JP2023070535A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2023070535A
JP2023070535A JP2021182773A JP2021182773A JP2023070535A JP 2023070535 A JP2023070535 A JP 2023070535A JP 2021182773 A JP2021182773 A JP 2021182773A JP 2021182773 A JP2021182773 A JP 2021182773A JP 2023070535 A JP2023070535 A JP 2023070535A
Authority
JP
Japan
Prior art keywords
liquid crystal
slits
crystal layer
display device
vertical alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021182773A
Other languages
Japanese (ja)
Inventor
学 濱本
Manabu Hamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2021182773A priority Critical patent/JP2023070535A/en
Priority to PCT/JP2022/041617 priority patent/WO2023085289A1/en
Publication of JP2023070535A publication Critical patent/JP2023070535A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

To provide a multi-domain vertically aligned liquid crystal element with which the specific resistance of a liquid crystal is stabilized and damage due to static electricity is reduced by adding a charging removal function agent to the liquid crystal.SOLUTION: A multi-domain vertically aligned liquid crystal display device comprises: first and second substrates which are arranged facing each other and have light transmissivity; first and second transparent electrodes having a prescribed pattern which are formed on the facing surfaces of the first and second substrates, the first and second transparent electrodes having a plurality of slits formed by removing the electrodes in a shape of substantially a rectangle, with the slits in one substrate and the slits in the other substrate arranged alternately along a direction that is orthogonal to the longitudinal direction of the slits; first and second vertical alignment films which are formed covering the first and second transparent electrodes; and a liquid crystal layer that fills a space between the first and second vertical alignment films, the liquid crystal layer formed including a nonionic substance, and added with a charge removal function agent which has a functionality to reduce damage due to electrostatic discharge.SELECTED DRAWING: Figure 1

Description

本発明は、液晶表示装置に関し、特に、垂直配向型液晶セルを有する液晶表示装置に関する。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a vertically aligned liquid crystal cell.

高コントラストを実現できる液晶表示装置として、対向基板間に配置された液晶分子を基板面に垂直な方向に配向させる、垂直配向型の液晶表示装置がある。対向基板上に形成された対向電極間に電圧を印加し、液晶分子を倒れこませて表示を行う。液晶分子が倒れ込む方向を規定するため、電極面上に配向膜を形成し、ラビングを行ってプレティルトを与える方法が広く用いられている。この場合、倒れ込む方向は通常1方向となる。 As a liquid crystal display device capable of achieving high contrast, there is a vertically aligned liquid crystal display device in which liquid crystal molecules arranged between opposing substrates are aligned in a direction perpendicular to the substrate surfaces. A voltage is applied between the counter electrodes formed on the counter substrate, and the liquid crystal molecules are tilted to perform display. In order to define the direction in which the liquid crystal molecules fall, a method of forming an alignment film on the electrode surface and performing rubbing to give a pretilt is widely used. In this case, the tilting direction is usually one direction.

広い視認角度領域を得るためには、2つ以上の倒れ込み方向を備えたマルチドメインとすることが望ましい。マルチドメイン形成方法として、電極にスリットを設ける方法がある。スリットを設けた一方の電極と、スリットなしの他方の電極を対向させると、他方の電極のスリット中央に対応する位置から発生する電気力線は、一方の電極のスリットを挟んだ両側の電極端部に向かう。スリットを挟んで、異なる方向に傾いた傾斜電界が形成される。 In order to obtain a wide viewing angle region, it is desirable to have a multi-domain with two or more tilt directions. As a method of forming a multi-domain, there is a method of forming slits in electrodes. When one electrode provided with a slit and the other electrode without a slit face each other, the electric lines of force generated from the position corresponding to the center of the slit of the other electrode are directed to the electrode ends on both sides of the slit of the one electrode. head to the department. Gradient electric fields tilted in different directions are formed across the slit.

