JP2023075550A - Method of measuring power distribution in nuclear reactor and device therefor - Google Patents

Method of measuring power distribution in nuclear reactor and device therefor Download PDF

Info

Publication number
JP2023075550A
JP2023075550A JP2021188522A JP2021188522A JP2023075550A JP 2023075550 A JP2023075550 A JP 2023075550A JP 2021188522 A JP2021188522 A JP 2021188522A JP 2021188522 A JP2021188522 A JP 2021188522A JP 2023075550 A JP2023075550 A JP 2023075550A
Authority
JP
Japan
Prior art keywords
detector
power distribution
neutron
reactor
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021188522A
Other languages
Japanese (ja)
Inventor
裕司 深谷
Yuji Fukaya
繁昭 中川
Shigeaki Nakagawa
将一朗 沖田
Shoichiro Okita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2021188522A priority Critical patent/JP2023075550A/en
Priority to PL442859A priority patent/PL442859A1/en
Priority to FR2212041A priority patent/FR3129519A1/en
Priority to GB2217320.7A priority patent/GB2615387A/en
Publication of JP2023075550A publication Critical patent/JP2023075550A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/108Measuring reactor flux
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

To enable measurement of a power distribution of a nuclear reactor having limitation on locations each inserted with a neutron detector, like high temperature gas reactors and fast reactors.SOLUTION: Provided is a method of measuring a power distribution at a reactor center on the basis of a neutron transport equation which expresses a relationship among power densities of a plurality of fuel elements in a pressure vessel of a nuclear reactor, output signals from neutron detectors at positions of a plurality of neutron detectors inside and outside the pressure vessel, and detector sensitivities related to positions of the fuel elements and the neutron detectors. In the method, a power distribution at the reactor center of the nuclear reactor is calculated from a product of a pseudo inverse matrix related to the detector sensitivities and an output signal matrix from the neutron detectors.SELECTED DRAWING: Figure 3

Description

本発明は、中性子検出器信号を用いた逆解法によって原子炉内出力分布を測定する方法及びその装置に関する。 The present invention relates to a method and apparatus for measuring power distribution in a nuclear reactor by inverse solution using neutron detector signals.

現行軽水炉では、炉内環境が300~400℃程度であるため、原子炉の燃料集合体近傍へ直接中性子検出器を装荷し、出力分布を測定し、測定された出力分布に基づいて炉内燃料の燃焼度管理が行われている(特許文献1)。一方、高温ガス炉では、炉内の温度が最高で1000℃程度、高速炉では600℃程度に達するため、炉内の出力分布測定の試みがなされてこなかった。 In current light water reactors, the environment inside the reactor is about 300 to 400°C. burnup management is performed (Patent Document 1). On the other hand, since the temperature inside the HTGR reaches about 1000°C at maximum and about 600°C for the fast reactor, no attempt has been made to measure the power distribution inside the reactor.

特許第5954902号公報Japanese Patent No. 5954902

近年、セラミックス検出器など、耐高温の中性子検出器の開発がなされてきたが、高温ガス炉への炉内計装の配置は、原子炉冷却材出口付近までの挿入は現実的ではなく、炉内への検出器の挿入場所が限られる。また、炉内構造物の観点からも、炉内への検出器の挿入は、高温ガス炉及び高速炉共に、制御棒案内管を併用するのが現実的であると思われ、各燃料体近傍に直接的に検出器を配置することは現実的ではない。 In recent years, ceramic detectors and other high-temperature resistant neutron detectors have been developed. There are limited places to insert the detector inside. Also, from the viewpoint of the reactor internals, it seems realistic to insert the detector into the reactor both in high-temperature gas-cooled reactors and in fast reactors, by using control rod guide tubes together. It is impractical to place the detector directly on the

上記のように、本発明は、高温ガス炉、高速炉など中性子の飛程が長い炉心で、かつ、炉内への検出器の挿入ができないもの、出来ても挿入場所が限られる原子炉の炉内出力分布の測定を可能とすることを主たる目的とする。 As described above, the present invention is applicable to nuclear reactors such as high-temperature gas reactors and fast reactors, which have long neutron ranges and cannot insert detectors into the reactors, or whose insertion locations are limited even if possible. The main purpose is to enable measurement of in-core power distribution.

本発明の主たる目的は、上述の如く、高温ガス炉、高速炉などのように中性子検出器の挿入場所が限られた原子炉の炉内出力分布の測定を可能とすることを主たる目的としているが、当然の帰結として中性子検出器の挿入場所が比較的に自由である沸騰水型原子炉や加圧水型原子炉などの軽水炉にもおいてもそのまま適用できることは言うまでもない。 As described above, the main object of the present invention is to make it possible to measure the in-reactor power distribution of nuclear reactors such as high-temperature gas reactors and fast reactors, in which the places where neutron detectors are inserted are limited. However, as a matter of course, it goes without saying that the method can also be applied as it is to light water reactors such as boiling water reactors and pressurized water reactors, in which the neutron detector can be inserted relatively freely.

本発明の第1の観点に係る原子炉内出力分布の測定方法は、原子炉の圧力容器内の複数燃料要素の出力密度と、圧力容器外の複数中性子検出器の位置における中性子検出器からの出力信号と、前記燃料要素及び前記中性子検出器の位置に関する検出器感度との関係を表す中性子輸送方程式に基づいて炉心の出力分布を測定する方法であって、前記中性子検出器からの出力信号の行列と前記検出器感度に関する疑似逆行列との積から前記原子炉の炉心の出力分布を算出することを特徴としている。 A method for measuring a power distribution in a nuclear reactor according to a first aspect of the present invention comprises power densities of a plurality of fuel elements within a pressure vessel of a nuclear reactor and power densities from neutron detectors at positions of the plurality of neutron detectors outside the pressure vessel. A method for measuring a core power distribution based on a neutron transport equation representing the relationship between output signals and detector sensitivities with respect to the positions of the fuel elements and the neutron detectors, the method comprising: The power distribution of the core of the nuclear reactor is calculated from the product of the matrix and a pseudo inverse matrix relating to the detector sensitivity.

より具体的には、本発明の原子炉内出力分布の測定方法は、圧力容器内のn個の複数燃料要素iの出力密度piと、圧力容器内外のm個の複数検出器位置jの中性子検出器信号Rjと、前記燃料要素i及び前記検出器位置jに関する検出器感度wとの関係を表す中性子輸送方程式に基づいた下記式によって炉心の出力分布を測定する方法であって、
(1)前記中性子検出器信号を下記式から求める第1のステップと、

Figure 2023075550000002
More specifically, the method for measuring the power distribution in the reactor of the present invention is based on the power densities pi of n multiple fuel elements i inside the pressure vessel and the neutrons at m multiple detector positions j inside and outside the pressure vessel A method for measuring the power distribution of a core according to the following equation based on the neutron transport equation representing the relationship between detector signal Rj and detector sensitivity wj , i for said fuel element i and said detector position j, comprising:
(1) a first step of obtaining the neutron detector signal from the following equation;
Figure 2023075550000002


(2)前記中性子検出器信号Rと、前記出力密度piと、前記検出器感度wとを下記式の行列表示で表す第2のステップと、

Figure 2023075550000003

(2) a second step of representing the neutron detector signal Rj , the power density pi, and the detector sensitivity wj , i in a matrix representation of the following equation;
Figure 2023075550000003

(3)前記検出器感度wの行列表示の疑似逆行列Wを下記式の行列表示により算出する第3のステップと、

Figure 2023075550000004
(3) a third step of calculating the pseudo-inverse matrix W + of the matrix representation of the detector sensitivity w j , i by the matrix representation of the following equation;

Figure 2023075550000004

(4)前記出力密度piの行列表示を、前記中性子検出器信号Rの行列表示と、前記疑似逆行列Wによる下記式により算出する第4のステップと

Figure 2023075550000005
(4) A fourth step of calculating the matrix representation of the power density pi by the matrix representation of the neutron detector signal R j and the pseudo inverse matrix W + by the following formula:
Figure 2023075550000005

