JP2023071339A - Antifreeze water tap post - Google Patents

Antifreeze water tap post Download PDF

Info

Publication number
JP2023071339A
JP2023071339A JP2021184039A JP2021184039A JP2023071339A JP 2023071339 A JP2023071339 A JP 2023071339A JP 2021184039 A JP2021184039 A JP 2021184039A JP 2021184039 A JP2021184039 A JP 2021184039A JP 2023071339 A JP2023071339 A JP 2023071339A
Authority
JP
Japan
Prior art keywords
water
passage
discharge
valve
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021184039A
Other languages
Japanese (ja)
Inventor
信雄 橋本
Nobuo Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemura Seisakusho KK
Original Assignee
Takemura Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemura Seisakusho KK filed Critical Takemura Seisakusho KK
Priority to JP2021184039A priority Critical patent/JP2023071339A/en
Publication of JP2023071339A publication Critical patent/JP2023071339A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

To realize simplification, downsizing, and cost reduction of a water discharge port and to avoid troubles or failures such as dust clogging in an air passage by protecting an air suction port externally.SOLUTION: An antifreeze water tap post includes a spool valve mechanism 4 that can switch to a water supply mode Ms, a water cut-off mode Mc, or a water removal mode Mr by a spool part 4s that moves up and down through an operation mechanism 3 and disposes a thermo-valve 5 in a water passage R inside a water discharge port 2e, where, when at least an external temperature drops to a predetermined temperature or lower, the thermo-valve 5 is switched to an air suction side to allow air suction into the water passage R inside a water vertical pipe 2 closed by the water cut-off mode Mc, and the antifreeze water tap post shifts to the water removal mode Mr. When constituting the antifreeze water tap post, a residue preventing function Fr that discharges residual water Wo remaining in a water discharge passage Ro at least in the water cut-off mode Mc is provided, and an air suction port 5i of the thermo-valve 5 disposed inside the water discharge port 2e is caused to face the inside of the water discharge passage Ro.SELECTED DRAWING: Figure 1

Description

本発明は、寒冷地における住宅の庭などの屋外に設置する水道立上管を有する不凍水栓柱に関する。 TECHNICAL FIELD The present invention relates to a non-freezing faucet column having a water supply riser installed outdoors such as in the garden of a house in cold regions.

従来、住宅の庭などの屋外には、水道立上管の上部に吐水口を備える水栓柱を設置する場合も多いとともに、特に、寒冷地の場合には、凍結を防止するため、不凍水栓柱を設置する場合も多い。ところで、不凍水栓柱は、通常、寒冷期に、不凍栓を閉めて水抜きを行う必要があり、管理が煩わしい課題も存在した。そこで、本出願人は、既に、この課題を解決するため、外気温度が設定温度以下のときに、自動で水抜きができるようにした自動水抜き機能を備える不凍水栓柱を特許文献1により提案した。 Conventionally, in outdoor areas such as residential gardens, faucet columns with outlets at the top of the water supply riser pipes are often installed. Water faucets are often installed. By the way, the non-freezing faucet column usually needs to be drained by closing the anti-freezing faucet in cold weather, and there is also a problem that management is troublesome. Therefore, in order to solve this problem, the applicant of the present application has already developed a non-freezing faucet pillar equipped with an automatic water draining function that automatically drains water when the outside air temperature is below a set temperature. proposed by

同文献1に記載の自動水抜き機構を備える不凍水栓柱は、外気温度が設定温度以下のときに自動で水抜きができる合理的な機構によって、出水及び水抜きの操作をより的確且つ容易に行うことができる不凍水栓柱の提供を目的としたものであり、具体的には、水抜き機構を備える通水弁機構と、立上げ通水路と、出水部と、操作部と、立上げ通水路と出水部との連通部を開閉する吸気遮断弁と、立上げ通水路に連通する自動水抜き用の吸気開閉機構とを備え、自動水抜き用の吸気開閉機構が、外部に連通する吸気口と、立上げ通水路に連通部の下方に設けられた吸気用連通部を介して連通する通気路とを有し、出水の際には通気路を閉じ、水抜きの際には通気路を開ける吸気逆止弁と、外気温度が設定温度より高いときは通気路を閉じ、外気温度が設定温度以下のときは水抜きが自動的にできるように通気路を開ける吸気用の温度感知弁部とを設けて構成したものである。 The non-freezing faucet column equipped with an automatic draining mechanism described in Document 1 has a rational mechanism that can automatically drain water when the outside air temperature is below the set temperature, so that the operation of draining and draining water can be performed more accurately. The object is to provide a non-freezing faucet column that can be easily operated, and specifically includes a water flow valve mechanism equipped with a draining mechanism, a rising water passage, a water outlet, and an operation portion. , an intake shutoff valve that opens and closes the communication part between the rising water passage and the water outlet, and an intake opening and closing mechanism for automatic draining that communicates with the rising water passage. and an air passage that communicates with the rising water passage through the air intake communication portion provided below the communication portion. There is an intake check valve that opens the ventilation path, and when the outside temperature is higher than the set temperature, the ventilation path is closed, and when the outside temperature is below the set temperature, the ventilation path is opened so that water can be automatically drained. and a temperature sensing valve portion.

図9は、同文献1に記載される不凍水栓柱の水抜時における作用を説明するための原理的構成図を示したものである。同図に示す不凍水栓柱100において、101は地面から上方へ起立した水道立上管であり、この水道立上管101の上端付近には、水平方向に突出した吐水口部102を備えるとともに、この吐水口部102の先端付近における外周面の下面には、斜め前方に突出した先端吐水口103を備える。そして、この吐水口部102の内部に温度感知弁部104を配設する。これにより、止水モードでは、ハンドル105の回動操作により、操作ロッド106が下降変位し、操作ロッド106の下端に設けた図示を省略したスプール弁機構部及び操作ロッド106の上部に設けた図9に示す上部開閉機構部108が閉側に切換わり、通水路(立上通水路)Rmrが遮断される。この場合、温度感知弁部104は、閉側(遮断側)に切換わっているため、上部開閉機構部108による遮断と温度感知弁部104の閉側切換により、立上通水路Rmrの内部は密閉状態となり、残留水は、そのまま立上通水路Rmrの内部に残留状態となる。 FIG. 9 shows a principle configuration diagram for explaining the operation of the non-freezing faucet column described in Document 1 when the water is drained. In the non-freezing faucet column 100 shown in the same figure, 101 is a water supply riser standing upward from the ground, and near the upper end of this water supply riser 101, a water outlet 102 protruding in the horizontal direction is provided. In addition, a tip spout 103 projecting obliquely forward is provided on the lower surface of the outer peripheral surface near the tip of the spout portion 102 . A temperature sensing valve portion 104 is arranged inside the spout portion 102 . As a result, in the water stop mode, the operating rod 106 is displaced downward by the turning operation of the handle 105, and the spool valve mechanism provided at the lower end of the operating rod 106 (not shown) and the upper portion of the operating rod 106 are shown. The upper opening/closing mechanism 108 shown in 9 is switched to the closed side, and the water passage (rising water passage) Rmr is shut off. In this case, since the temperature sensing valve portion 104 is switched to the closed side (blocking side), the inside of the rise water passage Rmr is It becomes a sealed state, and the residual water remains in the rising water passage Rmr as it is.

また、吐水口部102の内部における通水路(吐出通水路)Rorも先端吐水口103を除いて密閉状態になるため、吐出通水路Ror内部の残留水Worもそのまま残留する。即ち、図9に示すように、先端吐水口103の残留水Worは表面張力等により排出が阻止されるため、この状態で、外気温度が設定温度以下まで低下した場合には、残留水Worが存在する状態で温度感知弁部104が吸気側(開側)に切換わる弊害を生じる。このため、吸気が行われる吸気通路110は、吐水口部102の先端部分に独立した経路により別途形成していた。図9中、110iは、吸気通路110における大気に臨む先端口(流入口)を示すとともに、110eは、温度感知弁部104の吸入口104iに連通する後端口(流出口)110eを示す。これにより、吸気時には、図9に示す一点鎖線矢印Airに沿って空気の流通が行われる。即ち、吸気は、流入口110i→吸気通路110→流出口110e→吸入口104i→温度感知弁部104の内部→立上通水路Rmrの経路で行われ、立上通水路Rmrの密閉状態が解除されることにより、立上通水路Rmrの内部に残存した残留水Wrrが外部に排出される。 In addition, since the water passage (discharge water passage) Ror inside the water discharge port portion 102 is also sealed except for the tip water discharge port 103, the residual water Wor inside the discharge water passage Ror remains as it is. That is, as shown in FIG. 9, the discharge of the residual water Wor from the tip spout 103 is prevented by surface tension or the like. In the existing state, the temperature sensing valve portion 104 is switched to the intake side (open side). For this reason, the air intake passage 110 through which air is sucked has been separately formed as an independent path at the tip portion of the water discharge port portion 102 . In FIG. 9, 110i denotes a front end port (inflow port) of the intake passage 110 facing the atmosphere, and 110e denotes a rear end port (outflow port) 110e communicating with the intake port 104i of the temperature sensing valve portion 104. FIG. As a result, air is circulated along the dashed-dotted line arrow Air shown in FIG. 9 at the time of intake. That is, the air is taken in the route of the inflow port 110i→intake passage 110→outflow port 110e→intake port 104i→the inside of the temperature sensing valve portion 104→the rising water passage Rmr, and the closed state of the rising water passage Rmr is released. As a result, the residual water Wrr remaining inside the rising water passage Rmr is discharged to the outside.

特開2016-180287号公報JP 2016-180287 A

しかし、上述した特許文献1に記載の不凍水栓柱100は、次のような解決すべき課題も存在した。 However, the antifreeze faucet column 100 described in Patent Document 1 described above also has the following problems to be solved.

即ち、不凍水栓柱100の構成上、吐水口部102に残留水Worが存在する場合、温度感知弁部104から直接吸気を行うことは事実上困難になるため、通水路を避けた独立した別途の吸気通路110を確保する必要がある。この場合、形成部位の限られた吐水口部102に吸気通路110を形成する必要があることから、吐水口部102周りに煩雑な経路を確保する必要があり、結果的に、吐水口部102付近の大型化及びコストアップを招きやすい課題が存在した。 That is, due to the structure of the antifreeze faucet column 100, when residual water Wor exists in the spout 102, it is practically difficult to take air directly from the temperature sensing valve 104. A separate intake passage 110 must be secured. In this case, since it is necessary to form the air intake passage 110 in the water discharge port portion 102 having a limited formation site, it is necessary to secure a complicated route around the water discharge port portion 102 . There was a problem that it was easy to cause an increase in size and cost in the vicinity.

