JP2023077504A - Supersonic flaw detection method - Google Patents

Supersonic flaw detection method Download PDF

Info

Publication number
JP2023077504A
JP2023077504A JP2021190789A JP2021190789A JP2023077504A JP 2023077504 A JP2023077504 A JP 2023077504A JP 2021190789 A JP2021190789 A JP 2021190789A JP 2021190789 A JP2021190789 A JP 2021190789A JP 2023077504 A JP2023077504 A JP 2023077504A
Authority
JP
Japan
Prior art keywords
flaw detection
probe
round bar
sound pressure
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021190789A
Other languages
Japanese (ja)
Inventor
和典 石谷
Kazunori Ishitani
光宏 伊藤
Mitsuhiro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2021190789A priority Critical patent/JP2023077504A/en
Publication of JP2023077504A publication Critical patent/JP2023077504A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a supersonic flaw detection method that can maintain high flaw detection sensitivity even when a small diameter bar material is misaligned.SOLUTION: A round bar material M has an outer diameter that fits within a region where sound pressure distribution of near sound field of a convergence ultrasonic probe 2 is maximal and sound pressure of a convergence sound field of the convergence ultrasonic probe 2 is above a specified value. The round bar material M is positioned within a region closer to the probe 2 concerned than a convergence point P of supersonic Us emitted from the convergence ultrasonic probe 2; and flaw detection of the round bar material M is performed.SELECTED DRAWING: Figure 5

Description

本発明は超音波探傷方法に関し、特に小径棒材の探傷に適した超音波探傷方法に関するものである。 TECHNICAL FIELD The present invention relates to an ultrasonic flaw detection method, and more particularly to an ultrasonic flaw detection method suitable for flaw detection of small-diameter bars.

水浸法による丸棒材の探傷をインラインで行う場合には例えば図1に示すような探傷設備が使用される。図1において、回転する円柱状の筐体1内には水が満たされており、筐体1の両端壁11,12には中心に、パッキンで液密性を確保しつつ丸棒材Mを貫通通過させるガイド部13が設けられている。筐体1の中心部を貫通通過する丸棒材Mに対して、筐体1の周壁に設けられた超音波プローブ2が筐体1と一体に丸棒材Mの周囲を旋回してその探傷を行う。超音波プローブ2としては検出感度を向上させるために超音波を一点に集束させる集束プローブを使用することが多く、特許文献1に示すように、通常は丸棒材Mの中心に超音波を集束させるようにしている。 In the case of in-line flaw detection of round bars by the water immersion method, for example, flaw detection equipment as shown in FIG. 1 is used. In FIG. 1, a rotating columnar housing 1 is filled with water, and a round bar M is placed at the center of both end walls 11 and 12 of the housing 1 while ensuring liquid tightness with packing. A guide portion 13 is provided for passing through. An ultrasonic probe 2 provided on the peripheral wall of the housing 1 rotates around the round bar M passing through the central part of the housing 1 to detect flaws thereof. I do. As the ultrasonic probe 2, a focusing probe that focuses ultrasonic waves to one point is often used in order to improve detection sensitivity. I am trying to let

特開2010-133856JP 2010-133856

ところで、筐体1に設けたガイド部13は丸棒材Mの径のばらつき等に対応するためにその内径に余裕を持たせてあり、小径の丸棒材Mはガイド部13を通過する際に比較的自由に変位して位置ずれを生じる。小径の丸棒材Mは曲率が大きいために、図2に示すように、わずかに位置ずれdを生じても超音波プローブ2から発せられた超音波Usが大きく屈折し(屈折角θ)その経路が大きく変化して探傷領域から外れ、探傷感度が大きく低下するという問題があった。これを図3に示し、直径50mmの丸棒材Mでは位置ずれを生じても探傷感度はそれほど低下しないが、直径6mm(以下、φ6mmのように記す)の丸棒材Mでは少しの位置ずれによっても探傷感度が大きく低下する。 By the way, the guide portion 13 provided in the housing 1 has a margin in its inner diameter in order to cope with variations in the diameter of the round bar M. relatively freely displaced, resulting in positional deviation. Since the small-diameter round bar M has a large curvature, as shown in FIG. 2, even if there is a slight displacement d, the ultrasonic wave Us emitted from the ultrasonic probe 2 is greatly refracted (refractive angle θ). There was a problem that the path changed greatly and deviated from the flaw detection area, and the flaw detection sensitivity greatly decreased. This is shown in FIG. 3, where a round bar M with a diameter of 50 mm does not have a significant drop in flaw detection sensitivity even if it is misaligned, but a round bar M with a diameter of 6 mm (hereinafter referred to as φ6 mm) has a slight misalignment. Also, the flaw detection sensitivity is greatly reduced.

