 1.25 mL of this mixed liquid with 8.75 mL of the core part granule dispersion liquid having a solid content of 1.8% by volume (the volume of the core part particles and the shell part particles ratio 8:5), placed in a cylindrical glass container (inner diameter x body diameter x total length: φ10 x φ21 x 45 mm), and rotated at 30 rpm in the circumferential direction using a rotating roller (ROLAAUV1S manufactured by IBI Scientific). for 72 hours to attach the shell to the surface of the core granules. Thereafter, the suspension containing the composite granules was dried at 60° C. for 3 hours in a constant temperature and humidity blower (DKM600, manufactured by YAMATO Co., Ltd.) to obtain composite granules. The composite granules were observed with a scanning electron microscope (Hitachi, S-4800) and an optical microscope (Leica, DMS1000). An optical micrograph is shown in FIG. The composite granules were roughly spherical with a diameter of 300-600 μm. FIG. 5 shows an enlarged photograph of the surface of the composite granules taken by a scanning electron microscope. Plate-like particles (particles seen in black) are oriented in the circumferential direction, and plate-like particles standing in the normal direction are not seen.

(グリーン体作製と焼結)
得た複合顆粒を、Φ10mmの黒鉛ダイスに充填し、エス・エス・アロイ社製、CSP-KIT-02121を用いて通電プラズマ焼結法によりグリーン体を作製するとともに焼結を行った。圧力は40MPaとし、1250℃、10分間の条件で焼結し、本発明の無機複合材料とした。得られた複合材料の破断面を走査型電子顕微鏡(日立製作所製、S-4800)および光学顕微鏡(Leica製、DMS1000)で観察した。光学顕微鏡写真を図6に示す。海島構造を有していることがわかる。走査型電子顕微鏡写真を図7に、拡大写真を図8に示す。海部のBN粒子長軸が島部の境界線方向に配向していることがわかる。
(Green body preparation and sintering)
The obtained composite granules were filled in a φ10 mm graphite die, and CSP-KIT-02121 manufactured by S.S.Alloy Co., Ltd. was used to prepare a green body by an electric plasma sintering method and sintered. The pressure was set to 40 MPa and sintered at 1250° C. for 10 minutes to obtain the inorganic composite material of the present invention. A fracture surface of the resulting composite material was observed with a scanning electron microscope (Hitachi, S-4800) and an optical microscope (Leica, DMS1000). An optical micrograph is shown in FIG. It can be seen that it has a sea-island structure. A scanning electron microscope photograph is shown in FIG. 7, and an enlarged photograph is shown in FIG. It can be seen that the major axis of the BN grains in the sea portion is oriented in the boundary line direction of the island portion.

(比較例1)
正に帯電したBN粒子の水分散液と正に帯電したアルミナ粒子の水分散液と負に帯電したアルミナ粒子の水分散液を実施例1の複合顆粒全体でのアルミナ粒子とBN粒子の比率と同じになるように、9体積%の正電荷を有するアルミナ分散液、負電荷を有するアルミナ分散液、および、9体積%のBN分散液をそれぞれ1.5mL、1.625mL、0.125mLを一括して混合し、この混合液3.25mLをガラス製容器(口内径×胴径×全長:φ10×φ21×45mm)に入れ、脱イオン交換水を6.75mL加えて、回転ローラー(IBI Scientific社製ROLAAUV1S)を用いて、円周方向に20rpmの回転速度で1週間回転することでアルミナ粒子とBN粒子が均一に分散した複合顆粒を作製した。さらに、実施例1と同様に焼結して比較の無機複合体を得た。
(Comparative example 1)
An aqueous dispersion of positively charged BN particles, an aqueous dispersion of positively charged alumina particles, and an aqueous dispersion of negatively charged alumina particles are compared with the ratio of alumina particles and BN particles in the entire composite granules of Example 1. 1.5 mL, 1.625 mL, and 0.125 mL of 9 vol.% positively charged alumina dispersion, negatively charged alumina dispersion, and 9 vol.% BN dispersion, respectively. 3.25 mL of this mixture was placed in a glass container (inner diameter x body diameter x total length: φ10 x φ21 x 45 mm), 6.75 mL of deionized exchange water was added, and a rotating roller (IBI Scientific Co. Composite granules in which alumina particles and BN particles are uniformly dispersed were prepared by rotating in the circumferential direction at a rotational speed of 20 rpm for 1 week using a ROLAA UV1S manufactured by Manufacture Co., Ltd. Further, sintering was carried out in the same manner as in Example 1 to obtain a comparative inorganic composite.

