JP2023071565A - Fire-proof protected mortar and fire-proof protected structure - Google Patents

Fire-proof protected mortar and fire-proof protected structure Download PDF

Info

Publication number
JP2023071565A
JP2023071565A JP2021184426A JP2021184426A JP2023071565A JP 2023071565 A JP2023071565 A JP 2023071565A JP 2021184426 A JP2021184426 A JP 2021184426A JP 2021184426 A JP2021184426 A JP 2021184426A JP 2023071565 A JP2023071565 A JP 2023071565A
Authority
JP
Japan
Prior art keywords
mortar
cement
fire
water
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021184426A
Other languages
Japanese (ja)
Inventor
雄亮 杉野
Yusuke Sugino
徹 谷辺
Toru Tanibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2021184426A priority Critical patent/JP2023071565A/en
Publication of JP2023071565A publication Critical patent/JP2023071565A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

To provide a fire-proof protected mortar capable of being used for civil engineering structures, the mortar: being difficult to explode even when subjected to a fireproof test using a RABT heating curve whose furnace temperature reaches 1,200°C in 5 minutes from the start of heating; having excellent consistency immediately after mixing; and having excellent integrity with a substrate, and to provide a fire-proof protected structure capable of being used for civil engineering structures, the structure: having excellent integrity with the fire-proof protected mortar; and being difficult to explode even when subjected to the fireproof test using the RABT heating curve whose furnace temperature reaches 1,200°C in 5 minutes from the start of heating.MEANS: In a fire-proof protected mortar, a specific fiber content, the amount of aggregate, the amount of cement polymer, and water content are each made in a specific proportion. When the fibers are dispersed in water, a fiber diameter thereof is 1 to 100 μm; the fiber content thereof is 0.05 to 1.0 vol.% with respect to the volume of the mortar; the amounts of aggregate and cement polymer are 80 to 300 pts.mass and 1 to 30 pts.mass, respectively, based on 100 pts.mass of a cement; and a water-cement ratio is 35% to 60%.SELECTED DRAWING: None

Description

本発明は、耐火被覆モルタルに関する。詳しくは、水と混練後のモルタルの硬化体が、加熱開始から5分で炉内温度が1200℃に達し、25分間に亘って1200℃が維持され、その後110分で室温まで戻すRABT加熱曲線による30分加熱(RABT30分加熱)による耐火試験を行っても爆裂し難く且つ水と混錬後のコンシステンシーの優れる耐火被覆モルタルに関する。また、本発明は、耐火被覆構造に関する。詳しくは、RABT30分加熱による耐火試験を行っても爆裂し難い耐火被覆構造に関する。 The present invention relates to a refractory coating mortar. Specifically, the hardened mortar after kneading with water reaches 1200 ° C. in 5 minutes from the start of heating, is maintained at 1200 ° C. for 25 minutes, and then returns to room temperature in 110 minutes. RABT heating curve It is a fireproof coating mortar that does not easily explode even when a fire resistance test is performed by heating for 30 minutes (RABT 30 minutes heating) and has excellent consistency after kneading with water. The present invention also relates to fire resistant coating structures. More specifically, it relates to a fire-resistant coating structure that does not easily explode even when subjected to a fire-resistant test by heating RABT for 30 minutes.

コンクリート等が火災等により高温に晒されるとコンクリート等の内部に発生する水蒸気の圧力および拘束応力による引張ひずみによりコンクリート表層部が吹き飛ぶ「爆裂」と呼ばれる現象が起こることがある。コンクリートの爆裂を抑制するために、水硬セメントを含有する無機質結合材と、吸熱物質と、無機質軽量骨材と、有機質軽量骨材とからなる耐火被覆材(耐火被覆モルタル)が開示されている(例えば特許文献1参照。)。また、セメント、水、セルロース繊維、水溶性ポリマーおよび各種添加(材)剤を含有する耐爆裂性セメントモルタル及び当該セメントモルタルを被覆するコンクリートの被覆方法が開示されている(例えば特許文献2参照。)。 When concrete or the like is exposed to high temperatures due to fire or the like, a phenomenon called "explosion" may occur in which the surface layer of the concrete is blown off due to tensile strain due to the pressure of water vapor generated inside the concrete and the restraint stress. A fire-resistant coating material (fire-resistant coating mortar) composed of an inorganic binding material containing hydraulic cement, an endothermic material, an inorganic lightweight aggregate, and an organic lightweight aggregate is disclosed in order to suppress the explosion of concrete. (For example, see Patent Document 1.). Also disclosed is an explosion-resistant cement mortar containing cement, water, cellulose fibers, a water-soluble polymer and various additives (materials), and a concrete coating method for coating the cement mortar (see, for example, Patent Document 2). ).

耐火試験を行うに当たり、建築構造物では60分加熱する場合であっても炉内温度が1000℃に達しないISO834の加熱曲線(JIS A 1304:2017の標準加熱曲線Aに相当、以下「ISO加熱曲線」という。)で試験、検討されている。2017年にJIS A 1304が改正される以前は、建築構造物の耐火試験では、ISO加熱曲線同様に60分加熱する場合であっても炉内温度が1000℃に達しない加熱曲線(JIS A 1304:2017の標準加熱曲線Bと同じ、以下「旧JIS加熱曲線」という。)を用いて試験を行っていた。それに対し、トンネルなどの土木構造物では加熱開始から5分で炉内温度が1200℃に達するRABT加熱曲線による耐火試験を行うことが多い。これは、石油製品を運搬しているタンクローリーの火災を想定しているためで、建築構造物よりも過酷な条件である。本願発明者等の検討の結果、ISO加熱曲線による耐火試験では爆裂しないモルタルであってもRABT加熱曲線による耐火試験では爆裂してしまうことがあることが分かってきた。耐火試験において、特許文献1(特開平11-116357号公報)では、旧JIS加熱曲線を用い試験を行い、特許文献2(特開2004-331450号公報)では、ISO加熱曲線を用い試験を行っている。 In conducting the fire resistance test, the heating curve of ISO834 (equivalent to the standard heating curve A of JIS A 1304:2017, hereinafter referred to as "ISO heating curve”). Prior to the revision of JIS A 1304 in 2017, in the fire resistance test of building structures, the heating curve (JIS A 1304 : Same as the standard heating curve B of 2017, hereinafter referred to as "old JIS heating curve"). On the other hand, civil engineering structures such as tunnels are often subjected to fire resistance tests using the RABT heating curve, in which the temperature inside the furnace reaches 1200° C. within 5 minutes from the start of heating. This is because a fire in a tank truck carrying petroleum products is assumed, which is a more severe condition than building structures. As a result of investigations by the inventors of the present application, it has been found that even mortar that does not explode in the fire resistance test using the ISO heating curve may explode in the fire resistance test using the RABT heating curve. In the fire resistance test, in Patent Document 1 (Japanese Patent Application Laid-Open No. 11-116357), the test is performed using the old JIS heating curve, and in Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-331450), the test is performed using the ISO heating curve. ing.

