JP2023075809A - Flow rate control system and combustion control system including the same - Google Patents

Flow rate control system and combustion control system including the same Download PDF

Info

Publication number
JP2023075809A
JP2023075809A JP2021188947A JP2021188947A JP2023075809A JP 2023075809 A JP2023075809 A JP 2023075809A JP 2021188947 A JP2021188947 A JP 2021188947A JP 2021188947 A JP2021188947 A JP 2021188947A JP 2023075809 A JP2023075809 A JP 2023075809A
Authority
JP
Japan
Prior art keywords
fuel
flow rate
pressure
pipe
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021188947A
Other languages
Japanese (ja)
Inventor
俊久 志賀
Toshihisa Shiga
一眞 清飛羅
Kazuma Kiyohira
等 大堀
Hitoshi Ohori
智博 井上
Tomohiro Inoue
仁司 井上
Hitoshi Inoue
哲 南
Tetsu Nan
暁之 北村
Akiyuki Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2021188947A priority Critical patent/JP2023075809A/en
Publication of JP2023075809A publication Critical patent/JP2023075809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

To safely save manpower through automation of various types of adjustment, such as a flow rate of fuel gas, while improving economic efficiency by maintaining a simple configuration without providing a flow meter.SOLUTION: By operating a blower B, combustion gas A is caused to flow in on-site fuel piping H1 via on-site connection piping H3. While a fuel flow control valve RVg is maintained at a predetermined initial set opening and pressure at a primary side inlet is maintained at predetermined fuel flow rate control pressure by using the blower B, pressure at a secondary side outlet is set to be predetermined initial set secondary pressure by using a secondary side fuel pressure adjustment mechanism GV. Then, while fuel piping on-off valves SV1, SV2 are opened and a connection piping on-off valve SV3 is closed, the opening of the fuel flow control valve RVg is controlled on the basis of opening fuel flow rate relation stored in a storage section S3 to control a flow rate of fuel gas G to a target flow rate.SELECTED DRAWING: Figure 1

Description

本発明は、燃料ガスを含む制御対象気体の流量を制御する流量制御システム及びそれを備えた燃焼制御システムに関する。 The present invention relates to a flow rate control system for controlling the flow rate of gas to be controlled, including fuel gas, and a combustion control system having the same.

従来、工業炉等に用いられる燃焼制御システムとして、均圧弁方式のものが知られている(特許文献1を参照)。当該均圧弁方式の燃焼制御システムは、例えば、バーナに連接されて都市ガス13A等の燃料ガスを通流する燃料配管と、同じくバーナに連接されて燃焼用空気を通流する空気配管と、工業炉の温度に基づいてバーナの出力を制御する温調計と、当該温調計からの信号に基づいて空気配管を通流する空気の流量を制御するコントロールモータとリンケージにより接続されて開閉制御される制御弁と、空気配管の制御弁の二次側の空気圧に対応する形態で燃料配管の開度を制御する均圧弁と、空気配管に燃焼用空気を圧送するブロアとを備えて構成される。
当該均圧弁方式の燃焼制御システムでは、コントロールモータ及び制御弁のリンケージは、熟練者により手動で調整されると共に、調整は1点合わせで空気比変更等をするには、再度、熟練者の手動調整が必要となる。これは、ダブルリンケージ方式の燃焼制御システムも同様である。
他の構成として、電子リンケージ方式の燃焼制御システムが知られており、当該電子リンケージ方式では、例えば、バーナに連接されて都市ガス13A等の燃料ガスを通流する燃料配管と、同じくバーナに連接されて燃焼用空気を通流する空気配管と、工業炉の温度に基づいてバーナの出力を制御する温調計と、当該温調計からの信号を受ける制御部と、燃料配管を通流する燃料ガス流量及び空気配管を通流する空気流量を計測して制御部に送信する電子流量計と、制御部からの信号に基づいて、燃料配管を通流する燃料ガスの流量を制御する燃料流量制御弁、及び空気配管を通流する空気の流量を制御する空気流量制御弁を備えて構成されている。
当該電子リンケージ方式では、電子流量計による燃料ガスや燃焼用空気の流量、及びそれに基づく空気比を監視しており、制御部での設定により当該空気比の変更も可能である。
2. Description of the Related Art Conventionally, as a combustion control system used in an industrial furnace or the like, a pressure equalizing valve system is known (see Patent Document 1). The pressure equalizing valve type combustion control system includes, for example, a fuel pipe connected to the burner and passing fuel gas such as city gas 13A, an air pipe connected to the burner and passing combustion air, and an industrial A temperature controller that controls the output of the burner based on the temperature of the furnace, and a control motor that controls the flow rate of air flowing through the air pipe based on the signal from the temperature controller. a control valve, a pressure equalizing valve that controls the opening of the fuel pipe in a manner corresponding to the air pressure on the secondary side of the control valve of the air pipe, and a blower that feeds combustion air to the air pipe. .
In the pressure equalizing valve type combustion control system, the linkage between the control motor and the control valve is manually adjusted by an expert. Adjustment is required. This also applies to the double linkage type combustion control system.
As another configuration, an electronic linkage type combustion control system is known. In the electronic linkage type, for example, a fuel pipe that is connected to a burner and allows a fuel gas such as city gas 13A to flow, and a fuel pipe that is also connected to the burner. a temperature controller that controls the output of the burner based on the temperature of the industrial furnace; a controller that receives a signal from the temperature controller; and a fuel pipe. An electronic flow meter that measures the flow rate of fuel gas and air flowing through the air pipe and transmits it to the control unit, and the fuel flow rate that controls the flow rate of the fuel gas flowing through the fuel pipe based on the signal from the control unit. It comprises a control valve and an air flow rate control valve for controlling the flow rate of air flowing through the air pipe.
In the electronic linkage system, the flow rate of fuel gas and combustion air is monitored by an electronic flow meter, and the air ratio based thereon is monitored, and the air ratio can be changed by setting in the control section.

特開平10-47654号公報JP-A-10-47654

上述した均圧弁方式の燃焼制御システムでは、例えば、燃料ガスの流量が、何らかの理由により目標値から外れた場合であっても、使用者はそれに気づくことができず、炉内温度を設定値に維持することができなくなる虞がある。
また、出力等の調整に熟練者の手動調整が必要になるため、省人化による効率化を図ることが難しいといった問題もある。
また、燃料ガスの流量等を調整するにあたり、比較的高価な電子流量計を設ける必要があり、経済性の観点から問題がある。
In the above-described pressure equalizing valve type combustion control system, for example, even if the flow rate of the fuel gas deviates from the target value for some reason, the user cannot notice it, and the furnace temperature is adjusted to the set value. There is a risk that it will not be possible to maintain
In addition, since manual adjustment by a skilled person is required to adjust the output, etc., there is also a problem that it is difficult to improve efficiency by saving manpower.
In addition, in order to adjust the flow rate of the fuel gas, etc., it is necessary to provide a relatively expensive electronic flow meter, which is a problem from the viewpoint of economy.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、流量計を設けることのない簡易な構成を維持して経済性を向上しつつ、調整等における意図しない燃焼等の発生を防止できると共に、燃料ガスの流量等の各種調整の自動化による省人化を安全に実現できる流体の流量制御システム、及びそれを備えた燃焼制御システムを提供することにある。 The present invention has been made in view of the above-mentioned problems, and its object is to maintain a simple configuration without a flow meter to improve economic efficiency, and to prevent unintended combustion during adjustment, etc. It is an object of the present invention to provide a fluid flow rate control system and a combustion control system equipped with the same, which can prevent this and can safely realize labor saving by automating various adjustments such as the flow rate of fuel gas.

上記目的を達成するための流量制御システムは、燃料ガスを含む制御対象気体の流量を制御する流量制御システムであって、その特徴構成は、
前記制御対象気体としての前記燃料ガスが通流する現場燃料配管に設けられ、流量制御部の制御指令により開度を制御する燃料流量制御弁と、
前記現場燃料配管で前記燃料流量制御弁の出口に設けられ前記燃料流量制御弁の二次側出口に設けられる第2燃料圧力計の計測結果に基づいて前記二次側出口の圧力を調整可能な二次側燃料圧力調整機構と、
前記現場燃料配管で前記燃料流量制御弁の一次側入口に設けられ、第1燃料圧力計の計測結果に基づいて前記一次側入口の圧力を調整可能な一次側燃料圧力調整機構と、
前記現場燃料配管の一次側の最上流部位に設けられ、前記現場燃料配管を開閉する燃料配管開閉弁と、
前記燃料ガスの酸化剤としての燃焼用気体を通流する現場燃焼用気体配管に設けられ、当該現場燃焼用気体配管に前記燃焼用気体を圧送するブロアと、当該ブロアの下流側で前記現場燃焼用気体配管を開閉可能な燃焼用気体配管開閉弁と、
前記現場燃料配管の前記燃料流量制御弁の一次側且つ前記燃料配管開閉弁の二次側と前記現場燃焼用気体配管の前記燃焼用気体配管開閉弁の一次側且つ前記ブロアの二次側とを接続する現場接続配管に設けられ、当該現場接続配管を開閉する接続配管開閉弁とを備えた現場設備において、
前記現場燃料配管に替えて前記現場燃料配管と同一径の試験燃料配管と、前記現場燃焼用気体配管に替えて前記現場燃焼用気体配管と同一径の試験燃焼用気体配管と、前記現場接続配管に替えて前記現場接続配管と同一径の試験接続配管との夫々に、前記現場設備に設けられる構成を備えると共に、前記試験燃料配管を通流する流体の流量を計測する燃料流量計を備えた試験設備において、前記二次側燃料圧力調整機構と前記一次側燃料圧力調整機構とにより圧力を制御する圧力制御部及び前記流量制御部が、前記燃焼用気体配管開閉弁及び前記燃料配管開閉弁を閉止状態とし前記接続配管開閉弁を開放状態とすると共に、前記ブロアを働かせて前記燃焼用気体を前記試験接続配管を介して前記試験燃料配管に通流させて、前記燃料流量制御弁を所定の初期設定開度に維持し前記一次側燃料圧力調整機構にて前記一次側入口の圧力を所定の燃料流量制御圧力に維持している状態で、前記二次側燃料圧力調整機構にて前記二次側出口の圧力を所定の初期設定二次圧に設定した後に、前記燃料流量制御弁の開度と前記燃料流量計にて計測される流量との開度燃料流量関係を記憶する記憶部を備え、
前記現場設備で、前記圧力制御部と前記流量制御部が、前記燃焼用気体配管開閉弁及び前記燃料配管開閉弁を閉止状態とし前記接続配管開閉弁を開放状態とすると共に、前記ブロアを働かせて前記燃焼用気体を前記現場接続配管を介して前記現場燃料配管に通流させて、前記燃料流量制御弁を所定の初期設定開度に維持し、前記一次側燃料圧力調整機構にて前記一次側入口の圧力を所定の燃料流量制御圧力に維持した状態で、前記二次側燃料圧力調整機構にて前記二次側出口の圧力を所定の初期設定二次圧に設定した後に、前記燃料配管開閉弁を開放状態として前記接続配管開閉弁を閉止状態としている状態で、前記記憶部に記憶された前記開度燃料流量関係に基づいて、前記燃料流量制御弁の開度を制御して前記燃料ガスの流量を目標流量に制御する点にある。
A flow rate control system for achieving the above object is a flow rate control system for controlling the flow rate of a gas to be controlled including a fuel gas, and is characterized by:
A fuel flow control valve provided in the on-site fuel pipe through which the fuel gas as the control target gas flows, and controlling the opening degree according to a control command from a flow control unit;
The pressure of the secondary side outlet can be adjusted based on the measurement result of a second fuel pressure gauge provided at the outlet of the fuel flow control valve in the on-site fuel piping and provided at the secondary side outlet of the fuel flow control valve. a secondary side fuel pressure adjustment mechanism;
A primary side fuel pressure adjustment mechanism provided at the primary side inlet of the fuel flow control valve in the field fuel pipe and capable of adjusting the pressure at the primary side inlet based on the measurement result of a first fuel pressure gauge;
A fuel pipe on-off valve provided at the most upstream portion of the primary side of the on-site fuel pipe and opening and closing the on-site fuel pipe;
a blower provided in an on-site combustion gas pipe for flowing a combustion gas as an oxidant of the fuel gas, for pumping the combustion gas to the on-site combustion gas pipe; and the on-site combustion on the downstream side of the blower. a combustion gas pipe open/close valve capable of opening and closing the gas pipe for combustion;
The primary side of the fuel flow control valve of the on-site fuel pipe and the secondary side of the fuel pipe on-off valve and the primary side of the combustion gas pipe on-off valve of the on-site combustion gas pipe and the secondary side of the blower In a field facility equipped with a connection pipe opening/closing valve that is provided in a connected field connection pipe and that opens and closes the field connection pipe,
A test fuel pipe having the same diameter as the on-site fuel pipe instead of the on-site fuel pipe, a test combustion gas pipe having the same diameter as the on-site combustion gas pipe instead of the on-site combustion gas pipe, and the on-site connection pipe Instead, each of the field connection pipe and the test connection pipe of the same diameter is provided with a configuration provided in the field equipment, and a fuel flow meter for measuring the flow rate of the fluid flowing through the test fuel pipe. In the test facility, the pressure control unit and the flow control unit that control pressure by the secondary side fuel pressure adjustment mechanism and the primary side fuel pressure adjustment mechanism operate the combustion gas pipe on-off valve and the fuel pipe on-off valve. The connection pipe opening/closing valve is closed and the connection pipe opening/closing valve is opened. In a state where the initial set opening is maintained and the pressure at the primary side inlet is maintained at a predetermined fuel flow rate control pressure by the primary side fuel pressure adjustment mechanism, the secondary side fuel pressure adjustment mechanism is operated to After setting the pressure of the side outlet to a predetermined initial setting secondary pressure, a storage unit for storing the opening degree fuel flow rate relationship between the opening degree of the fuel flow control valve and the flow rate measured by the fuel flow meter ,
In the field equipment, the pressure control unit and the flow control unit close the combustion gas pipe opening/closing valve and the fuel pipe opening/closing valve, open the connection pipe opening/closing valve, and operate the blower. The combustion gas is caused to flow through the on-site fuel pipe through the on-site connection pipe, the fuel flow rate control valve is maintained at a predetermined initial set opening, and the primary side fuel pressure adjustment mechanism controls the primary side With the inlet pressure maintained at a predetermined fuel flow rate control pressure, the secondary side fuel pressure adjustment mechanism sets the pressure at the secondary side outlet to a predetermined initial set secondary pressure, and then opens and closes the fuel pipe. In a state in which the valve is in an open state and the connection pipe opening/closing valve is in a closed state, the fuel gas is controlled by controlling the opening degree of the fuel flow control valve based on the opening degree fuel flow rate relationship stored in the storage unit. The point is that the flow rate of is controlled to the target flow rate.