(熱伝導率の測定)
実施例1と比較例1の複合材料の熱伝導率を厚み1.8mm、30℃の温度条件下においてキセノンフラッシュ法(LINSEIS社製、XFA300)により評価した。
実施例1の複合材料は14.9W/mK、比較例の均一な複合材料は11.7W/mKで、本発明の複合材料は高い熱伝導性を示した。
(Measurement of thermal conductivity)
The thermal conductivity of the composite materials of Example 1 and Comparative Example 1 was evaluated by a xenon flash method (XFA300, manufactured by LINSEIS) under conditions of a thickness of 1.8 mm and a temperature of 30°C.
The composite material of Example 1 exhibited high thermal conductivity of 14.9 W/mK and the homogeneous composite material of Comparative Example 11.7 W/mK.

10:コアシェル型複合顆粒
11:第一の無機材料による粒子
12:棒状または平板状に形成された第二の無機材料による粒子

10: Core-shell type composite granules 11: Particles of the first inorganic material 12: Particles of the second inorganic material formed into rods or flat plates

Claims (6)

第一の無機材料の粒子からなるコア部と、該コア部の表面に付着されたシェル部とを有するコアシェル型の複合顆粒であって、前記コア部は、第一の無機材料による複数の粒子が球状に凝集された顆粒状であり、前記シェル部は、前記第一の無機材料による複数の粒子と棒状または平板状に形成された第二の無機材料による複数の粒子との混合物によって構成され、前記第二の無機材料による粒子が長軸を前記コア部の周方向に配向した状態で付着されていることを特徴とするコアシェル型の複合顆粒。
A core-shell type composite granule having a core composed of particles of a first inorganic material and a shell attached to the surface of the core, wherein the core comprises a plurality of particles composed of the first inorganic material is in the form of spherically agglomerated granules, and the shell portion is composed of a mixture of a plurality of particles of the first inorganic material and a plurality of particles of the second inorganic material formed in the shape of rods or plates. A core-shell type composite granule characterized in that said second inorganic material particles are adhered with their long axes oriented in the circumferential direction of said core portion.
請求項1に記載のコアシェル型の複合顆粒の製造方法であって、
コア部形成工程と、シェル部付着工程とを含み、
前記コア部形成工程は、
第一の無機材料の粒子の表面電荷を正に調整する工程と、
第一の無機材料の粒子の表面電荷を負に調整する工程と、
前記正に帯電した第一の無機材料の粒子の水系溶媒分散液と負に帯電した第一の無機材料の粒子の水系溶媒分散液とを混合し、前記混合液を円筒状の容器に入れ、前記円筒状容器を円周方向に回転して複合顆粒のコア部顆粒を形成する工程とを含み、
前記シェル部付着工程は、
棒状もしくは平板状の第二の無機材料の粒子の表面電荷を正または負に調整する工程と、
表面電荷を正または負に調整した棒状もしくは平板状の第二の無機材料の粒子の水系溶媒分散液と少なくともこれとは逆の電荷に調整した第一の無機材料の粒子の水系溶媒分散液とを水系溶媒中で混合し、この混合液をコア部形成工程で作製したコア部顆粒の水系分散液に加えてさらにこの混合液を円筒状の容器に入れ、前記円筒状容器を円周方向に回転することでコア部顆粒の表面にシェル部を形成する工程とを含むものである
ことを特徴とするコアシェル型の複合顆粒の製造方法。
A method for producing the core-shell type composite granules according to claim 1,
including a core portion forming step and a shell portion attaching step,
The core portion forming step includes:
adjusting the surface charge of the particles of the first inorganic material to be positive;
adjusting the surface charge of the particles of the first inorganic material to be negative;
mixing the aqueous solvent dispersion of the positively charged particles of the first inorganic material and the aqueous solvent dispersion of the negatively charged particles of the first inorganic material, and placing the mixture in a cylindrical container; and rotating the cylindrical container in a circumferential direction to form core granules of composite granules;
The shell attachment step includes:
adjusting the surface charge of the rod-like or plate-like particles of the second inorganic material to be positive or negative;
an aqueous solvent dispersion of rod-like or plate-like particles of a second inorganic material whose surface charge has been adjusted to be positive or negative, and an aqueous solvent dispersion of particles of the first inorganic material whose surface charge has been adjusted to at least the opposite is mixed in an aqueous solvent, this mixed solution is added to the aqueous dispersion of core granules prepared in the core part forming step, and this mixed solution is further placed in a cylindrical container, and the cylindrical container is rotated in the circumferential direction and a step of forming a shell on the surface of the core granule by rotating.
請求項1に記載のコアシェル型の複合顆粒を使用する無機複合材料であって、複数の前記複合顆粒によって形成され、前記コア部からなる島部と前記シェル部からなる海部とを有する海島構造であり、
前記海部に含有する棒状または平板状の第二の無機材料の粒子の長軸が前記島部の境界線方向に配向していることを特徴とする無機複合材料。
An inorganic composite material using the core-shell type composite granules according to claim 1, which has a sea-island structure formed by a plurality of the composite granules and having an island portion composed of the core portion and a sea portion composed of the shell portion. can be,
An inorganic composite material, wherein long axes of rod-like or plate-like particles of the second inorganic material contained in the sea portion are oriented in the boundary line direction of the island portion.
前記棒状または平板状の第二の無機材料の粒子は、その特性に異方性があり、短軸または厚み方向の特性と長軸または面方向との特性が相互に異なることを特徴とすることを特徴とする請求項3に記載の無機複合材料。
The rod-like or plate-like particles of the second inorganic material have anisotropic properties, and are characterized in that the properties in the short axis or thickness direction and the properties in the long axis or plane direction are different from each other. The inorganic composite material according to claim 3, characterized by:
前記特性は、熱伝導性または電子伝導性であり、短軸もしくは厚み方向の特性よりも長軸もしくは面方向の熱伝導性または電子伝導性が高いことを特徴とすることを特徴とする請求項4に記載の無機複合材料。
The property is thermal conductivity or electronic conductivity, and the thermal conductivity or electronic conductivity in the major axis or plane direction is higher than the property in the minor axis or thickness direction. 5. The inorganic composite material according to 4.
請求項3に記載の無機複合材料の製造方法であって、
前記コアシェル型の複合顆粒を適宜集合させてグリーン体を作製する工程と、前記グリーン体を焼結する工程とを含むことを特徴とする無機複合材料の製造方法。
A method for producing an inorganic composite material according to claim 3,
A method for producing an inorganic composite material, comprising the steps of appropriately aggregating the core-shell type composite granules to produce a green body, and sintering the green body.
JP2021191967A 2021-11-26 2021-11-26 Core-shell type composite granule, inorganic composite material prepared using core-shell type composite granule and manufacturing method thereof Pending JP2023078711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021191967A JP2023078711A (en) 2021-11-26 2021-11-26 Core-shell type composite granule, inorganic composite material prepared using core-shell type composite granule and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021191967A JP2023078711A (en) 2021-11-26 2021-11-26 Core-shell type composite granule, inorganic composite material prepared using core-shell type composite granule and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2023078711A true JP2023078711A (en) 2023-06-07