を順次実行することによって、原子炉内出力分布を測定することを特徴としている。 is characterized by measuring the power distribution in the reactor by sequentially executing

本発明の第2の観点に係る原子炉内出力分布の測定装置は、原子炉の圧力容器内の複数燃料要素の出力密度と、圧力容器内外の複数検出器の位置における中性子検出器信号と、前記燃料要素及び前記検出器の位置に関する検出器感度と、の関係を表す中性子輸送方程式に基づいて炉心の出力分布を測定する装置であって、前記検出器感度に対する逆解析により前記原子炉の炉心の出力分布を算出する手順を示すプログラムを記憶している記憶装置、及び前記検出器からの信号を入力して前記プログラムに基づいて所定の演算を行う演算装置を具備することを特徴とする。 A nuclear reactor power distribution measuring apparatus according to a second aspect of the present invention comprises power densities of a plurality of fuel elements in a reactor pressure vessel, neutron detector signals at a plurality of detector positions inside and outside the pressure vessel, A device for measuring the power distribution of the reactor core based on a neutron transport equation representing the relationship between the detector sensitivity with respect to the position of the fuel element and the detector, and the core of the nuclear reactor by inverse analysis of the detector sensitivity A storage device storing a program indicating a procedure for calculating the output distribution of the detector, and an arithmetic device for inputting a signal from the detector and performing a predetermined calculation based on the program.

より具体的には、本発明の原子炉内出力分布の測定装置は、圧力容器内のn個の複数燃料要素iの出力密度pと、圧力容器内外のm個の複数検出器位置jの中性子検出器信号Rと、前記燃料要素i及び前記検出器位置jに関する検出器感度wとの関係を表す中性子輸送方程式に基づいた下記式によって炉心の出力分布を測定する装置であって、前記プログラムは、
(1)前記中性子検出器信号を下記式から求める第1のステップと、

Figure 2023075550000006
More specifically, the reactor power distribution measurement apparatus of the present invention measures the power densities pi of n multiple fuel elements i inside the pressure vessel and the m multiple detector positions j inside and outside the pressure vessel. A device for measuring the power distribution of the core by the following equation based on the neutron transport equation representing the relationship between the neutron detector signal Rj and the detector sensitivity wj , i with respect to the fuel element i and the detector position j. and the program is
(1) a first step of obtaining the neutron detector signal from the following equation;
Figure 2023075550000006

(2)前記中性子検出器信号Rと、前記出力密度pと、前記検出器感度wとを下記式の行列表示で表す第2のステップと、

Figure 2023075550000007
(2) a second step of representing the neutron detector signal Rj, the power density pi, and the detector sensitivity wj,i in a matrix representation of the following equation;
Figure 2023075550000007

(3)前記検出器感度wの行列表示の疑似逆行列Wを下記式の行列表示により算出する第3のステップと、

Figure 2023075550000008
(3) a third step of calculating the pseudo-inverse matrix W + of the matrix representation of the detector sensitivity w j , i by the matrix representation of the following equation;
Figure 2023075550000008

(4)前記出力密度pの行列表示を、前記中性子検出器信号Rの行列表示と、前記疑似逆行列Wによる下記式により算出する第4のステップと

Figure 2023075550000009
(4) A fourth step of calculating the matrix representation of the power density pi by the matrix representation of the neutron detector signal Rj and the pseudo-inverse matrix W + by the following formula:
Figure 2023075550000009

を順次実行することを特徴とする。 are sequentially executed.

本発明により、以下の効果が達成される。
(1)中性子の飛程が長く、小型の炉心に対しては、炉外検出器のみによる検出器信号を用いて炉内出力分布測定が可能となる。
(2)炉内に検出器が挿入でき、挿入場所が限られる場合には、その限られた炉内位置における検出器信号から、炉心全体の炉内出力分布測定が可能となる。
The present invention achieves the following effects.
(1) For a small core with a long range of neutrons, it is possible to measure the in-core power distribution using detector signals from only the out-of-core detectors.
(2) If the detector can be inserted into the reactor and the insertion location is limited, it is possible to measure the in-core power distribution of the entire core from the detector signals at the limited location in the reactor.

なお、先に説明したように、中性子の飛程が短い軽水炉においても、本発明を適用することによって原子炉内出力分布を測定することができ、かつ従来よりも出力分布測定の解像度を上げることが可能である。 As described above, even in a light water reactor with a short range of neutrons, the power distribution in the reactor can be measured by applying the present invention, and the resolution of the power distribution measurement can be improved more than before. is possible.

軽水炉の炉外検出器の検出感度の説明図。Explanatory drawing of the detection sensitivity of an ex-core detector of a light water reactor. (A)は、高温ガス炉における炉外検出器の検出感度の説明図であり、(B)は炉内検出器の検出感度の説明図。(A) is an explanatory diagram of the detection sensitivity of an ex-core detector in a high-temperature gas-cooled reactor, and (B) is an explanatory diagram of the detection sensitivity of an in-core detector. 本発明に係る原子炉内出力分布の測定方法を概略的に示すフローチャート。4 is a flow chart schematically showing a method of measuring the power distribution in the reactor according to the present invention; 本発明に係る原子炉内出力分布の測定に使用する炉外検出器と炉心との位置関係を示す概略説明図。FIG. 2 is a schematic explanatory diagram showing the positional relationship between an out-of-core detector used to measure the in-reactor power distribution according to the present invention and the core. 高温ガス炉における炉外検出器の駆動例を示す図。The figure which shows the driving example of the out-of-core detector in a high temperature gas-cooled reactor. 高温ガス炉における炉内検出器の駆動例を示す図。The figure which shows the driving example of the in-core detector in a high temperature gas-cooled reactor.

図1に示すように、軽水炉の炉外検出器に対する各燃料集合体からの検出感度は、炉心の外周部の燃料体に限られ、炉外計装による原子炉中心部の炉内位置の出力分布の直接的な測定は原理的に不可能である。加圧水型軽水炉(PWR)においては、例えば特許第5954902号に開示されているように、Xe振動を制御するための出力分布の軸方向の炉心上部・下部への出力偏差(アクシャルオフセット)の監視のために、炉外計装によるアクシャルオフセットの評価を行う。出力分布の評価を目的としているが、実際は想定した出力分布の絶対値を周辺部の測定値により決定する問題であり、炉心中心部の出力分布自体は仮定したものであり、本発明での目的とするような、燃焼度管理に用いるような詳細な出力分布は得られない。 As shown in Fig. 1, the detection sensitivity from each fuel assembly to the out-of-core detectors of a light water reactor is limited to the fuel bodies in the outer periphery of the core, and the output of the in-core position in the core of the reactor by the out-of-core instrumentation. A direct measurement of the distribution is impossible in principle. In a pressurized water reactor (PWR), for example, as disclosed in Japanese Patent No. 5954902, monitoring of the power deviation (axial offset) in the axial direction of the power distribution to control the Xe oscillation Therefore, the axial offset is evaluated by ex-core instrumentation. Although the purpose is to evaluate the power distribution, it is actually a problem of determining the absolute value of the assumed power distribution from the measured values at the periphery, and the power distribution itself at the center of the core is assumed, which is not the purpose of the present invention. Such a detailed power distribution as used for burnup control cannot be obtained.

これは、軽水炉における減速材としての軽水の性能が優れているため、核分裂で発生した中性子が、軽水に含まれる水素と衝突し、核燃料物質に吸収されやすい熱中性子に瞬時に変わるため、中性子の飛程が非常に短く、図1に示すように、炉心中心部で発生した中性子が炉外への漏洩がほとんどないためである。 This is because light water has excellent performance as a moderator in light water reactors, so neutrons generated by nuclear fission collide with hydrogen contained in light water and instantly change into thermal neutrons, which are easily absorbed by nuclear fuel materials. This is because the range is very short and, as shown in FIG. 1, neutrons generated in the center of the core hardly leak out of the reactor.