図7は、平行配置された対向透明基板103,113の対向面上に形成された透明電極104,114に、スリット108,118をその面内位置を半ピッチずつずらして、交互に配置した構成を示す。スリット108両側の電極104端部から対向する電極114に向かう電気力線120は対称的に傾斜した斜め電界を形成する。電圧印加時に液晶分子が倒れ込む方向が逆になる。このようにして、液晶分子の配向方向が異なる2つの配向ドメインを形成することができる(例えば特許文献1参照)。 FIG. 7 shows a configuration in which slits 108 and 118 are alternately arranged in transparent electrodes 104 and 114 formed on opposing surfaces of opposing transparent substrates 103 and 113 arranged in parallel, with their in-plane positions shifted by half a pitch. indicates The electric lines of force 120 directed from the ends of the electrode 104 on both sides of the slit 108 to the opposing electrode 114 form a symmetrically inclined oblique electric field. The direction in which the liquid crystal molecules fall when a voltage is applied is reversed. In this manner, two alignment domains in which the alignment directions of liquid crystal molecules are different can be formed (see, for example, Patent Document 1).

電極にスリットを形成すると、スリット両側の電極領域が電気的に分離される。スリットの長さを長くすると、スリットに沿った位置による電気的性質の差も増大可能である。均一な性質を持つ電極を形成するためには、スリットの長さは制限して、スリット両端で両側の電極部分を電気的に接続し、多数のスリットを電極面内に分布させ、電極面内で一様な性質を持たせることが望ましい。 Forming a slit in the electrode electrically separates the electrode regions on both sides of the slit. Increasing the length of the slit can also increase the difference in electrical properties with position along the slit. In order to form an electrode with uniform properties, the length of the slit is limited, the electrode portions on both sides are electrically connected at both ends of the slit, and a large number of slits are distributed within the electrode plane, It is desirable to have uniform properties in

図8A,8Bは、斜め電界配向制御によるマルチドメイン垂直配向型液晶表示装置の平面図、断面図である。図8Aは、対向基板内のスリット(開口)分布を同一平面上に投影して示す、重ね合せ平面図、図8Bは液晶表示装置の積層構造を概略的に示す断面図である。 8A and 8B are a plan view and a cross-sectional view of a multi-domain vertical alignment liquid crystal display device using oblique electric field alignment control. FIG. 8A is a superimposed plan view showing the distribution of slits (apertures) in the opposing substrate projected onto the same plane, and FIG. 8B is a cross-sectional view schematically showing the lamination structure of the liquid crystal display device.

図8Aにおいて、上側電極のスリット108と下側電極のスリット118とは、基板面内において、等しい縦方向ピッチおよび等しい横方向ピッチを有し、基板間で縦方向、横方向それぞれ半ピッチずらして配置されている。上側電極のスリット108、下側電極のスリット118両者を通過する縦方向位置においては、図7類似の構造となるが、スリット両端の位置は上側電極と下側電極とでずれているので、図7の2種類のドメインを若干修正したマルチドメインが生じよう。 In FIG. 8A, the slits 108 of the upper electrode and the slits 118 of the lower electrode have the same pitch in the vertical direction and the same pitch in the horizontal direction in the plane of the substrate, and are shifted by half a pitch in the vertical direction and the horizontal direction between the substrates. are placed. The vertical position passing through both the slit 108 of the upper electrode and the slit 118 of the lower electrode has a structure similar to that of FIG. A multi-domain will arise that is a slight modification of the two domains of 7.

図8Bに示す液晶表示装置の積層構造において、上側基板103の下側表面上の透明電極104はスリット開口108を有し、その上に絶縁膜105、垂直配向膜106が形成されている。上側基板103と対向配置された下側基板113の上側表面上の透明電極114はスリット開口118を有し、その上に絶縁膜115、垂直配向膜116が形成されている。 In the laminated structure of the liquid crystal display device shown in FIG. 8B, the transparent electrode 104 on the lower surface of the upper substrate 103 has a slit opening 108, and an insulating film 105 and a vertical alignment film 106 are formed thereon. A transparent electrode 114 on the upper surface of a lower substrate 113 facing the upper substrate 103 has a slit opening 118, and an insulating film 115 and a vertical alignment film 116 are formed thereon.