上記特徴構成では、現場設備の配管と同一径の配管を有する試験設備を用いて、燃料流量制御弁の一次側の圧力を一次側燃料圧力調整機構により一定の圧力に維持可能に構成し、且つ燃料流量制御弁の二次側の圧力を二次側燃料圧力調整機構により所定の圧力に調整可能に構成している。
これにより、試験設備及び現場設備の何れにおいても、燃料流量制御弁の二次側の圧力を、現場設備及び試験設備の二次側の圧損によらず一定に調整でき、且つ試験設備及び現場設備の双方において燃料流量制御弁の開度と燃料流量との関係を、同一の関係に維持できる。
結果、試験設備において、得られる燃料流量制御弁の開度と試験燃料配管を通流する流量との開度燃料流量関係は、現場設備において、そのまま利用することができる。
つまり、試験設備にて取得した開度燃料流量関係は、燃料流量制御弁の二次側の圧損が異なる種々の現場設備においても、共通で利用できるから、現場設備においては、比較的高価な電子流量計を設けることなく、既知の開度燃料流量関係に基づいて、燃料流量制御弁の開度を制御することで、現場配管を通流する燃料の流量を所望の流量に制御できる。
更に、当該制御には、熟練者の手動調整が不要であるため、省人化による効率化も図ることができる。
特に、上記特徴構成では、燃料ガスに係る開度燃料流量関係の取得等にあたり、燃料ガスを用いずに燃焼用気体を用いるため、燃料ガスを通流する場合に比べ、安全性を向上できる。また、現場設備において燃料流量制御弁の一次圧及び二次圧を初期設定する際にも、燃料ガスではなく燃焼用気体を用いて行うことができるから、燃料ガスを用いる場合に比べ、安全性を向上できる。
以上より、流量計を設けることのない簡易な構成を維持して経済性を向上しつつ、調整等における意図しない燃焼等の発生を防止できると共に、燃料ガスの流量等の各種調整の自動化による省人化を実現できる流体の流量制御システムが実現できる。
In the above characteristic configuration, the pressure on the primary side of the fuel flow control valve can be maintained at a constant pressure by the primary side fuel pressure adjustment mechanism using a test facility having a pipe of the same diameter as the pipe of the field equipment, and The pressure on the secondary side of the fuel flow control valve can be adjusted to a predetermined pressure by the secondary side fuel pressure adjusting mechanism.
As a result, in both the test equipment and the field equipment, the pressure on the secondary side of the fuel flow control valve can be adjusted to be constant regardless of the pressure loss on the secondary side of the field equipment and the test equipment, and the test equipment and the field equipment In both cases, the relationship between the degree of opening of the fuel flow rate control valve and the fuel flow rate can be maintained at the same relationship.
As a result, the obtained opening degree fuel flow rate relationship between the opening degree of the fuel flow control valve and the flow rate through the test fuel pipe can be used as it is in the field equipment.
In other words, the opening degree fuel flow rate relationship obtained by the test facility can be used in common in various field facilities with different pressure losses on the secondary side of the fuel flow control valve. By controlling the opening degree of the fuel flow control valve based on the known opening degree-fuel flow rate relationship without providing a flow meter, the flow rate of the fuel flowing through the field piping can be controlled to a desired flow rate.
Furthermore, since the control does not require manual adjustment by a skilled person, it is possible to improve efficiency by saving manpower.
In particular, in the above-described characteristic configuration, the combustion gas is used instead of the fuel gas in acquiring the opening degree fuel flow rate relationship related to the fuel gas, so safety can be improved compared to the case where the fuel gas flows. In addition, when initializing the primary pressure and secondary pressure of the fuel flow control valve in the field equipment, it is possible to use the combustion gas instead of the fuel gas, so it is safer than the case of using the fuel gas. can be improved.
As described above, it is possible to prevent unintended combustion, etc. during adjustment, etc., while maintaining a simple configuration without a flow meter and improving economic efficiency. A humanized fluid flow control system can be realized.

流量制御システムの更なる特徴構成は、
前記現場接続配管には、前記現場燃料配管から前記現場燃焼用気体配管への前記燃料ガスの通流を阻止する第1逆止弁が設けられていると共に、
前記試験接続配管には、前記試験燃料配管から前記試験燃焼用気体配管への前記燃料ガスの通流を阻止する第2逆止弁が設けられている点にある。
A further feature configuration of the flow control system is:
The on-site connection pipe is provided with a first check valve that prevents the fuel gas from flowing from the on-site fuel pipe to the on-site combustion gas pipe,
The test connecting pipe is provided with a second check valve for blocking the flow of the fuel gas from the test fuel pipe to the test combustion gas pipe.

上記特徴構成の如く、現場接続配管に第1逆止弁を設けると共に、試験接続配管に前記第2逆止弁を設けることで、現場燃焼用気体配管及び試験燃焼用気体配管に、燃料ガスが混入することを防止できる。 By providing the first check valve in the field connection pipe and the second check valve in the test connection pipe as in the above characteristic configuration, the fuel gas is supplied to the field combustion gas pipe and the test combustion gas pipe. contamination can be prevented.

流量制御システムの更なる特徴構成は、
前記現場設備及び前記試験設備において、前記燃料配管開閉弁が開放状態にあるときに前記接続配管開閉弁の閉止状態を維持するインターロック機構が設けられている点にある。
A further feature configuration of the flow control system is:
The on-site equipment and the test equipment are provided with an interlock mechanism for maintaining the closed state of the connection pipe opening/closing valve when the fuel pipe opening/closing valve is in the open state.

上記特徴構成によれば、現場設備において、現場燃料配管に燃料ガスが通流しているときは、現場接続配管の閉止状態が維持されるから、現場燃料配管から現場燃焼用気体配管へ、燃料ガスが混入することを防止でき、現場燃焼用気体配管に逆火が生じる虞を回避できる。
また、試験設備においても、同様の作用効果を奏するものとなる。
According to the above characteristic configuration, in the on-site equipment, when the fuel gas is flowing through the on-site fuel pipe, the closed state of the on-site connection pipe is maintained. can be prevented from being mixed in, and the risk of flashback occurring in the on-site combustion gas piping can be avoided.
In addition, the same action and effect can be obtained in the test facility as well.

流量制御システムの更なる特徴構成は、
前記流量制御部は、前記燃料流量計にて計測された流量Qを、前記燃料ガスの比重をsとした以下の〔式1〕に示す換算式にて補正した補正後燃料流量Q'を用いて、前記開度燃料流量関係を導出する点にある。
Q'=Q/√s ・・・〔式1〕
A further feature configuration of the flow control system is:
The flow rate control unit uses a corrected fuel flow rate Q' obtained by correcting the flow rate Q measured by the fuel flow meter by the conversion formula shown in the following [Equation 1], where s is the specific gravity of the fuel gas. Then, the opening degree fuel flow rate relation is derived.
Q′=Q/√s [Formula 1]

上記特徴構成によれば、燃焼用気体を通流させることにより得られた仮の燃料流量Qをその比重を用いて適切に補正した補正後燃料流量Q’を用いて、補正後燃料流量Q’と燃料流量制御弁の開度との関係である開度燃料流量関係を導出できる。 According to the above characteristic configuration, the post-correction fuel flow rate Q' obtained by properly correcting the provisional fuel flow rate Q obtained by flowing the combustion gas using its specific gravity is used to obtain the post-correction fuel flow rate Q'. and the opening degree of the fuel flow rate control valve can be derived.