特開平11-116357号公報JP-A-11-116357 特開2004-331450号公報Japanese Patent Application Laid-Open No. 2004-331450

本発明は、土木構造物に用いることのできる耐火被覆モルタルを提供することを目的とする。詳しくは、加熱開始から5分で炉内温度が1200℃に達するRABT加熱曲線による耐火試験を行っても爆裂し難く且つ混錬直後のコンシステンシーの優れ、下地との一体性に優れる耐火被覆モルタルを提供することを目的とする。また、本発明は、土木構造物、特にコンクリート製土木構造物に用いることのできる耐火被覆モルタルを提供することを目的とする。詳しくは、加熱開始から5分で炉内温度が1200℃に達するRABT加熱曲線による耐火試験を行っても爆裂し難く且つ混錬直後のコンシステンシーに優れ、下地との一体性に優れるコンクリート製土木構造物に用いることのできる耐火被覆モルタルを提供することを目的とする。また、本発明は、土木構造物に用いることのできる耐火被覆構造を提供することを目的とする。詳しくは、耐火被覆モルタルと下地との一体性に優れ、加熱開始から5分で炉内温度が1200℃に達するRABT加熱曲線による耐火試験を行っても爆裂し難い耐火被覆構造を提供することを目的とする。 An object of the present invention is to provide a fireproof coating mortar that can be used for civil engineering structures. More specifically, it is a refractory coated mortar that does not easily explode even when subjected to a fire resistance test according to the RABT heating curve, where the furnace temperature reaches 1200 ° C in 5 minutes from the start of heating, has excellent consistency immediately after kneading, and has excellent integration with the substrate. intended to provide Another object of the present invention is to provide a fireproof coating mortar that can be used for civil engineering structures, particularly concrete civil engineering structures. More specifically, concrete civil engineering that does not easily explode even when subjected to a fire resistance test according to the RABT heating curve where the furnace temperature reaches 1200 ° C in 5 minutes from the start of heating, has excellent consistency immediately after kneading, and is excellent in integration with the foundation. An object of the present invention is to provide a refractory coating mortar that can be used for structures. Another object of the present invention is to provide a fireproof covering structure that can be used for civil engineering structures. More specifically, it is intended to provide a fire-resistant coating structure that is excellent in the integrity of the fire-resistant coating mortar and the substrate, and that does not easily explode even in a fire-resistant test using the RABT heating curve, where the furnace temperature reaches 1200°C in 5 minutes from the start of heating. aim.

本発明者は、前記課題解決のため鋭意検討した結果、特定の繊維の含有量、骨材量、セメント用ポリマー量及び用いる水量をそれぞれ特定の割合とすることにより、上記課題を解決できることを見出し、本発明を完成させた。即ち、本発明は、以下の(1)又は(2)で表す耐火被覆モルタル、並びに(3)で表す耐火被覆構造である。
(1)セメント、骨材、繊維及びセメント用ポリマーを含有し、前記繊維が水に分散しているときの繊維径(繊維が収束した状態で分散しているときは繊維束の直径をいう。)が1~100μmであり、セメント100質量部に対して、骨材を80~300質量部、セメント用ポリマーを105℃における不揮発性分換算で1~30質量部含有し、繊維の含有量がモルタルの体積に対し0.05~1.0体積%であり、水セメント比35~60%である耐火被覆モルタル。
(2)上記繊維が、有機繊維である上記(1)の耐火被覆モルタル。
(3)構造物の表面が、上記(1)又は(2)の耐火被覆モルタルで被覆されている耐火被覆構造。
As a result of intensive studies to solve the above problems, the present inventors found that the above problems can be solved by setting the content of specific fibers, the amount of aggregate, the amount of polymer for cement, and the amount of water to be used to specific ratios. , completed the present invention. That is, the present invention is a fire-resistant coating mortar represented by (1) or (2) below, and a fire-resistant coating structure represented by (3).
(1) It contains cement, aggregates, fibers, and a polymer for cement, and the fiber diameter when the fibers are dispersed in water (the diameter of the fiber bundle when the fibers are dispersed in a converged state). ) is 1 to 100 μm, with respect to 100 parts by mass of cement, 80 to 300 parts by mass of aggregate, 1 to 30 parts by mass of cement polymer in terms of nonvolatile content at 105 ° C., and the content of fiber is Refractory coated mortar with a content of 0.05 to 1.0% by volume relative to the volume of the mortar and a water-cement ratio of 35 to 60%.
(2) The refractory coated mortar according to (1) above, wherein the fibers are organic fibers.
(3) A fire-resistant coating structure in which the surface of the structure is coated with the fire-resistant coating mortar of (1) or (2) above.

本発明によれば、土木構造物に用いることのできる耐火被覆モルタルが得られる。本発明によれば、加熱開始から5分で炉内温度が1200℃に達するRABT加熱曲線による耐火試験を行っても爆裂し難く且つ混錬後のコンシステンシーの優れる耐火被覆モルタルが得られる。 According to the present invention, a refractory coating mortar that can be used for civil engineering structures is obtained. According to the present invention, it is possible to obtain a refractory-coated mortar that does not easily explode even in a refractory test according to the RABT heating curve, where the furnace temperature reaches 1200° C. in 5 minutes from the start of heating, and that has excellent consistency after kneading.

