JP2023078487A - pp65-CONTAINING ARTIFICIAL ADJUVANT VECTOR CELLS USED IN TREATMENT OF CANCER - Google Patents

pp65-CONTAINING ARTIFICIAL ADJUVANT VECTOR CELLS USED IN TREATMENT OF CANCER Download PDF

Info

Publication number
JP2023078487A
JP2023078487A JP2020069501A JP2020069501A JP2023078487A JP 2023078487 A JP2023078487 A JP 2023078487A JP 2020069501 A JP2020069501 A JP 2020069501A JP 2020069501 A JP2020069501 A JP 2020069501A JP 2023078487 A JP2023078487 A JP 2023078487A
Authority
JP
Japan
Prior art keywords
cells
cd1d
cell
aavc
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020069501A
Other languages
Japanese (ja)
Inventor
恵介 大隅
keisuke Osumi
仁 中村
Hitoshi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astellas Pharma Inc
Original Assignee
Astellas Pharma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astellas Pharma Inc filed Critical Astellas Pharma Inc
Priority to JP2020069501A priority Critical patent/JP2023078487A/en
Priority to PCT/JP2021/014686 priority patent/WO2021206104A1/en
Publication of JP2023078487A publication Critical patent/JP2023078487A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/22Urine; Urinary tract, e.g. kidney or bladder; Intraglomerular mesangial cells; Renal mesenchymal cells; Adrenal gland
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/03Herpetoviridae, e.g. pseudorabies virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/03Herpetoviridae, e.g. pseudorabies virus
    • C07K14/04Varicella-zoster virus
    • C07K14/045Cytomegalovirus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

To provide aAVC-pp65 cells for use in the treatment of patients having a pp65-expressing cancer.SOLUTION: The present invention provides: a human-derived cell having a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof exogenously introduced thereto; and a method for producing cells for use in the treatment of cancer that includes the steps of introducing, to a human-derived cell, a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof and culturing the cell having the polynucleotides introduced thereto.SELECTED DRAWING: None

Description

本発明は、がんの治療又は予防に用いる、pp65含有人工アジュバントベクター細胞(artificial adjuvant vector cell:aAVC-pp65細胞)に関する。 The present invention relates to pp65-containing artificial adjuvant vector cells (aAVC-pp65 cells) for use in the treatment or prevention of cancer.

脳神経細胞(ニューロン)を支持する神経膠細胞(グリア)から発生する腫瘍を神経膠腫(グリオーマ)という。神経膠腫には星細胞腫、乏突起神経膠腫などの種類があり、脳から発生する腫瘍のおよそ25%を占めている。悪性度に応じてグレードが4つに分かれており、最も悪性度が高いグレード4を膠芽腫(Glioblastoma multiforme:GBM)と称する。 Tumors that develop from glial cells (glia) that support brain nerve cells (neurons) are called gliomas. Glioma includes types such as astrocytoma and oligodendroglioma, and accounts for approximately 25% of tumors originating from the brain. There are four grades according to the degree of malignancy, and grade 4, which has the highest degree of malignancy, is called glioblastoma multiforme (GBM).

GBMの初発時に行う標準治療は確立されている。手術により腫瘍を摘出した後に、摘出した周囲に残っている腫瘍に対して局所に放射線照射を行い、加えてテモゾロミドの内服による化学療法を行う。その後、維持療法としてテモゾロミドの内服を継続する。しかしながら、腫瘍を完全に摘出することは難しく、ほとんどの患者において放射線治療後1年以内に再発が見られる。再発後はいくつかの治療法が提案されているが、標準化された方法はなく、再発後の平均的な生存期間は1年以内と非常に短い。このような背景から、GBMに有効な新規薬剤や新規治療法の開発が強く望まれており、新たな治療方法の提供を目的として、EGFRvIII(epidermal growth factor receptor variant III)、IL-13Rα2(interleukin-13 receptor alpha chain variant2)、survivin、MAGEA1、Ephrin A2、HER2、AIM2、TRP-2、gp100等の抗原を標的としたワクチンやT細胞療法の開発が進められている(非特許文献1及び2)。 A standard of care for the first onset of GBM has been established. After surgical removal of the tumor, local radiation is applied to the tumor remaining around the removal, followed by oral chemotherapy with temozolomide. After that, oral administration of temozolomide is continued as maintenance therapy. However, it is difficult to remove the tumor completely, and recurrence is seen within one year after radiotherapy in most patients. Several treatment methods have been proposed after recurrence, but there is no standardized method, and the average survival period after recurrence is very short, less than 1 year. Against this background, there is a strong demand for the development of new drugs and novel treatments effective for GBM. -13 receptor alpha chain variant 2), survivin, MAGEA1, Ephrin A2, HER2, AIM2, TRP-2, gp100 and other antigen-targeted vaccines and T-cell therapies are being developed (Non-Patent Documents 1 and 2 ).

ヒトサイトメガロウイルス(human cytomegalovirus:HCMV)は、サイトメガロウイルス属に属する2本鎖DNAウイルスである。HCMVは通常、幼小児期に唾液・尿などの分泌液を介して人体に感染し、その後、潜伏・持続感染によって人体に終生寄生する。多くの健常人がHCMVの既感染者であり、そのほとんどが不顕性感染であることが知られている。しかし、免疫機能の低下によりHCMVが再活性化して増殖し、腎移植、骨髄移植などの臓器移植患者や後天性免疫不全症候群(Acquired Immunodeficiency Syndrome:AIDS)、悪性腫瘍、免疫抑制療法等の免疫不全状態にある患者にしばしば重篤な感染症をもたらす。 Human cytomegalovirus (HCMV) is a double-stranded DNA virus belonging to the genus Cytomegalovirus. HCMV usually infects the human body through secretions such as saliva and urine during infancy and childhood, and then remains parasitic on the human body for the rest of one's life through latent and persistent infection. It is known that many healthy individuals are pre-infected with HCMV, most of which are subclinical infections. However, HCMV is reactivated and proliferates due to decreased immune function, and organ transplant patients such as kidney and bone marrow transplants, Acquired Immunodeficiency Syndrome (AIDS), malignant tumors, immunodeficiency such as immunosuppressive therapy. It often causes serious infections in affected patients.

近年、ヒトサイトメガロウイルスが腫瘍細胞にも感染し、腫瘍細胞に腫瘍免疫や抗がん剤に対する抵抗性を獲得させ悪性度を高める可能性があることが報告された(非特許文献3)。GBMでは患者の90%以上にてHCMV由来抗原の発現が検出されている(非特許文献4~6)。また、大腸がんではHCMVのDNAが検出され(非特許文献7)、前立腺がん(非特許文献8)や乳がん(非特許文献9)からもHCMV由来のDNAやタンパクが検出されており、種々のがんとの関係が示唆されている。 In recent years, it has been reported that human cytomegalovirus also infects tumor cells, and that the tumor cells acquire tumor immunity and resistance to anticancer drugs, thereby increasing the degree of malignancy (Non-Patent Document 3). Expression of HCMV-derived antigens has been detected in more than 90% of patients with GBM (Non-Patent Documents 4-6). In addition, HCMV DNA has been detected in colon cancer (Non-Patent Document 7), and HCMV-derived DNA and proteins have also been detected in prostate cancer (Non-Patent Document 8) and breast cancer (Non-Patent Document 9). A relationship with various cancers has been suggested.

pp65(65 KDa phosphoprotein、遺伝子名 UL83)は、HCMVウイルス粒子のエンベロープとヌクレオカプシドの間のテグメントを構成するタンパク質であり、HCMVウイルス粒子を形成する約70種類のタンパク質の中で最も多く含まれるタンパク質である。このpp65タンパク質は、ウイルス抗原血症の診断用の抗原として有用であるのみならず、HCMVウイルス感染症及びGBMに対する治療又は予防用のワクチンの標的抗原としても研究が行われている(非特許文献10及び11)。しかしながら、未だにHCMVウイルスに対するワクチンとして上市された薬剤はない。 pp65 (65 KDa phosphoprotein, gene name UL83) is a protein that constitutes the tegument between the envelope and nucleocapsid of HCMV virions, and is the most abundant protein among about 70 kinds of proteins that form HCMV virions. be. This pp65 protein is not only useful as an antigen for diagnosing viral antigenemia, but is also being studied as a target antigen for therapeutic or preventive vaccines against HCMV viral infection and GBM (Non-Patent Document 10 and 11). However, there is still no drug marketed as a vaccine against the HCMV virus.

藤井らは、ヒト由来細胞に外来的にCD1d及びがん抗原を発現させ、さらに当該細胞にα-ガラクトシルセラミド(α-Galactosylceramide、α-GalCer)をパルスした人工アジュバントベクター細胞(artificial adjuvant vector cell:aAVC)を作製した(特許文献1~3)。当該aAVCは、CD1d/α-GalCer複合体を介してナチュラルキラーT(NKT)細胞を活性化し、活性化されたNKT細胞はインターフェロンγ(IFN-γ)等のサイトカインを産生してナチュラルキラー(NK)細胞等を活性化する。マウスモデルにおいて、aAVC投与によるNK細胞依存的な抗腫瘍効果が示されている(特許文献1~3)。また、マウスに投与されたaAVCは生体内において活性化されたNKT細胞により速やかに殺傷され、当該aAVCの断片は樹状細胞に取り込まれる。当該aAVC断片を取り込んだ樹状細胞は、当該細胞表面上の主要組織適合遺伝子複合体(major histocompatibility complex:MHC)に取り込んだがん抗原の断片を抗原提示し、がん抗原特異的なT細胞を誘導する。マウスモデルにおいて、aAVC投与によるがん抗原特異的T細胞の誘導を介した抗腫瘍効果が示されている(特許文献1~3、非特許文献12及び13)。このように、aAVCはNKT細胞活性化を介したNK細胞活性化による自然免疫活性化及び抗原特異的T細胞誘導による獲得免疫誘導の二つの免疫機構を強力に誘導し得ることが示されている。しかしながら、現在までに、aAVC細胞にpp65等のHCMV抗原を発現させた細胞及び当該細胞を用いたNK/NKT細胞の活性化及びGBM抗原特異的免疫誘導作用については、未だ報告がなされていない。 Fujii et al. exogenously expressed CD1d and cancer antigens in human-derived cells, and further α-galactosylceramide (α-GalCer) pulsed artificial adjuvant vector cells (artificial adjuvant vector cells: aAVC) was produced (Patent Documents 1 to 3). The aAVC activates natural killer T (NKT) cells via the CD1d/α-GalCer complex, and the activated NKT cells produce cytokines such as interferon γ (IFN-γ) to become natural killer (NK ) to activate cells. In mouse models, NK cell-dependent antitumor effects by aAVC administration have been demonstrated (Patent Documents 1 to 3). In addition, aAVC administered to mice is rapidly killed by NKT cells activated in vivo, and the aAVC fragment is taken up by dendritic cells. Dendritic cells that have incorporated the aAVC fragment present cancer antigen fragments that have been incorporated into the major histocompatibility complex (MHC) on the cell surface, and generate cancer antigen-specific T cells. Induce. Antitumor effects mediated by induction of cancer antigen-specific T cells by aAVC administration have been shown in mouse models (Patent Documents 1 to 3, Non-Patent Documents 12 and 13). Thus, it has been shown that aAVC can strongly induce two immune mechanisms: innate immunity activation by NK cell activation via NKT cell activation and acquired immunity induction by antigen-specific T cell induction. . However, to date, there have been no reports on aAVC cells expressing HCMV antigens such as pp65, activation of NK/NKT cells using such cells, and GBM antigen-specific immunity-inducing effects.

国際公開番号2007/097370International publication number 2007/097370 国際公開番号2010/061930International publication number 2010/061930 国際公開番号2013/018778International publication number 2013/018778

Lim M et al.,「ネイチャー レビューズ.クリニカル オンコロジー(Nature reviews. Clinical oncology)」、(イングランド)、2018;15(7):422-442Lim M et al. , Nature reviews. Clinical oncology, (England), 2018; 15(7):422-442. McGranahan T et al.,「カレント トリートメント オプションズ イン オンコロジー(Current treatment options in oncology)」、(米国)、2019;20(3):24McGranahan T et al. , "Current treatment options in oncology", (USA), 2019; 20(3):24. Michaelis M. et al.,「ネオプラシア(Neoplasia)」、(米国)、2009;11(1):1-9Michaelis M. et al. , "Neoplasia", (USA), 2009;11(1):1-9 Cobbs C.S. et al.,「キャンサー リサーチ(Cancer Research)」、(米国)、2002;62(12):3347-3350CobbsC. S. et al. , Cancer Research, (USA), 2002;62(12):3347-3350. Mitchell D.A. et al.,「ニューロ-オンコロジー(Neuro-oncology)」、(イングランド)、2008;10(1):10-18Mitchell D. A. et al. , Neuro-oncology, (England), 2008; 10(1):10-18. Scheurer M.E. et al.,「アクタ ニューロパソロジカ(Acta Neuropathologica)」、(ドイツ)、2008;116(1):79-86ScheurerM. E. et al. , "Acta Neuropathologicala", (Germany), 2008; 116(1):79-86. Chen H.P. et al.,「ジャーナル オブ クリニカル ビロロジー(Journal of clinical virology)」、(オランダ)、2012;54(3):240-244Chen H. P. et al. , "Journal of clinical virology", (Netherlands), 2012;54(3):240-244. Samanta M. et al.,「ザ ジャーナル オブ ウロロジー(The Journal of urology)」、(米国)、2003;170(3):998-1002Samanta M. et al. , "The Journal of urology", (USA), 2003; 170(3):998-1002 Harkins L.E. et al.,「ヘルペスビリダエ(Herpesviridae)」、(イングランド)、2010;1(1):8Harkins L. E. et al. , "Herpesviridae", (England), 2010;1(1):8 Batich KA et al.,「クリニカル キャンサー リサーチ(Clinical Cancer Research)」、(米国)、2017;23(8):1898-1909Batich KA et al. , Clinical Cancer Research, (USA), 2017;23(8):1898-1909. Schuessler A et al.,「キャンサー リサーチ(Cancer Research)」、(米国)、2014;74(13):3466-3476Schuessler A et al. , Cancer Research, (USA), 2014;74(13):3466-3476. Shimizu K. et al.,「キャンサー リサーチ(Cancer Research)」、(米国)、2013;73(1):62-73Shimizu K. et al. , Cancer Research, (USA), 2013;73(1):62-73. Shimizu K. et al.,「キャンサー リサーチ(Cancer Research)」、(米国)、2016;76(13):3756-3766Shimizu K. et al. , Cancer Research, (USA), 2016;76(13):3756-3766.

本発明の課題は、pp65発現がんの治療又は予防に有効なaAVC-pp65細胞を提供することにある。 An object of the present invention is to provide aAVC-pp65 cells effective for treatment or prevention of pp65-expressing cancer.

本発明者らは、マウスの細胞にpp65を発現させたaAVC(aAVC(3T3)-pp65細胞ともいう)を作製し(実施例1-1)、当該aAVC(3T3)-pp65細胞が、マウスにおいてpp65特異的T細胞を誘導し(実施例1-2)、pp65発現B16メラノーマ細胞担癌マウス及びpp65発現GL-261グリオーマ細胞担癌マウスにおいて、pp65タンパク質特異的な抗腫瘍効果(実施例1-3及び1-4)を示すことを見出した。さらにこれらの知見に基づいて、本発明者らは、ヒトの細胞にpp65を発現させたaAVC(aAVC-pp65ともいう)を作製した(実施例2)。即ち、本発明は、aAVC-pp65細胞、当該細胞を含む医薬組成物、当該細胞の作製方法、細胞の表面にCD1dリガンドを積載している当該細胞によるpp65発現がんの治療又は予防方法を提供する。 The present inventors prepared aAVC (also referred to as aAVC(3T3)-pp65 cells) in which pp65 was expressed in mouse cells (Example 1-1), and the aAVC(3T3)-pp65 cells were pp65-specific T cells were induced (Example 1-2), and pp65 protein-specific antitumor effects (Example 1- 3 and 1-4). Furthermore, based on these findings, the present inventors prepared aAVC (also referred to as aAVC-pp65) in which pp65 was expressed in human cells (Example 2). That is, the present invention provides aAVC-pp65 cells, pharmaceutical compositions containing the cells, methods for producing the cells, and methods for treating or preventing pp65-expressing cancers using the cells carrying a CD1d ligand on the surface of the cells. do.

すなわち、本発明は、医学上又は産業上有用な物質又は方法として以下の発明を含んでもよい。 That is, the present invention may include the following inventions as medically or industrially useful substances or methods.