上下基板間の空間に液晶層107が注入されて、液晶セル121が形成される。上下基板外側には、視角補償板102,112を介して、例えばクロスニコル配置の偏光板101,111が配置されて、ノーマリーブラック表示をする。なお、透明電極と配向膜との間に配置された絶縁膜105,115は、なくてもよい。 A liquid crystal layer 107 is injected into the space between the upper and lower substrates to form a liquid crystal cell 121 . Outside the upper and lower substrates, polarizing plates 101 and 111 arranged in, for example, a crossed Nicol arrangement are arranged via viewing angle compensating plates 102 and 112 to provide a normally black display. Note that the insulating films 105 and 115 arranged between the transparent electrode and the alignment film may be omitted.

図8Aに示すように、上下のスリット開口108,118はそれぞれ長径(横)方向、短径(縦)方向の方向を揃え、上下基板内の位置は互いに半ピッチずらして配置されている。このため、上側スリット開口108の連結部の横方向位置は、下側スリット開口部118の中央部の横方向位置に対応している。駆動波形の周波数が低い時、表示ムラ(暗領域)が生じ、表示の品質が劣化すると言われている(例えば特許文献2参照)。 As shown in FIG. 8A, the upper and lower slit openings 108 and 118 are aligned in the major axis (horizontal) direction and the minor axis (vertical) direction, respectively, and the positions in the upper and lower substrates are shifted from each other by half a pitch. Therefore, the lateral position of the connecting portion of the upper slit opening 108 corresponds to the lateral position of the central portion of the lower slit opening 118 . It is said that when the frequency of the drive waveform is low, display unevenness (dark area) occurs and display quality deteriorates (see, for example, Patent Document 2).

液晶層が極めて高抵抗であると、静電気が帯電し、その静電気が放電する際に危害を与える可能性がある。液晶に添加剤を混入し、静電放電による危害を低下する提案がある。 If the liquid crystal layer has a very high resistance, static electricity builds up, which can be harmful when discharged. There have been proposals to incorporate additives into liquid crystals to reduce the hazards of electrostatic discharge.

中国特許第104774622号明細書(特許文献3)は、帯電除去機能を付与する材料として、クラウンエーテル化合物を含む化学物質を用いる例を開示している。三菱化学株式会社は、液晶組成物の比抵抗を著しく低下させる機能を有する添加剤として、非イオン性静電気対策添加剤である、クラウンエーテル類、アザクラウン類、サイラクラウン類、直鎖ポリエーテル類を報告している(特許文献4~7)。
これら液晶の比抵抗を低下させ、静電気放電による危害を低下する機能を有する非イオン性物質を帯電除去機能剤と呼ぶことにする。
Chinese Patent No. 104774622 (Patent Literature 3) discloses an example of using a chemical substance containing a crown ether compound as a material imparting an antistatic function. Mitsubishi Chemical Corporation has developed crown ethers, azacrowns, silacrowns, and linear polyethers, which are nonionic anti-static additives, as additives that significantly lower the resistivity of liquid crystal compositions. have been reported (Patent Documents 4 to 7).
These nonionic substances that have the function of reducing the specific resistance of liquid crystals and reducing the damage caused by electrostatic discharge are called charge removal functional agents.