一方で、図2には、高温ガス炉の試験研究炉HTTRの体系を対象に、本発明で想定するような、炉外検出器、炉内検出器の配置を想定した際の検出器感度を示している。軽水炉のものと比較すると広い範囲に検出器感度が分布していることが分かる。この特性を想定して、検出器信号の逆解析を行い、出力分布に再構成する技術を提示する。測定原理は次のようになる。図2に示すように、検出器位置からの核燃料領域への中性子の感度を中性子輸送計算により予め評価しておく。

Figure 2023075550000010
On the other hand, Fig. 2 shows the detector sensitivities when assuming the arrangement of the detectors outside and inside the reactor as assumed in the present invention, targeting the system of the test and research reactor HTTR of the high-temperature gas-cooled reactor. showing. It can be seen that the detector sensitivity is distributed over a wider range than that of the light water reactor. Assuming this characteristic, we present a technique for inverse analysis of the detector signal and reconstruction of the output distribution. The measurement principle is as follows. As shown in FIG. 2, the neutron sensitivity from the detector position to the nuclear fuel region is evaluated in advance by neutron transport calculations.
Figure 2023075550000010

w(r,r)は炉内位置rで発生した中性子が、検出器位置rにおいて発生した中性子を検出器で検出する感度、S(r)は核分裂中性子源である。一方で、この検出器感度を評価するためには、以下の中性子輸送方程式を解く必要がある。

Figure 2023075550000011
w(r,r d ) is the sensitivity of the detector to detect neutrons generated at position r in the reactor from neutrons generated at detector position rd , and S(r) is the fission neutron source. On the other hand, in order to evaluate the detector sensitivity, it is necessary to solve the following neutron transport equation.
Figure 2023075550000011

Lは中性子欠損演算子で、中性子の輸送、散乱、吸収による中性子の欠損を表す演算子である。その結果、得られた中性子束φ(r)の検出器の反応が検出器信号となる。

Figure 2023075550000012
L is a neutron deficiency operator, which represents neutron deficiency due to neutron transport, scattering, and absorption. As a result, the detector response of the obtained neutron flux φ(r) becomes the detector signal.
Figure 2023075550000012

Σは、検出器内の中性子反応物質の断面積を示す。R(r,r)は炉内位置rで発生した中性子による検出器位置rにおける検出器信号となる。 Σd indicates the cross-sectional area of the neutron reactant in the detector. R(r d , r) is the detector signal at detector position rd due to neutrons generated at in-core position r.

ここで、中性子源S(r)を次のように、炉内位置rのみからの単位核分裂源と想定するならば、(ただし、χは核分裂スペクトル)

Figure 2023075550000013
Here, if the neutron source S(r) is assumed to be a unit fission source from only the in-core position r i as follows, (where χ is the fission spectrum)
Figure 2023075550000013

この検出器率自体が、検出器感度であるため、

Figure 2023075550000014
Since this detector rate is itself the detector sensitivity,
Figure 2023075550000014

となる。一方で、便宜上は、出力分布は特定の広さを持つ燃料要素について評価されるため、検出器感度も燃料要素に対して定義されるべきであり、次のように定義される。

Figure 2023075550000015
becomes. On the other hand, for convenience, since the power distribution is evaluated for a fuel element with a specific breadth, the detector sensitivity should also be defined for the fuel element, defined as:
Figure 2023075550000015

これは、燃料要素iから発生した中性子の検出器位置jの検出器で中性子を検出する際の感度である。 This is the sensitivity of the neutrons emitted from the fuel element i when the detector at the detector position j detects neutrons.

一方で、この検出器感度を求める際は、(4)式であらわされる、燃料要素iの特定領域のみに分布された中性子源を用いた(2)式による中性子輸送計算を燃料要素の数だけ行う必要があり、計算時間が増大することと、多数の数値処理による誤差の混入の恐れがあり、一般的には、以下の随伴中性子輸送方程式を解く解法が用いられる。

Figure 2023075550000016
On the other hand, when obtaining this detector sensitivity, the neutron transport calculation by Eq. However, there is a risk of an increase in calculation time and the inclusion of errors due to a large number of numerical processings. Generally, a solution method that solves the following adjoint neutron transport equation is used.
Figure 2023075550000016

は随伴中性子欠損演算子である。これにより、(5)式の検出器感度は以下のように表すことができる。

Figure 2023075550000017
L + is the adjoint neutron deficiency operator. Accordingly, the detector sensitivity of equation (5) can be expressed as follows.
Figure 2023075550000017

この計算法では、(7)式の随伴中性子輸送方程式を一度解くだけで、(6)式と(8)式の集計作業を行うだけで、各燃料要素に対する検出器感度の評価ができる。 In this calculation method, the sensitivity of the detector to each fuel element can be evaluated by solving the adjoint neutron transport equation (7) only once and by performing the tabulation work of the equations (6) and (8).

ここで、検出器位置jにおける検出器信号Rは、検出器位置jの検出器に燃料要素iからの感度wと燃料要素iに対する出力密度pによって、次のように表すことができる。なお、物理的なイメージを明確にするため、核分裂中性子源をそれに比例する出力密度に置き換えた。

Figure 2023075550000018
where the detector signal R j at detector position j is expressed by the sensitivity w j from fuel element i and the power density pi for fuel element i at the detector at detector position j: can be done. To clarify the physical image, the fission neutron source is replaced by the proportional power density.
Figure 2023075550000018

複数の検出器位置jにおいて、検出器信号を得ることにより複数の方程式が得られ、行列表示で、次式で表すことができる。

Figure 2023075550000019
Obtaining detector signals at multiple detector positions j yields multiple equations, which in matrix representation can be expressed as:
Figure 2023075550000019

燃料要素の数をn、検出器位置の数をmとするとき、検出器感度はm行n列の行列となる。もし、燃料要素数と検出器位置の数が同じn=mと同時に、各検出器感度の行ベクトルが一次独立である場合、検出器感度行列Wはn行n列の正則行列となり、逆行列を持つことが知られている。

Figure 2023075550000020
If n is the number of fuel elements and m is the number of detector positions, the detector sensitivity is an m-by-n matrix. If the number of fuel elements and the number of detector positions are the same, n=m, and the row vectors of the detector sensitivities are linearly independent, the detector sensitivity matrix W becomes a regular matrix of n rows and n columns, and the inverse matrix is known to have

Figure 2023075550000020

この場合、(11)式から出力密度のベクトルPは厳密な解として直接得られる。これは、連立一次方程式の解が得られる条件として、変数の数だけ方程式の数が必要とする定理と同義である。ただし、実際は、任意に測定されたn個所の測定点の検出効率の一次独立性が保証されることはなく、n点の測定点を設定しても、一次独立の測定点としてのmがm<nになることは十分にあり得る。 In this case, the vector P of power densities can be obtained directly from equation (11) as an exact solution. This is synonymous with the theorem that the number of equations equal to the number of variables is required as a condition for obtaining the solution of simultaneous linear equations. However, in reality, the linear independence of the detection efficiency of n measurement points measured arbitrarily is not guaranteed, and even if n measurement points are set, m as a linearly independent measurement point is m It is quite possible that <n.