また、本発明によれば、土木構造物、特にコンクリート製土木構造物に用いることのできる耐火被覆モルタルが得られる。また、本発明によれば、混錬直後のコンシステンシーの優れることから、下地との一体性に優れ、加熱開始から5分で炉内温度が1200℃に達するRABT加熱曲線による耐火試験を行っても爆裂し難い耐火被覆モルタルが得られる。 Moreover, according to the present invention, a fireproof coating mortar that can be used for civil engineering structures, particularly concrete civil engineering structures, can be obtained. In addition, according to the present invention, since the consistency immediately after kneading is excellent, the integrity with the base is excellent, and the temperature inside the furnace reaches 1200 ° C. in 5 minutes from the start of heating. A refractory coating mortar that is difficult to explode is obtained.

また、本発明によれば、土木構造物、特にコンクリート製土木構造物に用いることのできる耐火被覆構造が得られる。詳しくは、加熱開始から5分で炉内温度が1200℃に達するRABT加熱曲線による耐火試験を行っても爆裂し難い耐火被覆構造が得られる。 Further, according to the present invention, a fireproof covering structure that can be used for civil engineering structures, particularly concrete civil engineering structures, is obtained. More specifically, a fire-resistant coating structure that does not easily explode even when subjected to a fire-resistant test according to the RABT heating curve, where the furnace temperature reaches 1200° C. in 5 minutes from the start of heating, can be obtained.

セメント、骨材、繊維及びセメント用ポリマーを含有し、前記繊維が水に分散しているときの繊維径(繊維が収束した状態で分散しているときは繊維束の直径をいう。)が1~100μmであり、セメント100質量部に対して、骨材を80~300質量部、セメント用ポリマーを105℃における不揮発性分換算で1~30質量部含有し、有機繊維の含有量がモルタルの体積に対し0.05~1.0体積%であり、水セメント比35~60%であることを特徴とする。 Containing cement, aggregate, fiber and polymer for cement, the fiber diameter when the fibers are dispersed in water (refers to the diameter of the fiber bundle when the fibers are dispersed in a converged state) is 1 ~100 μm, with respect to 100 parts by mass of cement, it contains 80 to 300 parts by mass of aggregate, 1 to 30 parts by mass of cement polymer in terms of non-volatile content at 105 ° C., and the content of organic fibers is that of mortar. It is characterized by a content of 0.05 to 1.0% by volume and a water-cement ratio of 35 to 60%.

本発明に使用するセメントとは、無機質結合材のことを云い、水硬性セメントが好ましく、例えば普通、早強、超早強、低熱及び中庸熱の各種ポルトランドセメント、エコセメント、並びにこれらのポルトランドセメント又はエコセメントに、フライアッシュ、高炉スラグ、シリカフューム又は石灰石微粉末等を混合した各種混合セメント、太平洋セメント社製「スーパージェットセメント」(商品名)や住友大阪セメント社製「ジェットセメント」(商品名)等の超速硬セメント、アルミナセメント等が挙げられ、これらの一種又は二種以上を使用することができる。また、本発明に使用するセメントには、潜在水硬性物質である高炉スラグ粉末、珪酸ナトリウムや水ガラス等の珪酸アルカリ、並びにこれらにポゾラン粉末を含有するものも含まれる。 The cement used in the present invention refers to an inorganic binder, and is preferably a hydraulic cement. Or various mixed cements that are made by mixing fly ash, blast furnace slag, silica fume or limestone fine powder with ecocement, Taiheiyo Cement Co., Ltd. “Super Jet Cement” (trade name), Sumitomo Osaka Cement Co., Ltd. “Jet Cement” (trade name) ) and other ultra-rapid hardening cements, alumina cements, etc., and one or more of these can be used. The cement used in the present invention also includes blast furnace slag powder, which is a latent hydraulic substance, alkali silicates such as sodium silicate and water glass, and those containing pozzolanic powder in these.

本発明に用いる骨材としては、特に限定されず、例えば、川砂、陸砂、海砂、砕砂、珪砂、川砂利、陸砂利、砕石、人工骨材、スラグ骨材、再生骨材等が挙げられ、これらの一種又は二種以上を使用することが好ましい。本発明の耐火被覆モルタル組成物における骨材の含有量は、セメント100質量部に対し、80~300質量部とする。80質量部未満では、硬化後、特に加熱されたときの収縮が大きいために剥離が起こり易く、また、300質量部を超えると下地との付着力が小さいため剥離が起こり易く且つ爆裂も起こり易い。高温に晒されたときの剥離が起こり難く且つ爆裂も起こり難いことから、セメント100質量部に対し、骨材を100~280質量部とすることが好ましく、200~280質量部とすることがより好ましい。 The aggregate used in the present invention is not particularly limited, and examples thereof include river sand, land sand, sea sand, crushed sand, silica sand, river gravel, land gravel, crushed stone, artificial aggregate, slag aggregate, recycled aggregate, and the like. It is preferable to use one or more of these. The content of the aggregate in the fireproof coating mortar composition of the present invention is 80 to 300 parts by mass with respect to 100 parts by mass of cement. If the amount is less than 80 parts by mass, the shrinkage after curing is large, especially when heated, and peeling easily occurs. . Since it is difficult for delamination and explosion to occur when exposed to high temperatures, it is preferable to use 100 to 280 parts by mass, more preferably 200 to 280 parts by mass, of the aggregate with respect to 100 parts by mass of cement. preferable.