特開2004-252298号公報JP 2004-252298 A 特開2016-148870号公報JP 2016-148870 A 中国特許第104774622号明細書China Patent No. 104774622 特開平02-311594号公報JP-A-02-311594 特開平04-072384号公報JP-A-04-072384 特開平04-072385号公報JP-A-04-072385 特開平04-180993号公報JP-A-04-180993

小山一夫,赤羽正志,「ネマチック液晶のアンカリング強度の飽和場からの評価」,第15回液晶討論会予稿集,2B21,P222~223Kazuo Koyama, Masashi Akahane, "Evaluation of anchoring strength of nematic liquid crystals from saturation field", Proceedings of the 15th Liquid Crystal Symposium, 2B21, P222-223 都甲康夫,赤羽正志,「C-V測定によるネマティックLCDのプレティルト角とアンカリング強度の評価」,第22回液晶討論会予稿集,2A16,P165~166Yasuo Togo, Masashi Akahane, "Evaluation of pretilt angle and anchoring strength of nematic LCD by CV measurement", Proceedings of the 22nd Liquid Crystal Symposium, 2A16, P165-166

静電放電による危害を低減できる、マルチドメイン垂直配向型液晶表示装置の実現が望まれている。 Realization of a multi-domain vertical alignment liquid crystal display device that can reduce the damage caused by electrostatic discharge is desired.

液晶に添加することにより、液晶の比抵抗を安定化し、静電気による障害を減少させる、帯電除去機能剤を添加したマルチドメイン垂直配向型液晶素子を提供することを目的とする。 It is an object of the present invention to provide a multi-domain vertically aligned liquid crystal device to which an antistatic agent is added, which stabilizes the resistivity of the liquid crystal and reduces damage caused by static electricity.

対向配置され、透光性を有する第1、第2の基板と、
前記第1、第2の基板の対向面上に形成された所定パターンの第1、第2の透明電極であり、電極を略長方形状に除去して形成された複数のスリットを有し、一方の基板上のスリットと他方の基板上のスリットとが、該スリットの長手方向と直交する方向に沿って、交互に配置されている第1、第2の透明電極と、
前記第1、第2の透明電極を覆って形成された第1、第2の垂直配向膜と、
前記第1、第2の垂直配向膜間のスペースを充填する液晶層であって、非イオン性物質を含んで形成され、静電気放電による危害を低下させる機能を有する帯電除去機能剤を添加された液晶層と、
を含むマルチドメイン垂直配向型液晶表示装置
が提供される。
First and second substrates arranged to face each other and having translucency;
First and second transparent electrodes having a predetermined pattern formed on the opposing surfaces of the first and second substrates, and having a plurality of slits formed by removing the electrodes in a substantially rectangular shape. first and second transparent electrodes in which slits on one substrate and slits on the other substrate are alternately arranged along a direction orthogonal to the longitudinal direction of the slits;
first and second vertical alignment films formed to cover the first and second transparent electrodes;
A liquid crystal layer filling the space between the first and second vertical alignment films, the liquid crystal layer containing a non-ionic material and added with an antistatic agent having a function of reducing damage caused by electrostatic discharge. a liquid crystal layer;
There is provided a multi-domain vertically aligned liquid crystal display comprising:

対向基板上に交互に配置されたスリットによりマルチドメインが形成される。帯電除去機能剤を液晶に添加することにより、静電気放電による危害を低下可能である。 A multi-domain is formed by alternately arranged slits on the opposing substrate. By adding an antistatic agent to the liquid crystal, the harm caused by electrostatic discharge can be reduced.