一方で、最小二乗解を求めることで、この厳密解を含んだ一般的な表現が得られる。

Figure 2023075550000021
On the other hand, finding the least-squares solution gives a general expression that includes this exact solution.
Figure 2023075550000021

(12)式で定義される二乗誤差Jを最小とする条件は、

Figure 2023075550000022
The condition for minimizing the squared error J defined by equation (12) is
Figure 2023075550000022

の解である。この解は、

Figure 2023075550000023
is the solution of This solution is
Figure 2023075550000023

Figure 2023075550000024
Figure 2023075550000024

として求まる。 is obtained as

ここまでのステップを図3に簡潔に示す。ここで、Wは疑似逆行列と呼ばれる。上記のようにWはm行n列の行列であり、n=mと同時に、各検出器感度の行ベクトルが一次独立である場合を除いては、逆行列を持たない。この条件を満たす場合は、

Figure 2023075550000025
The steps up to this point are briefly illustrated in FIG. where W + is called the pseudo-inverse. As described above, W is an m-by-n matrix, which does not have an inverse unless n=m and the row vectors of the detector sensitivities are linearly independent. If this condition is met,
Figure 2023075550000025

となり、同じ演算で、(11)式と同様の厳密解が得られる。
一方で、n≠mの場合、(14)式で得られる解は、最小二乗解ではあるものの一意性はない、つまり、真値である保証はないといわれている。
By the same calculation, an exact solution similar to the formula (11) can be obtained.
On the other hand, when n≠m, the solution obtained by Equation (14) is said to be a least squares solution but not unique, that is, it is not guaranteed to be a true value.

ここで、m<nの場合、つまり、変数の数に対して方程式の数が足りていない(ここでは、測定点の数が足りていない)場合、本来なら、連立一次方程式としての解は決定できないが、(13)式に示す、二乗誤差を最小にする近似解として、解の決定が可能である。しかし、のちの数値実験でも確認されるように、測定点の不足で予測される出力分布に誤差が発生している。 Here, if m<n, that is, if the number of equations is insufficient for the number of variables (here, the number of measurement points is insufficient), the solution as a simultaneous linear equation is determined. Although it is not possible, it is possible to determine the solution as an approximate solution that minimizes the squared error shown in equation (13). However, as will be confirmed in later numerical experiments, an error occurs in the predicted output distribution due to the lack of measurement points.

反対に、m>nの場合、つまり、変数の数に対して方程式の方が多い場合(ここでは、測定点の数が多い場合)、やはり、最小二乗解であり、一意性はないとされている。しかし、のちの数値実験でも確認されるように、この問題においては、過剰な測定点を設定した際も厳密解が得られている。これは、以下のように考えれば、自明である。方程式の数が多ければ、その分を無視してしまえば、(16)式を用いて厳密解が得られるためである。 On the contrary, when m>n, i.e., when there are more equations than the number of variables (here, when the number of measurement points is more), it is still a least-squares solution and is considered non-unique. ing. However, as will be confirmed in later numerical experiments, in this problem, exact solutions are obtained even when an excessive number of measurement points are set. This is self-evident from the following point of view. This is because if the number of equations is large, the exact solution can be obtained using the equation (16) by ignoring the number of equations.

例えば、m個の測定点における各検出器感度が一次独立な場合、その測定点(方程式)をn個のグループとm-n個のグループに分ける。初めに、n個のグループで(14)式及び(16)式から、出力分布の厳密解が求まる。当然、残りのm-n個のグループの検出器信号は、(9)式から得られる検出器信号、つまり、厳密な出力分布(実際の出力分布)から得られた検出器信号は、たとえ、n個のグループで(14)式及び(16)式から得られた厳密な出力分布を用いて演算(9)式で、残りのm-n個のグループの検出器信号を用いたとしても両者は合致する。つまり、出力分布を正しく逆算する場合は、m≧nであればよいということになる。 For example, if the detector sensitivities at m measurement points are linearly independent, the measurement points (equations) are divided into n groups and mn groups. First, the exact solution of the output distribution is obtained from the equations (14) and (16) for n groups. Of course, the detector signals of the remaining mn groups are the detector signals obtained from equation (9), that is, the detector signals obtained from the strict output distribution (actual output distribution), even if Using the exact output distributions obtained from equations (14) and (16) in n groups, in equation (9), even if the remaining mn groups of detector signals are used, both matches. In other words, in order to correctly calculate the output distribution, it is sufficient if m≧n.

なお、測定に関し何らかの誤差が混入する場合、

Figure 2023075550000026
In addition, if some error is mixed in the measurement,
Figure 2023075550000026

その誤差が電気ノイズのような一様な分布を持つ誤差の場合は、最小二乗法の性質を考慮すれば、測定点が多ければ多いほど、ノイズ等の不確かさの影響の排除が期待できる。この傾向は、のちの数値実験で、測定点が多いほど数値誤差と思われる誤差が低減していることからも確認できる。ノイズを明示的に考慮する場合は、測定点の数は多ければ多いほど良いといえる。 If the error has a uniform distribution such as electrical noise, considering the properties of the least-squares method, the more measurement points, the more likely it is to eliminate the influence of uncertainty such as noise. This tendency can also be confirmed from the fact that the more measurement points there are, the more the errors that are thought to be numerical errors are reduced in the numerical experiments that will be carried out later. When considering noise explicitly, it can be said that the larger the number of measurement points, the better.

本発明では、詳細を以下に述べるように、検出器を移動させることにより多くの測定点を確保することができる。しかし、設置する原子炉の構造や高温・高線量環境などの材料健全性等の制約により、測定点が十分に確保できない場合、もしくは、評価する出力分布の解像度が燃料棒一本単位であるなどの事情で出力分布を持つ燃料要素数に対して測定点が足りない場合も十分に考えられる。その場合は、以下の方法により、測定結果の妥当性を保証するものとする。便利なことに、測定点数m、燃料要素数nの大小関係にかかわらず、(15)式に示される疑似逆行列の演算により、(14)式を用いることにより、出力分布の決定が行える。その測定点の数が十分であるか否かは、この疑似逆行列の階数を確認することにより可能となる。行列の階数は、その行列の各行の一次独立な行の数を示す。疑似逆行列はn行n列であり、階数は最大でnとなる。 In the present invention, many measurement points can be secured by moving the detector, as described in detail below. However, due to constraints such as the structure of the installed nuclear reactor and material integrity such as high temperature and high dose environment, there are cases where sufficient measurement points cannot be secured, or the resolution of the power distribution to be evaluated is in units of fuel rods. For this reason, it is quite conceivable that the number of measurement points is insufficient for the number of fuel elements that have a power distribution. In that case, the validity of the measurement results shall be guaranteed by the following method. Conveniently, the power distribution can be determined by using the equation (14) by calculating the pseudo inverse matrix shown in the equation (15) regardless of the magnitude relationship between the number of measurement points m and the number of fuel elements n. Whether or not the number of measurement points is sufficient can be determined by checking the rank of this pseudo-inverse matrix. The rank of a matrix indicates the number of linearly independent rows in each row of the matrix. The pseudo-inverse has n rows and n columns, and the maximum rank is n.

測定点が多くなればなるほど、階数は上昇し、最大値のnで飽和する形になる。階数が最大値のnをとる場合、厳密解が得られることは、本発明に伴う数値実験により確認している。一方で、階数がnに満たない場合、予測された出力密度に誤差が発生する。本発明では後に示す数値実験において、表2に示す結果から、疑似逆行列の階数が0.8n以上の値が得られる場合において、十分に許容できる精度の出力密度分布の再現が可能であることを確認している。 As the number of measurement points increases, the rank increases and becomes saturated at the maximum value of n. Numerical experiments associated with the present invention have confirmed that an exact solution can be obtained when the order takes the maximum value of n. On the other hand, if the rank is less than n, an error occurs in the predicted power density. According to the present invention, in the numerical experiments described later, from the results shown in Table 2, it is possible to reproduce the power density distribution with sufficiently acceptable accuracy when the rank of the pseudo-inverse matrix is 0.8n or more. is confirmed.