そこで、本発明はこのような課題を解決するもので、小径の棒材が位置ずれを生じた場合にも探傷感度を高く維持することが可能な超音波探傷方法を提供することを目的とする。 Therefore, the present invention is intended to solve such problems, and an object of the present invention is to provide an ultrasonic flaw detection method capable of maintaining high flaw detection sensitivity even when a small-diameter bar is displaced. .

上記目的を達成するために本発明の超音波探傷方法では、集束超音波プローブ(2)から出力される超音波(Us)の集束点(P)よりも当該プローブ(2)に近い領域内で、前記集束超音波プローブ(2)の近距離音場の音圧分布が極大でかつ前記集束超音波プローブ(2)の集束音場の音圧が所定以上の領域内に収まる外径の棒材(M)を位置させて当該棒材(M)の探傷を行う。棒材(M)としては丸棒材が好適であるが、これに限定されず、角棒材でも良い。 In order to achieve the above object, in the ultrasonic flaw detection method of the present invention, in a region closer to the probe (2) than the focal point (P) of the ultrasonic waves (Us) output from the focused ultrasonic probe (2) , a bar having an outer diameter in which the sound pressure distribution of the near-field sound field of the focused ultrasonic probe (2) is maximal and the sound pressure of the focused sound field of the focused ultrasonic probe (2) falls within a region equal to or greater than a predetermined range. (M) is positioned and flaw detection is performed on the bar (M). A round bar is suitable as the bar (M), but it is not limited to this, and a square bar may be used.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。 The symbols in parentheses above refer to the corresponding relationship with specific means described in the embodiments described later.

本発明の超音波探傷方法によれば、小径の棒材が位置ずれを生じた場合にも探傷感度を高く維持することができる。 According to the ultrasonic flaw detection method of the present invention, it is possible to maintain high flaw detection sensitivity even when a small-diameter bar is displaced.

探傷設備の全体斜視図である。1 is an overall perspective view of a flaw detection equipment; FIG. 探傷設備の横断面図である。It is a cross-sectional view of flaw detection equipment. 径の異なる丸棒体の位置ずれに伴う感度低下を示す図である。It is a figure which shows the sensitivity fall accompanying the position shift of the round-bar body from which diameters differ. 超音波プローブの集束音場の、異なる軸方向位置での音圧の拡がりを示す図である。FIG. 4 illustrates the spread of sound pressure at different axial positions of the focused sound field of an ultrasound probe; 超音波プローブと丸棒材の位置関係を示す図である。It is a figure which shows the positional relationship of an ultrasonic probe and a round bar material. 超音波プローブの近距離音場の軸方向における振幅分布を示す図である。FIG. 4 is a diagram showing the amplitude distribution in the axial direction of the near-field sound field of the ultrasonic probe; 超音波プローブの集束音場の軸方向における振幅分布を示す図である。FIG. 4 is a diagram showing the amplitude distribution in the axial direction of the focused sound field of the ultrasonic probe; 超音波プローブと丸棒材の位置関係の一例を従来方法との比較で示す図である。It is a figure which shows an example of the positional relationship of an ultrasonic probe and a round-bar material by comparison with a conventional method. 同一丸棒材の位置ずれに対する探傷感度の変化の一例を、従来方法との比較で示す図である。FIG. 5 is a diagram showing an example of change in flaw detection sensitivity with respect to positional deviation of the same round bar, in comparison with a conventional method. 丸棒材中のきずの深さ位置を示す図である。It is a figure which shows the depth position of the crack in a round-bar material. 丸棒材のきずの深さ位置に対する探傷感度の変化の一例を示す図である。FIG. 5 is a diagram showing an example of change in flaw detection sensitivity with respect to the depth position of flaws in a round bar.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。 The embodiments described below are merely examples, and various design improvements made by those skilled in the art are also included in the scope of the present invention without departing from the gist of the present invention.

本実施形態における探傷設備はすでに説明した図1に示すものと同一で、集束超音波プロ―ブ(以下、単にプローブという)は本実施形態では平面視で円形のものを使用している。 The flaw detection equipment in this embodiment is the same as that shown in FIG. 1, and the focused ultrasonic probe (hereinafter simply referred to as probe) is circular in plan view in this embodiment.