[1]CD1dをコードするポリヌクレオチド、及びpp65又はその断片をコードするポリヌクレオチドを外来的に導入した、ヒト由来細胞。
[2]CD1dがヒトCD1dである、[1]に記載の細胞。
[3]ヒト由来細胞が正常細胞である、[1]又は[2]に記載の細胞。
[4]正常細胞がヒト胎児腎細胞293(HEK293)細胞に由来する細胞である、[3]に記載の細胞。
[5]CD1d、及びpp65又はその断片を発現している、[1]~[4]のいずれかに記載の細胞。
[6]細胞の表面にCD1dリガンドを積載している、[5]に記載の細胞。
[7]CD1dリガンドがα-GalCerである、[6]に記載の細胞。
[8][6]又は[7]に記載の細胞を含む医薬組成物。
[9]がんの処置に用いるための、[8]に記載の医薬組成物。
[10]がんを処置する方法であって、[6]又は[7]に記載の細胞を対象に投与する工程を含む、方法。
[11]がんを処置するための、[6]又は[7]に記載の細胞。
[12]がんの処置に用いる医薬組成物を製造するための、[6]又は[7]に記載の細胞の使用。
[13]がんの処置に用いる細胞を製造する方法であって、
ヒト由来細胞にCD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドを導入する工程と、
該細胞を培養する工程を含む、方法。
[14]CD1dがヒトCD1dである、[13]に記載の方法。
[15]ヒト由来細胞が正常細胞である、[13]又は[14]に記載の方法。
[16]正常細胞がヒト胎児腎細胞293(HEK293)細胞に由来する細胞である、[15]に記載の方法。
[17]細胞の表面にCD1dリガンドを積載する工程をさらに含む、[13]~[16]のいずれかに記載の方法。
[18]CD1dリガンドがα-GalCerである、[17]に記載の方法。
[1] A human-derived cell into which a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof have been exogenously introduced.
[2] The cell of [1], wherein the CD1d is human CD1d.
[3] The cell of [1] or [2], wherein the human-derived cell is a normal cell.
[4] The cell of [3], wherein the normal cell is derived from human embryonic kidney 293 (HEK293) cells.
[5] The cell of any one of [1] to [4], which expresses CD1d and pp65 or a fragment thereof.
[6] The cell of [5], which loads a CD1d ligand on the surface of the cell.
[7] The cell of [6], wherein the CD1d ligand is α-GalCer.
[8] A pharmaceutical composition comprising the cells of [6] or [7].
[9] The pharmaceutical composition of [8], for use in treating cancer.
[10] A method of treating cancer, comprising the step of administering the cell of [6] or [7] to a subject.
[11] The cell of [6] or [7] for treating cancer.
[12] Use of the cells of [6] or [7] for producing a pharmaceutical composition for cancer treatment.
[13] A method for producing cells for use in cancer treatment, comprising:
introducing a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof into a human-derived cell;
A method comprising the step of culturing said cells.
[14] The method of [13], wherein the CD1d is human CD1d.
[15] The method of [13] or [14], wherein the human-derived cells are normal cells.
[16] The method of [15], wherein the normal cells are derived from human embryonic kidney 293 (HEK293) cells.
[17] The method of any one of [13] to [16], further comprising the step of loading a CD1d ligand on the surface of the cell.
[18] The method of [17], wherein the CD1d ligand is α-GalCer.

本発明のaAVC-pp65細胞及び本発明の医薬組成物は、がんの処置に有用である。 The aAVC-pp65 cells of the invention and the pharmaceutical compositions of the invention are useful for treating cancer.

図1-1はaAVC(3T3)-pp65細胞投与マウスの脾臓細胞中のIFN-γ産生T細胞数を示す。横軸のBICANATEはコントロール群を示す。aAVC(3T3)-pp65細胞投与群における-(マイナス)は脾臓細胞中に含まれるT細胞を刺激するためのペプチドを添加していないことを示し、WT1及びpp65はそれぞれ、T細胞の刺激剤としてWT1ペプチド及びpp65ペプチドを用いたことを示す。縦軸はELISPOTリーダーにてカウントした際の3×10脾臓細胞あたりのスポット数を示し、水平線は個体ごとのスポット数の平均値を、エラーバーは±平均の標準誤差を示す。FIG. 1-1 shows the number of IFN-γ-producing T cells in spleen cells of aAVC(3T3)-pp65 cell-administered mice. BICANATE on the horizontal axis indicates the control group. - (minus) in the aAVC(3T3)-pp65 cell administration group indicates that peptides for stimulating T cells contained in spleen cells were not added, and WT1 and pp65 were used as T cell stimulators, respectively. WT1 peptide and pp65 peptide were used. The vertical axis indicates the number of spots per 3×10 5 spleen cells counted with an ELISPOT reader, the horizontal line indicates the average number of spots for each individual, and the error bars indicate ±standard error of the mean. 図1-2はpp65発現B16担癌マウスにおけるaAVC(3T3)-pp65細胞の抗腫瘍効果を示す。aAVC(3T3)-WT1細胞はpp65非発現の対照被験aAVCとして用いた。縦軸は腫瘍体積を、横軸はがん細胞投与後日数を示す。実線は各群の腫瘍体積の平均値の推移を、エラーバーは平均値の標準誤差を示す。有意確率P値(**:P<0.01)は、ダネットの多重比較検定によりBICANATE投与群とaAVC(3T3)-pp65細胞及びaAVC(3T3)-WT1細胞投与群の12日目の腫瘍体積を比較することにより算出した。Figures 1-2 show the antitumor effect of aAVC(3T3)-pp65 cells in pp65-expressing B16 tumor-bearing mice. aAVC(3T3)-WT1 cells were used as control test aAVC without pp65 expression. The vertical axis indicates the tumor volume, and the horizontal axis indicates the number of days after cancer cell administration. The solid line indicates changes in the average tumor volume in each group, and the error bars indicate the standard error of the average. Significance probability P value (**: P < 0.01) is the tumor volume on day 12 of the BICANATE administration group and the aAVC (3T3) -pp65 cell and aAVC (3T3) -WT1 cell administration group by Dunnett's multiple comparison test It was calculated by comparing 図1-3はpp65発現GL-261担癌マウスにおけるaAVC(3T3)-pp65細胞の抗腫瘍効果を示す。aAVC(3T3)-WT1細胞はpp65非発現の対照被験aAVCとして用いた。縦軸は生存率を、横軸はがん細胞投与後日数を示す。有意確率P値は、ログランク検定を用いて、BICANATE投与群の生存期間とaAVC(3T3)-pp65細胞及びaAVC(3T3)-WT1細胞投与群の生存期間を比較することにより求めた。図中の**は、P値が0.01/6(ボンフェローニの方法にて補正した有意水準)より小さい群を示す。Figures 1-3 show the anti-tumor effect of aAVC(3T3)-pp65 cells in pp65-expressing GL-261 tumor-bearing mice. aAVC(3T3)-WT1 cells were used as control test aAVC without pp65 expression. The vertical axis indicates the survival rate, and the horizontal axis indicates the number of days after cancer cell administration. The significance probability P value was obtained by comparing the survival period of the BICANATE-administered group and the survival periods of the aAVC(3T3)-pp65 cell and aAVC(3T3)-WT1 cell-administered groups using the log-rank test. ** in the figure indicates a group with a P value smaller than 0.01/6 (significance level corrected by Bonferroni's method).

以下に、本発明について詳述するが、本発明はこれらに限定されるものではない。本明細書で特段に定義されない限り、本発明に関連して用いられる科学用語及び技術用語は、当業者によって一般に理解される意味を有するものとする。 Although the present invention will be described in detail below, the present invention is not limited to these. Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art.

<人工アジュバントベクター細胞>
本明細書において、「人工アジュバントベクター細胞」と「aAVC」は、同義であり、相互互換的に用いられ、CD1dポリペプチド(以下、「CD1d」とも称する)及び1又は2以上の任意のがん抗原又はその断片を発現する細胞を意味する。
本明細書において、「外来性」又は「外来的」は、人工的に作製された遺伝子又はポリヌクレオチドを遺伝子操作又は遺伝子導入等の操作により目的の細胞内に導入すること、及び目的の細胞内に人為的に導入された遺伝子又はポリヌクレオチドによりそれらがコードするタンパク質を人為的に発現させることを指す用語として相互互換的に使用される。
<Artificial adjuvant vector cells>
As used herein, "artificial adjuvant vector cells" and "aAVC" are synonymous and used interchangeably, CD1d polypeptide (hereinafter also referred to as "CD1d") and any one or more cancer cells A cell that expresses an antigen or a fragment thereof is meant.
As used herein, "exogenous" or "exogenous" refers to introduction of an artificially produced gene or polynucleotide into a target cell by manipulation such as genetic engineering or gene introduction, and The terms are used interchangeably to refer to the artificial expression of the protein they encode by a gene or polynucleotide that has been artificially introduced into a cell.

<本発明のaAVC-pp65細胞>
本発明は、
CD1dをコードするポリヌクレオチド、及びpp65又はその断片をコードするポリヌクレオチドを外来的に導入した、ヒト由来細胞(本明細書において、「aAVC-pp65細胞」とも称する)を提供する。
さらに、本発明は、
CD1d及びpp65又はその断片を発現し、細胞表面にCD1dリガンドを積載している、aAVC-pp65細胞を提供する。
<aAVC-pp65 cells of the present invention>
The present invention
Human-derived cells (also referred to herein as "aAVC-pp65 cells") exogenously introduced with a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof are provided.
Furthermore, the present invention provides
aAVC-pp65 cells expressing CD1d and pp65 or fragments thereof and loading CD1d ligand on the cell surface are provided.

1.ヒト由来細胞
本発明で使用されるヒト由来細胞は、正常細胞又はがん組織由来の細胞である。1つの実施形態において、本発明で使用されるヒト由来細胞は、正常細胞である。
正常細胞は、増殖能を有する限り、例えば、任意のヒト組織より単離及び/又は精製された細胞、特定の細胞種由来の細胞、ヒト組織由来の株化細胞、幹細胞より分化させた細胞等のヒト由来の細胞であってよい。また、がん組織由来の細胞としては、患者のがん組織より単離及び/又は精製された細胞、又はヒトがん組織由来の株化細胞を用いることができる。ここで、「単離」とは、生体組織からの分離を意味する。また、「精製」とは、ヒト由来の細胞を、細胞が由来する組織に含まれるその他の成分の1以上からの分離を意味する。細胞の単離及び精製は、公知の方法により行うことができる。
1. Human-Derived Cells Human-derived cells used in the present invention are cells derived from normal cells or cancer tissues. In one embodiment, the human-derived cells used in the present invention are normal cells.
Normal cells are, for example, cells isolated and/or purified from any human tissue, cells derived from specific cell types, established cell lines derived from human tissue, cells differentiated from stem cells, etc., as long as they have proliferative ability. human-derived cells. As the cancer tissue-derived cells, cells isolated and/or purified from a patient's cancer tissue, or human cancer tissue-derived cell lines can be used. Here, "isolation" means separation from living tissue. In addition, "purification" means separation of human-derived cells from one or more other components contained in the tissue from which the cells were derived. Isolation and purification of cells can be performed by known methods.

任意のヒト組織より単離及び/又は精製された細胞は、当該細胞が増殖能を有する限りにおいて、例えば、胃、小腸、大腸、肺、膵臓、腎臓、肝臓、胸腺、脾臓、前立腺、卵巣、子宮、骨髄、皮膚、筋肉、末梢血等の任意のヒト組織由来の細胞であってよい。1つの実施形態において、本発明で使用されるヒト由来細胞は、非血球細胞である。1つの実施形態において、本発明で使用されるヒト由来細胞は、腎臓由来の細胞である。 Cells isolated and/or purified from any human tissue, as long as the cells have the ability to proliferate, for example, stomach, small intestine, large intestine, lung, pancreas, kidney, liver, thymus, spleen, prostate, ovary, Cells may be derived from any human tissue such as uterus, bone marrow, skin, muscle, peripheral blood, and the like. In one embodiment, the human-derived cells used in the present invention are non-blood cells. In one embodiment, the human-derived cells used in the present invention are kidney-derived cells.

特定の細胞種由来の細胞は、ヒト組織における特定の細胞種(例えば、上皮細胞、内皮細胞、表皮細胞、間質細胞、線維芽細胞、脂肪細胞、ヒト胚性腎細胞、角化細胞、間葉細胞、筋芽細胞、神経細胞、グリア細胞、扁平細胞、幹細胞、乳腺細胞、メサンギウム細胞、膵β細胞、外分泌上皮細胞、内分泌細胞、骨格筋細胞、平滑筋細胞、心筋細胞、骨芽細胞、胚細胞、免疫細胞(例えば、樹状細胞、マクロファージ、リンパ球、B細胞等)等)由来の細胞である。1つの実施形態において、本発明で使用されるヒト由来細胞は、ヒト胚性腎細胞である。 Cells derived from specific cell types may be derived from specific cell types in human tissue (e.g., epithelial cells, endothelial cells, epidermal cells, stromal cells, fibroblasts, adipocytes, human embryonic kidney cells, keratinocytes, mesocytes). Leaf cells, myoblasts, nerve cells, glial cells, squamous cells, stem cells, mammary cells, mesangial cells, pancreatic β cells, exocrine epithelial cells, endocrine cells, skeletal muscle cells, smooth muscle cells, cardiomyocytes, osteoblasts, Cells derived from embryonic cells, immune cells (eg, dendritic cells, macrophages, lymphocytes, B cells, etc.). In one embodiment, the human-derived cells used in the present invention are human embryonic kidney cells.

ヒト組織由来の株化細胞は、当業者により公知の方法を用いて作製することができ、又は商業的に入手することができる。当該株化細胞としては、例えば、ヒト胎児腎細胞293(HEK293)細胞(J.Gen.Virol.;1977;36:59-74)、WI-38細胞、SC-01MFP細胞、若しくはMRC-5細胞、又はそれら細胞に由来する細胞が挙げられる。1つの実施形態において、本発明で使用されるヒト由来細胞は、HEK293細胞に由来する細胞である。1つの実施形態において、HEK293細胞に由来する細胞は、FreeStyle 293-F細胞である。 Human tissue-derived cell lines can be produced using methods known to those skilled in the art, or can be obtained commercially. Such cell lines include, for example, human embryonic kidney 293 (HEK293) cells (J. Gen. Virol.; 1977; 36: 59-74), WI-38 cells, SC-01MFP cells, or MRC-5 cells. , or cells derived from these cells. In one embodiment, the human-derived cells used in the present invention are cells derived from HEK293 cells. In one embodiment, the cells derived from HEK293 cells are FreeStyle 293-F cells.

幹細胞より分化させた細胞は、ヒト由来人工多能性幹細胞(iPS細胞)又は胚性幹細胞(ES細胞)から分化させた細胞である。iPS細胞又はES細胞の作製及び当該細胞から分化させた細胞は、当業者により公知の方法を用いて作製することができる。 Cells differentiated from stem cells are cells differentiated from human-derived induced pluripotent stem cells (iPS cells) or embryonic stem cells (ES cells). Production of iPS cells or ES cells and cells differentiated from the cells can be produced using methods known to those skilled in the art.

がん組織由来の細胞は、当業者に公知の方法により、患者のがん組織より単離及び/又は精製により取得することができる。また、当業者がAmerican Type Culture Collection(ATCC(登録商標))等の機関より一般的に入手可能なヒトがん組織由来の株化細胞を用いることもできる。 Cancer tissue-derived cells can be obtained by isolation and/or purification from cancer tissues of patients by methods known to those skilled in the art. In addition, those skilled in the art can also use established cell lines derived from human cancer tissue that are generally available from organizations such as the American Type Culture Collection (ATCC (registered trademark)).

2.pp65
pp65はHCMVウイルス粒子の構成タンパク質の一つであり、UL83遺伝子によりコードされている。UL83遺伝子は、HCMV以外にも、Chimpanzee cytomegalovirus等のサイトメガロウイルス属のウイルスに発現が認められる。
2. pp65
pp65 is one of the constituent proteins of HCMV virus particles and is encoded by the UL83 gene. The UL83 gene is expressed in viruses belonging to the genus Cytomegalovirus, such as Chimpanzee cytomegalovirus, in addition to HCMV.

本発明で使用されるpp65は、天然に存在するpp65であってもよく、又は、aAVCとして投与した場合にpp65特異的T細胞を誘導する限り、その改変体であってもよい。1つの実施形態において、本発明で使用されるpp65は、サイトメガロウイルス属に属するウイルス由来のpp65である。1つの実施形態において、本発明で使用されるpp65は、HCMV由来のpp65(以下、「ヒトpp65」という)である。1つの実施形態において、ヒトpp65は、配列番号2に示されるアミノ酸配列からなるポリペプチドである。1つの実施形態において、ヒトpp65は、配列番号2に示されるアミノ酸配列からなるポリペプチドと少なくとも90%、95%、96%、97%、98%、又は99%以上の同一性を有するアミノ酸配列からなるポリペプチドである。1つの実施形態において、ヒトpp65は、配列番号2に示されるアミノ酸配列において1~20個、好ましくは1~10個、より好ましくは1~7個、さらにより好ましくは1~5個、1~3個、又は1~2個のアミノ酸の欠失、置換、挿入、及び/又は付加されたアミノ酸配列からなるポリペプチドである。また、本発明で使用されるpp65は、aAVCとして投与した場合にpp65特異的T細胞を誘導する限り、pp65の断片であってよい。1つの実施形態において、pp65の断片は、ヒトpp65の断片である。1つの実施形態において、ヒトpp65の断片は、配列番号2に示されるアミノ酸配列の、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、又は95%以上の長さを有するポリペプチドである。aAVCとして投与することによるpp65特異的T細胞の誘導は、例えば、後記実施例1-2に記載の方法により評価できる。本発明で使用されるpp65又はその断片をコードするポリヌクレオチドは、当該分野で公知の方法を用いて、使用されるpp65又はその断片のアミノ酸配列から塩基配列を設計し、作製することができる。1つの実施形態において、pp65をコードするポリヌクレオチドは、配列番号1に示される塩基配列からなるポリヌクレオチドである。 The pp65 used in the present invention may be naturally occurring pp65 or may be a variant thereof so long as it induces pp65-specific T cells when administered as aAVC. In one embodiment, the pp65 used in the present invention is pp65 derived from a virus belonging to the genus Cytomegalovirus. In one embodiment, the pp65 used in the present invention is HCMV-derived pp65 (hereinafter referred to as “human pp65”). In one embodiment, human pp65 is a polypeptide consisting of the amino acid sequence shown in SEQ ID NO:2. In one embodiment, human pp65 has at least 90%, 95%, 96%, 97%, 98%, or 99% or more identity with the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2. A polypeptide consisting of In one embodiment, the human pp65 is 1 to 20, preferably 1 to 10, more preferably 1 to 7, even more preferably 1 to 5, 1 to 20 in the amino acid sequence shown in SEQ ID NO: 2. It is a polypeptide consisting of an amino acid sequence in which 3 or 1-2 amino acids are deleted, substituted, inserted and/or added. Also, the pp65 used in the present invention may be a fragment of pp65 as long as it induces pp65-specific T cells when administered as aAVC. In one embodiment, the fragment of pp65 is a fragment of human pp65. In one embodiment, the fragment of human pp65 is 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more of the amino acid sequence shown in SEQ ID NO: 2, A polypeptide having a length of 85% or more, 90% or more, or 95% or more. Induction of pp65-specific T cells by administration as aAVC can be evaluated, for example, by the method described in Example 1-2 below. A polynucleotide encoding pp65 or a fragment thereof used in the present invention can be produced by designing a nucleotide sequence from the amino acid sequence of pp65 or a fragment thereof using methods known in the art. In one embodiment, the polynucleotide encoding pp65 is a polynucleotide consisting of the base sequence shown in SEQ ID NO:1.