そこで、測定点の数としては、燃料要素の数と同程以上が目安となる。燃料要素の数は、燃料集合体の個数に限らず、求める解像度に依存する。燃料集合体の内部を更に、分割して燃焼度管理を行いたい場合は、その燃料要素数はさらに増える。高温ガス炉の試験研究炉であるHTTRを例にとるなら、対面間距離36cm、高さ58cmの六角柱形状の燃料体ブロック150体から構成される。最低限、150点の検出器信号を測定するにしても、個別の検出器で測定するのは現実的ではなく、単体、もしくは複数の検出器を移動させて検出器信号を測定する必要がある。 Therefore, the number of measurement points should be equal to or greater than the number of fuel elements. The number of fuel elements depends not only on the number of fuel assemblies but also on the required resolution. If it is desired to further divide the inside of the fuel assembly for burnup control, the number of fuel elements is further increased. Taking the HTTR, which is a test and research reactor of a high-temperature gas-cooled reactor, as an example, it is composed of 150 hexagonal prism-shaped fuel blocks with a distance between faces of 36 cm and a height of 58 cm. Even if 150 detector signals are measured at the minimum, it is not realistic to measure with individual detectors, and it is necessary to move a single detector or multiple detectors to measure detector signals. .

そこで、本手法では、炉外計装、炉内計装、必要によってはその両方の併用を想定した検出器信号の測定を想定する。 Therefore, in this method, it is assumed that detector signals are measured by assuming external instrumentation, in-core instrumentation, and, if necessary, a combination of both.

炉外検出器のみを用いて、出力分布を測定する場合、図4に示すように、圧力容器の外側から炉内からの漏洩中性子を検出しつつ、図5のように高さの異なる検出器信号をえるため検出器をらせん状軌道10に沿って駆動させる方式が本手法を用いる上では最も理想的である。本手法であれば、一つの検出器のみで、一連の動きで測定が可能であり、一般的なX線CTでも用いられる駆動方法である。ただし、製作性、保守性の観点からは、複数の検出器を圧力容器の外部の円周上に配置し、それぞれの検出器を上下駆動させる方法の方が簡便である。これにより、ほぼ、無数といえる測定点からの測定が可能となる。 When measuring the power distribution using only the detector outside the reactor, as shown in FIG. Driving the detector along a spiral trajectory 10 to obtain a signal is the most ideal way to use this technique. With this method, it is possible to perform measurements with a series of movements using only one detector, and this is a drive method that is also used in general X-ray CT. However, from the standpoint of manufacturability and maintainability, it is simpler to arrange a plurality of detectors on the outer circumference of the pressure vessel and vertically drive each detector. This makes it possible to measure from an almost infinite number of measurement points.

炉内計装に採用する場合は、高温ガス炉の場合、炉内環境が非常に高温であること、高速炉の場合、検出器の照射損傷が顕著であることなどから、検出器は常に炉心部に配置しておくのではなく、制御棒案内管を用いて、使用する際挿入し、使用しない場合は炉外へ格納しておくのが現実的である。高温ガス炉、高速炉両炉型において制御棒案内管が燃料から独立して存在するため、制御棒案内管の空間的な余裕はあり、検出器の駆動させる設計変更も可能である。 When adopting for in-reactor instrumentation, in the case of high-temperature gas-cooled reactors, the environment inside the reactor is extremely high, and in the case of fast reactors, radiation damage to detectors is conspicuous. Instead of placing them in the core, it is practical to use control rod guide tubes, insert them when in use, and store them outside the reactor when not in use. Since the control rod guide tubes exist independently of the fuel in both the HTGR and the fast reactor, there is room for the control rod guide tubes, and it is possible to change the design to drive the detector.

図6に高温ガス炉の例を示す。制御棒を格納するスタンドパイプ20からの検出器の挿入を想定する。使用しないときは、検出器はスタンドパイプ20内に格納し保管する。冷却流により300℃程度の温度で保存でき、照射損傷も防げる。使用時は、連続的に挿入し、測定点の数を確保する。HTTRの場合、径方向形状として、燃料体が30体配置されているのに対し、16か所の制御棒案内ブロックがあり、16個の検出器を装荷した場合、燃料ブロック単位で出力分布を評価する場合は、燃料ブロック高さ58cm内で高さ方向に2か所、29cm置きに測定点を設ければ、ほぼ、燃料ブロックと同数の測定点が確保できる。図4のように高温領域を避ける場合、測定点が減少するため出力分布評価の精度の低下が予想される。その測定精度が許容できない場合、設計変更により、炉内検出器の数を増やすなどの対策により、精度低下を回避することが可能である。 Figure 6 shows an example of a high temperature gas reactor. Assume the insertion of the detector from the standpipe 20 that houses the control rods. When not in use, the detector is retracted and stored within the standpipe 20 . It can be stored at a temperature of about 300°C by a cooling flow, and radiation damage can be prevented. When in use, insert continuously to secure the number of measurement points. In the case of the HTTR, 30 fuel bodies are arranged in the radial direction, whereas there are 16 control rod guide blocks. In the case of evaluation, if two measurement points are provided in the height direction within a fuel block height of 58 cm at intervals of 29 cm, the same number of measurement points as the fuel block can be secured. When avoiding high-temperature regions as shown in FIG. 4, the number of measurement points is reduced, so it is expected that the accuracy of output distribution evaluation will be reduced. If the measurement accuracy is unacceptable, it is possible to avoid a decrease in accuracy by taking countermeasures such as increasing the number of in-core detectors by changing the design.

また、測定点の数を増やせば増やすほど、測定する出力分布の解像度を挙げられる原理であるのため、外部検出器、内部検出器を併用することにより、より高精度な出力分布測定が可能となる。 In addition, the higher the number of measurement points, the higher the resolution of the output distribution to be measured. Become.

なお、本発明を発想する過程において、軽水炉と異なる中性子飛程の長い炉心を想定したが、本技術は軽水炉の現行の炉内計装に適用することにより、その出力分布測定の解像度の増加が期待できる。軽水炉の炉内計装では、測定した中性子により予測できる出力分布は検出器周辺の燃料集合体の出力の平均値を表しているものとして処理するが、近傍の検出器でも同一の燃料集合体からの漏洩中性子を測定していることを考慮し、事前評価の検出器感度分布を用いた逆解析を行えば、集合体毎の出力分布の直接的な決定が可能となる。 In the process of conceiving the present invention, a core with a long neutron range, which is different from light water reactors, was assumed. I can expect it. In the in-core instrumentation of light water reactors, the power distribution that can be predicted from the measured neutrons is treated as representing the average power of the fuel assembly around the detector. Considering that we are measuring leaked neutrons, we can directly determine the power distribution for each ensemble by performing inverse analysis using the pre-evaluated detector sensitivity distribution.

現行軽水炉を運用している電力事業者は、炉内計装による直接的な出力分布測定により、直接的に燃焼度を監視し、炉内燃料管理を行っている。一方で、高温ガス炉、高速炉では、これまで、高温環境を理由に炉内計装の開発を行ってきておらず、直接的な炉内出力分布測定技術の開発を行ってこなかった。本発明により、両新型炉に関しても炉内出力分布測定が初めて可能となり、軽水炉と同様の炉内燃料管理が出来るようになり、安全性が格段に向上する。 Electric power companies operating current light water reactors monitor the burnup directly and manage the fuel in the reactor by directly measuring the power distribution using in-core instrumentation. On the other hand, for HTGRs and fast reactors, no in-core instrumentation has been developed due to the high temperature environment, and direct in-core power distribution measurement technology has not been developed. The present invention makes it possible for the first time to measure the in-core power distribution of both advanced reactors, enabling the same in-core fuel management as in light-water reactors, and significantly improving safety.

小型の炉心体系で、炉心中心部の燃料体まで十分に検出器感度が確保できる場合は、炉外計装のみでの出力分布測定が可能となる。炉外検出器を駆動させることにより、必要となる測定点を得るための検出器数が減り、複数検出器の構成による検出効率の補正の手間も回避できる。 In a small core system, if sufficient detector sensitivity can be secured up to the fuel bodies in the center of the core, it is possible to measure the power distribution using only external instrumentation. By driving the out-of-core detectors, the number of detectors required for obtaining the necessary measurement points can be reduced, and the trouble of correcting the detection efficiency due to the construction of a plurality of detectors can be avoided.