本発明に用いる繊維は、繊維が水に分散しているときの繊維径(繊維が収束した状態で分散しているときは繊維束の直径をいう。)が1~100μmのものを用いる。繊維が水に分散しているときの繊維径は、繊維を水に分散させたときに繊維が収束した状態で分散しているときは繊維束の直径をいう。繊維が水に分散しているときの繊維径は、水に分散させた状態で顕微鏡において視野に写る繊維の繊維径(繊維が収束した状態で分散しているときは繊維束の直径)を測定し、その平均値を用いる。繊維が水に分散している状態とするには、繊維0.1gをガラス製ビーカー内の水200gに投入し、攪拌機、例えばアズワン社製攪拌機(商品名;AS ONE HIGHT-POWER MIXER(トルネード)、型番;STM-102)を用い、400r.p.m.で5分間攪拌することが好ましい。
繊維が水に分散しているときの繊維径が1μm未満であると、水と混練したときに充分なコンシステンシーが得られない。また、繊維が水に分散しているときの繊維径が100μmを超えると爆裂が起こり易く、止まり難くなる。
本発明に用いる繊維としては、充分なコンシステンシーが得られ易く且つ爆裂が起こり難いことから、繊維が水に分散しているときの繊維径(繊維が収束した状態で分散しているときは繊維束の直径をいう。)(以下、単に「繊維径」ということがある。)が10~60μmのものを用いることが好ましく、繊維径が20~50μmのものを用いることがより好ましい。
また、本発明に用いる繊維としては、高温に晒されたときに、繊維が蒸発、消失又は融解することで水蒸気の通り道が生成することによりモルタル又は下地のコンクリートの爆裂が発生し難いことから、有機繊維が好ましい。
The fibers used in the present invention have a fiber diameter of 1 to 100 μm when dispersed in water (the diameter of the fiber bundle when the fibers are dispersed in a bundled state). The fiber diameter when the fibers are dispersed in water refers to the diameter of the fiber bundle when the fibers are dispersed in water in a converged state. The fiber diameter when the fibers are dispersed in water is measured by measuring the fiber diameter (the diameter of the fiber bundle when the fibers are dispersed in a converged state) that appears in the field of view under a microscope while the fibers are dispersed in water. and use the average value. In order to make the fibers dispersed in water, 0.1 g of the fibers are put into 200 g of water in a glass beaker and stirred with a stirrer such as AS ONE's stirrer (trade name: AS ONE HIGH-POWER MIXER (Tornado)). , model number; STM-102), 400r. p. m. is preferably stirred for 5 minutes.
If the fiber diameter is less than 1 μm when the fibers are dispersed in water, a sufficient consistency cannot be obtained when kneaded with water. Further, if the fiber diameter exceeds 100 μm when the fibers are dispersed in water, the explosion tends to occur and it becomes difficult to stop.
As for the fibers used in the present invention, since sufficient consistency is easily obtained and explosion is unlikely to occur, the fiber diameter when the fibers are dispersed in water (the fiber diameter when the fibers are dispersed in a converged state is The diameter of the bundle) (hereinafter sometimes simply referred to as "fiber diameter") is preferably 10 to 60 µm, more preferably 20 to 50 µm.
In addition, when exposed to high temperatures, the fibers used in the present invention evaporate, disappear, or melt to form a path for water vapor, which makes it difficult for the mortar or underlying concrete to explode. Organic fibers are preferred.

本発明における繊維の含有量は、本発明のモルタル(耐火被覆モルタル)の体積に対し0.05~1.0体積%とする。充分なコンシステンシーが得られ易く且つモルタル又は下地のコンクリートの爆裂が起こり難いことから、モルタルの体積に対し0.1~0.5体積%とすることが好ましい。含有するセメント用ポリマー量が105℃における不揮発性分換算で、セメント100質量部に対し20質量部以上のときは、本発明における繊維の含有量は、本発明のモルタル(耐火被覆モルタル)の体積に対し0.3体積%以上とすることが耐爆裂性の点から好ましく、0.5体積%以上とすることが更に好ましい。繊維に前記繊維(繊維径が1~100μmの繊維)以外の繊維が含まれる場合は、全繊維に対する含有率が10体積%以下、好ましくは5体積%以下、より好ましくは1体積%以下とし、最も好ましくは前記繊維以外の繊維を含まないものとする。 The fiber content in the present invention is 0.05 to 1.0% by volume relative to the volume of the mortar (refractory coated mortar) of the present invention. It is preferable to make it 0.1 to 0.5% by volume based on the volume of the mortar because a sufficient consistency can be easily obtained and the mortar or the underlying concrete is unlikely to explode. When the amount of polymer for cement contained is 20 parts by mass or more per 100 parts by mass of cement in terms of non-volatile content at 105° C., the content of fibers in the present invention is the volume of the mortar (refractory coated mortar) of the present invention. From the viewpoint of explosion resistance, the content is preferably 0.3% by volume or more, more preferably 0.5% by volume or more. When fibers other than the above fibers (fibers with a fiber diameter of 1 to 100 μm) are included in the fibers, the content of the total fibers is 10% by volume or less, preferably 5% by volume or less, more preferably 1% by volume or less, Most preferably, it does not contain fibers other than the above fibers.

本発明に使用するセメント用ポリマーとしては、ポリマーセメントモルタルやポリマーセメントコンクリートの結合材として用いられるものであればよく、例えば、スチレン・ブタジエン共重合体,クロロプレンゴム,アクリロニトリル・ブタジエン共重合体又はメチルメタクリレート・ブタジエン共重合体等の合成ゴム、天然ゴム、ポリエチレンやポリプロピレン等のポリオレフィン、ポリクロロピレン、ポリアクリル酸エステル、スチレン・アクリル共重合体、オールアクリル共重合体、ポリ酢酸ビニル,酢酸ビニル・アクリル共重合体,酢酸ビニル・アクリル酸エステル共重合体,変性酢酸ビニル,エチレン・酢酸ビニル共重合体,エチレン・酢酸ビニル・塩化ビニル共重合体,酢酸ビニルビニルバーサテート共重合体,アクリル・酢酸ビニル・ベオバ(t-デカン酸ビニルの商品名)共重合体等の酢酸ビニル系樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、アルキド樹脂及びエポキシ樹脂等の合成樹脂、アスファルト,ゴムアスファルト及びパラフィン等の瀝青質等が好ましい例として挙げられ、これらの1種又は2種以上を用いることができる。下地との接着が良いという理由から、本発明に使用するセメント用ポリマーとしては、ポリ酢酸ビニル,酢酸ビニル・アクリル共重合体,酢酸ビニル・アクリル酸エステル共重合体,変性酢酸ビニル,エチレン・酢酸ビニル共重合体,エチレン・酢酸ビニル・塩化ビニル共重合体,酢酸ビニルビニルバーサテート共重合体,アクリル・酢酸ビニル・ベオバ(t-デカン酸ビニルの商品名)共重合体等の酢酸ビニル系樹脂;ポリアクリル酸エステル,ポリメタクリル酸エステル,アクリル酸エステル・スチレン共重合体,スチレン・アクリル共重合体,オールアクリル共重合体等のアクリル系樹脂;ポリエチレン及びポリプロピレン等のポリオレフィン系樹脂;スチレン・ブタジエン共重合体,クロロプレンゴム,アクリロニトリル・ブタジエン共重合体又はメチルメタクリレート・ブタジエン共重合体等の合成ゴムから選ばれる1種又は2種以上を用いることが好ましい。本発明に使用するセメント用ポリマーの状態は、液体、エマルション又はエマルションを粉末状にした再乳化型粉末樹脂の何れでもよい。 The polymer for cement used in the present invention may be any one that can be used as a binder for polymer cement mortar or polymer cement concrete. Synthetic rubber such as methacrylate/butadiene copolymer, natural rubber, polyolefin such as polyethylene and polypropylene, polychloropyrene, polyacrylate, styrene/acrylic copolymer, all-acrylic copolymer, polyvinyl acetate, vinyl acetate/acryl Copolymers, vinyl acetate/acrylic acid ester copolymers, modified vinyl acetate, ethylene/vinyl acetate copolymers, ethylene/vinyl acetate/vinyl chloride copolymers, vinyl acetate vinyl versatate copolymers, acrylic/vinyl acetate・Vinyl acetate resins such as VEOVA (trade name of vinyl t-decanoate) copolymer, synthetic resins such as unsaturated polyester resins, polyurethane resins, alkyd resins and epoxy resins, bituminous substances such as asphalt, rubber asphalt and paraffin etc. are mentioned as preferable examples, and one or more of these can be used. Polymers for cement used in the present invention include polyvinyl acetate, vinyl acetate-acrylic copolymer, vinyl acetate-acrylic acid ester copolymer, modified vinyl acetate, ethylene-acetic acid, and ethylene-acetic acid. Vinyl acetate resins such as vinyl copolymer, ethylene/vinyl acetate/vinyl chloride copolymer, vinyl acetate vinyl versatate copolymer, acrylic/vinyl acetate/Veova (trade name of vinyl t-decanoate) copolymer Acrylic resins such as polyacrylates, polymethacrylates, acrylic acid ester/styrene copolymers, styrene/acrylic copolymers, and all-acrylic copolymers; Polyolefin resins such as polyethylene and polypropylene; Styrene/butadiene It is preferable to use one or more selected from synthetic rubbers such as copolymers, chloroprene rubbers, acrylonitrile-butadiene copolymers and methyl methacrylate-butadiene copolymers. The polymer for cement used in the present invention may be in the form of a liquid, an emulsion, or a re-emulsified powdered resin obtained by pulverizing an emulsion.