本明細書における「同一性」とは、EMBOSS Needle(Nucleic Acids Res.;2015;43:W580-W584)を用いて、デフォルトで用意されているパラメータによって得られたIdentityの値を意味する。前記のパラメータは以下のとおりである。
Gap Open Penalty = 10
Gap Extend Penalty = 0.5
Matrix = EBLOSUM62
End Gap Penalty = false
The term “identity” as used herein means an identity value obtained by default parameters using EMBOSS Needle (Nucleic Acids Res.; 2015; 43: W580-W584). Said parameters are:
Gap Open Penalty = 10
Gap Extend Penalty = 0.5
Matrix = EBLOSUM62
End Gap Penalty = false

3.CD1d
本発明のaAVC-pp65細胞は、CD1dをコードするポリヌクレオチドを外来的に導入している。CD1dは、細胞表面に発現するMHCクラスI様糖タンパク質であり、糖脂質抗原であるCD1dリガンドをCD1d上に提示することによりCD1d拘束性のNKT細胞を活性化することが知られている(Science;1997;278;5343:1626-1629)。本発明で使用されるCD1dは、ヒト由来細胞に発現させた場合にCD1dの機能を有する限りにおいて、天然に存在するCD1d又はその改変体であってよい。CD1dの機能は、CD1dとCD1dリガンド(例えば、α-GalCer)の結合を測定することにより評価することができる。当該評価は公知の方法を用いて当業者に容易に評価され得る。また、CD1dの機能は、aAVCによるヒトNKT細胞を活性化する能力を指標に評価することもできる。このヒトNKT細胞の活性化能は、例えば、非特許文献12のFig.1に記載のin vitroの評価系において評価することができる。簡単には、α-GalCer存在下で培養したCD1d発現細胞をNKT細胞と共培養し、培養液中のIFN-γの量を測定することにより、NKT細胞の活性化を評価することができる。
3. CD1d
The aAVC-pp65 cells of the present invention have been exogenously introduced with a polynucleotide encoding CD1d. CD1d is an MHC class I-like glycoprotein expressed on the cell surface, and is known to activate CD1d-restricted NKT cells by presenting a CD1d ligand, which is a glycolipid antigen, on CD1d (Science 1997;278;5343:1626-1629). CD1d used in the present invention may be naturally occurring CD1d or a variant thereof, as long as it has the function of CD1d when expressed in human-derived cells. CD1d function can be assessed by measuring the binding of CD1d to a CD1d ligand (eg, α-GalCer). Such evaluation can be readily evaluated by those skilled in the art using known methods. The function of CD1d can also be evaluated using the ability of aAVC to activate human NKT cells as an index. This ability to activate human NKT cells is shown in Fig. 1 of Non-Patent Document 12, for example. 1 can be evaluated in the in vitro evaluation system. Briefly, CD1d-expressing cells cultured in the presence of α-GalCer are co-cultured with NKT cells, and the amount of IFN-γ in the culture medium is measured to evaluate activation of NKT cells.

1つの実施形態において、本発明で使用されるCD1dは哺乳動物(例えば、ヒト、サル、マウス、ラット、イヌ、チンパンジー等)由来のCD1dである。1つの実施形態において、CD1dはヒトCD1dである。1つの実施形態において、ヒトCD1dは、配列番号4に示されるアミノ酸配列からなるポリペプチドである。1つの実施形態において、ヒトCD1dは、配列番号4に示されるアミノ酸配列において1~10個、1~7個、1~5個、1~3個、又は1~2個のアミノ酸の欠失、置換、挿入、及び/又は付加されたアミノ酸配列からなり、且つ、CD1dの機能を有するポリペプチドである。1つの実施形態において、ヒトCD1dは、配列番号4に示されるポリペプチドと少なくとも90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上の同一性を有するアミノ酸配列からなり、且つ、CD1dの機能を有するポリペプチドである。 In one embodiment, the CD1d used in the present invention is CD1d from a mammal (eg, human, monkey, mouse, rat, dog, chimpanzee, etc.). In one embodiment, the CD1d is human CD1d. In one embodiment, human CD1d is a polypeptide consisting of the amino acid sequence shown in SEQ ID NO:4. In one embodiment, the human CD1d has a deletion of 1-10, 1-7, 1-5, 1-3, or 1-2 amino acids in the amino acid sequence shown in SEQ ID NO:4; It is a polypeptide consisting of a substituted, inserted and/or added amino acid sequence and having the function of CD1d. In one embodiment, the human CD1d has at least 90% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater identity to the polypeptide set forth in SEQ ID NO:4. A polypeptide consisting of a sequence and having the function of CD1d.

本発明で使用されるCD1dをコードするポリヌクレオチドは外来的に導入されたポリヌクレオチドであり、当該ポリヌクレオチドは、当該分野で公知の方法を用いて、使用されるCD1dのアミノ酸配列から塩基配列を設計し、作製することができる。1つの実施形態において、CD1dをコードするポリヌクレオチドは、配列番号3に示される塩基配列からなるポリヌクレオチドである。 The polynucleotide encoding CD1d used in the present invention is an exogenously introduced polynucleotide. It can be designed and made. In one embodiment, the CD1d-encoding polynucleotide is a polynucleotide consisting of the base sequence shown in SEQ ID NO:3.

4.プロモーター
1つの実施形態では、本発明のaAVC-pp65細胞において、CD1dをコードするポリヌクレオチド及び/又はpp65若しくはその断片をコードするポリヌクレオチドにプロモーターが作動可能に連結されている。プロモーターとしては、恒常的に発現を促進するプロモーター又は誘導型プロモーターのいずれも用いることができる。本明細書において、「作動可能に連結された」とは、宿主細胞におけるポリペプチドの発現をプロモーターによって制御するために当該プロモーターがポリヌクレオチドに連結されている状態を意味する。
4. Promoters In one embodiment, in the aAVC-pp65 cells of the invention, a promoter is operably linked to the polynucleotide encoding CD1d and/or the polynucleotide encoding pp65 or a fragment thereof. As the promoter, either a promoter that promotes expression constantly or an inducible promoter can be used. As used herein, "operably linked" means a state in which a promoter is linked to a polynucleotide so that the expression of the polypeptide in the host cell is controlled by the promoter.

「恒常的に発現を促進するプロモーター」としては、例えば、CMV(cytomegalovirus)、RSV(respiratory syncytial virus)、SV40(simian virus 40)等のウイルス由来プロモーター、アクチンプロモーター、EF(elongation factor)1αプロモーター等が挙げられる。 Examples of the "promoter that promotes constant expression" include virus-derived promoters such as CMV (cytomegalovirus), RSV (respiratory syncytial virus), SV40 (simian virus 40), actin promoter, EF (elongation factor) 1α promoter, and the like. is mentioned.

「誘導型プロモーター」とは、誘導的に発現を促進するプロモーターであり、当該プロモーターを駆動する誘導因子(本明細書において、「誘導型プロモーターの誘導因子」又は単に「誘導因子」とも称する)の存在下において、当該プロモーターに作動可能に連結されたポリヌクレオチドの発現を誘導することができるプロモーターをいう。誘導型プロモーターとしては、例えば、温熱誘導型プロモーター(例えば、ヒートショックプロモーター)、薬剤誘導型プロモーターが挙げられる。1つの実施形態において、誘導型プロモーターは、薬剤誘導型プロモーターである。本明細書において、「薬剤誘導型プロモーター」とは、誘導因子である薬剤により当該プロモーターに作動可能に連結されたポリヌクレオチドの発現が調節されるプロモーターを意味する。薬剤誘導型プロモーターとしては、例えば、Cumateオペレーター、λオペレーター(例えば、12×λOp)、テトラサイクリン遺伝子発現誘導系の誘導型プロモーター(以下、「テトラサイクリン系誘導型プロモーター」という)等が挙げられる。Cumateオペレーターは、CymRリプレッサー存在下において不活性であるが、誘導因子であるCumateの存在下において、CymRリプレッサーと解離して、当該オペレーターに作動可能に連結されたポリヌクレオチドの発現を誘導する。λオペレーターは、二量体化により転写活性化能を有するアクチベーター(λRep-GyrB-AD)を二量体化する誘導因子(例えば、クメルマイシン)の存在下において、当該オペレーターに作動可能に連結されたポリヌクレオチドの発現を誘導する。テトラサイクリン系誘導型プロモーターは、誘導因子であるテトラサイクリン又はその誘導体(例えば、ドキシサイクリン等)及びリバーステトラサイクリン制御性トランス活性化因子(rtTA)(例えば、Tet-On 3Gタンパク質)の存在下において、当該プロモーターに作動可能に連結されたポリヌクレオチドの発現を誘導する。テトラサイクリン系誘導型プロモーターとしては、例えば、TRE3Gプロモーターが挙げられる。1つの実施形態において、薬剤誘導型プロモーターは、テトラサイクリン系誘導型プロモーターであり、1つの実施形態において、テトラサイクリン系誘導型プロモーターは、TRE3Gプロモーターである。 An "inducible promoter" is a promoter that inducibly promotes expression, and an inducer that drives the promoter (herein, also referred to as an "inducible promoter inducer" or simply an "inducer") A promoter that can induce expression of a polynucleotide operably linked to the promoter in the presence of the promoter. Examples of inducible promoters include heat-inducible promoters (eg, heat shock promoters) and drug-inducible promoters. In one embodiment, the inducible promoter is a drug-inducible promoter. As used herein, the term "drug-inducible promoter" means a promoter whose expression of a polynucleotide operably linked to the promoter is regulated by a drug that is an inducer. Examples of drug-inducible promoters include Cumate operator, λ operator (eg, 12×λOp), tetracycline gene expression-inducible promoter (hereinafter referred to as “tetracycline-inducible promoter”), and the like. The Cumate operator is inactive in the presence of the CymR repressor, but in the presence of the inducer, Comate, dissociates from the CymR repressor and induces expression of a polynucleotide operably linked to the operator. . A λ operator is operably linked to the operator in the presence of an inducer (eg, coumermycin) that dimerizes an activator capable of activating transcription (λRep-GyrB-AD) by dimerization. induces expression of the polynucleotide. A tetracycline-based inducible promoter is characterized by the presence of an inducer, tetracycline or a derivative thereof (eg, doxycycline) and a reverse tetracycline-regulated transactivator (rtTA) (eg, Tet-On 3G protein). Inducing expression of an operably linked polynucleotide. Examples of tetracycline-inducible promoters include the TRE3G promoter. In one embodiment, the drug-inducible promoter is a tetracycline-inducible promoter, and in one embodiment, the tetracycline-inducible promoter is the TRE3G promoter.

5.CD1dリガンド
1つの実施形態において、本発明のaAVC-pp65細胞は、細胞表面にCD1dリガンドを積載していてもよい。細胞表面へのCD1dリガンドの積載は、<本発明のaAVC-pp65細胞の作製方法>の項に記載のように、CD1dを発現する細胞にCD1dリガンド(例えば、α-GalCer)をパルスすることによって行い得る。本明細書において、「CD1dリガンドをパルスする」とは、培養培地中にて細胞をCD1dリガンドと接触させることを指す。CD1dリガンドをパルスされたaAVCにおいては、すべての、又は少なくとも一部のCD1dにCD1dリガンドが積載されている。
5. CD1d Ligand In one embodiment, the aAVC-pp65 cells of the invention may be loaded with CD1d ligand on the cell surface. Loading of CD1d ligand on the cell surface can be achieved by pulsing CD1d-expressing cells with CD1d ligand (eg, α-GalCer) as described in the section <Method for producing aAVC-pp65 cells of the present invention>. can do As used herein, "pulsing CD1d ligand" refers to contacting cells with CD1d ligand in culture medium. In CD1d ligand-pulsed aAVC, all or at least some CD1d is loaded with CD1d ligand.

本発明で使用されるCD1dリガンドとしては、例えば、α-ガラクトシルセラミド(α-GalCer)、α-C-ガラクトシルセラミド(α-C-GalCer)、7DW8-5、イソグロボトリヘキソシルセラミド(iGb3)が挙げられる。1つの実施形態において、CD1dリガンドは、α-GalCerである。α-GalCerは、化学名は(2S,3S,4R)-1-O-(α-D-ガラクトシル)-N-ヘキサコサノイル-2-アミノ-1,3,4-オクタデカントリオールであり、CAS RN:158021-47-7で登録され、分子式:C5099NOで表される物質(分子量:858.34)である。α-GalCerは、当該分野で公知の技術に従って合成してもよく、商業的に入手可能なもの(例えば、α-Galactosylceramide(フナコシ、Cat.KRN7000))を使用してもよい。 CD1d ligands used in the present invention include, for example, α-galactosylceramide (α-GalCer), α-C-galactosylceramide (α-C-GalCer), 7DW8-5, isoglobotrihexosylceramide (iGb3). is mentioned. In one embodiment, the CD1d ligand is α-GalCer. α-GalCer has the chemical name (2S,3S,4R)-1-O-(α-D-galactosyl)-N-hexacosanoyl-2-amino-1,3,4-octadecanetriol and has the CAS RN: 158021-47-7 and represented by the molecular formula: C 50 H 99 NO 9 (molecular weight: 858.34). α-GalCer may be synthesized according to techniques known in the art, or commercially available (eg, α-Galactosylceramide (Funakoshi, Cat. KRN7000)) may be used.

<本発明のaAVC-pp65細胞の作製方法>
本発明のaAVC-pp65細胞は、ヒト由来細胞に、CD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドを導入することにより作製することができる。本発明のaAVC-pp65細胞の作製方法は、さらに、aAVC-pp65細胞を培養する工程、細胞をクローニングする工程、及び細胞表面にCD1dリガンドを積載させる工程を含んでいてもよい。
<Method for producing aAVC-pp65 cells of the present invention>
The aAVC-pp65 cells of the present invention can be produced by introducing a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof into human-derived cells. The method for producing aAVC-pp65 cells of the present invention may further comprise the steps of culturing the aAVC-pp65 cells, cloning the cells, and loading CD1d ligand on the cell surface.

1.ヒト由来細胞へのポリヌクレオチドの導入
本発明のaAVC-pp65細胞は、ヒト由来細胞にCD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドを導入することにより作製することができる(以下、導入されるポリヌクレオチドを「目的ポリヌクレオチド」とも称する)。
1. Introduction of Polynucleotides into Human-Derived Cells The aAVC-pp65 cells of the present invention can be prepared by introducing a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof into human-derived cells (see below). , the introduced polynucleotide is also referred to as the "polynucleotide of interest").

CD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドは、例えば、NCBI RefSeq IDやGenBankのAccession番号からCD1d及びpp65のアミノ酸配列をコードする塩基配列を取得し、標準的な分子生物学及び/又は化学的手法を用いて設計及び作製することができる。例えば、前記ポリヌクレオチドは、その塩基配列に基づいてホスホロアミダイト法等を用いて合成することができ、又cDNAライブラリーよりポリメラーゼ連鎖反応(PCR)を使用して得られるDNA断片を組み合わせて作製することができる。 Polynucleotides encoding CD1d and polynucleotides encoding pp65 or a fragment thereof are obtained, for example, from NCBI RefSeq ID or GenBank Accession numbers to obtain nucleotide sequences encoding CD1d and pp65 amino acid sequences, and subject them to standard molecular biology. and/or can be designed and fabricated using chemical methods. For example, the polynucleotide can be synthesized using the phosphoramidite method or the like based on its nucleotide sequence, or can be prepared by combining DNA fragments obtained from a cDNA library using the polymerase chain reaction (PCR). can do.

ヒト由来細胞への目的ポリヌクレオチドの導入は、エレクトロポレーション、リポフェクション、マイクロインジェクション等の非ウイルスベクター系の方法又はウイルスベクター系のいずれかの方法を用いて行うことができる。非ウイルスベクター系の方法を用いる場合は、目的ポリヌクレオチドは、プラスミドベクター、cDNA等の形態又はmRNAの形態であってよい。 Introduction of the target polynucleotide into human-derived cells can be carried out using either non-viral vector-based methods such as electroporation, lipofection, microinjection, or viral vector-based methods. When using non-viral vector-based methods, the target polynucleotide may be in the form of a plasmid vector, cDNA, or the like, or in the form of mRNA.

プラスミドベクター又はウイルスベクターは、ヒト由来細胞中でCD1d又はpp65若しくはその断片を外来的に発現させるための発現ベクターとして使用しうる。発現ベクターは、目的とするポリペプチドを発現できるものであれば特に制限されず、当業者により公知の方法を用いて作製することができる。発現ベクターは、プラスミドベクターとしては、例えば、pcDNAシリーズ(Thermo Fisher Scientific社)、pALTER(登録商標)-MAX(プロメガ)、pHEK293 Ultra Expression Vector(タカラバイオ社)等を使用することができる。ウイルスベクターとしては、例えば、レンチウイルス、アデノウイルス、レトロウイルス、アデノ随伴ウイルスを使用することができる。例えば、ヒト由来細胞への目的ポリヌクレオチドの導入にレンチウイルスを使用する場合、当該レンチウイルスは、pLVSIN-CMV/EF1αベクター(タカラバイオ社)、pLentiベクター(Thermo Fisher Scientific社)を用いて作製できる。ヒト由来細胞においてCD1dとpp65又はその断片を外来的に発現させる場合、CD1dをコードするポリヌクレオチドとpp65又はその断片をコードするポリヌクレオチドを、1つの発現ベクターを用いてヒト由来細胞に導入してもよく、別々の発現ベクターを用いて導入してもよい。また、発現ベクターは、目的とする遺伝子又はポリヌクレオチドの発現を確認するためのマーカーとなり得る遺伝子(例えば、薬剤耐性遺伝子、レポーター酵素をコードする遺伝子、又は蛍光タンパク質をコードする遺伝子等)を含んでいてもよい。発現ベクターは、さらに、開始コドン及び終止コドン、エンハンサー配列、非翻訳領域、スプライシング接合部、ポリアデニレーション部位、又は複製可能単位等を含んでいてもよい。 Plasmid or viral vectors can be used as expression vectors to exogenously express CD1d or pp65 or fragments thereof in human-derived cells. The expression vector is not particularly limited as long as it can express the polypeptide of interest, and can be constructed by those skilled in the art using methods known to those skilled in the art. Examples of plasmid vectors that can be used include pcDNA series (Thermo Fisher Scientific), pALTER (registered trademark)-MAX (Promega), pHEK293 Ultra Expression Vector (Takara Bio), and the like. Viral vectors that can be used include, for example, lentiviruses, adenoviruses, retroviruses, and adeno-associated viruses. For example, when using a lentivirus to introduce a target polynucleotide into human-derived cells, the lentivirus can be prepared using pLVSIN-CMV/EF1α vector (Takara Bio Inc.) and pLenti vector (Thermo Fisher Scientific). . When exogenously expressing CD1d and pp65 or a fragment thereof in human-derived cells, a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof are introduced into human-derived cells using one expression vector. Alternatively, they may be introduced using separate expression vectors. In addition, the expression vector contains a gene that can serve as a marker for confirming the expression of the target gene or polynucleotide (for example, a drug resistance gene, a gene encoding a reporter enzyme, or a gene encoding a fluorescent protein, etc.). You can Expression vectors may further include start and stop codons, enhancer sequences, untranslated regions, splice junctions, polyadenylation sites, replicable units, and the like.