プロ―ブ2の音圧分布は集束点(焦点)に向けて大きくなり、集束点付近で最大になるが、集束点付近の音圧分布は非常に狭くなる(図4の線A)。これが上述した、小径丸棒材Mが位置ずれを生じると屈折による超音波経路の変化によって探傷感度が大きく低下する原因である。一方、プローブ2の近傍位置では音圧分布は広くなるが十分な大きさの音圧が得られない(図4の線B)。これに対して、プローブ2と集束点の間の適当位置では、大きな音圧を維持しつつ音圧分布も十分に広く確保することができる(図4の線C)。 The sound pressure distribution of the probe 2 increases toward the focal point (focus) and reaches a maximum near the focal point, but the sound pressure distribution near the focal point becomes very narrow (line A in FIG. 4). This is the reason why, when the small-diameter round bar M is displaced, the ultrasonic wave path changes due to refraction, which greatly reduces the sensitivity of flaw detection. On the other hand, in the vicinity of the probe 2, although the sound pressure distribution becomes wider, a sufficient sound pressure cannot be obtained (line B in FIG. 4). On the other hand, at an appropriate position between the probe 2 and the focal point, it is possible to secure a sufficiently wide sound pressure distribution while maintaining a large sound pressure (line C in FIG. 4).

そこで、本実施形態では図5に示すように、プローブ2から出力される超音波Usの集束点Pよりも当該プローブ2に近い領域内に丸棒材Mを位置させる。図5中、xはプローブ2の発振面中心から丸棒材Mの外周面までの水距離、Dはプローブの径、fは発振超音波の周波数、Fは集束距離である。 Therefore, in this embodiment, as shown in FIG. 5, the round bar M is positioned in a region closer to the probe 2 than the focal point P of the ultrasonic waves Us output from the probe 2 . In FIG. 5, x is the water distance from the center of the oscillating surface of the probe 2 to the outer peripheral surface of the round bar M, D is the diameter of the probe, f is the frequency of the oscillating ultrasonic waves, and F is the focal distance.

ここで、プローブ2の音場は下式(1)で表され、プローブ2に近い近距離音場とプローブ2から遠い遠距離音場で構成される。式中、A(x)は水距離xにおける振幅(プローブ2の直前における平均的な音圧に対する音圧比)、Cは水中での超音波の音速、λは水中での超音波の波長でC/fで算出され、f、Dは上述したものである。 Here, the sound field of the probe 2 is represented by the following equation (1) and is composed of a near-field sound field close to the probe 2 and a far-field sound field far from the probe 2 . In the formula, A(x) is the amplitude at water distance x (ratio of sound pressure to the average sound pressure immediately before probe 2), C is the speed of ultrasonic waves in water, and λ is the wavelength of ultrasonic waves in water. /f, where f and D are as described above.

Figure 2023077504000002
Figure 2023077504000002

ところで、特に小径の丸棒材の探傷では、距離分解能を確保するために周波数を高くし、また音圧を確保するために振動子を大きくすることから、上述のように丸棒材Mを集束点Pよりもプローブ2に近い領域内に位置させると、近距離音場内に位置させることになる場合が多い。そして、この近距離音場ではプローブ2の中心軸O(図5)上の音圧変化は所定間隔で極大となることを繰り返すものとなっている By the way, especially in the flaw detection of a small-diameter round bar, the frequency is increased in order to secure the distance resolution, and the vibrator is increased in order to secure the sound pressure. Positioning it in a region closer to the probe 2 than the point P often results in positioning it in the near field. In this short-distance sound field, the change in sound pressure on the center axis O (FIG. 5) of the probe 2 repeatedly becomes maximum at predetermined intervals.

図6には、超音波の周波数fを15MHz、プローブ径Dを12mm、集束距離Fを100mmとした時の近距離音場の音圧変化を示す。図6より明らかなように、近距離音場では音圧変化が所定間隔で極大となることを繰り返すものとなっているが、このうち水距離40mm、50mm、70mm、118mm付近の極大領域では、φ6mmの小径丸棒材であれば、振幅0.8以上を確保できる領域内に丸棒材全体を収めることができることになる。 FIG. 6 shows changes in sound pressure in the near-field sound field when the frequency f of ultrasonic waves is 15 MHz, the probe diameter D is 12 mm, and the focal distance F is 100 mm. As is clear from FIG. 6, in the near-field sound field, the sound pressure change repeatedly reaches its maximum at predetermined intervals. In the case of a small-diameter round bar of φ6 mm, the entire round bar can be accommodated within a region where an amplitude of 0.8 or more can be secured.