炉内計装が装荷可能な炉心には、限られた炉内の挿入位置に対して、幅広い形での出力分布の測定が可能となり、構造上もしくは、温度・照射環境等の理由で、装荷場所が限られる場合でも出力分布の測定が可能なる。炉内計装に関しても、炉内検出器を可動式にすることにより、測定点を増やせるだけではなく検出器を使用しないときの劣化を回避できる。高温ガス炉、高速炉では、制御棒案内管が燃料集合体から独立しており、駆動式の検出器を配置する余地が十分にある。 In the core where the in-core instrumentation can be installed, it is possible to measure the power distribution in a wide range for the limited insertion position in the core. It is possible to measure the output distribution even if the place is limited. As for the in-core instrumentation, by making the in-core detector movable, it is possible not only to increase the number of measurement points but also to avoid deterioration when the detector is not used. In high-temperature gas-cooled reactors and fast reactors, the control rod guide tubes are independent from the fuel assemblies, and there is plenty of room for locating driven detectors.

本発明の性能を高温ガス炉試験研究炉HTTR体系を対象に適用し、シミュレーションにより確認した。炉外計装については、圧力容器の外周36点、高さ位置5点の計180点の測定で、150体の燃料ブロックの出力分布を測定した結果を表1に示す。

Figure 2023075550000027
The performance of the present invention was applied to the high temperature gas reactor test reactor HTTR system and confirmed by simulation. As for the external instrumentation, Table 1 shows the results of measuring the power distribution of 150 fuel blocks at a total of 180 points, 36 points on the circumference of the pressure vessel and 5 points on the height.

Figure 2023075550000027

全燃料ブロックの測定誤差の平均は1.2x10-9%、最大の誤差を示すブロックで1.1x10-8 %程度と無視できる誤差を示し、厳密解といえる完全一致が確認できた。炉内計装については、検出器16か所、高さ位置20点の320点の測定により評価した。同じく表1に結果を示す。全燃料ブロックの測定誤差の平均は3.2x10-11 %、最大の誤差を示すブロックで2.4x10-10 %程度と厳密解といえる解が得られている。もし、高温となる炉心下部への検出器の挿入を避けるために、部分挿入を行った場合の結果を表2に示す。

Figure 2023075550000028
The average measurement error of all fuel blocks was 1.2×10 −9 %, and the block showing the maximum error showed a negligible error of about 1.1×10 −8 %. The in-core instrumentation was evaluated by measuring 320 points including 16 detectors and 20 height positions. Table 1 also shows the results. The average measurement error of all the fuel blocks is 3.2×10 −11 %, and the block showing the maximum error is about 2.4×10 −10 %. Table 2 shows the results when partial insertion was performed in order to avoid insertion of the detector into the lower part of the core where the temperature becomes high.

Figure 2023075550000028

測定点は位置を固定し、部分挿入により、高さ方向位置20点から炉心下部の測定点を除外していく。50%挿入の場合でも厳密解といえる良い一致を示している。45%、40%部分挿入で炉心平均の誤差で0.28%、1.1%、最大局所誤差で、5.0%、6.5%と有意な誤差が発生している。これは、逆行列の階数の減少から明らかなように、部分挿入の位置というよりも、測定点が不足しているための誤差で、さらに、密な測定点の配置により部分挿入においても誤差を排除する改善の余地がある。このように、炉内の半分程度の検出器の挿入で、全炉心の出力分布が測定でき、高温領域への検出器の挿入を回避することが可能である。50%の部分挿入では、200℃程度の検出器の環境温度の低下が期待でき、検出器の耐熱性の観点で、検出器に加わる負荷を大きく低減できる。 The positions of the measurement points are fixed, and the measurement points below the core are excluded from the 20 points in the height direction by partial insertion. Even in the case of 50% insertion, it shows a good match that can be said to be an exact solution. At 45% and 40% partial insertion, core average errors of 0.28% and 1.1%, and maximum local errors of 5.0% and 6.5% are significant. As is clear from the reduction in the rank of the inverse matrix, this error is due to the lack of measurement points rather than the position of partial insertion. There is room for improvement to eliminate. In this way, the power distribution of the entire core can be measured by inserting about half of the detectors into the reactor, and it is possible to avoid inserting detectors into high-temperature regions. With 50% partial insertion, the environmental temperature of the detector can be expected to drop by about 200° C., and from the viewpoint of heat resistance of the detector, the load applied to the detector can be greatly reduced.

炉外計装を用いた出力分布測定法の適用性は、中性子の飛程と炉心の大きさの関係性により決定される。表3に各炉型の中性子の飛程として、中性子の発生から消滅までの移動距離の平均を表す。

Figure 2023075550000029
The applicability of the power distribution measurement method using ex-core instrumentation is determined by the relationship between the neutron range and the core size. Table 3 shows the average travel distance from generation to annihilation of neutrons as the range of neutrons for each reactor type.

Figure 2023075550000029

拡散距離を燃料部に対し評価し比較した。軽水炉が7cm程度であるのに対し、高温ガス炉では、その4倍程度、高速炉では、その6倍程度であり、測定した中性子の情報から広い範囲の燃料集合体の出力分布の推定が可能である。軽水炉の検出器感度は図1に示すように、40cm-60cm程度である。小型原子炉(SMR)として開発されている米国のニュースケール社(NuScale Power, LLC)の設計ですら、炉心半径が120cm程度であるため、軽水炉への適用はできない。高温ガス炉については、図2に示すように広い検出器感度分布が得られる。炉心外周部から、HTTRの実効炉心半径の130cm程度を観測できると想定した際、高温ガス炉の高出力化は出力密度上昇、炉心長増加などによる対応とともに、高出力炉心では減圧事故時の安全性の観点から、炉心の中心部に燃料を配置しない環状炉心の形状をとることから、炉心出力30MWのHTTRだけではなく、国立研究開発法人日本原子力研究開発機構で設計した実用炉設計の50MW炉心、165MW炉心、600MW炉心へも適用可能であり、SMR(Small?Modular Reactor)に分類される高温ガス炉の設計の大半への適用が見込まれる。高速炉に関しては、拡散距離の長さから、より広範囲な検出器感度が期待できる。仮に、高温ガス炉と同等の130cm程度の燃料幅を観測できるとしても、高速炉SMRの代表的な設計であるPRISM(Power Reactor Innovative Small Module)炉では、炉心半径が130cm程度であることから、十分に適用が可能である。一方で、炉心半径が300cm程度となる大型高速炉では、外部検出器のみの適用は難しいと考えられる。 Diffusion distances were evaluated and compared to the fuel section. While the light water reactor is about 7 cm, the high temperature gas reactor is about 4 times that, and the fast reactor is about 6 times that. It is possible to estimate the power distribution of the fuel assembly over a wide range from the measured neutron information. is. The detector sensitivity of light water reactors is about 40-60 cm, as shown in FIG. Even the design of NuScale Power, LLC of the United States, which is being developed as a small nuclear reactor (SMR), cannot be applied to a light water reactor because the core radius is about 120 cm. For the HTGR, a wide detector sensitivity distribution is obtained as shown in FIG. Assuming that the HTTR effective core radius of about 130 cm can be observed from the outer circumference of the core, the higher power of the high-temperature gas-cooled reactor will increase the power density and increase the length of the core. From the point of view of safety, since it takes the shape of an annular core without arranging fuel in the center of the core, not only HTTR with a core output of 30 MW, but also a 50 MW commercial reactor design designed by the Japan Atomic Energy Agency , 165 MW core, and 600 MW core, and is expected to be applied to most of the designs of high-temperature gas-cooled reactors classified as SMR (Small? Modular Reactor). For fast reactors, a wider range of detector sensitivities can be expected due to the longer diffusion lengths. Even if it is possible to observe a fuel width of about 130 cm, which is equivalent to that of a high-temperature gas-cooled reactor, the PRISM (Power Reactor Innovative Small Module) reactor, which is a typical design of fast reactor SMR, has a core radius of about 130 cm. Fully applicable. On the other hand, in a large fast reactor with a core radius of about 300 cm, it is considered difficult to apply only an external detector.