本発明の耐火被覆モルタルにおけるセメント用ポリマーの含有量としては、105℃における不揮発性分(以下「固形分」という。)換算で、セメント100質量部に対し1~30質量部とする。1質量部未満では、被覆モルタルとしたときに下地との付着力が小さいため剥離が起こり易い。また、30質量部を超えると、モルタルの粘性が大き過ぎ、下地に被覆しづらく施工不良となり易い。下地(構造物の表面)に被覆したときに下地との付着力が大きく、剥離が起こり難く、爆裂も起こり難く、更に下地に被覆し易く施工不良となり難いことから、本発明の耐火被覆モルタルにおけるセメント用ポリマーの含有量としては、セメント100質量部に対し、固形分換算で2~25質量部とすることが好ましく、10~20質量部とすることがより好ましく、15~20質量部とすることが最も好ましい。 The content of the polymer for cement in the fireproof coating mortar of the present invention is 1 to 30 parts by weight per 100 parts by weight of cement in terms of non-volatile content (hereinafter referred to as "solid content") at 105°C. If the content is less than 1 part by mass, the coating mortar has a low adhesion to the substrate and is therefore easily peeled off. On the other hand, if the amount exceeds 30 parts by mass, the viscosity of the mortar is too high, making it difficult to coat the substrate and easily resulting in defective construction. When coated on the base (surface of the structure), it has a large adhesive force with the base, does not easily peel off, does not easily explode, and is easy to coat the base and does not cause poor construction. The content of the polymer for cement is preferably 2 to 25 parts by mass, more preferably 10 to 20 parts by mass, more preferably 15 to 20 parts by mass in terms of solid content, based on 100 parts by mass of cement. is most preferred.

本発明の耐火被覆モルタルは、水セメント比(W/C)が35~60%となる量の水を含有する。含有する水が、W/Cが35%となる量より少ない量であると、混錬直後のモルタルのコンシステンシーが得られず、下地に被覆し難く施工不良となり易い。また、含有する水が、W/Cが60%となる量より多いと、硬化後、特に加熱されたときの収縮が大きいため又は/及び下地との付着力が小さいため被覆モルタルとしたときに剥離が起こり易く且つ爆裂も起こり易い。本発明の耐火被覆モルタルにおいて、含有する水量は、混錬直後のモルタルのコンシステンシーが得られ易く且つ爆裂も起こり難いことから、W/C40~55%とすることが好ましい。 The refractory coating mortar of the present invention contains water in such an amount that the water-cement ratio (W/C) is 35-60%. If the amount of water contained is less than the amount at which W/C is 35%, the consistency of the mortar immediately after kneading cannot be obtained, and it is difficult to coat the substrate, resulting in poor construction. Also, if the amount of water contained is larger than the W/C ratio of 60%, the shrinkage after curing is large, especially when heated, and/or the adhesion to the substrate is small, so that when the coating mortar is formed, the Delamination is likely to occur and explosion is likely to occur. In the refractory coating mortar of the present invention, the amount of water contained is preferably W/C 40 to 55%, because the consistency of the mortar immediately after kneading can be easily obtained and explosion is unlikely to occur.

本発明の耐火被覆モルタルには、セメント、セメント用ポリマー、骨材以外に、その他の混和材料の一種又は二種以上を本発明の効果を損なわない範囲で併用することができる。このような混和材料としては、例えば高性能減水剤や高性能AE減水剤等の減水剤、凝結遅延剤、発泡剤、起泡剤、防水材(剤)、防錆剤、収縮低減剤、増粘剤、顔料、消泡剤、膨張材、撥水剤、白華防止剤、急結剤(材)、硬化促進剤(材)、強度促進剤(材)、表面硬化剤等が挙げられる。 In the refractory coating mortar of the present invention, in addition to cement, cement polymers and aggregates, one or more of other admixtures can be used in combination within a range that does not impair the effects of the present invention. Such admixtures include, for example, water reducing agents such as high performance water reducing agents and high performance AE water reducing agents, setting retarders, foaming agents, foaming agents, waterproofing materials (agents), rust inhibitors, shrinkage reducing agents, thickeners, Viscous agents, pigments, antifoaming agents, swelling agents, water repellents, anti-efflorescence agents, quick setting agents (materials), curing accelerators (materials), strength accelerators (materials), surface curing agents and the like.