流量制御システムの更なる特徴構成は、
前記記憶部は、前記試験設備において、前記圧力制御部及び前記流量制御部が前記燃焼用気体配管開閉弁及び前記燃料配管開閉弁を閉止状態とし前記接続配管開閉弁を開放状態とする共に、前記ブロアを働かせて前記燃焼用気体を前記試験接続配管を介して前記試験燃料配管に通流させて、前記燃料流量制御弁を所定の初期設定開度に維持し前記一次側燃料圧力調整機構にて前記一次側入口の圧力を所定の燃料流量制御圧力に維持している状態で、前記二次側燃料圧力調整機構にて前記二次側出口の圧力を所定の初期設定二次圧に設定した後に、前記第2燃料圧力計にて計測される前記二次側出口の圧力と前記燃料流量計にて計測される流量との圧力燃料流量関係を記憶するものであり、
前記現場設備で、前記流量制御部が、前記燃料配管開閉弁を開放状態として前記接続配管開閉弁を閉止状態としている状態で、前記開度燃料流量関係にて前記燃料流量制御弁の開度を制御して前記燃料ガスの流量を前記目標流量へ制御しているときに、当該制御された前記燃料ガスの流量が、前記第2燃料圧力計にて計測される前記二次側出口の圧力と前記圧力燃料流量関係とから導出される流量と異なる場合に、流量制御異常と判定する異常判定部を備える点にある。
A further feature configuration of the flow control system is:
In the test facility, the storage unit causes the pressure control unit and the flow control unit to close the combustion gas pipe opening/closing valve and the fuel pipe opening/closing valve and to open the connection pipe opening/closing valve. A blower is operated to cause the combustion gas to flow through the test fuel pipe through the test connection pipe, and the fuel flow rate control valve is maintained at a predetermined initial set opening, and the primary side fuel pressure adjustment mechanism After setting the pressure of the secondary side outlet to a predetermined initial setting secondary pressure by the secondary side fuel pressure adjustment mechanism in a state where the pressure of the primary side inlet is maintained at a predetermined fuel flow rate control pressure, , which stores the pressure fuel flow rate relationship between the pressure at the secondary side outlet measured by the second fuel pressure gauge and the flow rate measured by the fuel flow meter,
In the on-site equipment, the flow rate control unit adjusts the opening degree of the fuel flow control valve according to the opening degree fuel flow rate relationship in a state where the fuel pipe opening and closing valve is in an open state and the connection pipe opening and closing valve is in a closed state. When the flow rate of the fuel gas is controlled to the target flow rate, the controlled flow rate of the fuel gas is the pressure at the secondary outlet measured by the second fuel pressure gauge. The present invention is provided with an abnormality determination unit that determines that the flow rate control is abnormal when the flow rate is different from the flow rate derived from the pressure-fuel-flow rate relationship.

上記特徴構成によれば、開度燃料流量関係により導出された流量と、燃料流量制御弁の二次側出口の圧力と圧力燃料流量関係とに基づいて導出される流量とが等しいか否かを監視することで、開度燃料流量関係により燃料流量制御弁を制御して得られた現場燃料配管を通流する燃料ガスの流量が適切な流量か否かを確認できる。
即ち、当該原理を用いて、異常判定部は、開度燃料流量関係にて燃料流量制御弁の開度を制御して燃料ガスの流量を目標流量へ制御しているときに、第2燃料圧力計にて計測される二次側出口の圧力と圧力燃料流量関係とから導出される流量が目標流量と異なる場合に、流量制御異常と判定することで、燃料ガスの流量の目標流量への制御の異常を良好に判定できる。
According to the above characteristic configuration, it is determined whether or not the flow rate derived from the opening degree fuel flow rate relationship is equal to the flow rate derived based on the pressure at the secondary outlet of the fuel flow rate control valve and the pressure fuel flow rate relationship. By monitoring, it is possible to confirm whether or not the flow rate of the fuel gas flowing through the on-site fuel pipe obtained by controlling the fuel flow control valve based on the opening degree fuel flow rate relationship is an appropriate flow rate.
That is, using this principle, the abnormality determination unit controls the opening degree of the fuel flow rate control valve in accordance with the opening degree fuel flow rate relationship to control the flow rate of the fuel gas to the target flow rate. If the flow rate derived from the pressure of the secondary outlet measured by the meter and the pressure fuel flow rate relationship is different from the target flow rate, it is determined that the flow control is abnormal, and the flow rate of the fuel gas is controlled to the target flow rate. Abnormality can be determined satisfactorily.

上記目的を達成するための燃焼制御システムは、上述の流量制御システムを備えると共に、前記流量制御システムにて流量制御され前記現場燃料配管を通流する前記燃料ガスと前記現場燃焼用気体配管を通流する前記燃焼用気体とが導かれるバーナを備えた燃焼制御システムであって、その特徴構成は、
前記現場設備において、前記流量制御部は、異なる種類の前記バーナに対し共通の前記開度燃料流量関係を用いて前記燃料ガスの流量を制御する点にある。
A combustion control system for achieving the above object is provided with the above-described flow rate control system, and the fuel gas whose flow rate is controlled by the flow rate control system and flows through the on-site fuel piping and the on-site combustion gas piping. A combustion control system comprising a burner through which the flowing combustion gas is directed, characterized by:
In the on-site equipment, the flow rate control unit controls the flow rate of the fuel gas using the common opening degree-fuel flow rate relationship for different types of burners.

上記特徴構成によれば、異なる圧損を有するバーナを現場設備で用いる場合であっても、二次側圧力調整機構にて燃料流量制御弁の二次側出口の圧力を一定に制御することで、異なるバーナの異なる圧損の影響を排除でき、異なるバーナに対し共通の開度燃料流量関係を用いて燃料ガスの流量制御を実行することができるから、現場設備で電子流量計を設けることのない簡易で経済性の高いシステムを構築できる。 According to the above characteristic configuration, even when burners having different pressure losses are used in the field equipment, the pressure at the secondary side outlet of the fuel flow control valve is controlled by the secondary side pressure adjustment mechanism to be constant. Since the effects of different pressure losses of different burners can be eliminated, and fuel gas flow rate control can be executed using a common opening degree fuel flow rate relationship for different burners, it is simple without installing an electronic flow meter in the field equipment. It is possible to build a highly economical system.

燃焼制御システムの更なる特徴構成は、上述の流量制御システムを備えると共に、前記流量制御システムにて流量制御され前記現場燃料配管を通流する前記燃料ガスと前記現場燃焼用気体配管を通流する前記燃焼用気体とが導かれるバーナを備えた燃焼制御システムであって、
前記現場設備において、前記異常判定部は、異なる種類の前記バーナに対し共通の前記圧力燃料流量関係を用いて前記流量制御異常の判定を実行する点にある。
A further characteristic configuration of the combustion control system includes the above-described flow control system, and the fuel gas whose flow rate is controlled by the flow control system and flows through the on-site fuel pipe and the on-site combustion gas pipe. A combustion control system comprising a burner through which the combustion gas is directed,
In the on-site equipment, the abnormality determination unit uses the pressure fuel flow rate relationship common to different types of burners to determine the flow rate control abnormality.

上記特徴構成によれば、異なる圧損を有するバーナを現場設備で用いる場合であっても、二次側圧力調整機構にて流量制御弁の二次側出口の圧力を一定に制御することで、異なるバーナの異なる圧損の影響を排除でき、異なる種類の前記バーナに対し共通の圧力燃料流量関係を用いて流量制御異常の判定を行うことができるから、現場設備で電子流量計を設けることのない簡易で経済性の高いシステムを構築できる。 According to the above characteristic configuration, even when burners having different pressure losses are used in the field equipment, the pressure at the secondary side outlet of the flow control valve is controlled by the secondary side pressure adjustment mechanism to be different. Since the influence of different pressure losses of the burners can be eliminated, and the common pressure fuel flow rate relationship can be used for different types of burners, flow control abnormality can be judged, so it is simple without installing an electronic flow meter in the field equipment. It is possible to build a highly economical system.

流量制御システムの更なる特徴構成は、
前記一次側燃料圧力調整機構として、前記燃焼用気体を圧送する前記ブロアを共用する点にある。
A further feature configuration of the flow control system is:
The point is that the blower for pumping the combustion gas is shared as the primary side fuel pressure adjusting mechanism.

上記特徴構成によれば、バーナへ燃焼用気体を圧送するためのブロアを、燃料ガスの流量制御のための一次側燃料圧力調整機構として共用できるから、一次側燃料圧力調整機構として専用の機器を設ける場合に比べて、構成の簡素化を図ることができる。 According to the above characteristic configuration, the blower for pressure-feeding the combustion gas to the burner can be used in common as the primary side fuel pressure adjustment mechanism for controlling the flow rate of the fuel gas. The configuration can be simplified as compared with the case where it is provided.

実施形態に係る燃焼制御システムの概略構成図である。1 is a schematic configuration diagram of a combustion control system according to an embodiment; FIG. 実施形態に係る試験設備を示す概略構成図である。It is a schematic block diagram which shows the test equipment which concerns on embodiment. 燃焼用空気での開度空気流量関係を示すグラフ図である。It is a graph chart which shows the opening air flow rate relationship in combustion air. 燃焼用空気での圧力空気流量関係を示すグラフ図である。It is a graph chart which shows the pressure air flow rate relationship in combustion air. バーナのヘッド圧と流量との関係を示すグラフ図である。FIG. 4 is a graph showing the relationship between burner head pressure and flow rate. 燃料ガスでの開度燃料流量関係を示すグラフ図である。It is a graph chart which shows the opening degree fuel flow rate relationship in fuel gas. 燃料ガスでの圧力燃料流量関係を示すグラフ図である。It is a graph chart which shows the pressure fuel flow rate relationship in fuel gas. 別実施形態に係る燃焼制御システムの概略構成図である。FIG. 4 is a schematic configuration diagram of a combustion control system according to another embodiment; 実施形態に係る燃焼制御システムにおいて、燃料ガスの流量を制御する場合の燃料流量制御弁及び二次側圧力調整機構としての圧力調整弁の開度の経時変化を示すグラフ図である。FIG. 4 is a graph showing changes over time in opening degrees of a fuel flow rate control valve and a pressure regulation valve as a secondary side pressure regulation mechanism when controlling the flow rate of fuel gas in the combustion control system according to the embodiment. 実施形態に係る燃焼制御システムにおいて、燃料ガスの流量を制御する場合の燃料流量制御弁の一次圧及び二次圧の経時変化を示すグラフ図である。FIG. 4 is a graph showing temporal changes in the primary pressure and secondary pressure of the fuel flow control valve when controlling the flow rate of fuel gas in the combustion control system according to the embodiment. 実施形態に係る燃焼制御システムにおいて、燃料ガスの流量を制御する場合の燃料ガスの流量の経時変化を示すグラフ図である。FIG. 4 is a graph showing temporal changes in the flow rate of fuel gas when the flow rate of fuel gas is controlled in the combustion control system according to the embodiment.

本発明の実施形態に係る流量制御システム100、200、及び燃焼制御システム300は、流量計を設けることのない簡易な構成を維持して経済性を向上しつつ、調整等における意図しない燃焼等の発生を防止できると共に、燃料ガスの流量等の各種調整の自動化による省人化を安全に実現できるものに関する。
以下、図1~7、9~11に基づいて、当該実施形態に係る流量制御システム100、200、及び燃焼制御システム300について説明する。
The flow control systems 100 and 200 and the combustion control system 300 according to the embodiments of the present invention maintain a simple configuration without providing a flow meter to improve economic efficiency, while preventing unintended combustion during adjustment and the like. The present invention relates to a method capable of preventing the occurrence of such a problem and safely realizing manpower saving by automating various adjustments such as the flow rate of fuel gas.
Flow control systems 100 and 200 and a combustion control system 300 according to this embodiment will be described below with reference to FIGS.