一方、集束音場を考えると、プローブの中心軸上の音圧変化は下式(2)で与えられる。式中、A(x)、x、λ、f、D、F、Cは上述したものであり、Jは集束係数である。 On the other hand, considering a focused sound field, the change in sound pressure on the center axis of the probe is given by the following equation (2). where A(x), x, λ, f, D, F, C are as described above and J is the focusing factor.

Figure 2023077504000003
Figure 2023077504000003

図7には、超音波Usの周波数fを15MHz、プローブ径Dを12mm、集束距離を100mmとした時の収束音場の音圧変化を示す。なお、図7中、水距離65mm以下は実際には振幅0ではなく上式(2)では計算不能な領域である。したがって、丸棒材Mは水距離65mm以上に位置させる必要がある。一方、超音波Usの集束点Pがある水距離100mm 近くでは振幅A(x)は大きくなるものの、既述のように集束点P付近の音圧分布は非常に狭くなるから、結局、丸棒材Mを位置させる水距離xは70mmに設定するのが良い。 FIG. 7 shows the sound pressure change in the focused sound field when the frequency f of the ultrasonic wave Us is 15 MHz, the probe diameter D is 12 mm, and the focusing distance is 100 mm. In addition, in FIG. 7, the water distance of 65 mm or less is actually not an amplitude of 0, but a region that cannot be calculated by the above equation (2). Therefore, the round bar M must be positioned at a water distance of 65 mm or more. On the other hand, although the amplitude A(x) becomes large near the water distance of 100 mm where the focal point P of the ultrasonic wave Us is, the sound pressure distribution near the focal point P becomes very narrow as described above. The water distance x for positioning the material M is preferably set to 70 mm.

このような本実施形態における効果を確認するために、中心にφ0.4mmの横穴(SDH)を疑似きずDfとして形成したφ6mmの丸棒材Mに対して、図8(1)に示すように丸棒材Mの中心にプローブ2から出力される超音波Usを集束させた従来の方法と、図8(2)に示すように丸棒材Mの後方に超音波Usを集束させて、プローブ2から出力される超音波Usの集束点Pよりも当該プローブ2に近い水距離70mmの振幅極大領域内に丸棒材Mを位置させた本実施形態の方法につき、丸棒材Mの位置ずれに対する探傷感度の変化を比較した。これを図9に示す。なお、図8中、MDは丸棒材Mの直径である。 In order to confirm the effect of the present embodiment, as shown in FIG. A conventional method of focusing the ultrasonic wave Us output from the probe 2 at the center of the round bar M, and a method of focusing the ultrasonic wave Us behind the round bar M as shown in FIG. With respect to the method of the present embodiment in which the round bar M is positioned within the maximum amplitude region with a water distance of 70 mm closer to the probe 2 than the focal point P of the ultrasonic wave Us output from the probe 2, the positional deviation of the round bar M We compared the change in flaw detection sensitivity for This is shown in FIG. In addition, in FIG. 8, MD is the diameter of the round bar M. As shown in FIG.

図9より明らかなように、従来方法では丸棒材Mの位置ずれが生じると探傷感度が大きく低下するのに対して、本実施形態の方法では丸棒材Mの位置ずれを生じても探傷感度は十分高く維持される。さらに、丸棒材M中のきずの深さが図10に示すように中心aからb、cと1mmずつ深くなっても、図11に示すように探傷感度は十分高く維持される。なお、図11の線a、b、cは図10中の各きず位置a、b、cに対応している。これは図6に示した水距離70mmの振幅極大領域内に丸棒材Mが収まっていることによって、いずれの深さのきずも十分な感度で検出されるからである。 As is clear from FIG. 9, in the conventional method, if the round bar M is displaced, the sensitivity of flaw detection drops significantly. Sensitivity remains sufficiently high. Furthermore, even if the depth of the flaw in the round bar M increases by 1 mm from the center a to b and c as shown in FIG. 10, the flaw detection sensitivity is maintained sufficiently high as shown in FIG. Lines a, b, and c in FIG. 11 correspond to flaw positions a, b, and c in FIG. This is because flaws of any depth can be detected with sufficient sensitivity because the round bar M is contained within the maximum amplitude region of the water distance of 70 mm shown in FIG.