炉内計装を用いた方法については、発明の対象とした、高温ガス炉、高速炉での適用が可能であるだけではなく、現行軽水炉の現行炉内計装のデータ処理に、発明技術の中核となる逆解析手法を適用することにより、炉内出力分布の解像度の向上が可能である。これは、現行手法が炉内計装の測定値を周辺燃料集合体出力の平均値とする積分的なアプローチであるのに対し、本解析は各領域に測定信号を割り当て再構成する微分的なアプローチであることから、自明な結果である。 The method using in-core instrumentation can be applied not only to high-temperature gas-cooled reactors and fast reactors, but also to data processing of current in-core instrumentation in current light water reactors. By applying the core inverse analysis method, it is possible to improve the resolution of the in-core power distribution. While the current method is an integral approach in which the measured value of the in-core instrumentation is the average value of the peripheral fuel assembly power, the present analysis is a differential approach in which measurement signals are assigned to each region and reconstructed. Since it is an approach, it is a self-evident result.

なお、以上の説明では、本質的な数学的構造を示すために、疑似逆行列を用い、その一次独立成分を測定する指標として疑似逆行列の階数について触れているが、最小二乗法を用いるにしても逆行列を用いない数値解法や、最小二乗法に代わる、最尤法などのアプローチもあり、逆解法の実装は複数存在する。 In the above explanation, a pseudo-inverse matrix is used to show the essential mathematical structure, and the rank of the pseudo-inverse matrix is used as an index for measuring the linear independent component. However, there are also approaches such as numerical solutions that do not use inverse matrices and maximum likelihood methods that replace the least squares method, and there are multiple implementations of inverse methods.

10・・・らせん状軌道
20・・・スタンドパイプ
10... Spiral orbit 20... Standpipe

Claims (9)

原子炉の圧力容器内の複数燃料要素の出力密度と、圧力容器外の複数中性子検出器の位置における中性子検出器からの出力信号と、前記燃料要素及び前記中性子検出器の位置に関する検出器感度との関係を表す中性子輸送方程式に基づいて炉心の出力分布を測定する方法であって、
前記中性子検出器からの出力信号の行列と前記検出器感度に関する疑似逆行列との積から前記原子炉の炉心の出力分布を算出することを特徴とする原子炉内出力分布の測定方法。
power densities of multiple fuel elements within a reactor pressure vessel; output signals from neutron detectors at multiple neutron detector locations outside the pressure vessel; and detector sensitivity with respect to locations of said fuel elements and said neutron detectors. A method for measuring the power distribution of a core based on the neutron transport equation representing the relationship of
A method for measuring a power distribution in a nuclear reactor, wherein a power distribution in a core of the nuclear reactor is calculated from a product of a matrix of output signals from the neutron detectors and a pseudo-inverse matrix relating to the sensitivity of the detectors.
請求項1に記載の原子炉内出力分布の測定方法において、圧力容器内のn個の複数燃料要素iの出力密度をpとし、圧力容器内外のm個の複数検出器位置jの中性子検出器信号をRとし、前記燃料要素i及び前記検出器位置jに関する検出器感度をwとし、検出器感度に関する疑似逆行列をWとして、
前記中性子検出器からの出力信号を
Figure 2023075550000030

から算出し、前記検出器感度に関する疑似逆行列を
Figure 2023075550000031

の行列表示により算出することを特徴とする原子炉内出力分布の測定方法。
2. The method for measuring the power distribution in a nuclear reactor according to claim 1, wherein pi is the power density of n multiple fuel elements i inside the pressure vessel, and m multiple detector positions j inside and outside the pressure vessel detect neutrons. Let R j be the detector signal, w j , i be the detector sensitivity for said fuel element i and said detector position j, and W + be the pseudo-inverse matrix for detector sensitivity,
The output signal from the neutron detector is
Figure 2023075550000030

and the pseudo-inverse matrix for the detector sensitivity is
Figure 2023075550000031

A method for measuring power distribution in a nuclear reactor, characterized in that the calculation is performed by matrix representation of
請求項1に記載の原子炉内出力分布の測定方法において、
圧力容器内のn個の複数燃料要素iの出力密度piと、圧力容器内外のm個の複数検出器位置jの中性子検出器信号Rjと、前記燃料要素i及び前記検出器位置jに関する検出器感度wとの関係を表す中性子輸送方程式に基づいた下記式によって炉心の出力分布を測定する方法であって、
(1)前記中性子検出器信号を下記式から求める第1のステップと、

Figure 2023075550000032

(2)前記中性子検出器信号Rと、前記出力密度pと、前記検出器感度wとを下記式の行列表示で表す第2のステップと、
Figure 2023075550000033
(3)前記検出器感度wの行列表示の疑似逆行列Wを下記式の行列表示により算出する第3のステップと、
Figure 2023075550000034

(4)前記出力密度pの行列表示を、前記中性子検出器信号Rの行列表示と、前記疑似逆行列Wによる下記式により算出する第4のステップと
Figure 2023075550000035
を順次実行することを特徴とする原子炉内出力分布の測定方法。
In the method for measuring the power distribution in the reactor according to claim 1,
power densities pi of n multiple fuel elements i inside the pressure vessel, neutron detector signals Rj at m multiple detector positions j inside and outside the pressure vessel, detectors for said fuel elements i and said detector positions j A method for measuring the power distribution of the core by the following equation based on the neutron transport equation representing the relationship between sensitivities w j and i ,
(1) a first step of obtaining the neutron detector signal from the following equation;

Figure 2023075550000032

(2) a second step of representing the neutron detector signal Rj, the power density pi, and the detector sensitivity wj,i in a matrix representation of the following equation;
Figure 2023075550000033
(3) a third step of calculating the pseudo-inverse matrix W + of the matrix representation of the detector sensitivity w j , i by the matrix representation of the following equation;
Figure 2023075550000034

(4) A fourth step of calculating the matrix representation of the power density pi by the matrix representation of the neutron detector signal Rj and the pseudo-inverse matrix W + by the following formula:
Figure 2023075550000035
A method for measuring the power distribution in a nuclear reactor, characterized by sequentially executing
請求項1又は2に記載の原子炉内出力分布の測定方法において、
前記圧力容器内外の複数検出器位置に設置された中性子検出器を駆動させることにより、前記中性子検出器信号を取得することを特徴とする原子炉内出力分布の測定方法。
In the method for measuring the power distribution in the reactor according to claim 1 or 2,
A method for measuring power distribution in a nuclear reactor, wherein the neutron detector signals are acquired by driving neutron detectors installed at a plurality of detector positions inside and outside the pressure vessel.
請求項1乃至3のいずれかに記載の原子炉内出力分布の測定方法において、
前記疑似逆行列の階数が0.8n(nは前記複数燃料要素の数)以上である場合に、妥当な測定結果として測定値を出力することを特徴とする原子炉内出力分布の測定方法。
In the method for measuring the power distribution in the reactor according to any one of claims 1 to 3,
A method for measuring power distribution in a nuclear reactor, wherein a measured value is output as a valid measurement result when the rank of the pseudo-inverse matrix is 0.8n (n is the number of the plurality of fuel elements) or more.
原子炉の圧力容器内の複数燃料要素の出力密度と、圧力容器内外の複数検出器の位置における中性子検出器信号と、前記燃料要素及び前記検出器の位置に関する検出器感度と、の関係を表す中性子輸送方程式に基づいて炉心の出力分布を測定する装置であって、
前記検出器感度に対する逆解析により前記原子炉の炉心の出力分布を算出する手順を示すプログラムを記憶している記憶装置、及び前記検出器からの信号を入力して前記プログラムに基づいて所定の演算を行う演算装置を具備することを特徴とする原子炉内出力分布の測定装置。
1 represents the relationship between the power density of multiple fuel elements within a reactor pressure vessel, neutron detector signals at multiple detector positions inside and outside the pressure vessel, and detector sensitivity with respect to the fuel element and detector positions. A device for measuring the power distribution of a core based on the neutron transport equation,
A storage device storing a program showing a procedure for calculating the power distribution of the core of the nuclear reactor by inverse analysis of the detector sensitivity, and a predetermined calculation based on the program by inputting the signal from the detector. A power distribution measuring device in a nuclear reactor, characterized by comprising an arithmetic device for performing
請求項6に記載の原子炉内出力分布の測定装置において、
圧力容器内のn個の複数燃料要素iの出力密度pと、圧力容器内外のm個の複数検出器位置jの中性子検出器信号Rと、前記燃料要素i及び前記検出器位置jに関する検出器感度wとの関係を表す中性子輸送方程式に基づいた下記式によって炉心の出力分布を測定する装置であって、前記プログラムは、
(1)前記中性子検出器信号を下記式から求める第1のステップと、
Figure 2023075550000036