加えて、外部に臨む流入口110iが吐水口部102から大気に対して直接開口することから、大気中の埃やゴミ、土や砂等が通気通路110の内部に進入し易く、通気通路110のゴミ詰まり等による故障やトラブルが発生しやすいなど、更なる改善すべき点も存在した。 In addition, since the inlet 110 i facing the outside is directly opened to the atmosphere from the water outlet portion 102 , dust, dirt, soil, sand, etc. in the atmosphere easily enter the ventilation passage 110 . There were also points to be improved, such as failures and troubles easily occurring due to dust clogging.

本発明は、このような背景技術に存在する課題を解決した不凍水栓柱の提供を目的とするものである。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an antifreeze faucet column that solves the problems existing in the background art.

本発明に係る不凍水栓柱1は、上述した課題を解決するため、上部に吐水口部2eを有する水道立上管2を備えるとともに、水道立上管2に付設した操作機構部3と、この操作機構部3により昇降変位するスプール部4sにより、給水モードMs,止水モードMc,又は水抜モードMrに切換可能なスプール弁機構部4を備え、かつ吐水口部2eの内部における通水路R(吐出通水路Ro)にサーモバルブ5を配設し、少なくとも外気温が設定温度以下まで低下したならサーモバルブ5を吸気側に切換え、止水モードMcにより密閉された水道立上管2の内部における通水路R(立上通水路Rm)への吸気を許容して水抜モードMrに移行する不凍水栓柱を構成するに際して、少なくとも止水モードMc及び水抜モードMrでは吐出通水路Ro内に残留する残留水Woを外部に排出する残留防止機能Frを設けるとともに、吐水口部2eの内部に配設したサーモバルブ5の吸気流入用の吸気口5iを、吐出通水路Roの内部に臨ませてなることを特徴とする。 In order to solve the above-described problems, the antifreeze faucet column 1 according to the present invention includes a water supply riser 2 having a spout portion 2e at the top, and an operation mechanism 3 attached to the water supply riser 2. , a spool valve mechanism 4 that can be switched between a water supply mode Ms, a water stop mode Mc, and a water drain mode Mr by a spool 4s that is vertically displaced by the operation mechanism 3, and a water passage inside the water discharge port 2e. A thermo valve 5 is provided in R (discharge water passage Ro), and when the outside air temperature drops below the set temperature, the thermo valve 5 is switched to the intake side, and the water supply riser pipe 2 sealed by the water stop mode Mc is closed. When constructing an anti-freezing faucet column that allows air intake to the water conduit R (rising water conduit Rm) inside and shifts to the drain mode Mr, at least in the water stop mode Mc and the drain mode Mr, the inside of the discharge water conduit Ro In addition to providing a residual prevention function Fr for discharging the residual water Wo remaining in the water discharge passage Ro to the outside, the intake port 5i for intake air inflow of the thermo valve 5 disposed inside the water discharge port portion 2e faces the inside of the discharge water passage Ro. It is characterized by being made.

また、本発明は、好適な態様により、残留防止機能Frは、吐水口部2eを、止水時に少なくとも内部に残留する残留水Woを、吐水口先端2esから外部に流出可能な排水構造に構成するとともに、吐水口先端2esに至る通水路の内径の一部を、軸方向下流側へ行くに従って漸次大径となるテーパ面11により形成することができる。この際、テーパ面11は、このテーパ面11の先端の外開口径Loを12.5mm以上とし、当該テーパ面11の勾配角度Qoを25゜以上乃至45゜以下に設定することが望ましい。さらに、吐水口部2eには、吐出通水路Roを被う出水管部12を設けるとともに、吐出通水路Roと立上通水路Rm間に、給水モードMsから止水モードMrの切換時に遮断し、止水モードMc又は水抜モードMrから給水モードMsの切換時に開放する上部開閉機構部Vsを設けることができる。他方、スプール部4sの最下降位置Xdで立上通水路Rmの上流端を遮断し、かつ最下降位置Xdからのスプール部4sの上昇変位により立上通水路Rmの上流端を開放する下部開閉弁機構部Vfと、スプール部4sの内部に形成し、かつ下側に位置する流入口6iと上側に位置する流出口6eを有する内排出路6と、この内排出路6に付設し、少なくとも流入口6iから流入する水道水Wによる所定の水圧により内排出路6を遮断する内逆止弁機構部Vnfと、スプール部4sの最下降位置Xdでは外部に臨む外排出路7と流出口6eを連通させ、かつ最下降位置Xdから上昇変位するスプール部4sの所定の変位区間では流入口6iと通水路R(給入通水路Rf)を連通させるスプール弁機構部4とを設けることができる。また、この下部開閉弁機構部Vfは、スプール部4sの下端部に固定した弁体部13v,及びこの弁体部13vの下方に位置し、かつ給入通水路Rfの外方の面に形成することにより、弁体部13vに対して当接又は離脱する弁座部13sを設けて構成できるとともに、この内逆止弁機構部Vnfは、流入口6i側に位置する内排出路6を所定の長さにわたり大径に形成し、かつ上端に弁座孔部14を有する上下方向に形成した上流側排出路15,及びこの上流側排出路15に収容した球体状の球弁部16を設けて構成できる。 Further, according to a preferred embodiment of the present invention, the residual prevention function Fr is configured such that the spout portion 2e has a drainage structure that allows at least the residual water Wo remaining inside to flow out from the spout tip 2es to the outside when the water is stopped. In addition, a portion of the inner diameter of the water passage leading to the spout tip 2es can be formed by the tapered surface 11 that gradually increases in diameter toward the downstream side in the axial direction. At this time, it is desirable that the tapered surface 11 has an outer opening diameter Lo of 12.5 mm or more and a slope angle Qo of 25° or more and 45° or less. Furthermore, the water outlet portion 2e is provided with a water discharge pipe portion 12 covering the discharge water passage Ro and between the discharge water passage Ro and the rising water passage Rm, which is cut off when switching from the water supply mode Ms to the water stop mode Mr. , an upper opening/closing mechanism Vs that opens when switching from the water stop mode Mc or the water drain mode Mr to the water supply mode Ms can be provided. On the other hand, the upper end of the rising water passage Rm is blocked at the lowest position Xd of the spool portion 4s, and the upstream end of the rising water passage Rm is opened by the upward displacement of the spool portion 4s from the lowest position Xd. a valve mechanism portion Vf, an inner discharge passage 6 formed inside the spool portion 4s and having a lower inlet 6i and an upper outlet 6e, and attached to the inner discharge passage 6, at least The inner check valve mechanism Vnf that shuts off the inner discharge passage 6 by a predetermined water pressure due to the tap water W flowing in from the inlet 6i, and the outer discharge passage 7 and the outlet 6e facing the outside at the lowest position Xd of the spool portion 4s. , and in a predetermined displacement section of the spool portion 4s upwardly displaced from the lowest position Xd, a spool valve mechanism portion 4 that communicates the inflow port 6i and the water passage R (inlet water passage Rf) can be provided. . Also, the lower opening/closing valve mechanism Vf is positioned below the valve body 13v fixed to the lower end of the spool 4s, and below the valve body 13v, and is formed on the outer surface of the supply water passage Rf. By doing so, it is possible to provide a valve seat portion 13s that abuts on or separates from the valve body portion 13v. An upstream discharge passage 15 formed with a large diameter over the length and having a valve seat hole portion 14 at the upper end is formed vertically, and a spherical ball valve portion 16 accommodated in the upstream discharge passage 15 is provided. can be configured

このような構成を有する本発明に係る不凍水栓柱1によれば、次のような顕著な効果を奏する。 According to the non-freezing faucet column 1 according to the present invention having such a configuration, the following remarkable effects can be obtained.

(1) 少なくとも止水モードMc及び水抜モードMrでは吐出通水路Ro内に残留する残留水Woを外部に排出する残留防止機能Frを設けるとともに、吐水口部2eの内部に配設したサーモバルブ5の吸気流入用の吸気口5iを、吐出通水路Roの内部に臨ませてなるため、吐出通水路Ro内に残留する残留水Woは、残留防止機能Frにより、外部へ確実に排出可能となり、止水モードMc(水抜モードMr)では、常に、吐出通水路Roを空にすることができる。これにより、サーモバルブ5を吐出通水路Roの内部に配設した場合であっても、サーモバルブ5の吸気口5iをそのまま吐出通水路Ro内に臨ませることができる。この結果、吐水口部2e周りに形成する煩雑な通気通路が不要となり、吐水口部2eのシンプル化及び小型化、更にはコストダウンを図れるとともに、吐水口部2eにより吸気口5iを外的に保護することができるため、通気通路のゴミ詰まり等のトラブルや故障を回避することができる。 (1) At least in the water stop mode Mc and the water drain mode Mr, the thermo valve 5 is provided with a residual prevention function Fr that discharges the residual water Wo remaining in the discharge water passage Ro to the outside, and is disposed inside the water discharge port 2e. Since the intake port 5i for inflowing the intake air faces the inside of the discharge water passage Ro, the residual water Wo remaining in the discharge water passage Ro can be reliably discharged to the outside by the residual prevention function Fr. In the water stop mode Mc (drainage mode Mr), the discharge water conduit Ro can be emptied at all times. As a result, even when the thermo valve 5 is disposed inside the discharge water passage Ro, the intake port 5i of the thermo valve 5 can be directly exposed to the discharge water passage Ro. As a result, a complicated ventilation passage to be formed around the water discharge port 2e becomes unnecessary, and the water discharge port 2e can be simplified and miniaturized, and the cost can be reduced. Since it can be protected, it is possible to avoid troubles and failures such as clogging of the ventilation passage with dust.