当該実施形態に係る燃焼制御システム300は、図1に示すように、例えば都市ガス13A等の燃料ガスGに係る流量制御システム100と、当該燃料ガスGの酸化剤としての燃焼用空気A(燃焼用気体の一例)に係る流量制御システム200と、ハードウェアとソフトウェアとが協働する形態で実現される制御装置Sと、バーナBNaとを備えて構成されており、工業炉Rの内部を所定温度に加熱するよう構成されている。 The combustion control system 300 according to this embodiment includes, as shown in FIG. (an example of gas for industrial use), a control device S realized in a form in which hardware and software cooperate, and a burner BNa, and the inside of the industrial furnace R is specified configured to heat to a temperature.

<燃料ガスGに係る流量制御システム100>
燃料ガスGに係る流量制御システム100は、図1に示すように、制御対象気体としての燃料ガスGが通流する現場燃料配管H1に設けられ、制御装置Sとしての流量制御部S1の制御指令により開度を制御する燃料流量制御弁RVgと、現場燃料配管H1で燃料流量制御弁RVgの出口に設けられ燃料流量制御弁RVgの二次側出口に設けられる第2燃料圧力計P2gの計測結果に基づいて二次側出口の圧力を調整可能な二次側燃料圧力調整機構GVと、現場燃料配管H1で燃料流量制御弁RVgの一次側入口に設けられる第1燃料圧力計P1gの計測結果に基づいて一次側入口の圧力を調整可能な一次側燃料圧力調整機構としてのインバータ式のブロアBと、現場燃料配管H1で一次側の最上流部位に設けられ、現場燃料配管H1を開閉する燃料配管開閉弁としての第1電磁弁SV1及び第2電磁弁SV2と、燃焼用空気Aを通流する現場空気配管H2(現場燃焼用気体配管の一例)に設けられ、当該現場空気配管H2に燃焼用空気Aを圧送するブロアBの下流側にて現場空気配管H2を開閉する燃焼用気体配管開閉弁としての空気流量制御弁RVaとを備える。
即ち、当該現場設備100aにおいて、一次側燃料圧力調整機構としてのブロアBは、現場空気配管H2へ燃焼用空気Aを圧送するブロアBと共通の構成となっている。
<Flow rate control system 100 for fuel gas G>
The flow rate control system 100 for the fuel gas G, as shown in FIG. and a second fuel pressure gauge P2g provided at the outlet of the fuel flow control valve RVg in the field fuel pipe H1 and at the secondary side outlet of the fuel flow control valve RVg. Based on the measurement result of the secondary side fuel pressure adjustment mechanism GV that can adjust the pressure of the secondary side outlet and the first fuel pressure gauge P1g provided at the primary side inlet of the fuel flow control valve RVg in the field fuel pipe H1 An inverter-type blower B as a primary side fuel pressure adjustment mechanism capable of adjusting the pressure at the primary side inlet based on the above, and a fuel pipe that is provided at the most upstream portion of the primary side with the on-site fuel pipe H1 and opens and closes the on-site fuel pipe H1. A first solenoid valve SV1 and a second solenoid valve SV2 as on-off valves and a field air pipe H2 (an example of a gas pipe for field combustion) through which combustion air A flows are provided. An air flow rate control valve RVa is provided as a combustion gas pipe opening/closing valve for opening/closing the on-site air pipe H2 on the downstream side of the blower B for pumping the air A.
That is, in the on-site facility 100a, the blower B as the primary side fuel pressure adjusting mechanism has a common configuration with the blower B for pumping the combustion air A to the on-site air pipe H2.

更に、燃料ガスGに係る流量制御システム100は、現場燃料配管H1の燃料流量制御弁RVgの一次側且つ第1電磁弁SV1及び第2電磁弁SV2の二次側と現場空気配管H2の空気流量制御弁RVaの一次側且つブロアBの二次側とを接続する現場接続配管H3に設けられ、当該現場接続配管H3を開閉する接続配管開閉弁SV3を備えた現場設備100aにおいて、詳細については後述するが、燃料流量制御弁RVgの開度と現場燃料配管H1を通流する燃料ガスGの流量との開度燃料流量関係(図6に図示)を記憶する記憶部S3、及び燃料流量制御弁RVgにより燃料ガスGの流量を制御する流量制御部S1、二次側燃料圧力調整機構GVと一次側燃料圧力調整機構としてのブロアBとにより圧力を制御する圧力制御部S4とを備える。当該記憶部S3及び流量制御部S1及び圧力制御部S4は、制御装置Sにおいて、CPUやメモリ等のハードウェアとソフトウェアとが協働する形で実現される。 Further, the flow rate control system 100 for the fuel gas G controls the primary side of the fuel flow control valve RVg of the field fuel pipe H1, the secondary side of the first solenoid valve SV1 and the second solenoid valve SV2, and the air flow rate of the field air pipe H2. In the field equipment 100a provided in the field connection pipe H3 connecting the primary side of the control valve RVa and the secondary side of the blower B, and provided with the connection pipe opening/closing valve SV3 for opening and closing the field connection pipe H3, the details will be described later. However, a storage unit S3 for storing the opening degree fuel flow rate relationship (shown in FIG. 6) between the opening degree of the fuel flow control valve RVg and the flow rate of the fuel gas G flowing through the on-site fuel pipe H1, and the fuel flow control valve It comprises a flow rate control section S1 for controlling the flow rate of the fuel gas G by RVg, and a pressure control section S4 for controlling the pressure by the secondary side fuel pressure adjustment mechanism GV and the blower B as the primary side fuel pressure adjustment mechanism. The storage unit S3, the flow rate control unit S1, and the pressure control unit S4 are implemented in the control device S in a form in which hardware such as a CPU and memory cooperates with software.

ここで、燃料ガスGに係る流量制御システム100の全体構成、即ち、燃焼制御システム300の構成について、説明すると、工業炉Rの内部を加熱するバーナBNaが設けられており、工業炉Rの内部の温度を計測する温度センサNDにて計測される計測温度が目標温度となるように、上述した制御装置Sの流量制御部S1が、バーナBNaに導かれる燃料ガスGや燃焼用空気Aの流量を制御する。
現場設備100aでは、バーナBNaに燃料ガスGを導く現場燃料配管H1に、下流側(二次側)から順に、二次側燃料圧力調整機構GV、第2燃料圧力計P2g、燃料流量制御弁RVg、第1燃料圧力計P1g、燃料流量制御弁RVgの一次側の圧力を所定の設定圧に調整可能なガバナGA、第1電磁弁SV1及び第2電磁弁SV2が設けられている。
バーナBNaに燃焼用空気Aを導く現場空気配管H2には、下流側(二次側)から順に、第3空気圧力計P3a、圧力調整弁BVa、第2空気圧力計P2a、空気流量制御弁RVa、第1空気圧力計P1a、ブロアBが設けられている。
ここで、第3空気圧力計P3aは、現場空気配管H2のバーナBNaの一次側入口でバーナBNaのヘッド圧を計測するものであり、図5に示すように、バーナ1~3毎にヘッド圧と流量との関係が既知の値と整合性があるかどうかを確認するための構成である。
Here, the overall configuration of the flow rate control system 100 related to the fuel gas G, that is, the configuration of the combustion control system 300 will be described. The flow control unit S1 of the control device S controls the flow rate of the fuel gas G and the combustion air A guided to the burner BNa so that the temperature measured by the temperature sensor ND for measuring the temperature of the to control.
In the on-site facility 100a, the on-site fuel pipe H1 that guides the fuel gas G to the burner BNa includes, in order from the downstream side (secondary side), a secondary side fuel pressure adjustment mechanism GV, a second fuel pressure gauge P2g, and a fuel flow control valve RVg. , a first fuel pressure gauge P1g, a governor GA capable of adjusting the pressure on the primary side of the fuel flow control valve RVg to a predetermined set pressure, a first solenoid valve SV1 and a second solenoid valve SV2.
The on-site air pipe H2 for guiding the combustion air A to the burner BNa includes, in order from the downstream side (secondary side), a third air pressure gauge P3a, a pressure regulating valve BVa, a second air pressure gauge P2a, and an air flow rate control valve RVa. , a first air pressure gauge P1a, and a blower B are provided.
Here, the third air pressure gauge P3a measures the head pressure of the burner BNa at the primary side inlet of the burner BNa of the on-site air pipe H2. is a configuration for checking whether the relationship between , and flow rate is consistent with known values.

次に、記憶部S3に記憶される開度燃料流量関係を取得するための試験設備400について、図2に基づいて説明を加える。尚、当該試験設備400では、図面の紙面の都合上、各種圧力計からの制御線は、図示していない。
当該試験設備400は、現場燃料配管H1に替えて現場燃料配管H1と同一径の試験燃料配管H1xと、現場空気配管H2に替えて現場空気配管H2と同一径の試験空気配管H2xと、現場接続配管H3に替えて現場接続配管H3と同一径の試験接続配管H3xとの夫々に、現場設備100aに設けられる構成を備えると共に、試験燃料配管H1xを通流する流体の流量を計測する第1流量計F1(燃料流量計の一例)を備えている。
ここで、現場設備100aに設けられる構成としては、バーナBNaに燃料ガスGを導く試験燃料配管H1xに、下流側(二次側)から順に、二次側燃料圧力調整機構GV、第2燃料圧力計P2g、燃料流量制御弁RVg、第1燃料圧力計P1g、燃料流量制御弁RVgの一次側の圧力を所定の設定圧に調整可能なガバナGA、第1電磁弁SV1及び第2電磁弁SV2が設けられている。更に、バーナBNaに燃焼用空気Aを導く試験空気配管H2x(試験燃焼用気体配管の一例)に、下流側(二次側)から順に、第3空気圧力計P3a、圧力調整弁BVa、第2空気圧力計P2a、空気流量制御弁RVa、第1空気圧力計P1a、ブロアBが設けられ、制御装置Ssとして、流量制御部Ss1、記憶部Ss3、圧力制御部Ss4が設けられている。
尚、後述する燃焼用空気Aに係る流量制御システム200での開度空気流量関係の取得に関する構成として、試験空気配管H2xには、当該試験空気配管H2xを通流する流体の流量を計測する第2流量計F2を備えている。
Next, the test facility 400 for acquiring the opening degree fuel flow rate relationship stored in the storage section S3 will be described based on FIG. Note that, in the test equipment 400, control lines from various pressure gauges are not shown due to space limitations of the drawing.
The test facility 400 includes a test fuel pipe H1x having the same diameter as the field fuel pipe H1 instead of the field fuel pipe H1, a test air pipe H2x having the same diameter as the field air pipe H2 instead of the field air pipe H2, and a field connection. Instead of the pipe H3, the field connection pipe H3 and the test connection pipe H3x having the same diameter are each provided with a configuration provided in the field equipment 100a, and a first flow rate for measuring the flow rate of the fluid flowing through the test fuel pipe H1x. A meter F1 (an example of a fuel flow meter) is provided.
Here, as a configuration provided in the field facility 100a, the test fuel pipe H1x that guides the fuel gas G to the burner BNa is arranged in order from the downstream side (secondary side), the secondary side fuel pressure adjustment mechanism GV, the second fuel pressure A meter P2g, a fuel flow control valve RVg, a first fuel pressure gauge P1g, a governor GA capable of adjusting the pressure on the primary side of the fuel flow control valve RVg to a predetermined set pressure, a first solenoid valve SV1 and a second solenoid valve SV2. is provided. Further, a third air pressure gauge P3a, a pressure regulating valve BVa, a second An air pressure gauge P2a, an air flow rate control valve RVa, a first air pressure gauge P1a, and a blower B are provided, and a flow control section Ss1, a storage section Ss3, and a pressure control section Ss4 are provided as the controller Ss.
As a configuration related to acquisition of the opening degree air flow rate relationship in the flow rate control system 200 related to the combustion air A to be described later, the test air pipe H2x is provided with a flow rate of the fluid flowing through the test air pipe H2x. 2 with a flow meter F2.