本発明の耐火被覆モルタルは、水及び液体混和材料以外の材料の一部又は全部を予め乾式混合した、粉末状又は粉粒体状であるプレミックスモルタルとすることができる。当該プレミックスモルタルと、所定量の水、或いは水と水溶液及び/又はエマルションの混和材料を計量し混練するだけで直ぐに本発明の耐火被覆モルタルとして使用することができる。本発明の耐火被覆モルタルの配合成分のうちセメント用ポリマーを含めてプレミックスモルタルとするときは、用いるセメント用ポリマーが再乳化型粉末樹脂であることが、プレミックスモルタルとしてから半年程度性能を劣化させずに保管することができ、水と当該プレミックスモルタルとをミキサ等で混錬することで本発明の耐火被覆モルタルを製造できることから好ましい。 The refractory coating mortar of the present invention can be premixed mortar in the form of powder or granules, in which part or all of the materials other than water and the liquid admixture are dry-mixed in advance. By simply weighing and kneading the premixed mortar and a predetermined amount of water, or a mixture of water and an aqueous solution and/or emulsion, the mortar can be immediately used as the refractory coating mortar of the present invention. When making a premixed mortar including a polymer for cement among the ingredients of the refractory coating mortar of the present invention, the fact that the polymer for cement used is a re-emulsified powdered resin deteriorates the performance of the premixed mortar for about half a year. It is preferable because the fireproof coating mortar of the present invention can be produced by kneading water and the premixed mortar with a mixer or the like.

本発明の耐火被覆モルタルの配合成分の一部をプレミックス化させる方法は限定されず、V型混合機や可傾式コンクリートミキサ等の重力式ミキサー、ヘンシェルミキサー、噴射型ミキサー、リボンミキサー、パドルミキサー等を用いることができる。本発明の耐火被覆モルタルに骨材として軽量骨材が含まれる場合は、軽量骨材の形状を保持し、品質を維持するにはリボンミキサーやパドルミキサーをプレミックス化するときに使用することが好ましい。また、袋やポリエチレン製容器等の容器に直接、各材料を計り取り投入する方法により、本発明の耐火被覆モルタル(その一部分)をプレミックス化することもできる。 The method of premixing some of the ingredients of the fireproof coating mortar of the present invention is not limited, and includes gravity mixers such as V-type mixers and tilting concrete mixers, Henschel mixers, injection mixers, ribbon mixers, and paddles. A mixer or the like can be used. When the fireproof coating mortar of the present invention contains a lightweight aggregate as an aggregate, it can be used when premixing a ribbon mixer or a paddle mixer to maintain the shape and quality of the lightweight aggregate. preferable. Alternatively, the fireproof coating mortar (part thereof) of the present invention can be premixed by a method of weighing and charging each material directly into a container such as a bag or polyethylene container.

本発明の耐火被覆モルタルの混練(製造)には、ミキサを用いることが量を多く且つ短い時間で均一に混練できるので好ましい。用いることのできるミキサとしては連続式ミキサでもバッチ式ミキサでも良く、例えばパン型コンクリートミキサ、パグミル型コンクリートミキサ、重力式コンクリートミキサ、グラウトミキサ、ハンドミキサ、左官ミキサ等が挙げられる。また、プレミックス化した本発明の耐火被覆モルタルの一部を空気圧送し、空気圧送の途中で水及び/又は水を含有する混和材料を添加した上で混合(合流混合)することで本発明の本発明の耐火被覆モルタルを製造することもできる。 It is preferable to use a mixer for kneading (manufacturing) the fireproof coating mortar of the present invention, because a large amount can be uniformly kneaded in a short time. A mixer that can be used may be a continuous mixer or a batch mixer, and examples thereof include a pan concrete mixer, a pug mill concrete mixer, a gravity concrete mixer, a grout mixer, a hand mixer, and a plastering mixer. In addition, a part of the premixed fireproof coating mortar of the present invention is pneumatically fed, and water and / or an admixture containing water are added in the middle of pneumatic feeding and then mixed (confluence mixing). The refractory coating mortar of the present invention can also be produced.

耐火被覆構造は、構造物の表面が、上記耐火被覆モルタルで被覆されていることを特徴とする。構造物の表面へ当該耐火被覆モルタルを被覆する方法は、特に限定されず、常法により行うことができる。例えば、鏝による塗り付け等の左官工法、モルタル吹付け等の吹付け工法、左官工法と吹付け工法を併用した方法、構造物表面に型枠を設置し構造物表面と型枠の間隙に充てんする方法等が好適な例として挙げられる。構造物表面(下地表面)、構造物がコンクリート構造物のときは下地となるコンクリート面を当該耐火被覆モルタルで被覆する前に、当該下地表面に、合成ゴム、天然ゴム、酢酸ビニル系樹脂やアクリル系樹脂等の合成樹脂等からなる吸水調整材やプライマーを塗布してもよい。 The fireproof coating structure is characterized in that the surface of the structure is coated with the fireproof coating mortar. The method of coating the surface of the structure with the refractory coating mortar is not particularly limited, and a conventional method can be used. For example, plastering methods such as painting with a trowel, spraying methods such as mortar spraying, methods combining plastering methods and spraying methods, placing a formwork on the surface of the structure and filling the gap between the surface of the structure and the formwork A suitable example is a method of Before coating the surface of the structure (substrate surface), or the concrete surface that will be the substrate when the structure is a concrete structure, with the fireproof coating mortar, apply synthetic rubber, natural rubber, vinyl acetate resin, or acrylic to the substrate surface. A water absorption adjusting material made of a synthetic resin such as a base resin or a primer may be applied.