(2) 好適な態様により、残留防止機能Frを実現するに際し、吐水口部2eの構成を、止水時に少なくとも内部に残留する残留水Woを、吐水口先端2esから外部に流出可能な排水構造に構成するとともに、吐水口先端2esに至る通水路の内径の一部を、軸方向下流側へ行くに従って漸次大径となるテーパ面11により形成すれば、吐水口部2eの内部に残留する残留水Woを、迅速,スムースかつ確実に排出できるとともに、加えて、寒冷地における吐水口部2eの内部凍結や外部に生じる氷柱状の凍結を回避でき、不凍水栓柱1の品質感及び商品性を高めることができる。さらに、吐水口部2eの形状変更等により比較的簡易に実施できるなど、実施の容易性及び低コスト性に優れる。 (2) According to a preferred embodiment, when realizing the residual prevention function Fr, the configuration of the spout portion 2e is a drainage structure that allows at least the residual water Wo remaining inside to flow out from the spout tip 2es to the outside when the water is stopped. and part of the inner diameter of the water passage leading to the spout tip 2es is formed by the tapered surface 11 that gradually increases in diameter toward the downstream side in the axial direction. The water Wo can be discharged quickly, smoothly and reliably, and in addition, the inside freezing of the spout part 2e in cold districts and the icicle-like freezing occurring outside can be avoided, and the quality and product of the non-freezing water faucet column 1 can be obtained. can enhance sexuality. In addition, it can be implemented relatively easily by changing the shape of the spout portion 2e, etc., and is excellent in easiness of implementation and low cost.

(3) 好適な態様により、テーパ面11を形成するに際し、テーパ面11の先端の外開口径Loを12.5mm以上とし、当該テーパ面11の勾配角度Qoを25゜以上乃至45゜以下に設定すれば、現状における上水道の規格等に基づく不凍水栓柱の多くの種類をカバーできるため、十分なパフォーマンスを確保する観点から最適な形態として実施することができる。 (3) According to a preferred embodiment, when forming the tapered surface 11, the outer opening diameter Lo at the tip of the tapered surface 11 is 12.5 mm or more, and the inclination angle Qo of the tapered surface 11 is 25° or more and 45° or less. If set, it can cover many types of non-freezing faucet columns based on the current water supply standards, etc., so it can be implemented as an optimal form from the viewpoint of ensuring sufficient performance.

(4) 好適な態様により、吐水口部2eに、吐出通水路Roを被う出水管部12を設けるとともに、吐出通水路Roと立上通水路Rm間に、給水モードMsから止水モードMrの切換時に遮断し、止水モードMc又は水抜モードMrから給水モードMsの切換時に開放する上部開閉機構部Vsを設ければ、吐出通水路Roと立上通水路Rm間を確実に開閉できるため、給水モードMs時には、立上通水路Rmから吐出通水路Roに円滑に給水できるとともに、水抜モードMr時には、立上通水路Rmに対して円滑に吸気することができる。 (4) According to a preferred embodiment, the water outlet portion 2e is provided with a water discharge pipe portion 12 covering the discharge water passage Ro, and a water supply mode Ms to a water stop mode Mr is provided between the discharge water passage Ro and the rising water passage Rm. If an upper opening/closing mechanism Vs is provided that shuts off when switching from the water stop mode Mc or the drain mode Mr to the water supply mode Ms and opens when switching from the water supply mode Ms, the discharge water passage Ro and the rising water passage Rm can be reliably opened and closed. In the water supply mode Ms, water can be smoothly supplied from the rising water passage Rm to the discharge water passage Ro, and in the draining mode Mr, air can be smoothly drawn into the rising water passage Rm.

(5) 好適な態様により、スプール部4sの最下降位置Xdで立上通水路Rmの上流端を遮断し、かつ最下降位置Xdからのスプール部4sの上昇変位により立上通水路Rmの上流端を開放する下部開閉弁機構部Vfと、スプール部4sの内部に形成し、かつ下側に位置する流入口6iと上側に位置する流出口6eを有する内排出路6と、この内排出路6に付設し、少なくとも流入口6iから流入する水道水Wによる所定の水圧により内排出路6を遮断する内逆止弁機構部Vnfと、スプール部4sの最下降位置Xdでは外部に臨む外排出路7と流出口6eを連通させ、かつ最下降位置Xdから上昇変位するスプール部4sの所定の変位区間では流入口6iと給入通水路Rfを連通させるスプール弁機構部4とを設ければ、止水状態(給水状態)から給水(止水)する場合、時間差を生じることなく即座に移行させることができため、ユーザサイドの良好な使い勝手及び操作感(快適操作性)を確保することができる。 (5) According to a preferred embodiment, the upstream end of the rising water passage Rm is cut off at the lowest position Xd of the spool portion 4s, and the upward displacement of the spool portion 4s from the lowest position Xd causes the upstream of the rising water passage Rm. A lower on-off valve mechanism portion Vf with an open end, an inner discharge passage 6 formed inside the spool portion 4s and having an inflow port 6i positioned on the lower side and an outflow port 6e positioned on the upper side, and the inner discharge passage 6, and at least the inner check valve mechanism portion Vnf for blocking the inner discharge passage 6 by a predetermined water pressure due to the tap water W flowing in from the inflow port 6i, and the outer discharge facing the outside at the lowest position Xd of the spool portion 4s. If a spool valve mechanism 4 is provided that communicates the passage 7 with the outflow port 6e, and communicates the inflow port 6i with the water supply passage Rf in a predetermined displacement section of the spool portion 4s that is upwardly displaced from the lowest position Xd. When water is supplied (stopped) from the water supply state (water supply state), the transition can be made immediately without causing a time lag, so it is possible to ensure good usability and operational feeling (comfortable operability) on the user side. can.

(6) 好適な態様により、下部開閉弁機構部Vfを構成するに際し、スプール部4sの下端部に固定した弁体部13v,及びこの弁体部13vの下方に位置し、かつ給入通水路Rfの外方の面に形成することにより、弁体部13vに対して当接又は離脱する弁座部13sを設けて構成すれば、下部開閉弁機構部Vfの構造面、即ち、弁体部13vの接触面と弁座部13sの被接触面を摺動することなく当接又は離脱させることができるため、開閉操作に対して時間差無く直ちに応答させることができる。 (6) According to a preferred embodiment, when configuring the lower opening/closing valve mechanism Vf, the valve body 13v fixed to the lower end of the spool 4s, and the water supply passageway located below the valve body 13v If a valve seat portion 13s is formed on the outer surface of Rf to abut on or separate from the valve body portion 13v, the structural surface of the lower opening/closing valve mechanism portion Vf, that is, the valve body portion Since the contact surface of 13v and the contacted surface of the valve seat portion 13s can be brought into contact or separated without sliding, it is possible to immediately respond to the opening/closing operation without any time lag.

(7) 好適な態様により、内逆止弁機構部Vnfを構成するに際し、流入口6i側に位置する内排出路6を所定の長さにわたり大径に形成し、かつ上端に弁座孔部14を有する上下方向に形成した上流側排出路15,及びこの上流側排出路15に収容した球体状の球弁部16を設けて構成すれば、逆止弁は所定の水圧に対応して作動させることができるため、水圧の高い水道水W及び水圧の低い残留水Wrの双方に対して確実かつ円滑に機能させることができる。 (7) In constructing the inner check valve mechanism Vnf according to a preferred embodiment, the inner discharge passage 6 located on the inlet port 6i side is formed to have a large diameter over a predetermined length, and a valve seat hole is formed at the upper end. 14 formed in the vertical direction, and a spherical valve portion 16 accommodated in the upstream discharge passage 15, the check valve operates corresponding to a predetermined water pressure. Therefore, it can function reliably and smoothly for both tap water W with high water pressure and residual water Wr with low water pressure.

本発明の好適実施形態に係る不凍水栓柱の吐水口部及びその周辺における止水モード時の断面側面図、FIG. 2 is a cross-sectional side view of the spout portion of the antifreeze faucet column and its surroundings in the water stop mode according to the preferred embodiment of the present invention; 同不凍水栓柱の全体構造を示す止水モード時の断面側面図、Cross-sectional side view in water stop mode showing the overall structure of the antifreeze faucet column, 図1中A-A線断面図、AA line cross-sectional view in FIG. 同不凍水栓柱の吐水口部における吐水口先端を示す断面側面図、A cross-sectional side view showing the tip of the spout in the spout part of the antifreeze faucet column, 同不凍水栓柱の操作方法を説明するためのフローチャート、Flowchart for explaining the operation method of the same antifreeze faucet column, 同不凍水栓柱の給水モード時の作用説明図、Explanation diagram of the operation of the same antifreeze faucet column in water supply mode, 同不凍水栓柱の止水モード時の作用説明図、Explanatory diagram of the operation of the antifreeze faucet column in the water stop mode, 同不凍水栓柱の水抜モード時の作用説明図、Explanation diagram of the operation of the same antifreeze faucet column in drain mode, 従来の技術に係る不凍水栓柱の水抜モード時における作用説明図、FIG. 11 is an explanatory diagram of the operation of the antifreeze faucet column according to the conventional technology in the drain mode;

次に、本発明に係る好適実施形態を挙げ、図面に基づき詳細に説明する。 Next, preferred embodiments according to the present invention will be presented and explained in detail based on the drawings.

まず、本実施形態に係る不凍水栓柱1の構成について、図1-図4を参照して具体的に説明する。 First, the configuration of the antifreeze faucet column 1 according to this embodiment will be specifically described with reference to FIGS. 1 to 4. FIG.

例示する不凍水栓柱1は、検知した外気温(検知温度)が設定温度(凍結防止温度)Tcを越えているときは水抜きを行わないが、検知した外気温が当該設定温度Tc以下に低下したなら内部の残留水Wrを自動で水抜きを行う自動水抜き機能を備えている。 The exemplified non-freezing faucet column 1 does not drain water when the detected outside temperature (detected temperature) exceeds the set temperature (anti-freezing temperature) Tc, but the detected outside temperature is below the set temperature Tc. Equipped with an automatic water drain function that automatically drains the residual water Wr inside if it drops to

不凍水栓柱1は、図2に示すように、上部に水平方向へ分岐突出した吐水口部2eを有する水道立上管2を備えるとともに、水道立上管2に付設した操作機構部3と、この操作機構部3により昇降変位するスプール部4sを有するスプール弁機構部4を備える。これにより、操作機構部3の操作によりスプール部4sを昇降変位させれば、給水モードMs又は止水モードMc切換えることができるとともに、外気温に対応して止水モードMc又は水抜モードMrに自動で切換えることができる。なお、Gは、水道立上管2が起立する地面を示している。 As shown in FIG. 2, the non-freezing water faucet column 1 is provided with a water supply riser 2 having a water discharge port 2e that branches and protrudes in the horizontal direction at the top, and an operation mechanism 3 attached to the water supply riser 2. and a spool valve mechanism portion 4 having a spool portion 4 s that is vertically displaced by the operation mechanism portion 3 . As a result, if the spool portion 4s is vertically displaced by operating the operating mechanism portion 3, the water supply mode Ms or the water stop mode Mc can be switched, and the water stop mode Mc or the water drain mode Mr can be automatically switched according to the outside temperature. can be switched with Note that G indicates the ground on which the water supply riser pipe 2 stands.