さて、開度燃料流量関係を取得するにあたり、試験設備400では、制御装置Ssの流量制御部Ss1及び圧力制御部Ss4が、空気流量制御弁RVa及び第1電磁弁SV1及び第2電磁弁SV2を閉止状態とし接続配管開閉弁SV3を開放状態とする共に、ブロアBを働かせて燃焼用空気Aを試験接続配管H3xを介して試験燃料配管H1xに通流させて、燃料流量制御弁RVgを所定の初期設定開度(例えば、100%)に維持しブロアBにて一次側入口の圧力を所定の燃料流量制御圧力に維持(6kPa±0.05kPaを30秒維持)している状態で、二次側燃料圧力調整機構GVにて二次側出口の圧力を所定の初期設定二次圧に設定(5kPa±0.05kPaを30秒維持)した後、燃料流量制御弁RVgの開度と第1流量計F1にて計測される流量との関係として、開度燃料流量関係を取得する。 Now, in acquiring the opening degree fuel flow rate relationship, in the test facility 400, the flow control unit Ss1 and the pressure control unit Ss4 of the control device Ss operate the air flow control valve RVa and the first solenoid valve SV1 and the second solenoid valve SV2. In addition to opening the connection pipe opening/closing valve SV3, the blower B is operated to allow combustion air A to flow through the test fuel pipe H1x through the test connection pipe H3x. In a state where the initial set opening (for example, 100%) is maintained and the pressure at the primary side inlet is maintained at a predetermined fuel flow rate control pressure (maintained at 6 kPa ± 0.05 kPa for 30 seconds) with the blower B, the secondary After setting the pressure of the secondary side outlet to a predetermined initial setting secondary pressure (maintaining 5 kPa ± 0.05 kPa for 30 seconds) with the side fuel pressure adjustment mechanism GV, the opening of the fuel flow control valve RVg and the first flow rate An opening degree fuel flow rate relationship is acquired as a relationship with the flow rate measured by the total F1.

因みに、試験設備400において、上記開度燃料流量関係を取得する場合、燃料流量制御弁RVg及び二次側燃料圧力調整機構GVの開度は、図9に示すように経時変化し、燃料流量制御弁RVgの一次圧と二次圧は、図10に示すように変化し、試験燃料配管H1xを通流する燃焼用空気Aの流量は、図11のように変化する。
尚、開度燃料流量関係を取得する際は、燃料ガスGに替えて燃焼用空気Aを通流させているため、流量制御部Ss1は、第1流量計F1にて計測された流量Qを、燃料ガスGの比重をsとした以下の〔式1〕に示す換算式にて補正した補正後燃料流量Q’を用いて、開度燃料流量関係を導出する。
Q’=Q/√s ・・・〔式1〕
Incidentally, when acquiring the opening degree fuel flow rate relation in the test facility 400, the opening degrees of the fuel flow rate control valve RVg and the secondary side fuel pressure adjustment mechanism GV change with time as shown in FIG. The primary pressure and secondary pressure of the valve RVg change as shown in FIG. 10, and the flow rate of the combustion air A flowing through the test fuel pipe H1x changes as shown in FIG.
In addition, when acquiring the opening degree fuel flow rate relationship, since the combustion air A is flowed instead of the fuel gas G, the flow rate control unit Ss1 controls the flow rate Q measured by the first flow meter F1. , the opening degree fuel flow rate relationship is derived using the corrected fuel flow rate Q′ corrected by the conversion formula shown in the following [Equation 1], where s is the specific gravity of the fuel gas G.
Q′=Q/√s [Formula 1]

以上の如く、試験設備400にて取得した開度燃料流量関係を用いて、燃料ガスGに係る流量制御システム100では、以下の制御を実行する。
即ち、現場設備100aで、制御装置Sの流量制御部S1及び圧力制御部S4が、空気流量制御弁RVa及び第1電磁弁SV1及び第2電磁弁SV2を閉止状態とし接続配管開閉弁SV3を開放状態とする共に、ブロアBを働かせて燃焼用空気Aを現場接続配管H3を介して現場燃料配管H1に通流させて、燃料流量制御弁RVgを所定の初期設定開度(例えば、100%)に維持しブロアBにて一次側入口の圧力を所定の燃料流量制御圧力に維持(6kPa±0.05kPaを30秒維持)している状態で、二次側燃料圧力調整機構GVにて二次側出口の圧力を所定の初期設定二次圧に設定(5kPa±0.05kPaを30秒維持)した後、ブロアBを停止させて、接続配管開閉弁SV3を閉止状態する。
その後、第1電磁弁SV1及び第2電磁弁SV2を開放状態として、記憶部S3に記憶された開度燃料流量関係(図6に図示)に基づいて、燃料流量制御弁RVgの開度を制御して燃料ガスGの流量を目標流量に制御する。
As described above, using the opening degree fuel flow rate relationship acquired by the test facility 400, the flow rate control system 100 relating to the fuel gas G performs the following control.
That is, in the field equipment 100a, the flow control unit S1 and the pressure control unit S4 of the control device S close the air flow control valve RVa, the first solenoid valve SV1, and the second solenoid valve SV2, and open the connection pipe opening/closing valve SV3. At the same time, the blower B is actuated to allow the combustion air A to flow through the field fuel pipe H1 through the field connection pipe H3, and the fuel flow control valve RVg is set to a predetermined initial set opening (for example, 100%). , and the blower B maintains the pressure at the primary side inlet at a predetermined fuel flow rate control pressure (maintaining 6 kPa ± 0.05 kPa for 30 seconds), and the secondary side fuel pressure adjustment mechanism GV After setting the side outlet pressure to a predetermined initial set secondary pressure (maintaining 5 kPa±0.05 kPa for 30 seconds), the blower B is stopped and the connecting pipe opening/closing valve SV3 is closed.
After that, the first solenoid valve SV1 and the second solenoid valve SV2 are opened, and the opening degree of the fuel flow control valve RVg is controlled based on the opening degree fuel flow rate relationship (shown in FIG. 6) stored in the storage section S3. Then, the flow rate of the fuel gas G is controlled to the target flow rate.

因みに、燃料ガスGが、燃焼用空気Aが通流する配管としての現場空気配管H2や試験空気配管H2xに流入することを防止するべく、現場接続配管H3には、現場接続配管H3での燃焼用空気Aの通流方向で、現場燃料配管H1から現場空気配管H2への燃料ガスGの通流を阻止する第1逆止弁GV3が接続配管開閉弁SV3の下流側に設けられている。また、試験接続配管H3xには、試験接続配管H3xでの燃焼用空気Aの通流方向で、試験燃料配管H1xから試験空気配管H2xへの燃料ガスGの通流を阻止する第2逆止弁GV3が設けられている。
更に、燃料ガスGが現場燃料配管H1又は試験燃料配管H1xへ供給されているときに、現場燃料配管H1と現場空気配管H2との間、又は試験燃料配管H1xと試験空気配管H2xとの間を隔離するべく、現場設備100a及び試験設備400において、第1電磁弁SV1及び第2電磁弁SV2が開放状態にあるときに接続配管開閉弁SV3の閉止状態を維持するインターロック機構(図示せず)が設けられている。
Incidentally, in order to prevent the fuel gas G from flowing into the on-site air pipe H2 and the test air pipe H2x, which are pipes through which the combustion air A flows, the on-site connection pipe H3 is provided with a combustion A first check valve GV3 for blocking the flow of fuel gas G from the on-site fuel pipe H1 to the on-site air pipe H2 is provided downstream of the connection pipe opening/closing valve SV3 in the flow direction of the air A. Further, in the test connection pipe H3x, a second check valve for blocking the flow of the fuel gas G from the test fuel pipe H1x to the test air pipe H2x in the flow direction of the combustion air A in the test connection pipe H3x. GV3 is provided.
Furthermore, when the fuel gas G is supplied to the field fuel pipe H1 or the test fuel pipe H1x, between the field fuel pipe H1 and the field air pipe H2 or between the test fuel pipe H1x and the test air pipe H2x In order to isolate, in the field equipment 100a and the test equipment 400, an interlock mechanism (not shown) that maintains the closed state of the connection pipe opening/closing valve SV3 when the first solenoid valve SV1 and the second solenoid valve SV2 are in the open state is provided.

さて、これまで説明してきた燃料ガスGに係る流量制御システム100では、使用し続けるうちに、各種弁体の設定開度にズレが生じたりするいことが原因で、開度燃料流量関係に基づいて制御される流量が、目標流量からズレてくる場合がある。
そこで、記憶部S3は、試験設備400において、制御装置Ssの流量制御部Ss1及び圧力制御部Ss4が、空気流量制御弁RVa及び第1電磁弁SV1及び第2電磁弁SV2を閉止状態とし接続配管開閉弁SV3を開放状態とする共に、ブロアBを働かせて燃焼用空気Aを試験接続配管H3xを介して試験燃料配管H1xに通流させて、燃料流量制御弁RVgを所定の初期設定開度(例えば100%)に維持しブロアBにて一次側入口の圧力を所定の燃料流量制御圧力に維持(6kPa±0.05kPaを30秒維持)している状態で、二次側燃料圧力調整機構GVにて二次側出口の圧力を所定の初期設定二次圧に設定(5kPa±0.05kPaを30秒維持)した後に、第2燃料圧力計P2gにて計測される二次側出口の圧力と第1流量計F1にて計測される流量との圧力燃料流量関係(図7に図示)を記憶する。
更に、現場設備100aで、制御装置Sの流量制御部S1が、ブロアBを停止して接続配管開閉弁SV3を閉止状態とした後、第1電磁弁SV1及び第2電磁弁SV2を開放状態として、開度燃料流量関係(図6に図示)にて燃料流量制御弁RVgの開度を制御して燃料ガスGの流量を目標流量へ制御しているときに、当該制御された燃料ガスGの流量が、第2燃料圧力計P2gにて計測される二次側出口の圧力と圧力燃料流量関係(図7に図示)とから導出される流量と異なる場合に、流量制御異常と判定する異常判定部S2を備える。
管理者は、当該異常判定部S2が流量制御異常と判定し、それがモニタ等の表示部(図示せず)に表示された場合、燃料ガスGに係る流量制御システム100の各種設定を再度実行する。
Now, in the flow rate control system 100 related to the fuel gas G that has been explained so far, the set opening degrees of various valve elements may deviate during continued use. The flow rate controlled by the control may deviate from the target flow rate.
Therefore, in the test facility 400, the storage unit S3 is configured such that the flow rate control unit Ss1 and the pressure control unit Ss4 of the control device Ss close the air flow control valve RVa and the first solenoid valve SV1 and the second solenoid valve SV2 to close the connecting pipes. The on-off valve SV3 is opened, and the blower B is operated to allow the combustion air A to flow through the test fuel pipe H1x through the test connection pipe H3x, and the fuel flow control valve RVg is set to a predetermined opening ( For example, 100%), and the pressure of the primary side inlet is maintained at a predetermined fuel flow rate control pressure by the blower B (maintaining 6 kPa ± 0.05 kPa for 30 seconds), the secondary side fuel pressure adjustment mechanism GV After setting the pressure of the secondary side outlet to a predetermined initial setting secondary pressure (maintaining 5 kPa ± 0.05 kPa for 30 seconds), the pressure of the secondary side outlet measured by the second fuel pressure gauge P2g and The pressure fuel flow rate relationship (shown in FIG. 7) with the flow rate measured by the first flow meter F1 is stored.
Furthermore, in the field equipment 100a, the flow rate control unit S1 of the control device S stops the blower B and closes the connection pipe opening/closing valve SV3, and then opens the first solenoid valve SV1 and the second solenoid valve SV2. , when the opening degree of the fuel flow control valve RVg is controlled by the opening degree fuel flow rate relationship (shown in FIG. 6) to control the flow rate of the fuel gas G to the target flow rate, the controlled fuel gas G Abnormality determination to determine flow control abnormality when the flow rate is different from the flow rate derived from the pressure of the secondary side outlet measured by the second fuel pressure gauge P2g and the pressure fuel flow rate relationship (shown in FIG. 7) A part S2 is provided.
When the abnormality determination unit S2 determines that the flow rate control is abnormal and it is displayed on a display unit (not shown) such as a monitor, the administrator performs various settings of the flow control system 100 related to the fuel gas G again. do.