1つの実施形態において、本発明のaAVC-pp65細胞の作製方法は、ヒト由来細胞にCD1dをコードするポリヌクレオチドを含む発現ベクター及びpp65又はその断片をコードするポリヌクレオチドを含む発現ベクターを導入する工程を含む。1つの実施形態において、本発明のaAVC-pp65細胞の作製方法は、ヒト由来細胞にCD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドを含む発現ベクターを導入する工程を含む。これらの方法について、1つの実施形態において、発現ベクターは、プラスミドベクター又はウイルスベクターであり、1つの実施形態において、発現ベクターは、ウイルスベクターであり、1つの実施形態において、ウイルスベクターは、レンチウイルスベクターである。 In one embodiment, the method for producing aAVC-pp65 cells of the present invention includes the step of introducing an expression vector containing a polynucleotide encoding CD1d and an expression vector containing a polynucleotide encoding pp65 or a fragment thereof into human-derived cells. including. In one embodiment, the method of producing aAVC-pp65 cells of the present invention comprises introducing an expression vector comprising a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof into a human-derived cell. For these methods, in one embodiment the expression vector is a plasmid vector or a viral vector, in one embodiment the expression vector is a viral vector, in one embodiment the viral vector is a lentivirus. is a vector.

1つの実施形態において、本発明のaAVC-pp65細胞は、ヒト由来細胞にCD1dをコードするポリヌクレオチドを含む発現ベクター及びpp65又はその断片をコードするポリヌクレオチドを含む発現ベクターを導入することにより作製された細胞である。1つの実施形態において、本発明のaAVC-pp65細胞は、ヒト由来細胞にCD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドを含む発現ベクターを導入することにより作製された細胞である。これらの細胞について、1つの実施形態において、発現ベクターは、プラスミドベクター又はウイルスベクターであり、1つの実施形態において、発現ベクターは、ウイルスベクターであり、1つの実施形態において、ウイルスベクターは、レンチウイルスベクターである。1つの実施形態において、作製されたaAVC-pp65細胞は、染色体外又は細胞核のゲノムDNA上に、CD1dをコードするポリヌクレオチドとpp65又はその断片をコードするポリヌクレオチドを有する。1つの実施形態において、作製されたaAVC-pp65細胞は、その細胞核のゲノムDNA上にCD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドを有する。 In one embodiment, the aAVC-pp65 cells of the present invention are produced by introducing an expression vector comprising a polynucleotide encoding CD1d and an expression vector comprising a polynucleotide encoding pp65 or a fragment thereof into human-derived cells. cells. In one embodiment, the aAVC-pp65 cells of the present invention are cells produced by introducing an expression vector comprising a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof into human-derived cells. . For these cells, in one embodiment the expression vector is a plasmid vector or a viral vector, in one embodiment the expression vector is a viral vector, in one embodiment the viral vector is a lentivirus. is a vector. In one embodiment, the generated aAVC-pp65 cells have on extrachromosomal or nuclear genomic DNA a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof. In one embodiment, the aAVC-pp65 cell produced has a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof on the genomic DNA of the cell nucleus.

2.aAVC-pp65細胞の培養
前記の方法にて作製されたaAVC-pp65細胞は、さらに培養により増殖させることができる。aAVC-pp65細胞を維持するため、又は増殖させるための細胞の培養は、公知の方法により行われる。基礎培地としては、例えば、MEM培地(Science;1952;122:501)、DMEM培地(Virology;1959;8:396-397)、RPMI1640培地(J.Am.Med.Assoc.;1967;199:519-524)、199培地(Proc.Soc.Exp.Biol.Med.;1950;73:1-8)、FreeStyle293 Expression Medium(Thermo Fisher Scientific社、Cat.12338022)、CD 293 Medium(Thermo Fisher Scientific社、Cat.11913019)、Expi293 Expression Medium(Thermo Fisher Scientific社、Cat.A1435101)を使用することができる。培養培地は、基礎培地に、例えば、血清(例えば、ウシ胎児血清)、血清代替物(例えば、KnockOut Serum Replacement:KSR)、脂肪酸又は脂質、アミノ酸、ビタミン、増殖因子、サイトカイン、抗酸化剤、2-メルカプトエタノール、ピルビン酸、緩衝剤、無機塩類、抗生物質等をさらに含むことができる。1つの実施形態において、培養培地は、無血清培地又は化学的に定義された培地である。
2. Culture of aAVC-pp65 Cells The aAVC-pp65 cells prepared by the above method can be further grown by culturing. Cell culture for maintaining or growing aAVC-pp65 cells is performed by known methods. Examples of basal media include MEM medium (Science; 1952; 122: 501), DMEM medium (Virology; 1959; 8: 396-397), RPMI1640 medium (J. Am. Med. Assoc.; 1967; 199: 519 -524), 199 medium (Proc. Soc. Exp. Biol. Med.; 1950; 73: 1-8), FreeStyle 293 Expression Medium (Thermo Fisher Scientific, Cat. 12338022), CD 293 Medium (Thermo F Isher Scientific, Inc. Cat. 11913019), Expi293 Expression Medium (Thermo Fisher Scientific, Cat. A1435101) can be used. The culture medium contains serum (e.g., fetal bovine serum), serum replacement (e.g., KnockOut Serum Replacement: KSR), fatty acids or lipids, amino acids, vitamins, growth factors, cytokines, antioxidants, 2 - can further include mercaptoethanol, pyruvic acid, buffers, inorganic salts, antibiotics, etc.; In one embodiment, the culture medium is serum-free or chemically defined medium.

培養条件(例えば、培養時間、温度、培地のpH、CO濃度等の培養条件)は当業者により適宜選択され得る。培地のpHは約6~8であるのが好ましく、培養温度は、特に限定されるものではないが、例えば約30~40℃、好ましくは約37℃である。また、CO濃度は約1~10%、好ましくは約5%である。培養時間は、特に限定されるものではないが、約15~336時間行なわれる。必要により通気や撹拌を行うこともできる。 Culture conditions (eg, culture conditions such as culture time, temperature, medium pH, CO 2 concentration, etc.) can be appropriately selected by those skilled in the art. The pH of the medium is preferably about 6-8, and the culture temperature is not particularly limited, but is, for example, about 30-40°C, preferably about 37°C. Also, the CO 2 concentration is about 1-10%, preferably about 5%. Cultivation time is not particularly limited, but is carried out for about 15 to 336 hours. Aeration and stirring can also be performed if necessary.

aAVC-pp65細胞において、CD1dをコードするポリヌクレオチド及び/又はpp65若しくはその断片をコードするポリヌクレオチドに誘導型プロモーターが作動可能に連結されている場合、aAVC-pp65細胞の培養時にaAVC-pp65細胞を当該誘導型プロモーター用の誘導因子に接触させて、CD1d及び/又はpp65又はその断片の発現を誘導させてもよい。1つの実施形態において、aAVC-pp65細胞の作製方法は、aAVC-pp65細胞を誘導型プロモーターの誘導因子の存在下で培養することによりCD1d及び/又はpp65又はその断片の発現を誘導させる工程を含む。1つの実施形態において、当該誘導型プロモーターは薬剤誘導型プロモーターであり、当該作製方法は、aAVC-pp65細胞を薬剤誘導型プロモーターの誘導因子の存在下で培養する工程を含む。薬剤誘導型プロモーターを使用する場合、誘導因子であるテトラサイクリン、ドキシサイクリン、Cumate、クメルマイシン等の薬剤を加えた培養培地にて細胞を培養し、薬剤誘導型プロモーターに作動可能に連結された遺伝子又はポリヌクレオチドの発現を誘導させてもよい。当該工程は、一般的な遺伝子誘導システムを用いた遺伝子誘導方法に準拠して行うことができる。1つの実施形態において、当該薬剤誘導型プロモーターはテトラサイクリン系誘導型プロモーターであり、当該作製方法は、aAVC-pp65細胞をテトラサイクリン又はその誘導体及びrtTAの存在下で培養する工程を含む。1つの実施形態において、テトラサイクリン系誘導型プロモーターはTRE3Gプロモーターであり、当該作製方法は、aAVC-pp65細胞をテトラサイクリン又はその誘導体及びTet-On 3Gタンパク質の存在下で培養する工程を含む。得られたaAVC-pp65細胞におけるCD1d及びpp65又はその断片の発現量は、抗CD1d抗体又は抗pp65抗体を用いたWestern Blot法、ELISA法、フローサイトメトリー法等の当業者によって公知の方法にて測定することができる。 In aAVC-pp65 cells, when an inducible promoter is operably linked to a polynucleotide encoding CD1d and/or a polynucleotide encoding pp65 or a fragment thereof, the aAVC-pp65 cells are cultured during the culture of the aAVC-pp65 cells. Expression of CD1d and/or pp65 or a fragment thereof may be induced by contacting with an inducer for the inducible promoter. In one embodiment, the method for producing aAVC-pp65 cells includes the step of inducing expression of CD1d and/or pp65 or a fragment thereof by culturing aAVC-pp65 cells in the presence of an inducer of an inducible promoter. . In one embodiment, the inducible promoter is a drug-inducible promoter, and the method of making comprises culturing aAVC-pp65 cells in the presence of an inducer of the drug-inducible promoter. When a drug-inducible promoter is used, cells are cultured in a culture medium containing an inducer such as tetracycline, doxycycline, cumate, coumermycin, etc., and a gene or polynucleotide operably linked to the drug-inducible promoter. expression may be induced. The step can be performed according to a gene induction method using a general gene induction system. In one embodiment, the drug-inducible promoter is a tetracycline-based inducible promoter, and the method of making comprises culturing aAVC-pp65 cells in the presence of tetracycline or a derivative thereof and rtTA. In one embodiment, the tetracycline-based inducible promoter is the TRE3G promoter and the method comprises culturing aAVC-pp65 cells in the presence of tetracycline or a derivative thereof and Tet-On 3G protein. The expression levels of CD1d and pp65 or fragments thereof in the obtained aAVC-pp65 cells can be determined by methods known to those skilled in the art, such as Western Blot method using anti-CD1d antibody or anti-pp65 antibody, ELISA method, and flow cytometry method. can be measured.

3.aAVC-pp65細胞のクローニング
細胞にポリヌクレオチドを導入する場合、目的ポリヌクレオチドが導入された細胞及び導入されていない細胞が混在しているため、さらに、目的ポリヌクレオチドを細胞核のゲノムDNA上に組み込む場合には、その組み込まれている場所も細胞により異なるため、不均質(heterogeneous)な細胞の集団となっている場合がある。本明細書において、前記の不均質な細胞の集団を「細胞プール」と称す。当該細胞プールから単一の遺伝子型を有する細胞を取得する方法(本明細書にて、「クローニング」という)により、CD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドが導入された1細胞(以下、「クローン化された細胞」という。)を取得し増殖させることにより、単一の遺伝子型を有する細胞集団(以下、「クローン化された細胞の集団」という。)を取得することができる。aAVC-pp65細胞のクローニングは、当業者によく知られている方法を用いて実施することができ、例えば、限外希釈法、シングルセルソーティング法、又はコロニーピックアップ法を用いることができる。1つの実施形態において、aAVC-pp65細胞のクローニング方法は限外希釈法、シングルセルソーティング法、又はコロニーピックアップ法の1又は2以上の方法を組み合わせて用いることもできる。1つの実施形態において、aAVC-pp65細胞のクローニング方法は限外希釈法である。
3. Cloning of aAVC-pp65 Cells When a polynucleotide is introduced into cells, cells into which the target polynucleotide has been introduced and cells into which the target polynucleotide has not been introduced are mixed. In some cases, a heterogeneous population of cells is formed because the site of integration differs depending on the cell. The heterogeneous population of cells is referred to herein as a "cell pool." A polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof were introduced by a method of obtaining cells having a single genotype from the cell pool (herein referred to as "cloning"). Obtaining a cell population having a single genotype (hereinafter referred to as a "cloned cell population") by obtaining and growing one cell (hereinafter referred to as a "cloned cell") be able to. Cloning of aAVC-pp65 cells can be performed using methods well known to those skilled in the art, for example, limiting dilution, single cell sorting, or colony picking can be used. In one embodiment, the aAVC-pp65 cell cloning method can be one or a combination of two or more of the limiting dilution method, single cell sorting method, or colony picking method. In one embodiment, the method for cloning aAVC-pp65 cells is the limiting dilution method.

前記方法にて取得された各クローン化されたaAVC-pp65細胞についてCD1d及びpp65又はその断片の発現量を測定することによって、CD1d及びpp65又はその断片について目的の発現量を示す、クローン化されたaAVC-pp65細胞の集団を選択することができる。CD1dをコードするポリヌクレオチド及び/又はpp65若しくはその断片をコードするポリヌクレオチドに誘導型プロモーターが作動可能に連結されている場合、各クローン化されたaAVC-pp65細胞について、その一部を当該誘導型プロモーター用の誘導因子に接触させ、得られた細胞のCD1d及びpp65又はその断片の発現量を測定することによって、誘導因子の存在下においてCD1d及びpp65又はその断片について目的の発現量を示す、クローン化されたaAVC-pp65細胞の集団を選択してもよい。選択したクローン化された細胞の集団を凍結状態で保存したものを、リサーチセルバンク(RCB)として使用しうる。RCBの細胞を培養して増殖させ、凍結させたものをマスターセルバンク(MCB)として使用しうる。MCBの細胞を培養して増殖させ、凍結させたものをワーキングセルバンク(WCB)として使用しうる。WCBの細胞を培養したものを医薬品の原料として使用しうる。各セルバンクは、凍結保護剤を含んでもよい。各セルバンクは、複数の容器(例えば、2~10000の容器、例えば、10~1000の容器、例えば、100~500の容器)に分注され、凍結状態で保管してもよい。クローン化されたaAVC-pp65細胞の解凍、培養、及び誘導因子との接触、並びにCD1d及びpp65又はその断片の発現量の測定はそれぞれ、当業者に公知の方法で行うことができ、培養、誘導因子との接触、及び発現量の測定は、例えば、「2.aAVC-pp65細胞の培養」に記載の方法等を使用して行うことができる。1つの実施形態において、クローン化されたaAVC-pp65細胞の培養、及び誘導因子との接触、並びにCD1d及びpp65又はその断片の発現量の測定は、RCB及びWCBの解凍後に行うことができる。 By measuring the expression levels of CD1d and pp65 or fragments thereof for each cloned aAVC-pp65 cell obtained by the method, the cloned cells showing the desired expression levels for CD1d and pp65 or fragments thereof A population of aAVC-pp65 cells can be selected. If an inducible promoter is operably linked to the polynucleotide encoding CD1d and/or the polynucleotide encoding pp65 or a fragment thereof, for each cloned aAVC-pp65 cell, a portion of the inducible A clone that exhibits a desired expression level of CD1d and pp65 or a fragment thereof in the presence of the inducer by contacting with an inducer for a promoter and measuring the expression level of CD1d and pp65 or a fragment thereof in the resulting cells. A population of transformed aAVC-pp65 cells may be selected. A cryopreserved population of selected cloned cells can be used as a research cell bank (RCB). RCB cells can be grown in culture and frozen to serve as a master cell bank (MCB). MCB cells can be grown in culture and frozen to serve as a working cell bank (WCB). Cultured WCB cells can be used as raw materials for pharmaceuticals. Each cell bank may contain a cryoprotectant. Each cell bank may be aliquoted into multiple containers (eg, 2-10,000 containers, such as 10-1000 containers, such as 100-500 containers) and stored frozen. Thawing the cloned aAVC-pp65 cells, culturing them, contacting them with an inducer, and measuring the expression levels of CD1d and pp65 or fragments thereof can be performed by methods known to those skilled in the art. Contact with the factor and measurement of the expression level can be performed using, for example, the method described in "2. Culture of aAVC-pp65 cells". In one embodiment, culturing the cloned aAVC-pp65 cells and contacting with inducers and measuring the expression levels of CD1d and pp65 or fragments thereof can be performed after thawing the RCB and WCB.