吐水口部2eは、水道立上管2の上部から水平方向に延出した円筒形の出水管部12を備え、この出水管部12の先端開口は、閉塞端部12cにより閉塞するとともに、出水管部12の先端付近における外周面の下面位置には、斜め下方へ突出した放水口21を備える。したがって、吐水口部2eは、水抜時を含む止水時に、内部の残留水Woが、後述する残留防止キャップ27の先端に備える吐水口先端2esから外部に流出可能な排水構造を備えている。 The water outlet portion 2e includes a cylindrical water outlet pipe portion 12 extending horizontally from the upper portion of the water supply riser pipe 2, and the tip opening of the water outlet pipe portion 12 is closed by a closed end portion 12c. A water discharge port 21 projecting obliquely downward is provided on the lower surface of the outer peripheral surface near the tip of the water tube portion 12 . Therefore, the water discharge port 2e has a drainage structure that allows residual water Wo inside to flow out to the outside from a water discharge port tip 2es provided at the tip of a residual prevention cap 27, which will be described later.

出水管部12の内部における中心軸上には、図1(図2)に示すサーモバルブ5を配設する。これにより、サーモバルブ5の外周面と出水管部12の内周面間には、断面がリング状となる通水路R(吐出通水路Ro)が形成される。このサーモバルブ5は、上流側に位置する吸気流出口5eを、水道立上管2における通水路R(立上通水路Rm)の下側通水孔24に連通させるとともに、吸気流入口となる吸気口5iを、出水管部12の内部、即ち、吐出通水路Roの内部に臨ませて配設する。このサーモバルブ5は、吸気逆止弁を内蔵し、外気温が設定温度Tcを越えているときは、遮断側(閉側)に切換わり、吸気流出口5e及び吸気口5iは閉状態になるとともに、外気温が設定温度Tc以下では、吸気側(開側)に切換わり、吸気流出口5eと吸気口5i間は吸気が許容される状態となる。一方、出水管部12の吐出通水路Roは、上側通水孔25を介して水道立上管2の立上通水路Rmに連通する。 A thermo valve 5 shown in FIG. 1 (FIG. 2) is arranged on the central axis inside the water discharge pipe portion 12 . As a result, a water passage R (discharge water passage Ro) having a ring-shaped cross section is formed between the outer peripheral surface of the thermo valve 5 and the inner peripheral surface of the water discharge pipe portion 12 . The thermo valve 5 communicates an intake air outlet 5e located on the upstream side with the lower water passage hole 24 of the water passage R (rising water passage Rm) in the water supply riser pipe 2, and serves as an intake air inlet. The intake port 5i is arranged so as to face the inside of the water discharge pipe portion 12, that is, the inside of the discharge water passage Ro. This thermo valve 5 incorporates an intake check valve, and when the outside air temperature exceeds the set temperature Tc, it switches to the cutoff side (closed side), and the intake outlet 5e and the intake port 5i are closed. At the same time, when the outside air temperature is equal to or lower than the set temperature Tc, the air intake is switched to the intake side (open side), and intake air is permitted between the intake air outlet 5e and the air intake 5i. On the other hand, the discharge water passage Ro of the water outlet pipe portion 12 communicates with the riser water passage Rm of the water supply riser 2 via the upper water passage hole 25 .

さらに、出水管部12における放水口21には、この放水口21に対して着脱する残留防止キャップ27を装着する。この残留防止キャップ27は、この実施形態で示す不凍水栓柱1をはじめ、各種水栓柱に着脱して汎用性の高い残留防止キャップ27として利用することができる。なお、放水口21と残留防止キャップ27は一体形成してもよい。 Furthermore, the water discharge port 21 in the water discharge pipe portion 12 is fitted with a residual prevention cap 27 that is detachable from the water discharge port 21 . This residue prevention cap 27 can be used as a highly versatile residue prevention cap 27 by attaching and detaching it to various water faucet columns, including the antifreeze faucet column 1 shown in this embodiment. Note that the water outlet 21 and the residual prevention cap 27 may be integrally formed.

図4に、残留防止キャップ27の拡大した断面図を示す。この残留防止キャップ27における開口を有する先端面は、吐水口先端2esとなる。残留防止キャップ27は、この吐水口先端2esに至る内周面27iの内径の一部を、軸方向下流側へ行くに従って漸次大径となるテーパ面11により形成する。このテーパ面11は、少なくとも止水モードMc及び水抜モードMrでは吐出通水路Ro内に残留する残留水Wo(図7参照)を外部に排出する残留防止機能Frを発揮する構成(形状)となる。 FIG. 4 shows an enlarged sectional view of the residual prevention cap 27. As shown in FIG. The tip surface of the residual prevention cap 27 having the opening serves as the spout tip 2es. A portion of the inner peripheral surface 27i of the residual prevention cap 27 that reaches the spout tip 2es is formed by a tapered surface 11 that gradually increases in diameter toward the downstream side in the axial direction. The tapered surface 11 has a configuration (shape) that exerts a residual prevention function Fr for discharging the residual water Wo (see FIG. 7) remaining in the discharge water conduit Ro to the outside at least in the water stop mode Mc and the drain mode Mr. .

このように、残留防止機能Frを実現するに際し、吐水口部2eの構成を、止水時に少なくとも内部に残留する残留水Woを、吐水口先端2esから外部に流出可能な排水構造に構成するとともに、吐水口先端2esに至る通水路の内径の一部を、軸方向下流側へ行くに従って漸次大径となるテーパ面11により形成すれば、吐水口部2eの内部に残留する残留水Woを、迅速,スムースかつ確実に排出できるとともに、加えて、寒冷地における吐水口部2eの内部凍結や外部に生じる氷柱状の凍結を回避でき、不凍水栓柱1の品質感及び商品性を高めることができる。さらに、吐水口部2eの形状変更(加工変更)等により比較的簡易に実施できるなど、実施の容易性及び低コスト性に優れる。 Thus, in order to realize the residual prevention function Fr, the water discharge port 2e is configured to have a drainage structure that allows at least the residual water Wo remaining inside to flow out from the water discharge port tip 2es when the water is stopped. If a portion of the inner diameter of the water passage leading to the spout tip 2es is formed by the tapered surface 11 that gradually increases in diameter toward the downstream side in the axial direction, residual water Wo remaining inside the spout portion 2e can be removed by To enable quick, smooth and reliable discharge, and to avoid freezing of the inside of a spout part 2e and freezing of icicles occurring outside in a cold region, and to improve quality and marketability of the non-freezing faucet column 1.例文帳に追加can be done. In addition, it can be implemented relatively easily by changing the shape (processing) of the spout portion 2e, etc., and is excellent in easiness of implementation and low cost.

この場合、テーパ面11を形成するに際しては、テーパ面11の先端の外開口径Loを12.5mm以上とし、当該テーパ面11の勾配角度Qoを25゜以上乃至45゜以下に設定することが望ましい。このように選定すれば、現状における上水道の規格等に基づく不凍水栓柱の多くの種類をカバーできるため、十分なパフォーマンスを確保する観点から最適な形態として実施することができる。 In this case, when forming the tapered surface 11, the outer opening diameter Lo at the tip of the tapered surface 11 is set to 12.5 mm or more, and the inclination angle Qo of the tapered surface 11 is set to 25° or more and 45° or less. desirable. If selected in this way, many types of non-freezing faucet columns based on the current water supply standards can be covered, so it can be implemented as an optimal form from the viewpoint of ensuring sufficient performance.

ところで、残留防止キャップ27のテーパ面11は、本実施形態に係る不凍水栓柱1との関係で重要な機能を呈する。即ち、後述する止水モードMc及び水抜モードMrでは、吐水口部2eの内部に残留する残留水Woを確実に排出可能になる。もし、残留水Woを確実に排出できない場合には、吸気口5iが実質的に機能しなくなり、別途形成した通気路等を介して大気中に臨ませる必要がある。しかし、残留防止キャップ27(残留防止機能Fr)を設けることにより、各モードMc及びMrでは、吐水口部2eの内部の残留水Woを、常に、確実に排出可能になるため、サーモバルブ5の機能を確実に担保することができる。 By the way, the tapered surface 11 of the residual prevention cap 27 exhibits an important function in relation to the antifreeze faucet column 1 according to this embodiment. That is, in the water stop mode Mc and the water drain mode Mr, which will be described later, the residual water Wo remaining inside the water discharge port 2e can be reliably discharged. If the residual water Wo cannot be reliably discharged, the intake port 5i will not function substantially, and it will be necessary to expose the water to the atmosphere via a separately formed ventilation path or the like. However, by providing the residual prevention cap 27 (residual prevention function Fr), in each of the modes Mc and Mr, the residual water Wo inside the water discharge port 2e can always be reliably discharged. Functions can be reliably secured.

一方、水道立上管2は、内管2iと外管2oの二重構造により構成し、内管2iの内部を通水路R(立上通水路Rm)として形成する。また、この立上通水路Rmの中心軸上に、回動可能な操作ロッド31を配置するとともに、操作ロッド31の上端には操作レバー32hを一体に備えるハンドル32を固定する。この場合、操作ロッド31の上端近傍の外周面は、水道立上管2の固定部位の内周面に対して螺合部31sを介して係合させる。これにより、ハンドル32の回動変位を操作ロッド31の昇降変位に変換させる操作機構部3が構成される。また、図2に示すように、水道立上管2における上側通水孔25に対向する部位には、上部開閉弁機構部Vsを設ける。この上部開閉弁機構部Vsは、操作ロッド31の上部位置に固定したリング状の上部弁体部33vと、この上部弁体部33vよりも下方における水道立上管2の内周面に形成した上部弁座部33sにより構成する。 On the other hand, the water supply riser pipe 2 has a double structure of an inner pipe 2i and an outer pipe 2o, and the inside of the inner pipe 2i is formed as a water passage R (rising water passage Rm). A rotatable operating rod 31 is arranged on the central axis of the rising water passage Rm, and a handle 32 integrally provided with an operating lever 32h is fixed to the upper end of the operating rod 31 . In this case, the outer peripheral surface of the operating rod 31 in the vicinity of the upper end is engaged with the inner peripheral surface of the fixing portion of the water supply riser 2 via the threaded portion 31s. This constitutes the operation mechanism section 3 that converts the rotational displacement of the handle 32 into the vertical displacement of the operation rod 31 . Further, as shown in FIG. 2 , an upper opening/closing valve mechanism Vs is provided at a portion of the water supply riser 2 facing the upper water passage hole 25 . The upper opening/closing valve mechanism Vs is formed on the ring-shaped upper valve body 33v fixed to the upper position of the operating rod 31 and on the inner peripheral surface of the water supply riser 2 below the upper valve body 33v. It is composed of the upper valve seat portion 33s.