(2)前記中性子検出器信号Rと、前記出力密度pと、前記検出器感度wとを下記式の行列表示で表す第2のステップと、
Figure 2023075550000037

(3)前記検出器感度wの行列表示の疑似逆行列W+を下記式の行列表示により算出する第3のステップと、
Figure 2023075550000038

(4)前記出力密度pの行列表示を、前記中性子検出器信号Rの行列表示と、前記疑似逆行列Wによる下記式により算出する第4のステップと
Figure 2023075550000039

を順次実行するものであることを特徴とする原子炉内出力分布の測定装置。
In the reactor power distribution measurement device according to claim 6,
for the power density p i of n multiple fuel elements i inside the pressure vessel, the neutron detector signals R j at m multiple detector positions j inside and outside the pressure vessel, and for said fuel element i and said detector position j A device for measuring the power distribution of the core by the following equation based on the neutron transport equation representing the relationship with the detector sensitivity w j , i, wherein the program is:
(1) a first step of obtaining the neutron detector signal from the following equation;
Figure 2023075550000036

(2) a second step of representing the neutron detector signal Rj, the power density pi, and the detector sensitivity wj,i in a matrix representation of the following equation;
Figure 2023075550000037

(3) a third step of calculating a pseudo-inverse matrix W+ of the matrix representation of the detector sensitivities w j , i by the matrix representation of the following equation;
Figure 2023075550000038

(4) A fourth step of calculating the matrix representation of the power density pi by the matrix representation of the neutron detector signal Rj and the pseudo-inverse matrix W + by the following formula:
Figure 2023075550000039

A power distribution measurement device in a nuclear reactor, characterized in that it sequentially executes.
請求項6又は7に記載の原子炉内出力分布の測定装置において、
前記圧力容器内外の複数検出器位置に設置された中性子検出器を駆動させることにより、前記中性子検出器信号を取得する手段を具備したことを特徴とする原子炉内出力分布の測定装置。
In the reactor power distribution measuring device according to claim 6 or 7,
An apparatus for measuring power distribution in a nuclear reactor, comprising means for acquiring neutron detector signals by driving neutron detectors installed at multiple detector positions inside and outside the pressure vessel.
請求項6乃至8のいずれかに記載の原子炉内出力分布の測定装置において、
前記疑似逆行列の階数が0.8n(nは前記複数燃料要素の数)以上である場合に、妥当な測定結果として測定値を出力する手段を具備することを特徴とする原子炉内出力分布の測定装置。
In the reactor power distribution measuring device according to any one of claims 6 to 8,
Power distribution in the reactor, characterized by comprising means for outputting a measured value as a valid measurement result when the rank of the pseudo-inverse matrix is 0.8n (n is the number of the plurality of fuel elements) or more. measuring device.
JP2021188522A 2021-11-19 2021-11-19 Method of measuring power distribution in nuclear reactor and device therefor Pending JP2023075550A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021188522A JP2023075550A (en) 2021-11-19 2021-11-19 Method of measuring power distribution in nuclear reactor and device therefor
PL442859A PL442859A1 (en) 2021-11-19 2022-11-17 Method for measuring power distribution in the reactor core and device for measuring power distribution in the reactor core
FR2212041A FR3129519A1 (en) 2021-11-19 2022-11-18 METHOD AND APPARATUS FOR MEASURING POWER DISTRIBUTION IN A REACTOR CORE
GB2217320.7A GB2615387A (en) 2021-11-19 2022-11-18 Method and apparatus for measuring a power distribution in a reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021188522A JP2023075550A (en) 2021-11-19 2021-11-19 Method of measuring power distribution in nuclear reactor and device therefor

Publications (1)

Publication Number Publication Date
JP2023075550A true JP2023075550A (en) 2023-05-31

Family

ID=84889150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021188522A Pending JP2023075550A (en) 2021-11-19 2021-11-19 Method of measuring power distribution in nuclear reactor and device therefor

Country Status (4)

Country Link
JP (1) JP2023075550A (en)
FR (1) FR3129519A1 (en)
GB (1) GB2615387A (en)
PL (1) PL442859A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079236A (en) * 1976-03-05 1978-03-14 Westinghouse Electric Corporation Method and apparatus for monitoring the axial power distribution within the core of a nuclear reactor, exterior of the reactor
US5185121A (en) * 1986-01-29 1993-02-09 Mitsubishi Denki Kabushiki Kaisha Reactor power measuring method
JPH07119827B2 (en) * 1987-12-25 1995-12-20 三菱電機株式会社 Measuring device of reactor power distribution

Also Published As

Publication number Publication date
GB2615387A (en) 2023-08-09
FR3129519A1 (en) 2023-05-26
PL442859A1 (en) 2023-05-22
GB202217320D0 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
EP0150096A2 (en) Method and apparatus for continuous on-line monitoring of power distribution in a nuclear reactor core
JPH11264887A (en) Reactor nuclear instrumentation system, reactor power distribution monitoring system provided with this system and reactor power monitoring method
Kaiba et al. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements
JP2010529448A (en) Method for calculating uncertainty components related to power distribution in the reactor core
US6400786B1 (en) Process and device for monitoring at least one operating parameter of the core of a nuclear reactor
US8804894B2 (en) Method of producing mixed in-core maps and application to the calibration of fixed instrumentation
EP1842205B1 (en) Neutron detector assembly with variable length rhodium emitters
JP5443901B2 (en) Nuclear instrumentation system
JP2023075550A (en) Method of measuring power distribution in nuclear reactor and device therefor
JP5567904B2 (en) Method for measuring subcritical multiplication factor of irradiated fuel assembly, measuring apparatus, program for measurement, and method for verifying prediction accuracy of nuclide composition of irradiated fuel assembly
CN109215823B (en) Method and system for measuring three-dimensional multi-group energy spectrum of nuclear reactor
JP2003177196A (en) Reactor core nuclear instrumentation response calculation method
CN117593474B (en) Three-dimensional power distribution reconstruction method for pressurized water reactor core
Kroon et al. Trends in instrument development for reactor in-core flux monitoring
Ho et al. MCNP6 calculation of neutron flux map in the httr during normal operation
Zaritskij et al. Review of theoretical and experimental investigations of WWER pressure vessel radiation damage in engineering benchmarks
Birri et al. Towards Realistic and High Fidelity Models for Nuclear Reactor Power Synthesis Simulation with Self-Powered Neutron Detectors
Mihalczo et al. Reactivity surveillance experiments with the engineering mock-up core of the fast flux test facility reactor
Katsuyama et al. Three-dimensional X-ray CT image of an irradiated FBR fuel assembly
Maeda et al. Measurement and analysis of decay heat of fast reactor spent MOX fuel
JP2005172474A (en) Nuclear reactor core thermal output monitoring device
Aldbissi et al. Evaluation of the performance of a neutron gradient detector for partial defect testing in spent nuclear fuel assemblies
Rahnema et al. MCNP simulation of void reactivity in a simplified CANDU core sub-region
Ham et al. Partial Defect Verification of the Pressurized Water Reactor Spent Fuel Assemblies
Ewing Burnup verification measurements on spent fuel assemblies at Arkansas Nuclear One