Family

ID=86646319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021191967A Pending JP2023078711A (en) 2021-11-26 2021-11-26 Core-shell type composite granule, inorganic composite material prepared using core-shell type composite granule and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2023078711A (en)

Similar Documents

Publication Publication Date Title
JP2010064945A (en) Method for manufacturing ceramic composite particle and functional ceramic composite particle
KR101310520B1 (en) Electrode material for electrochemical device and composite particle
TW201825438A (en) Ceramic composite devices and methods
JPWO2005040065A1 (en) Method for producing carbon nanotube dispersed composite material
JP6487945B2 (en) Thermoelectric composite having thermoelectric properties and method for producing the same
JP2016504756A (en) Bulk-sized nanostructured materials and methods for making them by sintering nanowires
JP6892122B2 (en) Powder particles and a method for producing a green body using them
Zhang et al. Preparation and dielectric properties of polymer composites incorporated with polydopamine@ AgNPs core–satellite particles
JPWO2007032374A1 (en) COMPOSITE PARTICLE FOR ELECTROCHEMICAL ELEMENT ELECTRODE, METHOD FOR PRODUCING THE SAME, ELECTROCHEMICAL ELEMENT ELECTRODE MATERIAL, AND ELECTROCHEMICAL ELEMENT ELECTRODE
KR20180047524A (en) Heat pipe and it's wick containing Metal-Carbon composite material
KR20050037877A (en) Method for fabricating carbon nanotubes/metal nanocomposite materials using metal nanopowders
JP2023078711A (en) Core-shell type composite granule, inorganic composite material prepared using core-shell type composite granule and manufacturing method thereof
Arpagaus et al. Laboratory spray drying of materials for batteries, lasers, and bioceramics
JP2008255195A (en) Composite granulated substance of inorganic material-macromolecular resin and method for producing the same
JP2012101951A (en) Polycrystalline material and method for producing the same
WO2017149886A1 (en) Method for producing porous carbon material, and spherical porous carbon material
KR101202415B1 (en) Graphene dispersed polymer matrix and Thermal Pad and manufacturing method of Thermal Pad
JP5977027B2 (en) Production of deformable granules
Suzuki et al. Texture development in anatase and rutile prepared by slip casting in a strong magnetic field
JPH0261440B2 (en)
JPH02297812A (en) Sintered body of oxide, manufacture thereof, and target using same
JP2005289695A (en) Conductive ceramic product and method of manufacturing the same
KR20160055522A (en) Ceramic powder-cnt complex and method of manufacturing the same
WO2016101260A1 (en) Method for preparing nano-powder, electrode comprising nano-powder and battery comprising electrode
TWI538285B (en) Manufacturing method for nanopowder, electrode including the nanopowder and battery including the electrode