このように、吐水口部2eを構成するに際し、吐出通水路Roを被う出水管部12を設けるとともに、吐出通水路Roと立上通水路Rm間に、給水モードMsから止水モードMrの切換時に遮断し、止水モードMc又は水抜モードMrから給水モードMsの切換時に開放する上部開閉機構部Vsを設ければ、吐出通水路Roと立上通水路Rm間を確実に開閉できるため、給水モードMs時には、立上通水路Rmから吐出通水路Roに円滑に給水できるとともに、水抜モードMr時には、立上通水路Rmに対して円滑に吸気することができる。 In this manner, when configuring the water discharge port portion 2e, the water discharge pipe portion 12 covering the discharge water passage Ro is provided, and between the discharge water passage Ro and the rising water passage Rm, the switching from the water supply mode Ms to the water stop mode Mr is provided. If the upper opening/closing mechanism Vs is provided, which shuts off when switching and opens when switching from the water stop mode Mc or the water drain mode Mr to the water supply mode Ms, the discharge water passage Ro and the rising water passage Rm can be reliably opened and closed. In the water supply mode Ms, water can be smoothly supplied from the rising water passage Rm to the discharge water passage Ro, and in the draining mode Mr, air can be smoothly drawn into the rising water passage Rm.

このような構造により、ハンドル32を右方向へ回動操作(閉操作)すれば、操作ロッド31が下降変位し、上部弁体部33vは上部弁座部33sに当接することにより、上部開閉弁機構部Vsは閉側に切換えられ、立上通水路Rmの上端が遮断される。これに対して、ハンドル32を左方向へ回動操作(開操作)すれば、操作ロッド31は上昇変位し、上部弁体部33vは上部弁座部33sから離脱することにより、上部開閉弁機構部Vsは開側に切換えられ、図2に示すように、立上通水路Rmの上端が開放される。即ち、立上通水路Rmと上側通水孔25が連通する。 With such a structure, when the handle 32 is rotated (closed) to the right, the operating rod 31 is displaced downward, and the upper valve body portion 33v comes into contact with the upper valve seat portion 33s. The mechanism portion Vs is switched to the closed side, and the upper end of the rising water passage Rm is cut off. On the other hand, when the handle 32 is turned leftward (opening operation), the operating rod 31 is displaced upward, and the upper valve body portion 33v is disengaged from the upper valve seat portion 33s, whereby the upper opening/closing valve mechanism is opened. The portion Vs is switched to the open side, and as shown in FIG. 2, the upper end of the rising water passage Rm is opened. That is, the rising water passage Rm and the upper water passage hole 25 communicate with each other.

他方、操作ロッド31の下端には、円柱状のスプール部4sを固定するとともに、このスプール部4sは、水道立上管2に一体に形成したスリーブ部4mの内部に挿通させる。これにより、可動するスプール部4sと固定したスリーブ部4mによりスプール弁機構部Vmが構成されるとともに、スプール部4sの下端面を利用して下部開閉弁機構部Vfが構成される。 On the other hand, a columnar spool portion 4s is fixed to the lower end of the operating rod 31, and this spool portion 4s is inserted through a sleeve portion 4m integrally formed with the water supply riser pipe 2. As shown in FIG. As a result, the movable spool portion 4s and the fixed sleeve portion 4m form the spool valve mechanism portion Vm, and the lower end face of the spool portion 4s is used to form the lower opening/closing valve mechanism portion Vf.

下部開閉弁機構部Vfは、図2に示すように、スプール部4sの最下降位置Xdで当該スプール部4sにおける弁体部13vが弁座部13sを閉塞して通水路R(給入通水路Rfの上流端)を遮断し、かつスプール部4sが最下降位置Xdから上昇変位して通水路Rを開放する機能を備える。即ち、下部開閉弁機構部Vfは、スプール部4sの下端部に固定したリング形の弁体部13v,及びこの弁体部13vの下方に位置する給入孔29の外方に位置する水平面により形成した弁座部13sにより構成する。これにより、弁体部13vの下面が水平に形成された弁座部13sの上面に対して当接し、又は離脱する下部開閉弁機構部Vfが構成される。このように、下部開閉弁機構部Vfを構成するに際し、スプール部4sの下端部に固定した弁体部13v,及びこの弁体部13vの下方に位置し、かつ給入通水路Rfの外方の面に形成することにより、弁体部13vに対して当接又は離脱する弁座部13sを設けて構成すれば、下部開閉弁機構部Vfの構造面、即ち、弁体部13vの接触面と弁座部13sの被接触面を摺動することなく当接又は離脱させることができるため、開閉操作に対して時間差無く直ちに応答させることができる。 As shown in FIG. 2, the lower opening/closing valve mechanism Vf is configured so that the valve body portion 13v of the spool portion 4s closes the valve seat portion 13s at the lowest position Xd of the spool portion 4s to close the water passage R (inlet water passage). Rf) and the spool portion 4s is displaced upward from the lowest position Xd to open the water passage R. That is, the lower opening/closing valve mechanism portion Vf is formed by a ring-shaped valve body portion 13v fixed to the lower end portion of the spool portion 4s and a horizontal surface positioned outside the feed hole 29 positioned below the valve body portion 13v. It is composed of the formed valve seat portion 13s. This constitutes a lower opening/closing valve mechanism portion Vf in which the lower surface of the valve body portion 13v contacts or separates from the upper surface of the horizontally formed valve seat portion 13s. In constructing the lower opening/closing valve mechanism Vf in this manner, the valve element 13v fixed to the lower end of the spool 4s and the By forming the valve seat portion 13s that abuts on or separates from the valve body portion 13v, the structural surface of the lower opening/closing valve mechanism portion Vf, that is, the contact surface of the valve body portion 13v Since the contact surface of the valve seat portion 13s can be brought into contact with or separated from the contact surface of the valve seat portion 13s without sliding, it is possible to immediately respond to the opening/closing operation without any time lag.

一方、給入通水路Rfは、水道立上管2の内部において、スリーブ部4mの外側を迂回するように形成し、この給入通水路Rfの上流側(下側)を給入孔29に連通させるとともに、給入通水路Rfの下流側(上側)は立上通水路Rmに連通させる。 On the other hand, the supply water passage Rf is formed inside the water supply riser pipe 2 so as to bypass the outer side of the sleeve portion 4 m, and the upstream side (lower side) of the supply water passage Rf is connected to the supply hole 29. In addition, the downstream side (upper side) of the supply water passage Rf is made to communicate with the rising water passage Rm.

また、スプール弁機構部Vmは、スプール部4sの内部に形成した内排出路6を備える。この内排出路6は、スプール部4sの下側に開口する流入口6iと上側に開口する流出口6eを有する。このスプール弁機構部Vmは、スプール部4sの最下降位置Xdでは外部に臨む後述する外排出路7と上述した流出口6eを連通させ、かつ最下降位置Xdから上昇変位するスプール部4sの所定の変位区間では流入口6iと通水路R(給入通水路Rf)を連通させる機能を備える。 Further, the spool valve mechanism portion Vm includes an inner discharge passage 6 formed inside the spool portion 4s. The inner discharge passage 6 has an inlet 6i opening downward and an outlet 6e opening upward of the spool portion 4s. This spool valve mechanism portion Vm communicates the later-described outer discharge passage 7 facing the outside at the lowest position Xd of the spool portion 4s and the above-described outflow port 6e. The displacement section has a function of connecting the inflow port 6i and the water passage R (inlet water passage Rf).

内排出路6には、内逆止弁機構部Vnfを付設する。この内逆止弁機構部Vnfは、少なくとも流入口6iから流入する水道水Wによる所定の水圧により内排出路6を遮断する機能を備える。この場合、内逆止弁機構部Vnfは、流入口6i側に位置する内排出路6を所定の長さにわたり大径に形成し、かつ上端に弁座孔部14を有する上下方向Fvに形成した上流側排出路15,及びこの上流側排出路15に収容した球体状の球弁部16を備えて構成する。このように構成する内逆止弁機構部Vnfを設ければ、流入口6i側に位置する内排出路6を所定の長さにわたり大径に形成し、かつ上端に弁座孔部14を有する上下方向に形成した上流側排出路15,及びこの上流側排出路15に収容した球体状の球弁部16を設けて構成すれば、逆止弁は所定の水圧に対応して作動させることができるため、水圧の高い水道水W及び水圧の低い残留水Wrの双方に対して確実かつ円滑に機能させることができる。 The inner discharge passage 6 is provided with an inner check valve mechanism Vnf. The inner check valve mechanism Vnf has a function of blocking the inner discharge passage 6 at least by a predetermined water pressure of the tap water W flowing in from the inflow port 6i. In this case, the inner check valve mechanism portion Vnf is formed in the vertical direction Fv by forming the inner discharge passage 6 located on the inlet port 6i side with a large diameter over a predetermined length and having the valve seat hole portion 14 at the upper end. and a spherical valve portion 16 housed in the upstream discharge passage 15 . By providing the inner check valve mechanism portion Vnf configured in this manner, the inner discharge passage 6 located on the inlet port 6i side is formed to have a large diameter over a predetermined length, and has the valve seat hole portion 14 at the upper end. By providing an upstream discharge passage 15 formed in the vertical direction and a spherical valve portion 16 accommodated in the upstream discharge passage 15, the check valve can be operated in response to a predetermined water pressure. Therefore, it can function reliably and smoothly for both tap water W with high water pressure and residual water Wr with low water pressure.