実施例による液晶表示装置の構造を示す断面図である。1 is a cross-sectional view showing the structure of a liquid crystal display device according to an embodiment; FIG. サンプル1~4に対して25℃の雰囲気中で行った実験結果を示す表である。4 is a table showing the results of experiments conducted in an atmosphere of 25° C. for samples 1 to 4; サンプル1~4に対して80℃の雰囲気中で行った実験結果を示す表である。4 is a table showing the results of experiments conducted in an atmosphere of 80° C. for samples 1 to 4; サンプル5,6に対して25℃の雰囲気中で行った実験結果を示す表である。10 is a table showing experimental results of samples 5 and 6 in an atmosphere of 25° C.; サンプル5,6に対して80℃の雰囲気中で行った実験結果を示す表である。10 is a table showing experimental results of samples 5 and 6 in an atmosphere of 80° C.; 図6A,6Bは、サンプル1~サンプル4及びサンプル3~サンプル6に対するC-V測定プロットをアンカリング強度を示す直線と共に示すグラフである。6A and 6B are graphs showing CV measurement plots for Samples 1-4 and Samples 3-6 with straight lines indicating anchoring strength. 先行研究において、対向電極に形成した交互スリットによる傾斜電界を示す断面図である。FIG. 4 is a cross-sectional view showing a gradient electric field due to alternate slits formed in opposing electrodes in previous research. 図8A,8Bは、先行研究において検討された、斜め電界配向制御によるマルチドメイン垂直配向型液晶表示装置の平面図、断面図である。8A and 8B are a plan view and a cross-sectional view of a multi-domain vertically aligned liquid crystal display device using oblique electric field alignment control, which was studied in previous research.

図1は、実験対象とした、セグメント表示をする液晶表示装置の構成を示す模式的な断面図である。ガラス基板、プラスチック基板等の透明基板で形成された、第1基板S1と第2基板S2とが対向配置される。第1基板S1の対向面上には、インジウム錫酸化物(ITO)等の透明電極層で形成され、略長方形状のスリット開口5を有する第1電極1が形成され、その電極表面上にはポリイミド製垂直配向膜2が形成されている。第2基板S2の対向面上にも、透明電極層で形成され、略長方形状のスリット開口15を有する第2電極11が形成され、その電極表面上にはポリイミド製垂直配向膜12が形成されている。 FIG. 1 is a schematic cross-sectional view showing the configuration of a liquid crystal display device for segment display, which was used as an experimental object. A first substrate S1 and a second substrate S2 formed of a transparent substrate such as a glass substrate or a plastic substrate are arranged to face each other. A first electrode 1 made of a transparent electrode layer such as indium tin oxide (ITO) and having a substantially rectangular slit opening 5 is formed on the facing surface of the first substrate S1. A vertical alignment film 2 made of polyimide is formed. A second electrode 11 made of a transparent electrode layer and having a substantially rectangular slit opening 15 is also formed on the facing surface of the second substrate S2, and a polyimide vertical alignment film 12 is formed on the electrode surface. ing.

スリット開口5,15は例えば基板上で図8Aに示すパターン状に分布する。配向膜2,12まで含めた第1電極1、第2電極11間の間隔は、例えば3.8μm程度である。 The slit openings 5 and 15 are distributed, for example, in the pattern shown in FIG. 8A on the substrate. The distance between the first electrode 1 and the second electrode 11 including the alignment films 2 and 12 is, for example, about 3.8 μm.

垂直配向膜2,12に挟まれたスペースに液晶層50が充填されている。配向膜2,12上の液晶分子のプレティルト角は、概ね90度である。液晶セル空間には、プラスチック粒状体等によるスペーサが分散配置され、液晶セル空間の厚さを保つ機能を果たす。液晶セル空間の周囲はエポキシ樹脂等のシール材によって封止される。液晶セル空間内に誘電率異方性Δεが負(Δε < 0)のネマチック液晶材料が注入され、液晶層50が構成される。 A space sandwiched between the vertical alignment films 2 and 12 is filled with a liquid crystal layer 50 . The pretilt angle of the liquid crystal molecules on the alignment films 2 and 12 is approximately 90 degrees. In the liquid crystal cell space, spacers made of plastic particles or the like are distributed and arranged to maintain the thickness of the liquid crystal cell space. The periphery of the liquid crystal cell space is sealed with a sealing material such as epoxy resin. A nematic liquid crystal material having a negative dielectric anisotropy Δε (Δε<0) is injected into the liquid crystal cell space to form the liquid crystal layer 50 .