なお、上記実施形態ではきず検出対象を丸棒材したが、本発明方法は角棒材にも適用可能である。また、プローブとしては平面視で棒材長手方向へ延びる長方形のものを使用できる。さらに、プローブを旋回させるのに代えて、プローブを周方向へ所定間隔で複数設置しても良い。 In the above embodiment, a round bar is used as a flaw detection target, but the method of the present invention can also be applied to a square bar. Also, as the probe, a rectangular probe extending in the longitudinal direction of the bar in plan view can be used. Furthermore, instead of rotating the probes, a plurality of probes may be installed at predetermined intervals in the circumferential direction.

1…筐体、2…集束超音波プローブ、M…丸棒材、P…集束点、Us…超音波。 1 -- housing, 2 -- focused ultrasonic probe, M -- round bar, P -- focal point, Us -- ultrasonic wave.

Claims (2)

集束超音波プローブから出力される超音波の集束点よりも当該プローブに近い領域内で、前記集束超音波プローブの近距離音場の音圧分布が極大でかつ前記集束超音波プローブの集束音場の音圧が所定以上の領域内に収まる外径の棒材を位置させて当該棒材の探傷を行う超音波探傷方法。 In a region closer to the probe than the focal point of the ultrasonic waves output from the focused ultrasound probe, the sound pressure distribution of the near-field sound field of the focused ultrasound probe is maximum and the focused sound field of the focused ultrasound probe. An ultrasonic flaw detection method in which a rod having an outer diameter that falls within a region where the sound pressure of (1) is greater than or equal to a predetermined value is positioned and flaw detection is performed on the rod. 前記棒材は丸棒材である請求項1に記載の超音波探傷方法。 2. The ultrasonic flaw detection method according to claim 1, wherein the bar is a round bar.
JP2021190789A 2021-11-25 2021-11-25 Supersonic flaw detection method Pending JP2023077504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021190789A JP2023077504A (en) 2021-11-25 2021-11-25 Supersonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021190789A JP2023077504A (en) 2021-11-25 2021-11-25 Supersonic flaw detection method

Publications (1)

Publication Number Publication Date
JP2023077504A true JP2023077504A (en) 2023-06-06

Family

ID=86622417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021190789A Pending JP2023077504A (en) 2021-11-25 2021-11-25 Supersonic flaw detection method

Country Status (1)

Country Link
JP (1) JP2023077504A (en)

Similar Documents

Publication Publication Date Title
CN101855572B (en) Comprise the insonify device being designed to produce the transmitter three-dimensional network of high-strength focused wave beam arranged with helix
JP2006064698A (en) Phased array ultrasonic water wedge device
JP5420525B2 (en) Apparatus and method for ultrasonic inspection of small diameter tube
JP2014185895A (en) Ultrasonic flaw detection probe and ultrasonic flaw detection method
JP4955359B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
WO2019008833A1 (en) Phased-array flaw-detection device and method
JP2023077504A (en) Supersonic flaw detection method
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
KR20160136493A (en) An ultrasonic transmitter having piezoelectric element capable of transverse prevention and ultrasonic cleaning device including the same
US11576653B2 (en) Ultrasonic generator
WO2021039640A1 (en) Ultrasonic inspection device and ultrasonic inspection method
JP5810873B2 (en) Ultrasonic flaw detection method
JP6081028B1 (en) Ultrasonic measuring device
JP6973713B2 (en) Scratch detector
CN114113345A (en) Direction-controllable line-focusing oblique-incidence SV wave electromagnetic ultrasonic transducer
JP2011247676A (en) Ultrasonic flaw detection device
JP5428249B2 (en) Apparatus for measuring the thickness of a tubular body, method thereof, and method of manufacturing a tubular body
JP5886780B2 (en) Sheet wave inspection method and apparatus
KR100931718B1 (en) Ultrasonic Device for Inner Thickness Measurement
US11835485B2 (en) Ultrasonic probe having flexible stabilizing element for probe alignment
JP2022150387A (en) Ultrasonic probe and ultrasonic flaw detector
JP7136725B2 (en) ultrasonic inspection equipment
Guo et al. Ultrasonic phased array on the inner surface of circular stage for detecting the circumferential flaw in a pipe
JP2022159212A (en) Liquid immersion probe, flaw detection device and flaw detection method
CN116341133A (en) Ultrasonic phased array sensor design method for gas-liquid two-phase flow holdup measurement