<燃焼用空気Aに係る流量制御システム200>
燃焼用空気Aに係る流量制御システム200においても、燃焼用空気Aを現場空気配管H2及び試験空気配管H2xに通流させる形で、取得した開度空気流量関係(図3に図示)を用いて、燃焼用空気Aの流量を制御する。
燃焼用空気Aに係る流量制御システム200においては、開度空気流量関係を取得するにあたり、試験設備400では、制御装置Ssの流量制御部Ss1及び圧力制御部S4が、接続配管開閉弁SV3を閉止状態とする共に、ブロアBを働かせて燃焼用空気Aを試験空気配管H2xに通流させて、空気流量制御弁RVaを所定の初期設定開度(例えば、100%)に維持しブロアBにて一次側入口の圧力を所定の空気流量制御圧力に維持(8.0kPa±0.05kPaを30秒維持)している状態で、二次側空気圧力調整機構としての圧力調整弁BVaにて二次側出口の圧力を所定の初期設定二次圧に設定(4.0kPa±0.05kPaを30秒維持)した後、空気流量制御弁RVaの開度と第2流量計F2にて計測される流量との関係として、開度空気流量関係(図3に図示)を取得する。
以上の如く、試験設備400にて取得した開度空気流量関係を用いて、燃焼用空気Aに係る流量制御システム200では、以下の制御を実行する。
即ち、現場設備200aで、制御装置Sの流量制御部S1及び圧力制御部S4が、接続配管開閉弁SV3を閉止状態とする共に、ブロアBを働かせて燃焼用空気Aを現場空気配管H2に通流させて、空気流量制御弁RVaを所定の初期設定開度(例えば、100%)に維持しブロアBにて一次側入口の圧力を所定の空気流量制御圧力に維持(8.0kPa±0.05kPaを30秒維持)している状態で、圧力調整弁BVaにて二次側出口の圧力を所定の初期設定二次圧に設定(4.0kPa±0.05kPaを30秒維持)した後、記憶部S3に記憶された開度空気流量関係(図3に)に基づいて、空気流量制御弁RVaの開度を制御して燃焼用空気Aの流量を目標流量に制御する。
<Flow rate control system 200 for combustion air A>
Also in the flow control system 200 related to the combustion air A, the acquired opening degree air flow rate relationship (illustrated in FIG. 3) is used to flow the combustion air A through the field air pipe H2 and the test air pipe H2x. , controls the flow rate of combustion air A;
In the flow control system 200 related to the combustion air A, in acquiring the opening air flow rate relationship, in the test facility 400, the flow control unit Ss1 and the pressure control unit S4 of the control device Ss close the connection pipe opening/closing valve SV3. At the same time, the blower B is operated to allow the combustion air A to flow through the test air pipe H2x, and the air flow rate control valve RVa is maintained at a predetermined initial set opening (for example, 100%). In a state where the pressure at the primary side inlet is maintained at a predetermined air flow control pressure (8.0 kPa ± 0.05 kPa maintained for 30 seconds), the pressure regulating valve BVa as the secondary side air pressure regulating mechanism After setting the side outlet pressure to a predetermined initial setting secondary pressure (maintaining 4.0 kPa ± 0.05 kPa for 30 seconds), the opening of the air flow control valve RVa and the flow rate measured by the second flow meter F2 , the opening degree air flow rate relationship (shown in FIG. 3) is acquired.
As described above, the following control is performed in the flow rate control system 200 related to the combustion air A using the opening degree air flow rate relation acquired by the test facility 400 .
That is, in the field equipment 200a, the flow rate control section S1 and the pressure control section S4 of the controller S close the connecting pipe opening/closing valve SV3, and operate the blower B to pass the combustion air A through the field air pipe H2. The air flow rate control valve RVa is maintained at a predetermined initial set opening (for example, 100%), and the blower B maintains the pressure at the primary side inlet at a predetermined air flow rate control pressure (8.0 kPa±0. 05 kPa for 30 seconds), the pressure at the secondary outlet is set to a predetermined initial set secondary pressure (maintained at 4.0 kPa ± 0.05 kPa for 30 seconds) with the pressure regulating valve BVa, Based on the opening air flow rate relationship (shown in FIG. 3) stored in the storage section S3, the opening of the air flow control valve RVa is controlled to control the flow rate of the combustion air A to the target flow rate.

当該燃焼用空気Aに係る流量制御システム200では、使用し続けるうちに、各種弁体の設定開度にズレが生じたりするいことが原因で、開度空気流量関係に基づいて制御される流量が、目標流量からズレてくる場合がある。
そこで、記憶部S3は、試験設備400において、制御装置Ssの流量制御部Ss1及び圧力制御部Ss4が、接続配管開閉弁SV3を閉止状態とする共に、ブロアBを働かせて燃焼用空気Aを試験空気配管H2xに通流させて、空気流量制御弁RVaを所定の初期設定開度(例えば、100%)に維持しブロアBにて一次側入口の圧力を所定の空気流量制御圧力に維持(8.0kPa±0.05kPaを30秒維持)している状態で、二次側空気圧力調整機構としての圧力調整弁BVaにて二次側出口の圧力を所定の初期設定二次圧に設定(4.0kPa±0.05kPaを30秒維持)した後に、第2空気圧力計P2aにて計測される二次側出口の圧力と第2流量計F2にて計測される流量との圧力空気流量関係(図4に図示)を記憶するものであり、現場設備200aで、制御装置Sの流量制御部S1が、接続配管開閉弁SV3を閉止状態として、開度空気流量関係(図3に図示)にて空気流量制御弁RVaの開度を制御して燃焼用空気Aの流量を目標流量へ制御しているときに、当該制御された燃焼用空気Aの流量が、第2空気圧力計P2aにて計測される二次側出口の圧力と圧力空気流量関係(図4に図示)とから導出される流量と異なる場合に、流量制御異常と判定する異常判定部S2を備える。
管理者は、当該異常判定部S2が流量制御異常と判定し、それがモニタ等の表示部(図示せず)に表示された場合、燃焼用空気Aに係る流量制御システム200の各種設定を再度実行する。
In the flow rate control system 200 for the combustion air A, the flow rate is controlled based on the opening degree air flow rate relationship due to deviations in the set opening degrees of various valve elements during continued use. However, it may deviate from the target flow rate.
Therefore, in the test facility 400, the storage unit S3 causes the flow rate control unit Ss1 and the pressure control unit Ss4 of the control device Ss to close the connection pipe opening/closing valve SV3 and operate the blower B to test the combustion air A. The air flow control valve RVa is maintained at a predetermined initial set opening (for example, 100%) by the air pipe H2x, and the blower B maintains the pressure at the primary side inlet at a predetermined air flow control pressure (8 0 kPa ± 0.05 kPa for 30 seconds), the pressure of the secondary side outlet is set to a predetermined initial setting secondary pressure by the pressure regulating valve BVa as the secondary side air pressure regulating mechanism (4 0 kPa ± 0.05 kPa for 30 seconds), the pressure air flow rate relationship between the pressure at the secondary side outlet measured by the second air pressure gauge P2a and the flow rate measured by the second flow meter F2 ( 4), and in the field equipment 200a, the flow control unit S1 of the control device S closes the connection pipe opening/closing valve SV3, and the opening degree air flow rate relationship (illustrated in FIG. 3) When controlling the opening degree of the air flow control valve RVa to control the flow rate of the combustion air A to the target flow rate, the controlled flow rate of the combustion air A is measured by the second air pressure gauge P2a. An abnormality determination unit S2 is provided for determining that the flow rate control is abnormal when the flow rate is different from the flow rate derived from the pressure at the secondary side outlet and the pressure air flow rate relationship (shown in FIG. 4).
When the abnormality determination unit S2 determines that the flow rate control is abnormal and it is displayed on a display unit (not shown) such as a monitor, the administrator resets various settings of the flow control system 200 related to the combustion air A. Execute.

さて、上述した燃料ガスGに係る流量制御システム100を備えると共に、燃焼用空気Aに係る流量制御システム200を備えるバーナBNaを有する燃焼制御システム300では、現場設備100a、200aにおいて、制御装置Sの流量制御部S1が、異なる種類のバーナBNaに対し共通の開度燃料流量関係を用いて燃料ガスGの流量を制御する共に、異なる種類のバーナBNaに対し共通の開度空気流量関係を用いて燃焼用空気Aの流量を制御する。
即ち、開度燃料流量関係は、図6に示すように、異なるヘッド圧のバーナBNaに対して、共通の関係を有することになるので、様々な現場において、一の開度燃料流量関係を流用することができる。また、開度空気流量関係は、図3に示すように、異なるヘッド圧のバーナBNaに対して、共通の関係を有することになるので、様々な現場において、一の開度空気流量関係を流用することができる。
Now, in the combustion control system 300 including the flow rate control system 100 for the fuel gas G described above and the burner BNa provided with the flow rate control system 200 for the combustion air A, the control device S The flow rate control unit S1 controls the flow rate of the fuel gas G using a common opening degree fuel flow rate relationship for different types of burners BNa, and controls the flow rate of the fuel gas G using a common opening degree air flow rate relationship for different types of burners BNa. The flow rate of combustion air A is controlled.
That is, as shown in FIG. 6, the opening degree fuel flow rate relationship has a common relationship for burners BNa with different head pressures. can do. In addition, as shown in FIG. 3, the opening air flow rate relationship has a common relationship for burners BNa with different head pressures. can do.

更に、燃焼制御システム300は、現場設備に100a、200aにおいて、異常判定部S2が、異なる種類のバーナBNaに対し共通の圧力燃料流量関係を用いて燃料ガスGの流量制御異常の判定を実行すると共に、異なる種類のバーナBNaに対し共通の圧力空気流量関係を用いて燃焼用空気Aの流量制御異常の判定を実行する。
即ち、圧力燃料流量関係は、図7に示すように、異なるヘッド圧のバーナBNaに対して、共通の関係を有することになるので、様々な現場において、一の圧力燃料流量関係を流用することができる。また、圧力空気流量関係は、図4に示すように、異なるヘッド圧のバーナBNaに対して、共通の関係を有することになるので、様々な現場において、一の圧力空気流量関係を流用することができる。
Further, in the combustion control system 300, in the field equipment 100a, 200a, the abnormality determination section S2 uses a common pressure fuel flow rate relationship for different types of burners BNa to determine the flow rate control abnormality of the fuel gas G. At the same time, the flow rate control abnormality of the combustion air A is determined using a common pressure air flow rate relationship for different types of burners BNa.
That is, as shown in FIG. 7, the pressure fuel flow rate relationship has a common relationship for burners BNa with different head pressures, so that one pressure fuel flow rate relationship can be diverted to various sites. can be done. In addition, as shown in FIG. 4, the pressure air flow rate relationship has a common relationship for burners BNa with different head pressures, so that one pressure air flow rate relationship can be diverted to various sites. can be done.