4.aAVC-pp65細胞へのCD1dリガンドの積載
aAVC-pp65細胞にCD1dリガンドをパルスすることによって、CD1dリガンドを積載したaAVC-pp65細胞を作製することができる。CD1dリガンドをパルスする条件(例えば、細胞の培養培地にCD1dリガンドを添加するタイミング、培養培地中のCD1dリガンドの濃度及び培養時間等)は、使用する細胞及び培養時の諸条件を考慮して当業者にて適宜調整され得る。aAVC-pp65細胞の培養培地に添加するCD1dリガンドの濃度は、特に限定されないが、例えば、1ng/mL~10000ng/mLの範囲で適宜選択され得る。1つの実施形態において、CD1dリガンドは、α-GalCerである。CD1dをコードするポリヌクレオチド及び/又はpp65若しくはその断片をコードするポリヌクレオチドに誘導型プロモーターが作動可能に連結されているaAVC-pp65細胞の場合、1つの実施形態において、aAVC-pp65細胞へのCD1dリガンドの積載は、当該細胞と誘導因子との接触の前に行われ得る。1つの実施形態において、aAVC-pp65細胞へのCD1dリガンドの積載は、当該細胞と誘導因子との接触の後に行われ得る。1つの実施形態において、aAVC-pp65細胞へのCD1dリガンドの積載は、当該細胞と誘導因子との接触と同時に行われ得る。これらの実施形態において、aAVC-pp65細胞は、好ましくは、クローン化されている。
4. CD1d Ligand Loading of aAVC-pp65 Cells CD1d ligand-loaded aAVC-pp65 cells can be generated by pulsing aAVC-pp65 cells with CD1d ligand. The conditions for pulsing the CD1d ligand (e.g., the timing of adding the CD1d ligand to the cell culture medium, the concentration of the CD1d ligand in the culture medium, the culture time, etc.) should be determined in consideration of the cells to be used and the culture conditions. It can be adjusted as appropriate by the trader. The concentration of the CD1d ligand to be added to the culture medium of aAVC-pp65 cells is not particularly limited, but can be selected appropriately within the range of, for example, 1 ng/mL to 10000 ng/mL. In one embodiment, the CD1d ligand is α-GalCer. For aAVC-pp65 cells in which an inducible promoter is operably linked to a polynucleotide encoding CD1d and/or a polynucleotide encoding pp65 or a fragment thereof, in one embodiment CD1d to aAVC-pp65 cells Ligand loading may occur prior to contacting the cells with the inducer. In one embodiment, loading of aAVC-pp65 cells with a CD1d ligand may be performed after contacting the cells with an inducer. In one embodiment, loading of aAVC-pp65 cells with CD1d ligand can occur simultaneously with contacting the cells with an inducer. In these embodiments, the aAVC-pp65 cells are preferably cloned.

上記で作製したCD1d及びpp65又はその断片を発現し、当該細胞の表面にCD1dリガンドを積載しているaAVC-pp65細胞において、当該細胞の増殖を人為的な方法を用いて停止させてもよい。当該細胞の増殖を停止させる方法は、特に限定されないが、例えば、放射線(例えば、X線)照射にて細胞増殖を停止させる方法、マイトマイシンC等の薬剤を添加する方法等を使用し得る。1つの実施形態において、本発明のaAVC-pp65細胞は、細胞増殖が停止している細胞である。1つの実施形態において、細胞増殖を停止させる方法は放射線照射である。 In the aAVC-pp65 cells expressing CD1d and pp65 or fragments thereof prepared above and loading the CD1d ligand on the surface of the cells, the proliferation of the cells may be stopped using an artificial method. The method for stopping the growth of the cells is not particularly limited, but for example, a method of stopping cell growth by radiation (e.g., X-ray) irradiation, a method of adding a drug such as mitomycin C, etc. can be used. In one embodiment, the aAVC-pp65 cells of the invention are cells in cell growth arrest. In one embodiment, the method of arresting cell proliferation is irradiation.

<本発明の医薬組成物等>
本発明はまた、CD1d及びpp65又はその断片を発現し、当該細胞の表面にCD1dリガンドを積載したaAVC-pp65細胞(以下、「CD1dリガンド積載aAVC-pp65細胞」という)を含む医薬組成物を提供する。1つの実施形態において、CD1dリガンドは、α-GalCerである。1つの実施形態において、当該医薬組成物は、がんの処置に用いるための医薬組成物である。当該医薬組成物は、当該分野において通常用いられる賦形剤、即ち、薬剤用賦形剤や薬剤用担体等を用いて、通常使用される方法によって調製することができる。医薬組成物の製剤化にあたっては、薬学的に許容される範囲で、これら剤型に応じた賦形剤、担体、添加剤等を使用することができる。これら医薬組成物の剤型の例としては、例えば、注射剤、点滴用剤等の非経口剤が挙げられる。1つの実施形態において、本発明の医薬組成物は、CD1dリガンド積載aAVC-pp65細胞の凍結物を含み得る。1つの実施形態において、本発明の医薬組成物は、CD1dリガンド積載aAVC-pp65細胞の凍結物及び凍結保護剤を含み得る。1つの実施形態において、本発明の医薬組成物は、CD1dリガンド積載aAVC-pp65細胞の懸濁液を含み得る。1つの実施形態において、本発明の医薬組成物は、CD1dリガンド積載aAVC-pp65細胞の懸濁液及び凍結保護剤を含み得る。
<Pharmaceutical composition, etc. of the present invention>
The present invention also provides a pharmaceutical composition comprising aAVC-pp65 cells expressing CD1d and pp65 or fragments thereof and loaded with CD1d ligand on the surface of the cells (hereinafter referred to as "aAVC-pp65 cells loaded with CD1d ligand"). do. In one embodiment, the CD1d ligand is α-GalCer. In one embodiment, the pharmaceutical composition is for use in treating cancer. The pharmaceutical composition can be prepared by a commonly used method using excipients commonly used in the field, ie, pharmaceutical excipients, pharmaceutical carriers, and the like. In formulating the pharmaceutical composition, excipients, carriers, additives and the like according to these dosage forms can be used within a pharmaceutically acceptable range. Examples of dosage forms of these pharmaceutical compositions include parenteral agents such as injections and infusions. In one embodiment, the pharmaceutical compositions of the invention may comprise frozen CD1d ligand-loaded aAVC-pp65 cells. In one embodiment, the pharmaceutical composition of the invention may comprise a cryopreservate of CD1d ligand-loaded aAVC-pp65 cells and a cryoprotectant. In one embodiment, a pharmaceutical composition of the invention may comprise a suspension of CD1d ligand-loaded aAVC-pp65 cells. In one embodiment, a pharmaceutical composition of the invention may comprise a suspension of CD1d ligand-loaded aAVC-pp65 cells and a cryoprotectant.

本発明はまた、がんを処置するためのCD1dリガンド積載aAVC-pp65細胞を提供する。1つの実施形態において、CD1dリガンドは、α-GalCerである。本発明はまた、がんの処置に用いる医薬組成物を製造するための本発明のCD1dリガンド積載aAVC-pp65細胞の使用を提供する。1つの実施形態において、CD1dリガンドは、α-GalCerである。 The present invention also provides CD1d ligand-loaded aAVC-pp65 cells for treating cancer. In one embodiment, the CD1d ligand is α-GalCer. The present invention also provides use of the CD1d ligand-loaded aAVC-pp65 cells of the present invention for manufacturing a pharmaceutical composition for treating cancer. In one embodiment, the CD1d ligand is α-GalCer.

本発明はまた、本発明のCD1dリガンド積載aAVC-pp65細胞を対象に投与する工程を含む、がんを処置する方法を提供する。1つの実施形態において、CD1dリガンドは、α-GalCerである。本明細書において、「対象」とは、哺乳動物(例えば、ヒト、サル、マウス、ラット、イヌ、チンパンジー等)であり、1つの実施形態において、対象はヒトである。本明細書において、「処置」とは、治療的処置及び予防的処置を含む意味で用いられる。CD1dリガンド積載aAVC-pp65細胞を対象へ投与する場合、当該細胞及び薬学的に許容される賦形剤を含む医薬組成物の形態で対象に投与することができる。対象へのCD1dリガンド積載aAVC-pp65細胞の投与量及び投与回数は、がんの種類、位置、重症度、処置を受ける対象の年齢、体重及び状態などに応じて適宜調節できる。CD1dリガンド積載aAVC-pp65細胞の投与量は、例えば、対象への一回の投与において1×103cells/kg~1×109cells/kgを用いることができる。対象へのCD1dリガンド積載aAVC-pp65細胞の投与方法としては、例えば、静脈内、腫瘍内、皮内、皮下、筋肉内、腹腔内、動脈内等への注射又は点滴により投与することができる。本発明の処置方法は、他のがん治療方法と併用して用いることができる。他のがん治療方法としては、手術、放射線治療、造血幹細胞移植、又は、他の抗がん剤による治療が挙げられる。 The invention also provides a method of treating cancer comprising administering the CD1d ligand-loaded aAVC-pp65 cells of the invention to a subject. In one embodiment, the CD1d ligand is α-GalCer. As used herein, a "subject" is a mammal (eg, human, monkey, mouse, rat, dog, chimpanzee, etc.), and in one embodiment, the subject is human. As used herein, the term "treatment" is used to include therapeutic treatment and prophylactic treatment. When administering the CD1d ligand-loaded aAVC-pp65 cells to a subject, they can be administered to the subject in the form of a pharmaceutical composition comprising the cells and a pharmaceutically acceptable excipient. The dosage and frequency of administration of the CD1d ligand-loaded aAVC-pp65 cells to the subject can be appropriately adjusted according to the type, location, severity of cancer, age, weight and condition of the subject to be treated, and the like. Dosages of CD1d ligand-loaded aAVC-pp65 cells can be, for example, 1×10 3 cells/kg to 1×10 9 cells/kg in a single administration to a subject. The CD1d ligand-loaded aAVC-pp65 cells can be administered to a subject by, for example, intravenous, intratumoral, intradermal, subcutaneous, intramuscular, intraperitoneal, or intraarterial injection or infusion. The treatment method of the present invention can be used in combination with other cancer treatment methods. Other cancer treatment methods include surgery, radiation therapy, hematopoietic stem cell transplantation, or treatment with other anti-cancer agents.

本発明の処置の対象となるがんとしては、特に限定はされないが、急性リンパ芽球性白血病(ALL)、急性骨髄性白血病(AML)、ホジキンリンパ腫、ノンホジキンリンパ腫、B細胞リンパ腫、多発性骨髄腫、T細胞リンパ腫等の血液がん、骨髄異形成症候群、腺がん、扁平上皮がん、腺扁平上皮がん、未分化がん、大細胞がん、非小細胞肺がん、小細胞肺がん、中皮腫、皮膚がん、乳がん、前立腺がん、膀胱がん、膣がん、頸部がん、頭頸部がん、子宮がん、子宮頸がん、肝臓がん、胆のうがん、胆管がん、腎臓がん、膵臓がん、肺がん、結腸がん、大腸がん、直腸がん、小腸がん、胃がん、食道がん、精巣がん、卵巣がん、脳腫瘍等の固形がん、及び骨組織、軟骨組織、脂肪組織、筋組織、血管組織及び造血組織のがんの他、軟骨肉腫、ユーイング肉腫、悪性血管内皮腫、悪性シュワン腫、骨肉腫、軟部組織肉腫などの肉腫や、膠芽腫、多形性膠芽腫、肝芽腫、髄芽腫、腎芽腫、神経芽腫、膵芽腫、胸膜肺芽腫、網膜芽腫などの芽腫等が挙げられる。1つの実施形態において、本発明の処置の対象となるがんは、pp65陽性のがんである。1つの実施形態において、本発明の処置の対象となるがんは、膠芽腫又は多形性膠芽腫である。 Cancers to be treated by the present invention include, but are not limited to, acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), Hodgkin's lymphoma, non-Hodgkin's lymphoma, B-cell lymphoma, multiplex Hematological cancers such as myeloma and T-cell lymphoma, myelodysplastic syndrome, adenocarcinoma, squamous cell carcinoma, adenosquamous cell carcinoma, undifferentiated carcinoma, large cell carcinoma, non-small cell lung cancer, small cell lung cancer , mesothelioma, skin cancer, breast cancer, prostate cancer, bladder cancer, vaginal cancer, cervical cancer, head and neck cancer, uterine cancer, cervical cancer, liver cancer, gallbladder cancer, Solid cancer such as bile duct cancer, kidney cancer, pancreatic cancer, lung cancer, colon cancer, colon cancer, rectal cancer, small intestine cancer, stomach cancer, esophageal cancer, testicular cancer, ovarian cancer, brain tumor, etc. , and cancers of bone tissue, cartilage tissue, adipose tissue, muscle tissue, vascular tissue, and hematopoietic tissue, sarcomas such as chondrosarcoma, Ewing's sarcoma, malignant hemangioendothelioma, malignant schwannoma, osteosarcoma, and soft tissue sarcoma , glioblastoma, glioblastoma multiforme, hepatoblastoma, medulloblastoma, nephroblastoma, neuroblastoma, pancreatoblastoma, pleuropulmonary blastoma, and retinoblastoma. In one embodiment, the cancer targeted for treatment of the present invention is a pp65-positive cancer. In one embodiment, the cancer targeted for treatment of the present invention is glioblastoma or glioblastoma multiforme.

<がんの処置に用いる細胞又は医薬組成物の製造方法>
本発明はまた、以下の工程を含む、がんの処置に用いる細胞又は医薬組成物の製造方法を提供する:
ヒト由来細胞にCD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドを導入する工程、及び
該細胞を培養する工程。
<Method for Producing Cells or Pharmaceutical Composition Used for Treatment of Cancer>
The present invention also provides a method for producing a cell or pharmaceutical composition for treating cancer, comprising the steps of:
A step of introducing a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof into human-derived cells, and culturing the cells.

1つの実施形態において、本発明のがんの処置に用いる細胞又は医薬組成物の製造方法において使用するCD1dはヒトCD1dである。 In one embodiment, the CD1d used in the method for producing a cell or pharmaceutical composition for treating cancer of the present invention is human CD1d.

1つの実施形態において、本発明のがんの処置に用いる細胞又は医薬組成物の製造方法において使用するヒト由来細胞は正常細胞である。1つの実施形態において、がんの処置に用いる細胞又は医薬組成物の製造方法において使用するヒト由来細胞はHEK293細胞に由来する細胞である。 In one embodiment, the human-derived cells used in the method for producing the cells or the pharmaceutical composition used for cancer treatment of the present invention are normal cells. In one embodiment, the cells used for cancer treatment or the human-derived cells used in the method for producing a pharmaceutical composition are cells derived from HEK293 cells.

1つの実施形態において、本発明のがんの処置に用いる細胞又は医薬組成物の製造方法は、細胞表面にCD1dリガンドを積載する工程をさらに含む。1つの実施形態において、CD1dリガンドは、α-GalCerである。 In one embodiment, the method for producing a cell or pharmaceutical composition used for cancer treatment of the present invention further comprises the step of loading a CD1d ligand on the cell surface. In one embodiment, the CD1d ligand is α-GalCer.

1つの実施形態において、本発明のがんの処置に用いる細胞又は医薬組成物の製造方法は、誘導型プロモーターが作動可能に連結されたCD1dをコードするポリヌクレオチド及び/又はpp65若しくはその断片をコードするポリヌクレオチドをヒト由来細胞に導入する工程を含む。1つの実施形態において、当該製造方法は、前記工程で得られた細胞(aAVC-pp65細胞)を当該誘導型プロモーター用の誘導因子に接触させてCD1d及び/又はpp65又はその断片の発現を誘導させる工程をさらに含む。1つの実施形態において、当該製造方法は、当該aAVC-pp65細胞を当該誘導型プロモーター用の誘導因子の存在下で培養することによりpp65又はその断片の発現を誘導させる工程を含む。1つの実施形態において、当該製造方法は、細胞表面にCD1dリガンドを積載する工程をさらに含み、1つの実施形態において、CD1dリガンドは、α-GalCerである。1つの実施形態において、細胞表面へのCD1dリガンドの積載は、aAVC-pp65細胞と誘導因子との接触の前でも後でも同時でもよい。 In one embodiment, the method for producing a cell or pharmaceutical composition used for cancer treatment of the present invention comprises a polynucleotide encoding CD1d operably linked to an inducible promoter and/or pp65 or a fragment thereof. introducing a polynucleotide into a human-derived cell. In one embodiment, the production method includes contacting the cells obtained in the above step (aAVC-pp65 cells) with an inducer for the inducible promoter to induce expression of CD1d and/or pp65 or a fragment thereof. Further comprising steps. In one embodiment, the production method includes the step of inducing expression of pp65 or a fragment thereof by culturing the aAVC-pp65 cells in the presence of an inducer for the inducible promoter. In one embodiment, the manufacturing method further comprises loading a CD1d ligand onto the cell surface, and in one embodiment, the CD1d ligand is α-GalCer. In one embodiment, the loading of the CD1d ligand on the cell surface may be before, after, or simultaneously with the contacting of the aAVC-pp65 cells with the inducer.

本発明はまた、本発明のaAVC-pp65細胞を培養する工程を含む、がんの処置に用いる細胞又は医薬組成物の製造方法を提供する。1つの実施形態において、当該aAVC-pp65細胞に使用されるCD1dはヒトCD1dである。1つの実施形態において、当該aAVC-pp65細胞に使用されるヒト由来細胞は正常細胞であり、1つの実施形態において、当該ヒト由来細胞はHEK293細胞に由来する細胞である。1つの実施形態において、当該製造方法は、細胞表面にCD1dリガンドを積載する工程をさらに含む。1つの実施形態において、CD1dリガンドは、α-GalCerである。 The present invention also provides a method for producing cells or pharmaceutical compositions for treating cancer, comprising culturing the aAVC-pp65 cells of the present invention. In one embodiment, the CD1d used in the aAVC-pp65 cells is human CD1d. In one embodiment, the human-derived cells used for the aAVC-pp65 cells are normal cells, and in one embodiment, the human-derived cells are cells derived from HEK293 cells. In one embodiment, the manufacturing method further comprises the step of loading a CD1d ligand onto the cell surface. In one embodiment, the CD1d ligand is α-GalCer.