なお、内逆止弁機構部Vnfには、所定の水圧に基づいて球弁部16を弾性変位可能なスプリングを設けることが望ましい。このようなスプリングを設ければ、球弁部16に対する付勢力を設定、即ち、内逆止弁機構部Vnfとして機能する際の所定の水圧を設定することができるため、不凍水栓柱1の作動時の安定性及び信頼性をより高めることができる。 It is desirable that the inner check valve mechanism Vnf be provided with a spring capable of elastically displacing the ball valve portion 16 based on a predetermined water pressure. By providing such a spring, it is possible to set the biasing force on the ball valve portion 16, that is, to set a predetermined water pressure when functioning as the inner check valve mechanism portion Vnf. It is possible to further enhance the stability and reliability of the operation.

他方、スリーブ部4mには、このスリーブ部4mと一体の外排出路7を内部に有する排水部36を設ける。この場合、外排出路7には、少なくとも流出口6eからの残留水Wrの流通を許容し、かつ自重及び残留水Wrの負圧により当該外排出路7を遮断する外逆止弁機構部Vnsを付設する。この外逆止弁機構部Vnsはスプール部4s側に位置する外排出路7を所定の長さにわたり大径に形成し、かつ下端に弁座孔部37hを有する上下方向Fvに形成した下流側排出路37,及びこの下流側排出路37に収容した球体状の球弁部38を備える。このような外逆止弁機構部Vnsを付設すれば、外排出路7における逆止弁機能を確保できるため、内逆止弁機構部Vnfと組合わせることにより、安定した確実な水抜モードMrを担保することができる。 On the other hand, the sleeve portion 4m is provided with a drainage portion 36 inside which is integrated with the sleeve portion 4m. In this case, the external discharge passage 7 has an external check valve mechanism Vns that allows the flow of the residual water Wr from at least the outflow port 6e and blocks the external discharge passage 7 due to its own weight and the negative pressure of the residual water Wr. is attached. The outer check valve mechanism portion Vns is formed by forming the outer discharge passage 7 positioned on the spool portion 4s side to have a large diameter over a predetermined length, and having a valve seat hole portion 37h at the lower end. A discharge passage 37 and a spherical valve portion 38 housed in the downstream discharge passage 37 are provided. If such an outer check valve mechanism portion Vns is attached, the check valve function in the outer discharge passage 7 can be ensured. can be secured.

このように、本実施形態に係る不凍水栓柱1によれば、スプール部4sの最下降位置Xdで立上通水路Rmの上流端を遮断し、かつ最下降位置Xdからのスプール部4sの上昇変位により立上通水路Rmの上流端を開放する下部開閉弁機構部Vfと、スプール部4sの内部に形成し、かつ下側に位置する流入口6iと上側に位置する流出口6eを有する内排出路6と、この内排出路6に付設し、少なくとも流入口6iから流入する水道水Wによる所定の水圧により内排出路6を遮断する内逆止弁機構部Vnfと、スプール部4sの最下降位置Xdでは外部に臨む外排出路7と流出口6eを連通させ、かつ最下降位置Xdから上昇変位するスプール部4sの所定の変位区間では流入口6iと給入通水路Rfを連通させるスプール弁機構部4とを設ければ、止水状態(給水状態)から給水(止水)する場合、無用な時間差や違和感を生じることなく即座に移行させることができため、ユーザサイドの良好な使い勝手及び操作感(快適操作性)を確保できる利点がある。 Thus, according to the antifreeze faucet column 1 according to the present embodiment, the upstream end of the rising water passage Rm is blocked at the lowest position Xd of the spool portion 4s, and the spool portion 4s from the lowest position Xd is closed. A lower on-off valve mechanism portion Vf that opens the upstream end of the rising water passage Rm by upward displacement of , and an inlet port 6i that is formed inside the spool portion 4s and positioned on the lower side and an outlet port 6e that is positioned on the upper side. an inner discharge passage 6, an inner check valve mechanism portion Vnf attached to the inner discharge passage 6 and shutting off the inner discharge passage 6 by a predetermined water pressure of at least the tap water W flowing in from the inflow port 6i, and a spool portion 4s At the lowest position Xd, the outer discharge passage 7 facing the outside and the outflow port 6e are communicated, and in a predetermined displacement section of the spool portion 4s upwardly displaced from the lowest position Xd, the inflow port 6i and the supply water passage Rf are communicated. If the spool valve mechanism 4 is provided, when water is supplied (stopped) from the water stop state (water supply state), it can be immediately changed without causing unnecessary time lag or discomfort, which is good for the user side. There is an advantage that it is possible to ensure good usability and operational feeling (comfortable operability).

次に、本実施形態に係る不凍水栓柱1の機能(動作)について、図6-図8を参照しつつ図5に示すフローチャートに従って説明する。 Next, the functions (operations) of the antifreeze faucet column 1 according to the present embodiment will be described according to the flowchart shown in FIG. 5 while referring to FIGS. 6 to 8. FIG.

今、不凍水栓柱1は、止水モードMcにある場合を想定する(ステップS1)。止水モードMcでは、ハンドル32が右方向へ回動操作(閉操作)され、操作ロッド31が下降変位するため、図2に示すように、最下降位置Xdで弁体部13vが弁座部13sに当接するとともに、上部弁体部33vが上部弁座部33sに当接する。これにより、下部開閉弁機構部Vfが通水路R(給入通水路Rf)を遮断するとともに、上部開閉弁機構部Vsが立上通水路Rmの上端を遮断する。 It is now assumed that the antifreeze faucet column 1 is in the water stop mode Mc (step S1). In the water stop mode Mc, the handle 32 is rotated (closed) to the right, and the operating rod 31 is displaced downward. 13s, and the upper valve body portion 33v contacts the upper valve seat portion 33s. As a result, the lower opening/closing valve mechanism Vf blocks the water passage R (inlet water passage Rf), and the upper opening/closing valve mechanism Vs blocks the upper end of the rising water passage Rm.

一方、止水モードMcから給水モードMsに移行させる場合は次のように行う(ステップS2)。まず、ユーザは、ハンドル32を左方向へ回動操作(開操作)する(ステップS3)。この際、下部開閉弁機構部Vfの弁構造により、ハンドル32の回動操作の開始と同時にスプール部4sが上昇変位する(ステップS4)。この結果、弁体部13vは、弁座部13sから直ちに離間する。即ち、ハンドル32の開操作とほぼ同時に下部開閉弁機構部Vfが開側に移行する。即ち、開操作に対して時間差無く直ちに応答させ、給水を開始させることができる(ステップS5)。 On the other hand, when switching from the water stop mode Mc to the water supply mode Ms, the following is performed (step S2). First, the user rotates (opens) the handle 32 to the left (step S3). At this time, due to the valve structure of the lower opening/closing valve mechanism Vf, the spool portion 4s is displaced upward simultaneously with the start of the rotation operation of the handle 32 (step S4). As a result, the valve body portion 13v is immediately separated from the valve seat portion 13s. That is, almost simultaneously with the opening operation of the handle 32, the lower opening/closing valve mechanism Vf shifts to the opening side. That is, it is possible to immediately respond to the opening operation without any time lag and start supplying water (step S5).

給水の開始により、接続口41に接続した不図示の水道管の水道水Wが給入孔29を通して給入通水路Rfに流入するとともに、初期には、流入口6iから内排出路6にも進入する(ステップS6)。内排出路6に水道水Wが進入することにより、水圧により球弁部16が上昇変位し、球弁部16が弁座孔部14に当接する(ステップS7)。この結果、内排出路6が遮断される。したがって、給水開始により水抜きが行われる弊害は生じない(ステップS8)。さらに、ハンドル32を回動操作すれば、スプール部4sも上昇変位し、流入口6iがスリーブ部4mの内壁により遮断される。これにより、水道水Wの全てが通水路R(給入通水路Rf)に供給されるとともに、この給水モードMsは維持される。なお、流入口6iが内壁により遮断されれば、球弁部16は、下方位置に復帰(落下)する(ステップS9,S10)。 When the water supply is started, the tap water W in the water pipe (not shown) connected to the connection port 41 flows into the water supply passage Rf through the water supply hole 29, and initially also flows into the inner discharge passage 6 from the inflow port 6i. Enter (step S6). When the tap water W enters the inner discharge passage 6, the water pressure causes the ball valve portion 16 to be displaced upward, and the ball valve portion 16 contacts the valve seat hole portion 14 (step S7). As a result, the internal discharge passage 6 is blocked. Therefore, there is no problem that water is drained when water supply is started (step S8). Further, when the handle 32 is rotated, the spool portion 4s is also displaced upward, and the inlet 6i is blocked by the inner wall of the sleeve portion 4m. As a result, all of the tap water W is supplied to the water passage R (the supply water passage Rf), and the water supply mode Ms is maintained. If the inlet 6i is blocked by the inner wall, the ball valve portion 16 returns (drops) to the lower position (steps S9 and S10).

また、図6に示すように、上部開閉弁機構部Vsも下部開閉弁機構部Vfに連動して開側へ変位する。この結果、上部弁体部33vは上部弁座部33sから離間し、立上通水路Rm内の水道水Wは、上側通水孔25を通して吐出通水路Roに流入するとともに、残留防止キャップ27を通して吐水口先端2esから外部に放出される。この場合、通常、外気温は凍結を開始する温度よりも高い温度、即ち、凍結を判断する所定の設定温度Tcを越えた状態にあるため、サーモバルブ5は、OFF状態、即ち、吸気流出口5e及び吸気口5iは遮断状態にある。したがって、サーモバルブ5は、閉側に切換わっており、水道水Wがサーモバルブ5の内部に進入することはない。 Further, as shown in FIG. 6, the upper opening/closing valve mechanism portion Vs is also displaced to the opening side in conjunction with the lower opening/closing valve mechanism portion Vf. As a result, the upper valve body portion 33v is separated from the upper valve seat portion 33s, and the tap water W in the rising water passage Rm flows through the upper water passage hole 25 into the discharge water passage Ro and passes through the residual prevention cap 27. It is discharged to the outside from the spout tip 2es. In this case, the outside air temperature is usually higher than the temperature at which freezing starts, that is, exceeds the predetermined set temperature Tc for judging freezing. 5e and inlet 5i are in a closed state. Therefore, the thermo valve 5 is switched to the closed side, and tap water W does not enter the interior of the thermo valve 5 .