〔別実施形態〕
(1)上記実施形態において、燃焼用気体として燃焼用空気Aを例示したが、例えば、酸素を富化した酸素富化ガスを燃焼用気体として用いても構わない。
[Another embodiment]
(1) In the above embodiment, the combustion air A was used as the combustion gas, but oxygen-enriched gas, for example, may be used as the combustion gas.

(2)燃焼制御システム300は、工業炉Rの加熱に限定されず、ガラス溶融炉や金属の鍛造設備等のバーナに幅広く適用することが可能である。 (2) The combustion control system 300 is not limited to heating the industrial furnace R, and can be widely applied to burners such as glass melting furnaces and metal forging equipment.

(3)上記実施形態では、詳述しなかったが、現場設備100a、200aにおける温度が大きく変化するような環境においては、以下の構成及び制御を採用しても構わない。
即ち、試験設備400において、開度燃料流量関係を試験燃料配管H1xを通流する燃料ガスGの温度毎に取得すると共に、現場設備100aにおいて、現場燃料配管H1にて計測される燃料ガスGの温度における開度燃料流量関係に基づいて、燃料ガスG及び燃焼用空気Aの流量制御を実施しても構わない。
また、試験設備400において、開度空気流量関係を試験空気配管H2xを通流する燃焼用空気Aの温度毎に取得すると共に、現場設備200aにおいて、現場空気配管H2にて計測される燃焼用空気Aの温度における開度空気流量関係に基づいて、燃焼用空気Aの流量制御を実施しても構わない。
(3) Although not described in detail in the above embodiment, the following configuration and control may be adopted in an environment where the temperature of the field equipment 100a, 200a changes greatly.
That is, in the test equipment 400, the opening degree fuel flow rate relationship is acquired for each temperature of the fuel gas G flowing through the test fuel pipe H1x, and in the field equipment 100a, the temperature of the fuel gas G measured in the field fuel pipe H1 is measured. The flow rate control of the fuel gas G and the combustion air A may be performed based on the relationship between the opening degree fuel flow rate and the temperature.
In addition, in the test equipment 400, the opening degree air flow rate relationship is acquired for each temperature of the combustion air A flowing through the test air pipe H2x, and in the field equipment 200a, the combustion air measured in the field air pipe H2 The flow rate control of the combustion air A may be performed based on the opening degree air flow rate relationship at the A temperature.

(4)上記実施形態において、二次側燃料圧力調整機構GVとしてガバナGAを採用しても構わない。
この場合、図8に示すように、現場設備100aの現場接続配管H3の現場燃料配管H1との接続箇所は、ガバナGAと第1電磁弁SV1との間に接続されることになり、ブロアBの吐出圧は一定に制御される。
(4) In the above embodiment, the governor GA may be employed as the secondary side fuel pressure adjustment mechanism GV.
In this case, as shown in FIG. 8, the connection point between the field connection pipe H3 of the field equipment 100a and the field fuel pipe H1 is connected between the governor GA and the first solenoid valve SV1. is controlled to be constant.

上記実施形態では、燃焼用気体配管開閉弁として、空気流量制御弁RVaを用いる構成例を示したが、空気流量制御弁RVaとは別に開閉弁を備える構成を採用しても構わない。 In the above embodiment, a configuration example using the air flow rate control valve RVa as the combustion gas pipe opening/closing valve has been shown, but a configuration including an opening/closing valve separate from the air flow rate control valve RVa may be adopted.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configurations disclosed in the above embodiments (including other embodiments, the same shall apply hereinafter) can be applied in combination with configurations disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in this specification are exemplifications, and the embodiments of the present invention are not limited thereto, and can be modified as appropriate without departing from the object of the present invention.

本発明の流量制御システム、及びそれを備えた燃焼制御システムは、流量計を設けることのない簡易な構成を維持して経済性を向上しつつ、調整等における意図しない燃焼等の発生を防止できると共に、燃料ガスの流量等の各種調整の自動化による省人化を安全に実現できる流体の流量制御システム、及びそれを備えた燃焼制御システムとして、有効に利用可能である。 The flow control system of the present invention and the combustion control system equipped with the same can prevent unintended combustion, etc. during adjustment, etc., while maintaining a simple configuration without providing a flow meter and improving economic efficiency. In addition, it can be effectively used as a fluid flow rate control system and a combustion control system having the same that can safely realize manpower saving by automating various adjustments such as the flow rate of fuel gas.

100、200:流量制御システム
100a、200a:現場設備
300 :燃焼制御システム
400 :試験設備
A :燃焼用空気
B :ブロア
BNa :バーナ
F1 :第1流量計
F2 :第2流量計
G :燃料ガス
GV :二次側燃料圧力調整機構
GV3 :第1逆止弁、第2逆止弁
H1 :現場燃料配管
H1x :試験燃料配管
H2 :現場空気配管
H2x :試験空気配管
H3 :現場接続配管
H3x :試験接続配管
P1g :第1燃料圧力計
P2g :第2燃料圧力計
Q :流量
Q' :補正後燃料流量
RVg :燃料流量制御弁
S :制御装置
S1 :流量制御部
S2 :異常判定部
S3 :記憶部
S4 :圧力制御部
SV1 :第1電磁弁
SV2 :第2電磁弁
SV3 :接続配管開閉弁
RVa :空気流量制御弁
100, 200: flow control systems 100a, 200a: field equipment 300: combustion control system 400: test equipment A: combustion air B: blower BNa: burner F1: first flowmeter F2: second flowmeter G: fuel gas GV : Secondary side fuel pressure adjustment mechanism GV3 : First check valve, second check valve H1 : Field fuel pipe H1x : Test fuel pipe H2 : Field air pipe H2x : Test air pipe H3 : Field connection pipe H3x : Test connection Piping P1g: First fuel pressure gauge P2g: Second fuel pressure gauge Q: Flow rate Q': Corrected fuel flow rate RVg: Fuel flow rate control valve S: Control device S1: Flow rate control section S2: Abnormality determination section S3: Storage section S4 : Pressure control unit SV1 : First solenoid valve SV2 : Second solenoid valve SV3 : Connection pipe opening/closing valve RVa : Air flow rate control valve

Claims (8)