1つの実施形態において、当該製造方法で使用される本発明のaAVC-pp65細胞は、誘導型プロモーターが作動可能に連結されているCD1dをコードするポリヌクレオチド及び/又はpp65若しくはその断片をコードするポリヌクレオチドを外来的に導入したヒト由来細胞であり、1つの実施形態において、当該方法は、本発明のaAVC-pp65細胞を誘導型プロモーターの誘導因子に接触させてCD1d及び/又はpp65又はその断片の発現を誘導させる工程をさらに含む。1つの実施形態において、当該方法は、当該aAVC-pp65細胞を誘導型プロモーターの誘導因子の存在下で培養することによりCD1d及び/又はpp65又はその断片の発現を誘導させる工程を含む。1つの実施形態において、当該製造方法は、細胞表面にCD1dリガンドを積載する工程をさらに含み、1つの実施形態において、CD1dリガンドは、α-GalCerである。1つの実施形態において、細胞表面へのCD1dリガンドの積載は、aAVC-pp65細胞と誘導因子との接触の前でも後でも同時でもよい。本発明はまた、がんの処置に用いる医薬組成物の製造における本発明のaAVC-pp65細胞の使用を提供する。 In one embodiment, the aAVC-pp65 cells of the present invention used in the production method contain a polynucleotide encoding CD1d and/or a polynucleotide encoding pp65 or a fragment thereof operably linked to an inducible promoter. human-derived cells into which nucleotides have been exogenously introduced; Further comprising the step of inducing expression. In one embodiment, the method comprises inducing expression of CD1d and/or pp65 or a fragment thereof by culturing the aAVC-pp65 cells in the presence of an inducer of an inducible promoter. In one embodiment, the manufacturing method further comprises loading a CD1d ligand onto the cell surface, and in one embodiment, the CD1d ligand is α-GalCer. In one embodiment, the loading of the CD1d ligand on the cell surface may be before, after, or simultaneously with the contacting of the aAVC-pp65 cells with the inducer. The present invention also provides use of the aAVC-pp65 cells of the present invention in the manufacture of pharmaceutical compositions for treating cancer.

本項に記載の製造方法に用いる細胞及び工程等に関する具体的な実施形態については、前記の<本発明のaAVC-pp65細胞>及び<本発明のaAVC-pp65細胞の作製方法>の項に記載のとおりである。 Specific embodiments of the cells and processes used in the production method described in this section are described in the sections <aAVC-pp65 cells of the present invention> and <Method for producing aAVC-pp65 cells of the present invention>. It is as follows.

本発明についてさらに理解を得るために参照する特定の実施例をここに提供するが、これらは例示目的とするものであって、本発明を限定するものではない。 Specific examples are provided herein by reference for a further understanding of the present invention, which are intended for purposes of illustration and are not intended to limit the invention.

[実施例1:マウス型aAVC(3T3)-pp65細胞の抗腫瘍作用]
がん抗原であるpp65を搭載したaAVCの抗原特異的抗腫瘍効果をin vivo評価系にて確認した。
[Example 1: Antitumor effect of mouse aAVC(3T3)-pp65 cells]
The antigen-specific antitumor effect of aAVC loaded with pp65, which is a cancer antigen, was confirmed by an in vivo evaluation system.

[実施例1-1:マウス型aAVC(3T3)-pp65細胞の作製]
マウスNIH/3T3細胞(ATCC、Cat.CRL-1658)にpp65遺伝子及びCD1d遺伝子のmRNAを導入し、マウス型aAVC(aAVC(3T3)-pp65とも称する)を作製した。
[Example 1-1: Preparation of mouse aAVC (3T3)-pp65 cells]
Mouse NIH/3T3 cells (ATCC, Cat. CRL-1658) were transfected with pp65 gene and CD1d gene mRNA to prepare mouse type aAVC (also referred to as aAVC(3T3)-pp65).

pp65遺伝子(配列番号1)は、配列番号2に示されるHCMV pp65のアミノ酸配列(UniProt:P06725-1)を基に、人工遺伝子合成にて作製した。さらに、前記pp65遺伝子を、pGEM(登録商標)-4Zプラスミド(以下、pGEM-4Zプラスミド)(プロメガ社、Cat.P2161)のHindIII又はEcoRI認識配列を含む16塩基と相補的な配列を付加したプライマーを用い、PCR法にて増幅した。増幅したpp65遺伝子をpGEM-4ZプラスミドのHindIII-EcoRIサイトに、In-Fusion(登録商標)HD Cloning Kit(タカラバイオ社、Cat.639648)を用いて挿入した。得られたプラスミドを、pGEM-4Z-pp65プラスミドと称する。pGEM-4ZプラスミドのHindIII-BamHIサイトに、配列番号5に示す塩基配列からなるマウスCD1d遺伝子(UniProt:P11609-1のアミノ酸配列(配列番号6)を基に人工遺伝子合成にて遺伝子を合成)を挿入した。得られたプラスミドをpGEM-4Z-mCD1dプラスミドと称する。pGEM-4Z-pp65プラスミド及びpGEM-4Z-mCD1dプラスミドをそれぞれEcoRIとBamHIで切断して直鎖にしたものをテンプレートとして用い、mMESSAGE mMACHINE T7 ULTRA Transcription Kit(Thermo Fisher Scientific社、Cat.AMB13455)を用いてpp65 mRNA及びCD1d mRNAを作製した。NIH/3T3細胞を、α-GalCer(十全化学株式会社に合成を委託)を350ng/mL添加した10%量のウシ胎児血清を含むDulbecco’s Modified Eagle培地(Merck社、Cat.D6429)にて2日間培養した後に、回収した。回収した細胞懸濁液に、pp65 mRNAとCD1d mRNAを添加し、NEPA21エレクトロポレーター(ネッパジーン株式会社)を用いてエレクトロポレーション(ポアーリングパルス:電圧150V、パルス幅8ms、パルス間隔50ms、回数2回、減衰率10%、極性+、トランスファーパルス:電圧20V、パルス幅50ms、パルス間隔50ms、回数±5回、減衰率40%、極性+/-)を行った。エレクトロポレーション後の細胞を回収し、前記細胞にX線照射装置MBR-1520R-3(株式会社 日立パワーソリューションズ)を用いて30Gy量のX線を照射した。前記の方法により得られた細胞をaAVC(3T3)-pp65細胞と称する。 The pp65 gene (SEQ ID NO: 1) was prepared by artificial gene synthesis based on the amino acid sequence of HCMV pp65 shown in SEQ ID NO: 2 (UniProt: P06725-1). Furthermore, the pp65 gene is a primer with a sequence complementary to 16 bases containing the HindIII or EcoRI recognition sequence of the pGEM (registered trademark)-4Z plasmid (hereinafter referred to as pGEM-4Z plasmid) (Promega, Cat. P2161). was used and amplified by the PCR method. The amplified pp65 gene was inserted into the HindIII-EcoRI site of pGEM-4Z plasmid using In-Fusion (registered trademark) HD Cloning Kit (Takara Bio Inc., Cat. 639648). The resulting plasmid is called pGEM-4Z-pp65 plasmid. A mouse CD1d gene consisting of the base sequence shown in SEQ ID NO: 5 (Gene synthesized by artificial gene synthesis based on the amino acid sequence of UniProt: P11609-1 (SEQ ID NO: 6)) was inserted into the HindIII-BamHI site of the pGEM-4Z plasmid. inserted. The resulting plasmid is called pGEM-4Z-mCD1d plasmid. The pGEM-4Z-pp65 plasmid and pGEM-4Z-mCD1d plasmid were cleaved with EcoRI and BamHI and linearized, respectively. to generate pp65 mRNA and CD1d mRNA. NIH/3T3 cells were placed in Dulbecco's Modified Eagle medium (Merck, Cat. D6429) containing 10% fetal bovine serum supplemented with 350 ng/mL of α-GalCer (synthesized by Juzen Chemical Co., Ltd.). The cells were harvested after 2 days of culture at room temperature. pp65 mRNA and CD1d mRNA were added to the collected cell suspension, and electroporation was performed using a NEPA21 electroporator (Neppa Gene Co., Ltd.) (pouring pulse: voltage 150 V, pulse width 8 ms, pulse interval 50 ms, number of times 2). times, attenuation rate 10%, polarity +, transfer pulse: voltage 20 V, pulse width 50 ms, pulse interval 50 ms, number of times ±5 times, attenuation rate 40%, polarity +/-). After the electroporation, the cells were recovered and irradiated with 30 Gy of X-rays using an X-ray irradiator MBR-1520R-3 (Hitachi Power Solutions Co., Ltd.). The cells obtained by the above method are called aAVC(3T3)-pp65 cells.

aAVC(3T3)-pp65細胞の対照被験aAVCとして使用したaAVC(3T3)-WT1細胞は、aAVC(3T3)-pp65細胞の作製方法に準じ、WT1遺伝子及びCD1d遺伝子のmRNAを導入することにより作製した。本工程において、NIH/3T3細胞は、α-GalCerを500ng/mL添加した10%量のウシ胎児血清を含むDulbecco’s Modified Eagle培地(Merck社、Cat.D6429)にて2日間培養した。WT1遺伝子は、WO2013/018778に記載のpcDNA3-ATG-WT1から調製した。 aAVC(3T3)-pp65 cell control aAVC(3T3)-WT1 cells used as test aAVC were produced by introducing mRNA of WT1 gene and CD1d gene according to the method for producing aAVC(3T3)-pp65 cells. . In this step, NIH/3T3 cells were cultured for 2 days in Dulbecco's Modified Eagle medium (Merck, Cat. D6429) containing 10% fetal bovine serum supplemented with 500 ng/mL of α-GalCer. The WT1 gene was prepared from pcDNA3-ATG-WT1 described in WO2013/018778.

[実施例1-2:マウスにおけるaAVC(3T3)-pp65細胞のpp65特異的T細胞誘導能]
各群5例の5週齢C57BL/6J雌性マウス(日本チャールス・リバー)の尾静脈に、200μLのBICANATE Injection(株式会社大塚製薬工場)に懸濁したaAVC(3T3)-pp65細胞を、それぞれ5×10cells、5×10cells、5×10cellsずつ投与した。コントロール群には200μLのBICANATE Injectionを投与した。投与7日後にマウスから脾臓細胞を回収し、添付の方法に従って回収した細胞をmouse IFN-γ single-color enzymatic ELISPOT assay kit(Cellular Technology Limited社、mIFNGp-2M/5)のプレートに3×10cells/ウェルずつ播種した。さらに、pp65特異的T細胞を刺激するために、pp65タンパク質に特異的なオーバーラッピングペプチドのpp65ペプチド(PepTivator CMV pp65 - premium grade,human(ミルテニーバイオテク社、Cat.130-093-435))、及び、pp65タンパク質に非特異的なオーバーラッピングペプチドのWT1ペプチド(PepTivator WT1 - premium grade,human(ミルテニーバイオテク社、Cat.130-095-918))を添加し、37℃、5%CO条件下で1日間培養した。添付の方法に従ってスポットの発色を実施し、ELISpotリーダー08クラシック(Autoimmun Diagnostika社)にてウェル底の細胞スポットの数をカウントすることにより、IFN-γ産生細胞数を計測した。aAVC(3T3)-pp65細胞投与マウスでは、pp65ペプチド刺激によりIFN-γを産生する細胞が増加した(図1-1)。抗原非特異的であるWT1ペプチド刺激によるスポット数との差が、pp65特異的T細胞数を示す。この結果より、aAVC(3T3)-pp65細胞の投与によりpp65特異的T細胞が誘導されることが示唆された。
[Example 1-2: Ability of aAVC(3T3)-pp65 cells to induce pp65-specific T cells in mice]
Five aAVC(3T3)-pp65 cells suspended in 200 μL of BICANATE Injection (Otsuka Pharmaceutical Factory, Inc.) were injected into the tail veins of five 5-week-old C57BL/6J female mice (Charles River Japan) in each group. ×10 3 cells, 5×10 4 cells and 5×10 5 cells were administered respectively. 200 μL of BICANATE Injection was administered to the control group. Seven days after administration, spleen cells were collected from the mice, and the cells collected according to the attached method were placed on a plate of mouse IFN-γ single-color enzymatic ELISPOT assay kit (Cellular Technology Limited, mIFNGp-2M/5) at 3×10 5 . Cells/well were seeded. Furthermore, for stimulating pp65-specific T cells, the pp65 peptide, an overlapping peptide specific for the pp65 protein (PepTivator CMV pp65 - premium grade, human (Miltenyi Biotech, Cat. 130-093-435)), And, WT1 peptide (PepTivator WT1-premium grade, human (Miltenyi Biotech, Cat. 130-095-918)), which is a non-specific overlapping peptide to pp65 protein, was added, 37 ° C., 5% CO 2 conditions cultured for 1 day under The spots were colored according to the attached method, and the number of IFN-γ-producing cells was counted by counting the number of cell spots on the well bottom with an ELISpot reader 08 classic (Autoimmun Diagnostica). In aAVC(3T3)-pp65 cell-administered mice, pp65 peptide stimulation increased the number of IFN-γ-producing cells (FIG. 1-1). The difference from the number of spots by WT1 peptide stimulation, which is antigen-nonspecific, indicates the number of pp65-specific T cells. This result suggested that administration of aAVC(3T3)-pp65 cells induces pp65-specific T cells.

[実施例1-3:pp65発現B16メラノーマ細胞担癌マウスにおけるaAVC(3T3)-pp65細胞の抗原特異的抗腫瘍効果]
B16-F10メラノーマ細胞(ATCC、Cat.CRL-6475)にpp65遺伝子(配列番号1)を搭載したプラスミドをエレクトロポレーションにより導入し、薬剤選択することにより、pp65タンパク質を発現するB16-F10メラノーマ細胞(B16-pp65細胞とも称する)を作製した。各群12例の5週齢C57BL/6J雌性マウス(日本チャールス・リバー)の皮下に、D-PBS(-)(富士フイルム和光純薬株式会社、Cat.045-29795)に懸濁した1×10cellsのB16-pp65細胞を投与した。投与5日後、前記マウスの尾静脈に、BICANATE Injectionに懸濁したaAVC(3T3)-pp65細胞、又はaAVC(3T3)-WT1細胞を、それぞれ5×10cells、5×10cells、5×10cellsずつ投与した。コントロール群には200μLのBICANATE Injectionを投与した。がん細胞を接種した日を0日目と設定し、17日間の腫瘍体積の変化を計測した。aAVC(3T3)-pp65細胞を投与したすべての群とaAVC(3T3)-WT1細胞を5×10cells投与した群においてB16-pp65腫瘍の増大が有意に抑制されたのに対し、aAVC(3T3)-WT1細胞を5×10cells、5×10cellsを投与した群ではB16-pp65腫瘍の増大は抑制されなかった(図1-2)。aAVC(3T3)-pp65細胞及びaAVC(3T3)-WT1細胞を5×10cells投与した群では、いずれも抗腫瘍効果が見られているため、本用量における抗腫瘍効果はpp65タンパク質に非特異的な効果も含めた抗腫瘍効果を検出していると考えられる。一方で、5×10cellsと5×10cellsのaAVC(3T3)-pp65細胞投与群においては、aAVC(3T3)-WT1細胞投与群よりも強い抗腫瘍効果が得られており、両者の抗腫瘍活性の差は、pp65タンパク質に対する特異的免疫の誘導に基づくpp65特異的抗腫瘍効果と考えられる。なお、aAVC(3T3)-pp65の1×10細胞あたりのpp65の発現量は、96.8μgであった。
[Example 1-3: Antigen-specific antitumor effect of aAVC(3T3)-pp65 cells in pp65-expressing B16 melanoma cell tumor-bearing mice]
B16-F10 melanoma cells (ATCC, Cat. CRL-6475) were introduced with a plasmid carrying the pp65 gene (SEQ ID NO: 1) by electroporation, and drug selection was performed to obtain B16-F10 melanoma cells that express the pp65 protein. (also called B16-pp65 cells) were generated. 1x suspended in D-PBS (-) (Fujifilm Wako Pure Chemical Industries, Ltd., Cat. 10 5 cells of B16-pp65 cells were administered. Five days after administration, aAVC(3T3)-pp65 cells or aAVC(3T3)-WT1 cells suspended in BICANATE Injection were injected into the tail vein of the mice at 5×10 2 cells, 5×10 3 cells, and 5×10 3 cells, respectively. 10 4 cells were administered at a time. 200 μL of BICANATE Injection was administered to the control group. The day when cancer cells were inoculated was set as day 0, and changes in tumor volume were measured for 17 days. B16-pp65 tumor growth was significantly suppressed in all groups administered with aAVC(3T3)-pp65 cells and in the group administered with 5×10 4 cells of aAVC(3T3)-WT1 cells. )-WT1 cells of 5×10 2 cells and 5×10 3 cells of B16-pp65 tumor growth were not inhibited (FIG. 1-2). In the groups administered 5×10 4 cells of aAVC(3T3)-pp65 cells and aAVC(3T3)-WT1 cells, both antitumor effects were observed, so the antitumor effect at this dose was non-specific to the pp65 protein. It is thought that anti-tumor effects including anti-tumor effects are detected. On the other hand, in the aAVC(3T3)-pp65 cell administration group of 5×10 2 cells and 5×10 3 cells, a stronger antitumor effect than the aAVC(3T3)-WT1 cell administration group was obtained. The difference in antitumor activity is considered a pp65-specific antitumor effect based on the induction of specific immunity against the pp65 protein. The expression level of pp65 per 1×10 6 cells of aAVC(3T3)-pp65 was 96.8 μg.