他方、給水モードMsから止水モードMcに移行させる場合は次のように行う(ステップS11)。まず、ハンドル32を右方向へ回動操作(閉操作)する(ステップS12)。これにより、操作ロッド31、更には弁体部13vが下降変位する(ステップS13)。そして、弁体部13vが最下降位置Xdまで下降変位すれば、弁座部13sに当接し、下部開閉弁機構部Vfにより給入通水路Rfが遮断される。この場合、下部開閉弁機構部Vfの構造により、閉操作に対して時間差無く直ちに応答させることができる。即ち、弁体部13vが弁座部13sに当接したタイミングで直ちに止水状態にできる。また、スプール部4sの下降変位により、内排出路6の流入口6iが開放状態になるため、給入通水路Rf内の残留水Wrが内排出路6の内部に流入する(ステップS14,S15)。この結果、球弁部16が上昇変位し、弁座孔部14に当接することにより内排出路6が遮断される(ステップS16)。 On the other hand, when the water supply mode Ms is switched to the water stop mode Mc, the following is performed (step S11). First, the handle 32 is rotated rightward (closed) (step S12). As a result, the operating rod 31 and further the valve body portion 13v are displaced downward (step S13). Then, when the valve body portion 13v is displaced downward to the lowest position Xd, it abuts against the valve seat portion 13s, and the lower opening/closing valve mechanism portion Vf blocks the supply water passage Rf. In this case, due to the structure of the lower opening/closing valve mechanism Vf, it is possible to immediately respond to the closing operation without any time lag. That is, the water stop state can be achieved immediately at the timing when the valve body portion 13v comes into contact with the valve seat portion 13s. Further, the downward displacement of the spool portion 4s opens the inlet 6i of the inner discharge passage 6, so that the residual water Wr in the water supply passage Rf flows into the inner discharge passage 6 (steps S14 and S15). ). As a result, the ball valve portion 16 is displaced upward and comes into contact with the valve seat hole portion 14, thereby blocking the internal discharge passage 6 (step S16).

一方、止水モードMcに移行した際は、図7に示すように、出水管部12における吐出通水路Roに水道水Wが残留水Woとして残留するが、この残留水Woは、残留防止機能Fr、即ち、残留防止キャップ27に設けたテーパ面11の機能により、吐水口先端2esから外部に確実に排出される。 On the other hand, when shifting to the water stop mode Mc, as shown in FIG. 7, the tap water W remains in the discharge water passage Ro in the water outlet pipe portion 12 as residual water Wo. Fr, that is, the function of the tapered surface 11 provided on the residual prevention cap 27, ensures that the water is discharged to the outside from the tip 2es of the spout.

また、立上通水路Rm及び給入通水路Rf内の水道水Wは残留水Wrとして残留するが、上部開閉弁機構部Vsが閉側へ切換わるとともに、外気温(検知温度)は、通常、設定温度Tcを越えた状態にあり、サーモバルブ5はOFF状態にあるため、立上通水路Rm及び給入通水路Rf内は密閉された状態となる。この結果、残留水Wrは残留した状態で維持され、かつこの状態で止水モードMcが維持される(ステップS17,S1)。 The tap water W in the rising water passage Rm and the supply water passage Rf remains as residual water Wr. , the set temperature Tc is exceeded, and the thermo valve 5 is in the OFF state, so that the rising water passage Rm and the supply water passage Rf are sealed. As a result, the residual water Wr is maintained in a residual state, and the water stop mode Mc is maintained in this state (steps S17, S1).

この後、止水モードMcにおいて、外気温が設定温度Tc以下まで低下した場合を想定する(ステップS17)。この場合、サーモバルブ5は、自動でON状態になり吸気側へ切換わる。即ち、図8に示すように、吸気口5iから吸気流出口5e間の通気が許容される状態となる(ステップS18)。これにより、一点鎖線で示す矢印に沿って吸気Aiが行われる。具体的には、吐水口先端2es→吐出通水路Ro→吸気口5i→サーモバルブ5→吸気流出口5e→下側通水孔24→立上通水路Rmの経路で通気Aiが許容される。この結果、立上通水路Rm及び給入通水路Rfの内圧(負圧)が解除される(ステップS19)。 After that, in the water stop mode Mc, it is assumed that the outside air temperature drops below the set temperature Tc (step S17). In this case, the thermo valve 5 is automatically turned on and switched to the intake side. That is, as shown in FIG. 8, a state is established in which ventilation from the intake port 5i to the intake air outlet 5e is permitted (step S18). As a result, intake air Ai is performed along the arrow indicated by the dashed-dotted line. Specifically, ventilation Ai is allowed in the following route: spout tip 2es→discharge water passage Ro→intake port 5i→thermo valve 5→intake outflow port 5e→lower side water passage 24→rising water passage Rm. As a result, the internal pressure (negative pressure) of the rising water passage Rm and the supply water passage Rf is released (step S19).

そして、内圧の解除により水抜モードMrに移行する(ステップS20)。水抜モードMrでは、残留水Wrが図8に示す点線矢印に沿って排出される。具体的には、立上通水路Rm内の残留水Wrは、流入口6i→内排出路6→外排出路7を通して外部に排出される。この際、球弁部38は、弁座孔部37hから離間するとともに、防護カバー42は上方変位により通水が許容される。そして、水抜きが終了すれば、水抜きが終了した状態の止水モードMcとして維持される(ステップS21,S1)。 Then, the internal pressure is released to shift to the drain mode Mr (step S20). In the drain mode Mr, residual water Wr is drained along the dotted line arrow shown in FIG. Specifically, the residual water Wr in the rising water passage Rm is discharged to the outside through the inlet 6i→the inner discharge passage 6→the outer discharge passage 7. FIG. At this time, the ball valve portion 38 is separated from the valve seat hole portion 37h, and the protective cover 42 is displaced upward to allow water flow. When draining is completed, the water stop mode Mc in which draining is completed is maintained (steps S21, S1).

このように、本実施形態に係る不凍水栓柱1は、基本的な構成として、少なくとも止水モードMc及び水抜モードMrでは吐出通水路Ro内に残留する残留水Woを外部に排出する残留防止機能Frを設けるとともに、吐水口部2eの内部に配設したサーモバルブ5の吸気流入用の吸気口5iを、吐出通水路Roの内部に臨ませてなるため、吐出通水路Ro内に残留する残留水Woは、残留防止機能Frにより、外部へ確実に排出可能となり、止水モードMc(水抜モードMr)では、常に、吐出通水路Roを空にすることができる。これにより、サーモバルブ5を吐出通水路Roの内部に配設した場合であっても、サーモバルブ5の吸気口5iをそのまま吐出通水路Ro内に臨ませることができる。この結果、吐水口部2e周りに形成する煩雑な通気通路が不要となり、吐水口部2eのシンプル化及び小型化、更にはコストダウンを図れるとともに、吐水口部2eにより吸気口5iを外的に保護することができるため、通気通路のゴミ詰まり等のトラブルや故障を回避することができる。 As described above, the antifreezing water faucet column 1 according to the present embodiment has, as a basic configuration, at least in the water stop mode Mc and the drain mode Mr, a residual Since the prevention function Fr is provided and the intake port 5i for inflowing the intake air of the thermo valve 5 disposed inside the water discharge port portion 2e faces the inside of the discharge water passage Ro, the air remains in the discharge water passage Ro. The residual water Wo can be reliably discharged to the outside by the residual prevention function Fr, and in the water stop mode Mc (drainage mode Mr), the discharge water passage Ro can always be emptied. As a result, even when the thermo valve 5 is disposed inside the discharge water passage Ro, the intake port 5i of the thermo valve 5 can be directly exposed to the discharge water passage Ro. As a result, a complicated ventilation passage to be formed around the water discharge port 2e becomes unnecessary, and the water discharge port 2e can be simplified and miniaturized, and the cost can be reduced. Since it can be protected, it is possible to avoid troubles and failures such as clogging of the ventilation passage with dust.

以上、好適実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。 Although the preferred embodiments have been described in detail above, the present invention is not limited to such embodiments, and detailed configurations, shapes, materials, quantities, numerical values, etc. do not deviate from the gist of the present invention. Any change, addition, or deletion can be made within the range.

例えば、操作機構部3は、操作レバー32hを一体に備えるハンドル32により操作する例を示したが、ハンドル32は、各種形態のハンドル32を適用できるとともに、電動モータ等により遠隔操作する自動タイプや半自動タイプを排除するものではない。また、下部開閉弁機構部Vfを構成する弁体部13vと弁座部13sが当接する面は平坦な水平面により形成した場合を例示したが、テーパ面等の傾斜面により形成してもよい。さらに、内逆止弁機構部Vnfは、弁座孔部14と球弁部16を用いることが好適であるが、同様の機能を発揮する他の構成を排除するものではない。同様に、外逆止弁機構部Vnsとして、弁座孔部37hと球弁部38を用いて構成した例を示したが、同様の機能を発揮する他の構成を用いてもよい。他方、サーモバルブ5に設ける吸気口5iをサーモバルブ5自身の周面に設けた場合を示したが、サーモバルブ5自身の他の任意の位置を選定可能である。 For example, the operation mechanism 3 is operated by the handle 32 integrally provided with the operation lever 32h, but various forms of the handle 32 can be applied to the handle 32, and the handle 32 can be an automatic type remotely operated by an electric motor or the like. A semi-automatic type is not excluded. Further, although the contact surface between the valve body portion 13v and the valve seat portion 13s constituting the lower opening/closing valve mechanism portion Vf is formed by a flat horizontal surface, it may be formed by an inclined surface such as a tapered surface. Furthermore, the inner check valve mechanism portion Vnf preferably uses the valve seat hole portion 14 and the ball valve portion 16, but other configurations that exhibit similar functions are not excluded. Similarly, although an example in which the valve seat hole portion 37h and the ball valve portion 38 are used as the outer check valve mechanism portion Vns, another configuration that exhibits the same function may be used. On the other hand, although the case where the intake port 5i provided in the thermo valve 5 is provided on the peripheral surface of the thermo valve 5 itself is shown, any other position of the thermo valve 5 itself can be selected.

本発明に係る不凍水栓柱は、寒冷地における住宅の庭などの屋外に設置する水道立上管を有する各種不凍水栓柱に利用することができる。 INDUSTRIAL APPLICABILITY The antifreezing faucet pole according to the present invention can be used for various antifreezing faucet poles having a water supply riser installed outdoors such as in the garden of a house in cold regions.