燃料ガスを含む制御対象気体の流量を制御する流量制御システムであって、
前記制御対象気体としての前記燃料ガスが通流する現場燃料配管に設けられ、流量制御部の制御指令により開度を制御する燃料流量制御弁と、
前記現場燃料配管で前記燃料流量制御弁の出口に設けられ前記燃料流量制御弁の二次側出口に設けられる第2燃料圧力計の計測結果に基づいて前記二次側出口の圧力を調整可能な二次側燃料圧力調整機構と、
前記現場燃料配管で前記燃料流量制御弁の一次側入口に設けられ、第1燃料圧力計の計測結果に基づいて前記一次側入口の圧力を調整可能な一次側燃料圧力調整機構と、
前記現場燃料配管の一次側の最上流部位に設けられ、前記現場燃料配管を開閉する燃料配管開閉弁と、
前記燃料ガスの酸化剤としての燃焼用気体を通流する現場燃焼用気体配管に設けられ、当該現場燃焼用気体配管に前記燃焼用気体を圧送するブロアと、当該ブロアの下流側で前記現場燃焼用気体配管を開閉可能な燃焼用気体配管開閉弁と、
前記現場燃料配管の前記燃料流量制御弁の一次側且つ前記燃料配管開閉弁の二次側と前記現場燃焼用気体配管の前記燃焼用気体配管開閉弁の一次側且つ前記ブロアの二次側とを接続する現場接続配管に設けられ、当該現場接続配管を開閉する接続配管開閉弁とを備えた現場設備において、
前記現場燃料配管に替えて前記現場燃料配管と同一径の試験燃料配管と、前記現場燃焼用気体配管に替えて前記現場燃焼用気体配管と同一径の試験燃焼用気体配管と、前記現場接続配管に替えて前記現場接続配管と同一径の試験接続配管との夫々に、前記現場設備に設けられる構成を備えると共に、前記試験燃料配管を通流する流体の流量を計測する燃料流量計を備えた試験設備において、前記二次側燃料圧力調整機構と前記一次側燃料圧力調整機構とにより圧力を制御する圧力制御部及び前記流量制御部が、前記燃焼用気体配管開閉弁及び前記燃料配管開閉弁を閉止状態とし前記接続配管開閉弁を開放状態とすると共に、前記ブロアを働かせて前記燃焼用気体を前記試験接続配管を介して前記試験燃料配管に通流させて、前記燃料流量制御弁を所定の初期設定開度に維持し前記一次側燃料圧力調整機構にて前記一次側入口の圧力を所定の燃料流量制御圧力に維持している状態で、前記二次側燃料圧力調整機構にて前記二次側出口の圧力を所定の初期設定二次圧に設定した後に、前記燃料流量制御弁の開度と前記燃料流量計にて計測される流量との開度燃料流量関係を記憶する記憶部を備え、
前記現場設備で、前記圧力制御部と前記流量制御部が、前記燃焼用気体配管開閉弁及び前記燃料配管開閉弁を閉止状態とし前記接続配管開閉弁を開放状態とすると共に、前記ブロアを働かせて前記燃焼用気体を前記現場接続配管を介して前記現場燃料配管に通流させて、前記燃料流量制御弁を所定の初期設定開度に維持し、前記一次側燃料圧力調整機構にて前記一次側入口の圧力を所定の燃料流量制御圧力に維持した状態で、前記二次側燃料圧力調整機構にて前記二次側出口の圧力を所定の初期設定二次圧に設定した後に、前記燃料配管開閉弁を開放状態として前記接続配管開閉弁を閉止状態としている状態で、前記記憶部に記憶された前記開度燃料流量関係に基づいて、前記燃料流量制御弁の開度を制御して前記燃料ガスの流量を目標流量に制御する流量制御システム。
A flow rate control system for controlling the flow rate of a gas to be controlled including a fuel gas,
A fuel flow control valve provided in the on-site fuel pipe through which the fuel gas as the control target gas flows, and controlling the opening degree according to a control command from a flow control unit;
The pressure of the secondary side outlet can be adjusted based on the measurement result of a second fuel pressure gauge provided at the outlet of the fuel flow control valve in the on-site fuel piping and provided at the secondary side outlet of the fuel flow control valve. a secondary side fuel pressure adjustment mechanism;
A primary side fuel pressure adjustment mechanism provided at the primary side inlet of the fuel flow control valve in the field fuel pipe and capable of adjusting the pressure at the primary side inlet based on the measurement result of a first fuel pressure gauge;
A fuel pipe on-off valve provided at the most upstream portion of the primary side of the on-site fuel pipe and opening and closing the on-site fuel pipe;
a blower provided in an on-site combustion gas pipe for flowing a combustion gas as an oxidant of the fuel gas, for pumping the combustion gas to the on-site combustion gas pipe; and the on-site combustion on the downstream side of the blower. a combustion gas pipe open/close valve capable of opening and closing the gas pipe for combustion;
The primary side of the fuel flow control valve of the on-site fuel pipe and the secondary side of the fuel pipe on-off valve and the primary side of the combustion gas pipe on-off valve of the on-site combustion gas pipe and the secondary side of the blower In a field facility equipped with a connection pipe opening/closing valve that is provided in a connected field connection pipe and that opens and closes the field connection pipe,
A test fuel pipe having the same diameter as the on-site fuel pipe instead of the on-site fuel pipe, a test combustion gas pipe having the same diameter as the on-site combustion gas pipe instead of the on-site combustion gas pipe, and the on-site connection pipe Instead, each of the field connection pipe and the test connection pipe of the same diameter is provided with a configuration provided in the field equipment, and a fuel flow meter for measuring the flow rate of the fluid flowing through the test fuel pipe. In the test facility, the pressure control unit and the flow control unit that control pressure by the secondary side fuel pressure adjustment mechanism and the primary side fuel pressure adjustment mechanism operate the combustion gas pipe on-off valve and the fuel pipe on-off valve. The connection pipe opening/closing valve is closed and the connection pipe opening/closing valve is opened. In a state where the initial set opening is maintained and the pressure at the primary side inlet is maintained at a predetermined fuel flow rate control pressure by the primary side fuel pressure adjustment mechanism, the secondary side fuel pressure adjustment mechanism is operated to After setting the pressure of the side outlet to a predetermined initial setting secondary pressure, a storage unit for storing the opening degree fuel flow rate relationship between the opening degree of the fuel flow control valve and the flow rate measured by the fuel flow meter ,
In the field equipment, the pressure control unit and the flow control unit close the combustion gas pipe opening/closing valve and the fuel pipe opening/closing valve, open the connection pipe opening/closing valve, and operate the blower. The combustion gas is caused to flow through the on-site fuel pipe through the on-site connection pipe, the fuel flow rate control valve is maintained at a predetermined initial set opening, and the primary side fuel pressure adjustment mechanism controls the primary side With the inlet pressure maintained at a predetermined fuel flow rate control pressure, the secondary side fuel pressure adjustment mechanism sets the pressure at the secondary side outlet to a predetermined initial set secondary pressure, and then opens and closes the fuel pipe. In a state in which the valve is in an open state and the connection pipe opening/closing valve is in a closed state, the fuel gas is controlled by controlling the opening degree of the fuel flow control valve based on the opening degree fuel flow rate relationship stored in the storage unit. A flow rate control system that controls the flow rate of to the target flow rate.
前記現場接続配管には、前記現場燃料配管から前記現場燃焼用気体配管への前記燃料ガスの通流を阻止する第1逆止弁が設けられていると共に、
前記試験接続配管には、前記試験燃料配管から前記試験燃焼用気体配管への前記燃料ガスの通流を阻止する第2逆止弁が設けられている請求項1に記載の流量制御システム。
The on-site connection pipe is provided with a first check valve that prevents the fuel gas from flowing from the on-site fuel pipe to the on-site combustion gas pipe,
2. The flow rate control system according to claim 1, wherein the test connecting pipe is provided with a second check valve that prevents the fuel gas from flowing from the test fuel pipe to the test combustion gas pipe.
前記現場設備及び前記試験設備において、前記燃料配管開閉弁が開放状態にあるときに前記接続配管開閉弁の閉止状態を維持するインターロック機構が設けられている請求項1又は2に記載の流量制御システム。 3. The flow rate control according to claim 1, wherein the on-site equipment and the test equipment are provided with an interlock mechanism for maintaining the closed state of the connection pipe opening/closing valve when the fuel pipe opening/closing valve is in the open state. system. 前記流量制御部は、前記燃料流量計にて計測された流量Qを、前記燃料ガスの比重をsとした以下の〔式1〕に示す換算式にて補正した補正後燃料流量Q’を用いて、前記開度燃料流量関係を導出する請求項1~3の何れか一項に記載の流量制御システム。
Q’=Q/√s ・・・〔式1〕
The flow rate control unit uses a corrected fuel flow rate Q' obtained by correcting the flow rate Q measured by the fuel flow meter by the conversion formula shown in the following [Equation 1], where s is the specific gravity of the fuel gas. 4. The flow rate control system according to any one of claims 1 to 3, wherein the opening degree fuel flow rate relationship is derived.
Q′=Q/√s [Formula 1]
前記記憶部は、前記試験設備において、前記圧力制御部及び前記流量制御部が前記燃焼用気体配管開閉弁及び前記燃料配管開閉弁を閉止状態とし前記接続配管開閉弁を開放状態とする共に、前記ブロアを働かせて前記燃焼用気体を前記試験接続配管を介して前記試験燃料配管に通流させて、前記燃料流量制御弁を所定の初期設定開度に維持し前記一次側燃料圧力調整機構にて前記一次側入口の圧力を所定の燃料流量制御圧力に維持している状態で、前記二次側燃料圧力調整機構にて前記二次側出口の圧力を所定の初期設定二次圧に設定した後に、前記第2燃料圧力計にて計測される前記二次側出口の圧力と前記燃料流量計にて計測される流量との圧力燃料流量関係を記憶するものであり、
前記現場設備で、前記流量制御部が、前記燃料配管開閉弁を開放状態として前記接続配管開閉弁を閉止状態としている状態で、前記開度燃料流量関係にて前記燃料流量制御弁の開度を制御して前記燃料ガスの流量を前記目標流量へ制御しているときに、当該制御された前記燃料ガスの流量が、前記第2燃料圧力計にて計測される前記二次側出口の圧力と前記圧力燃料流量関係とから導出される流量と異なる場合に、流量制御異常と判定する異常判定部を備える請求項1~4の何れか一項に記載の流量制御システム。
In the test facility, the storage unit causes the pressure control unit and the flow control unit to close the combustion gas pipe opening/closing valve and the fuel pipe opening/closing valve and to open the connection pipe opening/closing valve. A blower is operated to cause the combustion gas to flow through the test fuel pipe through the test connection pipe, and the fuel flow rate control valve is maintained at a predetermined initial set opening, and the primary side fuel pressure adjustment mechanism After setting the pressure of the secondary side outlet to a predetermined initial setting secondary pressure by the secondary side fuel pressure adjustment mechanism in a state where the pressure of the primary side inlet is maintained at a predetermined fuel flow rate control pressure, , which stores the pressure fuel flow rate relationship between the pressure at the secondary side outlet measured by the second fuel pressure gauge and the flow rate measured by the fuel flow meter,
In the on-site equipment, the flow rate control unit adjusts the opening degree of the fuel flow control valve according to the opening degree fuel flow rate relationship in a state where the fuel pipe opening and closing valve is in an open state and the connection pipe opening and closing valve is in a closed state. When the flow rate of the fuel gas is controlled to the target flow rate, the controlled flow rate of the fuel gas is the pressure at the secondary outlet measured by the second fuel pressure gauge. The flow rate control system according to any one of claims 1 to 4, further comprising an abnormality determination unit that determines that flow rate control is abnormal when the flow rate is different from the flow rate derived from the pressure-fuel flow rate relationship.
請求項1~5の何れか一項に記載の流量制御システムを備えると共に、前記流量制御システムにて流量制御され前記現場燃料配管を通流する前記燃料ガスと前記現場燃焼用気体配管を通流する前記燃焼用気体とが導かれるバーナを備えた燃焼制御システムであって、
前記現場設備において、前記流量制御部は、異なる種類の前記バーナに対し共通の前記開度燃料流量関係を用いて前記燃料ガスの流量を制御する燃焼制御システム。
A flow control system according to any one of claims 1 to 5 is provided, and the fuel gas whose flow rate is controlled by the flow control system and flows through the on-site fuel pipe and the on-site combustion gas pipe are circulated. a combustion control system comprising a burner through which the combustion gas to
In the on-site equipment, the flow rate control unit controls the flow rate of the fuel gas using the common opening degree fuel flow rate relationship for different types of burners.
請求項5に記載の流量制御システムを備えると共に、前記流量制御システムにて流量制御され前記現場燃料配管を通流する前記燃料ガスと前記現場燃焼用気体配管を通流する前記燃焼用気体とが導かれるバーナを備えた燃焼制御システムであって、
前記現場設備において、前記異常判定部は、異なる種類の前記バーナに対し共通の前記圧力燃料流量関係を用いて前記流量制御異常の判定を実行する燃焼制御システム。
The flow rate control system according to claim 5 is provided, and the fuel gas flowing through the on-site fuel piping whose flow rate is controlled by the flow control system and the combustion gas flowing through the on-site combustion gas piping are controlled. A combustion control system with a directed burner, comprising:
In the on-site equipment, the abnormality determination unit is a combustion control system that determines the flow rate control abnormality using the common pressure fuel flow rate relationship for different types of burners.
前記一次側燃料圧力調整機構として、前記燃焼用気体を圧送する前記ブロアを共用する請求項6又は7に記載の燃焼制御システム。
8. The combustion control system according to claim 6, wherein said blower for pumping said combustion gas is shared as said primary side fuel pressure adjusting mechanism.
JP2021188947A 2021-11-19 2021-11-19 Flow rate control system and combustion control system including the same Pending JP2023075809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021188947A JP2023075809A (en) 2021-11-19 2021-11-19 Flow rate control system and combustion control system including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021188947A JP2023075809A (en) 2021-11-19 2021-11-19 Flow rate control system and combustion control system including the same

Publications (1)

Publication Number Publication Date
JP2023075809A true JP2023075809A (en) 2023-05-31

Family

ID=86542240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021188947A Pending JP2023075809A (en) 2021-11-19 2021-11-19 Flow rate control system and combustion control system including the same

Country Status (1)

Country Link
JP (1) JP2023075809A (en)

Similar Documents

Publication Publication Date Title
WO2014156042A1 (en) Flow volume control device equipped with flow rate monitor
US7568507B2 (en) Diagnostic method and apparatus for a pressurized gas supply system
EP1772663A1 (en) Gas filling system
US10247416B2 (en) Method for operating a gas burner
CN106940090B (en) Gas water heater control system adjusted according to secondary pressure of gas
US20210239327A1 (en) Combined heating and hot-water boiler and control method therefor
JP4956391B2 (en) Fluid leak detection method
JP2023075809A (en) Flow rate control system and combustion control system including the same
TWI429854B (en) Detection and Compensation of Gas Safety Supply
RU2761604C1 (en) Positive pressure coke oven heating system and method for temperature control
JP7386775B2 (en) Flow control system and combustion control system equipped with the same
US20070256739A1 (en) Single system for low or high pressure gases control and high or low pressure gases control valve
JP3357460B2 (en) Combustion appliance with proportional valve and proportional valve adjusting device
CN211450365U (en) Steam transmission system
KR20110071310A (en) Appartus for controlling hot-air temperature in hot stove system
JPS6129615A (en) Fuel gas cutting device
KR101572559B1 (en) Method for feeding hot gas to a shaft furnace
JP2008256271A (en) Forced air supply type combustion device
JPS59136817A (en) Speed control method for blower of combustion air in heating furnace
JP7257898B2 (en) Oxygen ratio control system
CN220283895U (en) Kiln combustion control system and kiln
JP7073025B1 (en) Combustion equipment
JP3777763B2 (en) Failure diagnosis device for water heater
JP2000018008A (en) Feed water heating device
JP2024060223A (en) Industrial Burners

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240513