[実施例1-4:pp65発現GL-261グリオーマ細胞担癌マウスにおけるaAVC(3T3)-pp65細胞の抗原特異的抗腫瘍効果]
GL-261グリオーマ細胞(DSMZ、Cat.ACC802)にpp65遺伝子(配列番号1)を搭載したプラスミドをエレクトロポレーションにより導入し、薬剤選択することにより、pp65タンパク質を発現するGL-261グリオーマ細胞(GL-261-pp65細胞と称する)を作製した。各群12例の5週齢C57BL/6J雌性マウス(日本チャールス・リバー)の頭蓋内に、D-PBS(-)(富士フイルム和光純薬株式会社、Cat.045-29795)に懸濁した1×10cellsのGL-261-pp65細胞を投与した。投与7日後、前記マウスの尾静脈に、BICANATE Injectionに懸濁したaAVC(3T3)-pp65細胞、又はaAVC(3T3)-WT1細胞を、それぞれ5×10cells、5×10cells、5×10cellsずつ投与した。コントロール群には200μLのBICANATE Injectionを投与した。GL-261-pp65細胞投与から50日間にわたり生存を観察した。ログランク検定により生存期間を比較したところ、aAVC(3T3)-pp65細胞投与群すべてとaAVC(3T3)-WT1細胞を5×10cells投与した群はコントロール群と比較して有意に生存期間が延長されたのに対し、aAVC(3T3)-WT1細胞を5×10cells、5×10cellsを投与した群では生存期間の延長効果が見られなかった(図1-3)。実施例1-3の結果と同様に、5×10cellsと5×10cellsのaAVC(3T3)-pp65細胞の投与により示された抗腫瘍活性は、pp65特異的免疫の誘導に基づくpp65特異的抗腫瘍効果と考えられる。
[Example 1-4: Antigen-specific antitumor effect of aAVC(3T3)-pp65 cells in pp65-expressing GL-261 glioma cell tumor-bearing mice]
A plasmid carrying the pp65 gene (SEQ ID NO: 1) was introduced into GL-261 glioma cells (DSMZ, Cat. ACC802) by electroporation, and drug selection was performed to obtain GL-261 glioma cells (GL -261-pp65 cells) were generated. 1 suspended in D-PBS (-) (Fujifilm Wako Pure Chemical Industries, Ltd., Cat. GL-261-pp65 cells were administered at ×10 5 cells. Seven days after administration, aAVC(3T3)-pp65 cells or aAVC(3T3)-WT1 cells suspended in BICANATE Injection were added to the tail vein of the mice at 5×10 2 cells, 5×10 3 cells, and 5×10 3 cells, respectively. 10 4 cells were administered at a time. 200 μL of BICANATE Injection was administered to the control group. Survival was observed for 50 days after administration of GL-261-pp65 cells. When the survival period was compared by the log-rank test, the survival period of all aAVC(3T3)-pp65 cell administration groups and the group of aAVC(3T3)-WT1 cell administration of 5×10 4 cells was significantly longer than that of the control group. In contrast, no effect of prolonging the survival period was observed in the groups administered 5×10 2 cells and 5×10 3 cells of aAVC(3T3)-WT1 cells (FIG. 1-3). Similar to the results of Example 1-3, the antitumor activity exhibited by the administration of 5×10 2 cells and 5×10 3 cells of aAVC(3T3)-pp65 cells was confirmed by the induction of pp65-specific immunity. It is considered as a specific anti-tumor effect.

実施例1の結果より、マウス型aAVC(3T3)-pp65細胞は、マウスin vivo評価系において、pp65特異的T細胞を誘導することによりpp65特異的抗腫瘍効果を示すことが確認された。ヒトにおいても、ヒト型aAVC-pp65細胞は、自然免疫を惹起して抗腫瘍効果を奏すると共に、抗原特異的な獲得免疫を誘導し、獲得免疫に基づく抗腫瘍効果を奏することを期待し得るため、ヒトのpp65発現がんに対してpp65特異的抗腫瘍効果を示す治療薬の創製を目的とし、以下にヒト型aAVC-pp65細胞の作製検討を行った。 The results of Example 1 confirmed that mouse aAVC(3T3)-pp65 cells exhibited pp65-specific antitumor effects by inducing pp65-specific T cells in a mouse in vivo evaluation system. Human aAVC-pp65 cells can be expected to induce innate immunity and exhibit antitumor effects in humans, as well as induce antigen-specific acquired immunity and exhibit antitumor effects based on acquired immunity. , for the purpose of creating therapeutic agents that exhibit pp65-specific anti-tumor effects against human pp65-expressing cancers, the preparation of human aAVC-pp65 cells was investigated below.

[実施例2:ヒト型aAVC-pp65細胞の作製及び調製]
pp65、CD1d、及びTet-On 3G遺伝子をFreeStyle 293-F細胞(Thermo Fisher Scientific社、Cat.R79007)に導入することによりヒト型aAVC-pp65細胞を構築した。
[Example 2: Production and preparation of human aAVC-pp65 cells]
Human aAVC-pp65 cells were constructed by introducing pp65, CD1d, and Tet-On 3G genes into FreeStyle 293-F cells (Thermo Fisher Scientific, Cat. R79007).

[実施例2-1:レンチウイルス作製]
(1)レンチウイルス作製用プラスミドの構築
pLVSIN-CMV Purプラスミド(タカラバイオ社、Cat.6183)とpTRE3G(タカラバイオ社、Cat.631173)の塩基配列を基に構築したレンチウイルスプラスミドをpLVsyn-TRE3Gプラスミドと称する。pLVsyn-TRE3GプラスミドのEcoRI又はBamHI認識配列を含む16塩基に相補的な配列を付加したプライマーを用い、pp65遺伝子(配列番号1)をPCR法にて増幅した。増幅したpp65遺伝子を、EcoRI及びBamHIにて処理したpLVsyn-TRE3GプラスミドにIn-Fusion(登録商標)HD Cloning Kitを用いて挿入した。得られたプラスミドをpLVsyn-TRE3G-pp65プラスミドと称する。得られたpLVsyn-TRE3G-pp65プラスミドのWPRE配列を、当業者に周知の方法を用いて、Gene Ther.;2009;16(5):605-19に記載の変異WPRE配列(mut6)に置換した。得られたプラスミドをpLVsyn-TRE3G-pp65-mWPRE(配列番号7)と称する。
[Example 2-1: Preparation of lentivirus]
(1) Construction of plasmid for producing lentivirus A lentiviral plasmid constructed based on the nucleotide sequences of pLVSIN-CMV Pur plasmid (Takara Bio Inc., Cat.6183) and pTRE3G (Takara Bio Inc., Cat.631173) was constructed as pLVsyn-TRE3G. called a plasmid. The pp65 gene (SEQ ID NO: 1) was amplified by PCR using primers added with sequences complementary to 16 bases containing the EcoRI or BamHI recognition sequence of the pLVsyn-TRE3G plasmid. The amplified pp65 gene was inserted into the EcoRI and BamHI treated pLVsyn-TRE3G plasmid using the In-Fusion® HD Cloning Kit. The resulting plasmid is called pLVsyn-TRE3G-pp65 plasmid. The WPRE sequence of the resulting pLVsyn-TRE3G-pp65 plasmid was cloned using methods well known to those skilled in the art according to Gene Ther. ; 2009; 16(5):605-19. The resulting plasmid is called pLVsyn-TRE3G-pp65-mWPRE (SEQ ID NO:7).

CD1d遺伝子(配列番号3)は配列番号4に示されるヒトCD1dのアミノ酸配列を基に設計し、人工遺伝子合成にて当該遺伝子の5’末側にXhoI認識配列、3’末側にNotI認識配列を付加した遺伝子を作製した。制限酵素XhoI及びNotIで切り出したCD1d遺伝子を、pLVSIN-CMV Purプラスミドの塩基配列を基に構築したpLVsyn-CMVプラスミド(配列番号8)のXhoI-NotIサイトに挿入した。得られたプラスミドをpLVsyn-CMV-CD1dプラスミドと称する。pLVsyn-TRE3G-pp65-mWPREと同様の手順でWPRE配列を変異型に変換したpLVsyn-CMV-CD1d-mWPREプラスミドを作製した。 The CD1d gene (SEQ ID NO: 3) was designed based on the amino acid sequence of human CD1d shown in SEQ ID NO: 4, and an XhoI recognition sequence was added to the 5' end of the gene by artificial gene synthesis, and a NotI recognition sequence was added to the 3' end. was added to create a gene. The CD1d gene cut out with restriction enzymes XhoI and NotI was inserted into the XhoI-NotI site of pLVsyn-CMV plasmid (SEQ ID NO: 8) constructed based on the nucleotide sequence of pLVSIN-CMV Pur plasmid. The resulting plasmid is called pLVsyn-CMV-CD1d plasmid. A pLVsyn-CMV-CD1d-mWPRE plasmid was prepared by converting the WPRE sequence into a mutant type by the same procedure as for pLVsyn-TRE3G-pp65-mWPRE.

Tet-On 3G遺伝子は、pCMV-Tet3Gプラスミド(タカラバイオ社、Cat.631335)のTet-On 3G遺伝子配列を基に、当該遺伝子の5’末側にXhoI認識配列、3’末側にNotI認識配列を付加し、人工遺伝子合成にて作製した。制限酵素XhoI及びNotIで切り出したTet-On 3G遺伝子を、pLVsyn-CMVプラスミドのXhoI-NotIサイトに挿入した。得られたプラスミドをpLVsyn-CMV-Tet3Gプラスミドと称する。pLVsyn-TRE3G-pp65-mWPREと同様の手順でWPRE配列を変異型に変換したpLVsyn-CMV-Tet3G-mWPREプラスミドを作製した。 The Tet-On 3G gene is based on the Tet-On 3G gene sequence of pCMV-Tet3G plasmid (Takara Bio Inc., Cat.631335). Sequences were added and produced by artificial gene synthesis. The Tet-On 3G gene cut out with restriction enzymes XhoI and NotI was inserted into the XhoI-NotI site of the pLVsyn-CMV plasmid. The resulting plasmid is called pLVsyn-CMV-Tet3G plasmid. A pLVsyn-CMV-Tet3G-mWPRE plasmid was prepared by converting the WPRE sequence into a mutant type by the same procedure as for pLVsyn-TRE3G-pp65-mWPRE.

(2)レンチウイルス作製
(1)で作製した、pLVsyn-TRE3G-pp65-mWPREプラスミド、pLVsyn-CMV-Tet3G-mWPREプラスミド、及びpLVsyn-CMV-CD1d-mWPREプラスミドを用いて、pp65遺伝子、Tet-On 3G遺伝子、及びCD1d遺伝子を搭載したレンチウイルスを作製した。得られたレンチウイルスを、それぞれ、TRE3G-pp65搭載レンチウイルス、Tet3G搭載レンチウイルス、及びCD1d搭載レンチウイルスと称する。
(2) Lentivirus preparation Using the pLVsyn-TRE3G-pp65-mWPRE plasmid, pLVsyn-CMV-Tet3G-mWPRE plasmid, and pLVsyn-CMV-CD1d-mWPRE plasmid prepared in (1), the pp65 gene, Tet-On A lentivirus carrying the 3G gene and the CD1d gene was prepared. The resulting lentiviruses are referred to as TRE3G-pp65-equipped lentivirus, Tet3G-equipped lentivirus, and CD1d-equipped lentivirus, respectively.

pLVsyn-TRE3G-pp65-mWPREプラスミド、又はpLVsyn-CMV-Tet3G-mWPREプラスミドのいずれかのプラスミドを30μgとViraPower Lentiviral Packaging Mix(Thermo Fisher Scientific社、Cat.K497500)45μLを混合し、1.5mLのOptiPRO SFM(Thermo Fisher Scientific社、Cat.12309019)を加えて混合した(A)。LV-MAX Transfection Reagent(Thermo Fischer Scientific社、Cat.A35348の構成品)540μLとOptiProSFM 4.5mLを混合して1分静置した(B)。(A)と1.5mLの(B)を混合して室温で10分静置した。125mL三角フラスコ(Thermo Fischer Scientific社、Cat.4115-0125)にてViral Production Cells(Thermo Fischer Scientific社、Cat.A35347)を培養し、培養液(1.2×10cells/mL、27mL)に(A)と(B)の混合液を全量添加して遺伝子導入を行った。前記Viral Production Cellsを、LV-MAX Production Medium(Thermo Fisher Scientific社、Cat.A3583401)にて37℃、8%CO、120rpmの条件下で培養を行った。遺伝子導入後、前記条件にて2日間培養し、TRE3G-pp65又はTet3G遺伝子を搭載したレンチウイルスを含む培養上清を回収した。培養上清を4℃にて760×gで10分間遠心した。上清を0.45μmのフィルター(Merck社、Cat.SLHV033RS)でろ過し、PEG-it Virus Precipitaion Solution(5x)(System Biosciences社、Cat.LV810A-1)を上清液量の1/4量添加して混合し、4℃で終夜静置した。1500×g、4℃で30分間遠心し、上清を除去し、再度1500×g、4℃で5分間遠心して上清を完全に除去した。ペレットを725μLのDPBS(Thermo Fisher Scientific社、Cat.14190144)に懸濁し、TRE3G-pp65搭載レンチウイルス、及びTet3G搭載レンチウイルスを得た。 30 μg of either the pLVsyn-TRE3G-pp65-mWPRE plasmid or the pLVsyn-CMV-Tet3G-mWPRE plasmid and 45 μL of ViraPower Lentiviral Packaging Mix (Thermo Fisher Scientific, Cat. K497500) were mixed, 1.5 mL of OptiPRO SFM (Thermo Fisher Scientific, Cat. 12309019) was added and mixed (A). 540 μL of LV-MAX Transfection Reagent (Component of Thermo Fischer Scientific, Cat. A35348) and 4.5 mL of OptiProSFM were mixed and allowed to stand for 1 minute (B). (A) and 1.5 mL of (B) were mixed and allowed to stand at room temperature for 10 minutes. Viral Production Cells (Thermo Fischer Scientific, Cat. A35347) were cultured in a 125 mL Erlenmeyer flask (Thermo Fischer Scientific, Cat. 4115-0125), and added to the culture solution (1.2×10 8 cells/mL, 27 mL). Gene introduction was carried out by adding the total amount of the mixture of (A) and (B). The Viral Production Cells were cultured in LV-MAX Production Medium (Thermo Fisher Scientific, Cat. A3583401) under conditions of 37° C., 8% CO 2 and 120 rpm. After the gene introduction, the cells were cultured for 2 days under the above conditions, and the culture supernatant containing the lentivirus carrying the TRE3G-pp65 or Tet3G gene was collected. The culture supernatant was centrifuged at 760 xg for 10 minutes at 4°C. The supernatant was filtered through a 0.45 μm filter (Merck, Cat. SLHV033RS), and PEG-it Virus Precipitation Solution (5x) (System Biosciences, Cat. LV810A-1) was added to ¼ volume of the supernatant. Add, mix and let stand overnight at 4°C. After centrifugation at 1500×g and 4° C. for 30 minutes, the supernatant was removed and centrifuged again at 1500×g and 4° C. for 5 minutes to completely remove the supernatant. The pellet was suspended in 725 μL of DPBS (Thermo Fisher Scientific, Cat. 14190144) to obtain TRE3G-pp65-loaded lentivirus and Tet3G-loaded lentivirus.

pLVsyn-CMV-CD1d-mWPREプラスミドを18μgとViraPower Lentiviral Packaging Mix(Thermo Fisher Scientific社、Cat.K497500)54μLを混合し、9mLのOptiPRO SFM(Thermo Fisher Scientific社、Cat.12309019)を加えて混合した(A)。Lipofectamine2000 CD Transfection Reagent(Thermo Fischer Scientific社、Cat.12566014)648μLとOptiProSFM 27mLを混合して5分静置した(B)。(A)と9mLの(B)を混合して室温で20分静置後、前日にFalcon(登録商標)100mm TC-treated Cell Culture Dish(Corning社、Cat.353003)に5×10cells/plateで播種したLenti-X 293T細胞(タカラバイオ社、Cat.632180)に(A)と(B)の混合液3mL/plateで添加して遺伝子導入を行った。Lenti-X 293T細胞は、10%量のウシ胎児血清(SAFC Biosciences社、Cat.12007C(γ線照射品))と0.1%量のゲンタマイシン(Thermo Fisher Scientific社、Cat.15750060)を含むDMEM培地(Thermo Fisher Scientific社、Cat.10569010)にて37℃、5%CO条件下で培養を行った。遺伝子導入後、同条件にて2日間培養し、各遺伝子を搭載したレンチウイルスを含む培養上清を回収した。培養上清を4℃にて760×gで10分間遠心した。上清を0.45μmのフィルター(Merck社、Cat.SLHV033RS)でろ過し、PEG-it Virus Precipitaion Solution(5x)(System Biosciences社、Cat.LV810A-1)を上清液量の1/4量添加して混合し、4℃で終夜静置した。1500×g、4℃で30分間遠心し、上清を除去し、再度1500×g、4℃で5分間遠心して上清を完全に除去した。ペレットを1mLのDPBS(Thermo Fisher Scientific社、Cat.14190144)に懸濁し、CD1d搭載レンチウイルスを得た。 18 μg of the pLVsyn-CMV-CD1d-mWPRE plasmid and 54 μL of ViraPower Lentiviral Packaging Mix (Thermo Fisher Scientific, Cat. K497500) were mixed and added to 9 mL of OptiPRO SFM (Thermo Fisher Scientific). fic, Cat. 12309019) was added and mixed ( A). 648 μL of Lipofectamine 2000 CD Transfection Reagent (Thermo Fischer Scientific, Cat. 12566014) and 27 mL of OptiProSFM were mixed and allowed to stand for 5 minutes (B). ( A ) and 9 mL of (B) were mixed and allowed to stand at room temperature for 20 minutes. A mixed solution of (A) and (B) was added to Lenti-X 293T cells (Takara Bio Inc., Cat. 632180) seeded in a plate at 3 mL/plate for gene transfer. Lenti-X 293T cells were grown in DMEM containing 10% fetal bovine serum (SAFC Biosciences, Cat. 12007C (γ-irradiated)) and 0.1% gentamicin (Thermo Fisher Scientific, Cat. 15750060). Cultivation was performed in a medium (Thermo Fisher Scientific, Cat. 10569010) at 37°C and 5% CO2 . After the gene transfer, the cells were cultured under the same conditions for 2 days, and the culture supernatant containing the lentivirus loaded with each gene was collected. The culture supernatant was centrifuged at 760 xg for 10 minutes at 4°C. The supernatant was filtered through a 0.45 μm filter (Merck, Cat. SLHV033RS), and PEG-it Virus Precipitation Solution (5x) (System Biosciences, Cat. LV810A-1) was added to ¼ volume of the supernatant. Add, mix and let stand overnight at 4°C. After centrifugation at 1500×g and 4° C. for 30 minutes, the supernatant was removed and centrifuged again at 1500×g and 4° C. for 5 minutes to completely remove the supernatant. The pellet was suspended in 1 mL of DPBS (Thermo Fisher Scientific, Cat. 14190144) to obtain CD1d-loaded lentivirus.