1:不凍水栓柱,2:水道立上管,2e:吐水口部,2es:吐水口先端,3:操作機構部,4:スプール弁機構部,4s:スプール部,5:サーモバルブ,5i:吸気口,6:内排出路,6i:流入口,6e:流出口,7:外排出路,11:テーパ面,12:出水管部,13v:弁体部,13s:弁座部,14:弁座孔部,15:上流側排出路,16:球弁部,Ms:給水モード,Mc:止水モード,Mr:水抜モード,R:通水路,Ro:吐出通水路,Rm:立上通水路,Rf:給入通水路,W:水道水,Wo:残留水,Fr:残留防止機能,Lo:外開口径,Qo:勾配角度,Vs:上部開閉機構部,Vf:下部開閉弁機構部,Vnf:内逆止弁機構部,Xd:最下降位置 1: antifreeze faucet column, 2: water supply riser pipe, 2e: spout portion, 2es: spout tip, 3: operation mechanism portion, 4: spool valve mechanism portion, 4s: spool portion, 5: thermo valve, 5i: intake port, 6: inner discharge passage, 6i: inflow port, 6e: outflow port, 7: outer discharge passage, 11: tapered surface, 12: water discharge pipe portion, 13v: valve body portion, 13s: valve seat portion, 14: valve seat hole, 15: upstream discharge passage, 16: ball valve portion, Ms: water supply mode, Mc: water stop mode, Mr: drain mode, R: water passage, Ro: discharge water passage, Rm: vertical Upper water passage, Rf: supply water passage, W: tap water, Wo: residual water, Fr: residual prevention function, Lo: outer opening diameter, Qo: gradient angle, Vs: upper opening/closing mechanism, Vf: lower opening/closing valve Mechanism, Vnf: Inner check valve mechanism, Xd: Lowermost position

Claims (7)

上部に吐水口部を有する水道立上管を備えるとともに、前記水道立上管に付設した操作機構部と、この操作機構部により昇降変位するスプール部により、給水モード,止水モード,又は水抜モードに切換可能なスプール弁機構部を備え、かつ前記吐水口部の内部における吐出通水路にサーモバルブを配設し、少なくとも外気温が設定温度以下まで低下したなら前記サーモバルブを吸気側に切換え、前記止水モードにより密閉された前記水道立上管の内部における立上通水路への吸気を許容して前記水抜モードに移行する不凍水栓柱において、少なくとも前記止水モード及び前記水抜モードでは前記吐出通水路内に残留する残留水を外部に排出する残留防止機能を設けるとともに、前記吐水口部の内部に配設した前記サーモバルブの吸気流入用の吸気口を、前記吐出通水路の内部に臨ませてなることを特徴とする不凍水栓柱。 In addition to having a water supply riser having a water discharge port at the top, an operation mechanism attached to the water supply riser and a spool that is vertically displaced by this operation mechanism allow water supply mode, water stop mode, or water drain mode. a spool valve mechanism that can be switched to and from, and a thermo valve is disposed in the discharge water passage inside the water discharge port, and at least when the outside temperature drops below a set temperature, the thermo valve is switched to the intake side, In the non-freezing faucet column that allows air intake to the rising water passage inside the water supply riser pipe sealed by the water stop mode and shifts to the water drain mode, at least in the water stop mode and the water drain mode A residual prevention function for discharging residual water remaining in the discharge water passage to the outside is provided, and an intake port for inflow of intake air of the thermo valve disposed inside the water discharge port is disposed inside the discharge water passage. An antifreeze faucet pillar characterized by facing the 前記残留防止機能は、前記吐水口部を、止水時に少なくとも内部に残留する残留水を吐水口先端から外部に流出可能な排水構造に構成するとともに、前記吐水口先端に至る通水路の内径の一部を、軸方向下流側へ行くに従って漸次大径となるテーパ面により形成してなることを特徴とする請求項1記載の不凍水栓柱。 The residual prevention function is to configure the spout portion to have a drainage structure that allows at least residual water remaining inside to flow out from the tip of the spout when the water is stopped, and to reduce the inner diameter of the water passage leading to the tip of the spout. 2. The non-freezing water faucet column according to claim 1, characterized in that a part thereof is formed by a tapered surface whose diameter gradually increases toward the downstream side in the axial direction. 前記テーパ面は、このテーパ面の先端の外開口径を12.5mm以上とし、当該テーパ面の勾配角度を25゜以上乃至45゜以下に設定してなることを特徴とする請求項2記載の不凍水栓柱。 3. The tapered surface according to claim 2, wherein the tapered surface has an outer opening diameter of 12.5 mm or more at the tip of the tapered surface, and a gradient angle of the tapered surface set to 25 degrees or more and 45 degrees or less. Antifreeze faucet column. 前記吐水口部は、前記吐出通水路を被う出水管部を備えるとともに、前記吐出通水路と前記立上通水路間に、前記給水モードから前記止水モードの切換時に遮断し、前記止水モード又は前記水抜モードから前記給水モードの切換時に開放する上部開閉機構部を備えることを特徴とする請求項1,2又は3記載の不凍水栓柱。 The water discharge port portion includes a water discharge pipe portion covering the discharge water passage, and between the discharge water passage and the rising water passage, shuts off when switching from the water supply mode to the water stop mode, and the water stop. 4. The non-freezing water faucet column according to claim 1, further comprising an upper opening/closing mechanism that is opened when the mode or the drain mode is switched to the water supply mode. 前記スプール部の最下降位置で前記立上通水路の上流端を遮断し、かつ前記最下降位置からの前記スプール部の上昇変位により前記立上通水路の上流端を開放する下部開閉弁機構部と、前記スプール部の内部に形成し、かつ下側に位置する流入口と上側に位置する流出口を有する内排出路と、この内排出路に付設し、少なくとも前記流入口から流入する水道水による所定の水圧により前記内排出路を遮断する内逆止弁機構部と、前記スプール部の前記最下降位置では外部に臨む外排出路と前記流出口を連通させ、かつ前記最下降位置から上昇変位する前記スプール部の所定の変位区間では前記流入口と通水路を連通させるスプール弁機構部とを備えることを特徴とする請求項1記載の不凍水栓柱。 A lower opening/closing valve mechanism that blocks the upstream end of the rising water passage at the lowest position of the spool portion, and opens the upstream end of the rising water passage by upward displacement of the spool portion from the lowest position. an inner discharge passage formed inside the spool portion and having an inlet located on the lower side and an outlet located on the upper side; tap water attached to the inner discharge passage and flowing in from at least the inlet; and an inner check valve mechanism that blocks the inner discharge passage by a predetermined water pressure, and the outer discharge passage facing the outside and the outflow port are communicated at the lowest position of the spool portion, and rises from the lowest position. 2. The non-freezing water faucet column according to claim 1, further comprising a spool valve mechanism that communicates the inlet and the water passage in a predetermined displacement section of the displaced spool. 前記下部開閉弁機構部は、前記スプール部の下端部に固定した弁体部,及びこの弁体部の下方に位置し、かつ通水路の外方の面に形成することにより、前記弁体部に対して当接又は離脱する弁座部を備えて構成することを特徴とする請求項5記載の不凍水栓柱。 The lower opening/closing valve mechanism is positioned below the valve body fixed to the lower end of the spool and formed on the outer surface of the water passage. 6. The non-freezing water faucet column according to claim 5, comprising a valve seat portion that abuts against or separates from. 前記内逆止弁機構部は、前記流入口側に位置する前記内排出路を所定の長さにわたり大径に形成し、かつ上端に弁座孔部を有する上下方向に形成した上流側排出路,及びこの上流側排出路に収容した球体状の球弁部を備えて構成することを特徴とする請求項5記載の不凍水栓柱。 The inner check valve mechanism part is formed such that the inner discharge passage located on the inlet side is formed to have a large diameter over a predetermined length, and an upstream discharge passage formed in the vertical direction having a valve seat hole at the upper end. 6. The non-freezing water faucet column according to claim 5, comprising: , and a spherical ball valve portion accommodated in the upstream discharge passage.
JP2021184039A 2021-11-11 2021-11-11 Antifreeze water tap post Pending JP2023071339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021184039A JP2023071339A (en) 2021-11-11 2021-11-11 Antifreeze water tap post

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021184039A JP2023071339A (en) 2021-11-11 2021-11-11 Antifreeze water tap post

Publications (1)

Publication Number Publication Date
JP2023071339A true JP2023071339A (en) 2023-05-23

Family

ID=86409812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021184039A Pending JP2023071339A (en) 2021-11-11 2021-11-11 Antifreeze water tap post

Country Status (1)

Country Link
JP (1) JP2023071339A (en)

Similar Documents

Publication Publication Date Title
US8201289B2 (en) Combined control for a basin overflow and a basin drain
US20120096639A1 (en) Faucet mounted eyewash unit
US20180320342A9 (en) Sanitary Hydrant
US6561214B2 (en) Hydrant with improved drain mechanism
JP2023071339A (en) Antifreeze water tap post
US7828005B2 (en) Freezeless hydrant
JP2023071338A (en) Antifreeze water tap post
JP6497500B2 (en) Hot and cold water mixing device
JP2022166891A (en) Faucet column and water discharge port adaptor
US20130139920A1 (en) Faucet device selectively operatable manually or automatically
CN207430546U (en) Combine shower
JP2000345591A (en) Faucet with drainage mechanism
JP4916196B2 (en) Faucet column
CN108999999B (en) Cold exhaust structure
JP6497499B2 (en) Hot and cold water mixing device
JP6649339B2 (en) Antifreeze faucet column with water spout prevention structure
TW202012748A (en) Multifunctional floor drainer capable of freely adjusting and controlling the water drainage and storage functions
JP2008267033A (en) Method of preventing water pipe from freezing, and antifreeze valve
KR102440380B1 (en) Valves that can be opened and closed for both water and discharge
JP5595075B2 (en) Tank water supply device
KR100896076B1 (en) Change valve apparatus of control valve in bidet
JP3590001B2 (en) Antifreeze water tap for header piping
JP2992237B2 (en) Gas tap
US20060144454A1 (en) Quarter Turn Bath Spout Diverter
JP3726554B2 (en) Sanitary washing device