[実施例1]
<繊維径の測定>
有機繊維0.1gをガラス製ビーカー内の水200gに投入し、アズワン社製攪拌機(商品名;AS ONE HIGHT-POWER MIXER(トルネード)、型番;STM-102)を用い、400r.p.m.で5分間攪拌することで、水に有機繊維を分散させた。有機繊維を分散させた水をプレパラートに載せ顕微鏡で観察した。顕微鏡の視野に入る繊維の繊維径を測定した。このとき収束している繊維は、繊維束の幅、即ち、繊維束の直径を測定し、その平均値を求めた。
有機繊維は以下の2種類の繊維を使用した。
・繊維1: ナイロン繊維
・繊維2: ポリプロピレン繊維
繊維径の測定結果を表1に示した。
[Example 1]
<Measurement of fiber diameter>
0.1 g of organic fiber was added to 200 g of water in a glass beaker, and stirred at 400 r.p.m. p. m. The organic fibers were dispersed in the water by stirring for 5 minutes at . The water in which the organic fibers were dispersed was placed on a slide and observed under a microscope. The fiber diameter of the fibers within the field of view of the microscope was measured. For the fibers converging at this time, the width of the fiber bundle, that is, the diameter of the fiber bundle was measured, and the average value was obtained.
The following two kinds of fibers were used as the organic fibers.
- Fiber 1: Nylon fiber - Fiber 2: Polypropylene fiber Table 1 shows the measurement results of the fiber diameter.

Figure 2023071565000001
Figure 2023071565000001

前記有機繊維と以下に示す材料を用いて、表2に示す配合のモルタルを作製した。
<使用材料>
・セメント: 普通ポルトランドセメント
・骨材: 珪砂(絶乾密度2.64g/cm3、吸水率0.3%)
・セメント用ポリマー: アクリル系再乳化型粉末樹脂
・水: 千葉県佐倉市上水
A mortar having the composition shown in Table 2 was prepared using the organic fibers and the materials shown below.
<Materials used>
・Cement: Ordinary Portland cement ・Aggregate: Silica sand (absolute dry density 2.64 g/cm 3 , water absorption 0.3%)
・Cement polymer: Acrylic re-emulsified powder resin ・Water: Sakura city water supply, Chiba prefecture

Figure 2023071565000002
Figure 2023071565000002

作製したモルタルについて、以下に示す品質評価試験を行った。試験結果を表3に示した。
<フロー試験>
混練直後のJIS R 5201「セメントの物理試験方法」11.フロー試験に準じてフロー値(落下運動有り)(以下、「フロー値」という。)を測定した。
<圧縮強度試験>
JIS A 1171: 2016 「ポリマーセメントモルタルの試験方法」7.3曲げ強さ及び圧縮強さ試験に従って材齢28日の圧縮強度(圧縮強さ)を測定した。
<付着強度試験>
JIS A 1171: 2016 「ポリマーセメントモルタルの試験方法」7.4 接着強さ試験に準じて材齢28日の付着強度(接着強さ)を測定した。
付着強度試験の結果の評価は、付着強度(接着強さ)が1N/mm2以上且つ供試体の破断状況が下地(モルタル基板)内部での破断の割合が50%以上の場合を「優良(記号:○)」、付着強度(接着強さ)が1N/mm2未満又は供試体の破断状況が下地(モルタル基板)内部での破断の割合が50%未満の場合を「不良(記号:×)」とした。
<単位容積質量>
JIS A 1171: 2016 「ポリマーセメントモルタルの試験方法」6.4単位容積質量試験に従って混練直後の単位容積質量を測定した。
<爆裂試験>
公益社団法人日本コンクリート工学会のJCI-S-014-2018「コンクリートの爆裂試験方法-リング拘束供試体法(A法)-」(附属書A含む。)に準じて爆裂試験を行った。用いた加熱曲線は、RABT加熱曲線(RABT30分加熱)(表記:RABT30)及びISO加熱曲線(加熱時間60分、以下「ISO60分加熱」(表記:ISO834)という。)を用い爆裂試験(加熱試験)を行った。
爆裂試験の結果の評価は、全く爆裂しなかった場合を「優良(記号:◎)」、爆裂が途中で止まった場合を「良(記号:○)」、爆裂が止まらなかった場合を「不良(記号:×)」とした。
The following quality evaluation tests were performed on the prepared mortar. Table 3 shows the test results.
<Flow test>
JIS R 5201 "Physical Test Method for Cement" immediately after kneading 11. A flow value (with falling motion) (hereinafter referred to as "flow value") was measured according to the flow test.
<Compressive strength test>
According to JIS A 1171: 2016 "Testing methods for polymer cement mortar" 7.3 Flexural strength and compressive strength test, the compressive strength (compressive strength) at the age of 28 days was measured.
<Adhesion strength test>
According to JIS A 1171: 2016 "Testing method for polymer cement mortar" 7.4 Adhesion strength test, adhesion strength (adhesion strength) was measured at 28 days of material age.
The results of the adhesion strength test are evaluated as “excellent” when the adhesion strength (adhesion strength) is 1 N/mm 2 or more and the fracture rate of the test piece is 50% or more inside the base (mortar substrate). Symbol: ○)”, and when the bond strength (adhesive strength) is less than 1 N/mm 2 or the fracture rate of the test piece is less than 50% inside the base (mortar substrate), it is “defective (symbol: × )”.
<Unit volume mass>
The unit volume mass immediately after kneading was measured according to JIS A 1171: 2016 "Testing methods for polymer cement mortar" 6.4 Unit volume mass test.
<Explosion test>
An explosion test was conducted according to JCI-S-014-2018 "Concrete Explosion Test Method-Ring Restraint Specimen Method (A Method)-" (including Annex A) of the Japan Concrete Institute. The heating curve used is the RABT heating curve (RABT 30 minutes heating) (notation: RABT 30) and the ISO heating curve (heating time 60 minutes, hereinafter referred to as "ISO 60 minutes heating" (notation: ISO834).) Explosion test (heating test ) was performed.
The results of the explosion test were evaluated as "excellent (symbol: ◎)" when no explosion occurred, "good (symbol: ○)" when the explosion stopped halfway, and "bad" when the explosion did not stop. (Symbol: x)”.