[実施例2-2:Lenti virus感染細胞の作製とクローニング]
FreeStyle 293-F細胞(Thermo Fisher Scientific社、Cat.510029)に実施例2-1で作製した各レンチウイルスを感染させた。TRE3G-pp65搭載レンチウイルス、CD1d搭載レンチウイルス、及びTet3G搭載レンチウイルスを感染させた細胞集団をFreeStyle 293F_Tet-on_pp65_CD1d細胞プールと称する。これらの細胞プールから細胞のクローニングを実施し、各細胞プール由来のクローンを複数取得した。
[Example 2-2: Preparation and cloning of Lenti virus-infected cells]
FreeStyle 293-F cells (Thermo Fisher Scientific, Cat. 510029) were infected with each lentivirus prepared in Example 2-1. Cell populations infected with TRE3G-pp65 loaded lentiviruses, CD1d loaded lentiviruses and Tet3G loaded lentiviruses are referred to as FreeStyle 293F_Tet-on_pp65_CD1d cell pools. Cell cloning was performed from these cell pools, and multiple clones derived from each cell pool were obtained.

(1)FreeStyle 293F_Tet-on_pp65_CD1d細胞プールの作製
FreeStyle 293-F細胞を2×10cells/mLの濃度に調製し、500μL/ウェルでFalcon(登録商標)セルカルチャー 12ウェル 細胞培養用マルチウェルプレート 平底 フタ付き(以下、12ウェルプレート)(Corning社、Cat.353043)に播種し、実施例2-1で得たCD1d搭載レンチウイルスを100μL添加し、さらに400μLの培地を添加した。培地は0.1%量のゲンタマイシン(Thermo Fisher Scientific社、Cat.15750-060)を含むFreeStyle 293 Expression Medium(Thermo Fisher Scientific社、Cat.12338018)を使用した。540×g、室温で30分間遠心した後、ピペッティングで優しく細胞を懸濁して振盪培養を行った。数日培養後に12ウェルプレートからCorning(登録商標)ポリカーボネート製三角フラスコベントキャップ125mL(以下、125mL三角フラスコ)(Corning社、Cat.431143)に継代し、さらに適当な間隔で継代して細胞プールAを得た。細胞プールAを2×10cells/mLの濃度に調製し、500μL/ウェルで12ウェルプレートに播種し、実施例2-1で得たTRE3G-pp65搭載レンチウイルスとTet3G搭載レンチウイルスをそれぞれ200μL/ウェル又は25μL/ウェルずつ添加した。さらにそれぞれ100μL又は450μLの培地を添加した。培地は0.1%量のゲンタマイシンを含むFreeStyle 293 Expression Mediumを使用した。540×g、室温で30分間遠心した後、ピペッティングで優しく細胞を懸濁して振盪培養を行った。数日培養後に12ウェルプレートから125mL三角フラスコに継代し、さらに適当な間隔で継代し、FreeStyle 293F_Tet-on_pp65_CD1d細胞プールを得た。
(1) Preparation of FreeStyle 293F_Tet-on_pp65_CD1d cell pool FreeStyle 293-F cells were prepared at a concentration of 2×10 6 cells/mL, and Falcon (registered trademark) cell culture was performed at 500 μL/well. 12-well multiwell plate for cell culture, flat bottom The cells were seeded in a lidded (hereinafter referred to as 12-well plate) (Corning, Cat. 353043), 100 μL of the CD1d-loaded lentivirus obtained in Example 2-1 was added, and 400 μL of medium was further added. The medium used was FreeStyle 293 Expression Medium (Thermo Fisher Scientific, Cat. 12338018) containing 0.1% gentamicin (Thermo Fisher Scientific, Cat. 15750-060). After centrifugation at 540×g for 30 minutes at room temperature, the cells were gently suspended by pipetting and cultured with shaking. After culturing for several days, the cells were subcultured from the 12-well plate to Corning (registered trademark) polycarbonate Erlenmeyer flask vent cap 125 mL (hereinafter referred to as 125 mL Erlenmeyer flask) (Corning, Cat.431143), and further subcultured at appropriate intervals. Pool A was obtained. Cell pool A was prepared at a concentration of 2×10 6 cells/mL, seeded in a 12-well plate at 500 μL/well, and 200 μL each of TRE3G-pp65-loaded lentivirus and Tet3G-loaded lentivirus obtained in Example 2-1. /well or 25 μL/well was added. Furthermore, 100 μL or 450 μL of medium was added, respectively. FreeStyle 293 Expression Medium containing 0.1% gentamicin was used as the medium. After centrifugation at 540×g for 30 minutes at room temperature, the cells were gently suspended by pipetting and cultured with shaking. After culturing for several days, the cells were subcultured from a 12-well plate to a 125 mL Erlenmeyer flask and further subcultured at appropriate intervals to obtain a FreeStyle 293F_Tet-on_pp65_CD1d cell pool.

(2)クローニング
(1)で作製したFreeStyle 293F_Tet-on_pp65_CD1d細胞プールからシングルセルクローニングを行い、全ての遺伝子が安定的に発現するクローンを選抜した。96ウェルプレートに1cell/ウェルとなるように細胞を播種し、細胞の増殖に合わせて継代を行い、細胞を増殖させた。増殖した細胞のpp65タンパク質及びCD1dタンパク質の発現量を、pp65タンパク質はELISA法にて、CD1dタンパク質はフローサイトメトリー法にて測定し、pp65タンパク質及びCD1dタンパク質を安定的に発現するクローンを選抜した。pp65タンパク質発現量の測定に用いた細胞は、培地に終濃度0.8~1μg/mLのドキシサイクリン(タカラバイオ社、Cat.631311)を添加し、Tet-On Systemを介してpp65タンパク質の発現を誘導した後に評価を行った。ELISA法による測定には一次抗体としてCMV pp65 (3A12)抗体(Santa Cruz Biotechnology社 Cat.sc-56973)、二次抗体としてGoat Anti-Mouse IgGFc -HRP 抗体(Jackson Immuno Research Laboratories社、Cat.115-035-071)を使用し、ELISA直接法の一般的な測定方法に準拠して測定を行った。フローサイトメトリー法による測定には、APC Mouse Anti-Human CD1d抗体(BD Biosciences社、Cat.563505)を使用し、FACSVerse(BD Biosciences社)を用いた一般的な測定方法に準拠して測定を行った。
(2) Cloning Single-cell cloning was performed from the FreeStyle 293F_Tet-on_pp65_CD1d cell pool prepared in (1), and clones stably expressing all genes were selected. Cells were seeded in a 96-well plate at 1 cell/well, and subcultured according to cell growth to proliferate the cells. The expression levels of pp65 protein and CD1d protein in the proliferated cells were measured by ELISA for pp65 protein and by flow cytometry for CD1d protein, and clones stably expressing pp65 protein and CD1d protein were selected. Cells used for measuring the expression level of pp65 protein added doxycycline (Takara Bio Inc., Cat.631311) at a final concentration of 0.8 to 1 μg/mL to the medium, and expressed pp65 protein via the Tet-On System. Evaluation was performed after induction. For measurement by ELISA, a CMV pp65 (3A12) antibody (Santa Cruz Biotechnology, Cat. sc-56973) was used as a primary antibody, and a Goat Anti-Mouse IgG Fc-HRP antibody (Jackson Immuno Research Laboratories, Cat. sc-56973) was used as a secondary antibody. 115- 035-071) was used, and the measurement was carried out according to the general measurement method of the ELISA direct method. For measurement by flow cytometry, APC Mouse Anti-Human CD1d antibody (BD Biosciences, Cat.563505) is used, and measurement is performed according to a general measurement method using FACSVerse (BD Biosciences). rice field.

本発明のaAVC-pp65細胞は、がんの処置に有用であることが期待できる。 The aAVC-pp65 cells of the present invention are expected to be useful for cancer treatment.

以下の配列表の数字見出し<223>には、「Artificial Sequence」の説明を記載する。配列表の配列番号1で示される塩基配列は、ヒトサイトメガロウイルスpp65タンパク質をコードする塩基配列であり、配列表の配列番号2で示されるアミノ酸配列は、配列番号1によりコードされるアミノ酸配列である。配列番号3で示される塩基配列は、ヒトCD1dタンパク質をコードする塩基配列であり、配列表の配列番号4で示されるアミノ酸配列は、配列番号3によりコードされるアミノ酸配列である。配列番号5で示される塩基配列は、マウスCD1dタンパク質をコードする塩基配列であり、配列表の配列番号6で示されるアミノ酸配列は、配列番号5によりコードされるアミノ酸配列である。配列表の配列番号7及び配列番号8で示される塩基配列は、ぞれぞれ、pLVsyn-TRE3G-pp65-mWPREプラスミド及びpLVsyn-CMVプラスミドの塩基配列である。 Numerical heading <223> in the Sequence Listing below provides a description of "Artificial Sequence". The nucleotide sequence represented by SEQ ID NO: 1 in the sequence listing is the nucleotide sequence encoding the human cytomegalovirus pp65 protein, and the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing is the amino acid sequence encoded by SEQ ID NO: 1. be. The nucleotide sequence shown by SEQ ID NO:3 is the nucleotide sequence encoding the human CD1d protein, and the amino acid sequence shown by SEQ ID NO:4 in the sequence listing is the amino acid sequence encoded by SEQ ID NO:3. The nucleotide sequence shown by SEQ ID NO:5 is a nucleotide sequence encoding the mouse CD1d protein, and the amino acid sequence shown by SEQ ID NO:6 in the sequence listing is the amino acid sequence encoded by SEQ ID NO:5. The nucleotide sequences represented by SEQ ID NO: 7 and SEQ ID NO: 8 in the Sequence Listing are the nucleotide sequences of the pLVsyn-TRE3G-pp65-mWPRE plasmid and the pLVsyn-CMV plasmid, respectively.

Claims (18)

CD1dをコードするポリヌクレオチド、及びpp65又はその断片をコードするポリヌクレオチドを外来的に導入した、ヒト由来細胞。 A human-derived cell exogenously introduced with a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof. CD1dがヒトCD1dである、請求項1に記載の細胞。 2. The cell of claim 1, wherein the CD1d is human CD1d. ヒト由来細胞が正常細胞である、請求項1又は2に記載の細胞。 3. The cell according to claim 1 or 2, wherein the human-derived cell is a normal cell. 正常細胞がヒト胎児腎細胞293(HEK293)細胞に由来する細胞である、請求項3に記載の細胞。 4. The cell of claim 3, wherein the normal cell is a cell derived from human embryonic kidney 293 (HEK293) cells. CD1d及びpp65又はその断片を発現している、請求項1~4のいずれかに記載の細胞。 A cell according to any one of claims 1 to 4, which expresses CD1d and pp65 or a fragment thereof. 細胞の表面にCD1dリガンドを積載している、請求項5に記載の細胞。 6. The cell of claim 5, wherein the cell surface is loaded with CD1d ligand. CD1dリガンドがα-GalCerである、請求項6に記載の細胞。 7. The cell of claim 6, wherein the CD1d ligand is α-GalCer. 請求項6又は7に記載の細胞を含む医薬組成物。 A pharmaceutical composition comprising the cells of claim 6 or 7. がんの処置に用いるための、請求項8に記載の医薬組成物。 9. A pharmaceutical composition according to claim 8 for use in treating cancer. がんを処置する方法であって、請求項6又は7に記載の細胞を対象に投与する工程を含む、方法。 A method of treating cancer, comprising administering the cells of claim 6 or 7 to a subject. がんを処置するための、請求項6又は7に記載の細胞。 8. A cell according to claim 6 or 7 for treating cancer. がんの処置に用いる医薬組成物を製造するための、請求項6又は7に記載の細胞の使用。 Use of the cells according to claim 6 or 7 for manufacturing a pharmaceutical composition for treating cancer. がんの処置に用いる細胞を製造する方法であって、
ヒト由来細胞にCD1dをコードするポリヌクレオチド及びpp65又はその断片をコードするポリヌクレオチドを導入する工程と、
該細胞を培養する工程を含む、方法。
A method of producing cells for use in treating cancer, comprising:
introducing a polynucleotide encoding CD1d and a polynucleotide encoding pp65 or a fragment thereof into a human-derived cell;
A method comprising the step of culturing said cells.
CD1dがヒトCD1dである、請求項13に記載の方法。 14. The method of claim 13, wherein the CD1d is human CD1d. ヒト由来細胞が正常細胞である、請求項13又は14に記載の方法。 15. The method of claim 13 or 14, wherein the human-derived cells are normal cells. 正常細胞がヒト胎児腎細胞293(HEK293)細胞に由来する細胞である、請求項15に記載の方法。 16. The method of claim 15, wherein the normal cells are cells derived from human embryonic kidney 293 (HEK293) cells. 細胞の表面にCD1dリガンドを積載する工程をさらに含む、請求項13~16のいずれかに記載の方法。 17. The method of any of claims 13-16, further comprising the step of loading the surface of the cell with a CD1d ligand. CD1dリガンドがα-GalCerである、請求項17に記載の方法。 18. The method of claim 17, wherein the CD1d ligand is α-GalCer.
JP2020069501A 2020-04-08 2020-04-08 pp65-CONTAINING ARTIFICIAL ADJUVANT VECTOR CELLS USED IN TREATMENT OF CANCER Pending JP2023078487A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020069501A JP2023078487A (en) 2020-04-08 2020-04-08 pp65-CONTAINING ARTIFICIAL ADJUVANT VECTOR CELLS USED IN TREATMENT OF CANCER
PCT/JP2021/014686 WO2021206104A1 (en) 2020-04-08 2021-04-07 pp65-CONTAINING ARTIFICIAL ADJUVANT VECTOR CELLS USED IN TREATMENT OF CANCER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020069501A JP2023078487A (en) 2020-04-08 2020-04-08 pp65-CONTAINING ARTIFICIAL ADJUVANT VECTOR CELLS USED IN TREATMENT OF CANCER

Publications (1)

Publication Number Publication Date
JP2023078487A true JP2023078487A (en) 2023-06-07

Family

ID=78023649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020069501A Pending JP2023078487A (en) 2020-04-08 2020-04-08 pp65-CONTAINING ARTIFICIAL ADJUVANT VECTOR CELLS USED IN TREATMENT OF CANCER

Country Status (2)

Country Link
JP (1) JP2023078487A (en)
WO (1) WO2021206104A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE049283T2 (en) * 2006-02-22 2020-09-28 Riken Immunotherapy by using cell capable of co-expressing target antigen and cd1d and pulsed with cd1d ligand
EP3766517B1 (en) * 2008-06-20 2022-11-02 Duke University Compositions, methods, and kits for eliciting an immune response
US20110280895A1 (en) * 2008-11-28 2011-11-17 Riken IMMUNOTHERAPEUTIC METHOD USING ALLO-CELLS WHICH CO-EXPRESS CD1d AND TARGET ANTIGEN
JP5840857B2 (en) * 2011-04-08 2016-01-06 国立大学法人 東京大学 Composition for inducing cytotoxic T cells
AU2012291101B2 (en) * 2011-07-29 2016-04-07 Riken Cell for use in immunotherapy which contains modified nucleic acid construct encoding Wilms tumor gene product or fragment thereof, method for producing said cell, and said nucleic acid construct
EP3049092A4 (en) * 2013-09-24 2017-09-06 Duke University Compositions, methods and kits for eliciting an immune response
EP4011389A4 (en) * 2019-08-09 2024-09-04 Riken Combined use of artificial adjuvant vector cells and an immunostimulant

Also Published As

Publication number Publication date
WO2021206104A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US11931381B2 (en) Immunocompetent cell and expression vector expressing regulatory factors of immune function
JP5156382B2 (en) Method for producing T cell population
CN109320615B (en) Chimeric antigen receptor targeting novel BCMA and uses thereof
JP2017515504A (en) Nucleic acid encoding chimeric antigen receptor protein and T lymphocyte expressing chimeric antigen receptor protein
CN110857319B (en) Isolated T cell receptor, modified cell, encoding nucleic acid and application thereof
US20240139248A1 (en) Immunocompetent cell that expresses a cell surface molecule specifically recognizing human mesothelin, il-7 and ccl19
CN113896801B (en) Chimeric antigen receptor cell targeting human Claudin18.2 and NKG2DL, and preparation method and application thereof
KR20210013013A (en) Tumor treatment method and composition
CN111743923A (en) Therapeutic agents comprising isolated recombinant oncolytic adenoviruses and immune cells and uses thereof
WO2017071173A1 (en) Tumor therapeutic agent modified by il-12/cd62l fusion protein and preparation method and use thereof
JP6912765B1 (en) Cancer treatment method using artificial adjuvant cells (aAVC)
US20230330200A1 (en) Ny-eso-1-containing artificial adjuvant vector cell for use in treatment of cancer
CN111978412B (en) Armed targeting TGF-beta specific chimeric antigen receptor cell and preparation method and application thereof
JP2023506707A (en) Compositions, methods and uses thereof for reprogramming cells into antigen-presenting competent dendritic cell type 2
CN110229236B (en) CAR for inducing tumor cell to up-regulate antigen MUC1 expression and application thereof
WO2021206104A1 (en) pp65-CONTAINING ARTIFICIAL ADJUVANT VECTOR CELLS USED IN TREATMENT OF CANCER
JP5485139B2 (en) Method for producing transgenic cells
WO2017139199A1 (en) Inducible arginase
JP2023504075A (en) Method for obtaining CAR-NK cells
EP0904786B1 (en) Tumor vaccination by use of autologous or HLA-related antigen presenting cell (APC) transduced with a tumour antigen and a foreign antigen capable of causing an immune reaction
CN106947738B (en) New application of microRNA-4281
Liu TGF-beta and cancer development: The role of TGF-beta in converting CD4+ CD25-T cells into CD4+ CD25+ T regulatory cells and a TbetaRIIDN-tk/ganciclovir suicide system in cancer gene therapy