Figure 2023071565000003
Figure 2023071565000003

本発明の実施例に当たる配合No.5及び7のモルタルは、混錬直後のコンシステンシー(フロー値)が150(mm)以上と優れ、下地に塗布し易く、圧縮強度が30MPa(N/mm2)以上と優れ、付着試験の結果に優れ下地との一体性にも優れ、更に爆裂試験(耐爆裂性)の結果にも優れることから、耐火被覆モルタルであった。特に、セメント用ポリマーの含有量が固形分換算でセメント100質量部に対し15~25質量部である配合No.7のモルタルは、混錬直後のコンシステンシー(フロー値)が180(mm)以上とより優れ、下地に塗布し易く、爆裂試験(耐爆裂性)の結果にも優れていた。また、配合No.5及び7のモルタルは、加熱開始から5分で炉内温度が1200℃に達するRABT加熱曲線を用いるRABT30分加熱による耐火試験を行っても爆裂し難いので、土木構造物に用いることのできる耐火被覆モルタルの性能を有していた。 Formulation No. corresponding to an example of the present invention. The mortars of 5 and 7 have excellent consistency (flow value) of 150 (mm) or more immediately after kneading, are easy to apply to the substrate, and have excellent compressive strength of 30 MPa (N/mm 2 ) or more. It was a fire-resistant coating mortar because it was excellent in adhesion and integrity with the substrate, and also excellent in the results of the explosion test (explosion resistance). In particular, formulation No. 1, in which the content of the polymer for cement is 15 to 25 parts by mass per 100 parts by mass of cement in terms of solid content. The mortar No. 7 had an excellent consistency (flow value) of 180 (mm) or more immediately after kneading, was easy to apply to the substrate, and had excellent results in the explosion test (explosion resistance). Moreover, formulation No. The mortars of Nos. 5 and 7 do not easily explode even when subjected to a fire resistance test by RABT heating for 30 minutes using a RABT heating curve in which the furnace temperature reaches 1200°C in 5 minutes from the start of heating, so they can be used for civil engineering structures. It had the performance of coating mortar.

下地との一体性に優れ、耐火試験を行っても爆裂し難い耐火被覆モルタルが得られ、耐火被覆モルタルと下地との一体性に優れ耐爆裂性に優れる被覆構造が得られるので、本発明は、耐火性が求められる土木構造物及び建築構造物に好適に用いることができる。 It is possible to obtain a fire-resistant coating mortar that is excellent in integration with the substrate and does not easily explode even when a fire resistance test is performed, and it is possible to obtain a coating structure that is excellent in integration between the fire-resistant coating mortar and the substrate and has excellent explosion resistance. , can be suitably used for civil engineering structures and building structures that require fire resistance.

Claims (3)

セメント、骨材、繊維及びセメント用ポリマーを含有し、前記繊維が水に分散しているときの繊維径(繊維が収束した状態で分散しているときは繊維束の直径をいう。)が1~100μmであり、セメント100質量部に対して、骨材を80~300質量部、セメント用ポリマーを105℃における不揮発性分換算で1~30質量部含有し、繊維の含有量が水と混練後のモルタルの体積に対し0.05~1.0体積%であり、水セメント比35~60%である耐火被覆モルタル。 Containing cement, aggregate, fiber and polymer for cement, the fiber diameter when the fibers are dispersed in water (refers to the diameter of the fiber bundle when the fibers are dispersed in a converged state) is 1 ~100 μm, 80 to 300 parts by mass of aggregate per 100 parts by mass of cement, 1 to 30 parts by mass of cement polymer in terms of non-volatile content at 105 ° C., and the content of fibers is kneaded with water. A refractory coating mortar with a water-cement ratio of 35-60% with a volume percentage of 0.05-1.0% relative to the volume of the mortar afterward. 上記繊維が、有機繊維である請求項1記載の耐火被覆モルタル。 2. The refractory coating mortar according to claim 1, wherein said fibers are organic fibers. 構造物の表面が、上記請求項1又は2記載の耐火被覆モルタルで被覆されている耐火被覆構造。 A fire-resistant coating structure in which the surface of the structure is coated with the fire-resistant coating mortar according to claim 1 or 2.
JP2021184426A 2021-11-11 2021-11-11 Fire-proof protected mortar and fire-proof protected structure Pending JP2023071565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021184426A JP2023071565A (en) 2021-11-11 2021-11-11 Fire-proof protected mortar and fire-proof protected structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021184426A JP2023071565A (en) 2021-11-11 2021-11-11 Fire-proof protected mortar and fire-proof protected structure

Publications (1)

Publication Number Publication Date
JP2023071565A true JP2023071565A (en) 2023-05-23

Family

ID=86409671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021184426A Pending JP2023071565A (en) 2021-11-11 2021-11-11 Fire-proof protected mortar and fire-proof protected structure

Country Status (1)

Country Link
JP (1) JP2023071565A (en)

Similar Documents

Publication Publication Date Title
JP5939776B2 (en) Repair mortar composition
JP4937701B2 (en) Grout composition, grout mortar and grout method
JP7395633B2 (en) polymer cement mortar
JP7234001B2 (en) Repair method for polymer cement mortar and reinforced concrete
US8382893B1 (en) Cementitious compositions
JP5959096B2 (en) Grout material composition for existing pipe lining, cured product thereof, and lining construction method for existing pipe
EP3842400A1 (en) Dry mortar, in particular cementitious tile adhesive
JP2003306369A (en) Spray material and spraying method using it
RU2301205C2 (en) Binding compositions and method of using such compositions
JP5502116B2 (en) Manufacturing method of lightweight aggregate for mortar
JP2017210407A (en) Polymer cement mortar and method using polymer cement mortar
JP2023071565A (en) Fire-proof protected mortar and fire-proof protected structure
JPH0710739B2 (en) Cement mortar composition containing epoxy resin
US7993448B2 (en) Cement-containing composition for use with alkali-resistant fiberglass and poles made therefrom
JP7350425B2 (en) Highly durable grout composition
JP5110339B2 (en) Lightweight aggregate for mortar
JP2019178036A (en) Construction cement mortar for spraying
JP5378754B2 (en) Polymer cement composition
JP2710351B2 (en) Rapidly setting polymer cement composition
JP2014141868A (en) Incombustible spray material for foamed resin-based heat insulator, and incombustible heat insulation structure and construction method thereof
JP2019218226A (en) Explosion-resistant mortar composition, fire-proof covering mortar composition, and fire-proof covering structure
CN113423674A (en) Adhesive composition
US10730794B1 (en) Method of delivery of dry polymeric microsphere powders for protecting concrete from freeze-thaw damage
JP6888909B2 (en) Sprayed non-combustible material for foamed resin-based heat insulating material, non-combustible heat insulating structure and its construction method
JP7321057B2 (en) Polymer cement composition and polymer cement mortar