対向基板S1,S2外側には、位相差板PS1,PS2を介して、例えばクロスニコル配置の偏光板P1,P2が配置されている。クロスニコル配置の偏光板P1,P2と垂直配向液晶層との組み合わせは、高い遮光率を与え、高コントラスト実現を容易にする。 Outside the counter substrates S1 and S2, polarizing plates P1 and P2 in, for example, a crossed Nicol arrangement are arranged via retardation plates PS1 and PS2. The combination of the polarizing plates P1 and P2 in the crossed Nicols arrangement and the vertically aligned liquid crystal layer provides a high light shielding rate and facilitates realization of a high contrast.

液晶層50には、帯電除去機能剤が添加されている。帯電除去機能剤は、クラウンエーテル化合物等の非イオン性物質であり、水分を吸収すると、導電性を持つ化合物を形成し、配向膜の表面に結合して、配向膜2、12表面の少なくとも一部に導電性を付与する。これらの導電性皮膜が、高抵抗物質であった液晶層50の実効比抵抗を低下させる機能を有する。 An antistatic agent is added to the liquid crystal layer 50 . The charge removal functional agent is a non-ionic substance such as a crown ether compound, which forms a conductive compound when it absorbs moisture, bonds to the surface of the alignment film, and is attached to at least one surface of the alignment films 2 and 12. Gives conductivity to the part. These conductive films have the function of lowering the effective resistivity of the liquid crystal layer 50, which is a high resistance material.

液晶中の帯電除去機能剤が配向膜上の水分を吸収して、導電性を提供し、耐静電気性に非常に優れた性質を示す。イオン性の導電物質を用いる場合と比較して、用いる液晶材料の比抵抗を高くすることができる。電圧保持率を高くでき、コントラスト等の表示品位を向上できる。 The antistatic agent in the liquid crystal absorbs moisture on the alignment film, provides conductivity, and exhibits excellent static resistance. The specific resistance of the liquid crystal material to be used can be increased as compared with the case of using an ionic conductive substance. The voltage holding ratio can be increased, and display quality such as contrast can be improved.

液晶中の帯電除去剤は、静電気の放電による危害を低減できる濃度であることが望ましい。帯電除去剤の濃度が高すぎると、低周波数領域で、液晶表示中に流動する暗領域等を含む表示ムラを与えてしまう。従って、液晶中の帯電除去剤の濃度は、静電気の放電による危害を防止でき、かつ表示ムラを生じない濃度にすることが望まれる。但し、配向膜との組み合わせによって帯電除去剤の効果も変化する。そこで、帯電除去剤の濃度と配向膜との組み合わせを変化させた複数のサンプルを作成した。 It is desirable that the concentration of the charge removing agent in the liquid crystal be such that it can reduce the damage caused by the discharge of static electricity. If the concentration of the charge removing agent is too high, display unevenness including a dark region that flows during the liquid crystal display is caused in a low frequency region. Therefore, it is desirable that the concentration of the charge removing agent in the liquid crystal be such that it can prevent damage caused by static discharge and does not cause display unevenness. However, the effect of the antistatic agent also changes depending on the combination with the alignment film. Therefore, a plurality of samples were prepared by changing the combination of the concentration of the charge removing agent and the orientation film.

図2は、サンプル1~サンプル4の、温度25℃での実験結果を示す表である。帯電除去剤としてU-60*を用いた。表中では帯電除去剤をドーパントと表記している。サンプル1,2,3は、帯電除去剤の濃度を50ppmとし、配向膜材料をA,B,Cと変えたものである。サンプル4は、帯電除去剤を添加しなかった(濃度0ppm)ものである。周波数を60,90,120,150,200、300、500、1000(Hz)と変化させて実験した。目視で確認できる表示ムラがあったものは×とし、目視により表示ムラがなかったものを○とした。サンプル1、サンプル2は、すべて×であった。サンプル3とサンプル4は、すべて○であった。しかし、サンプル4は帯電除去剤を含まないものなので、静電気が原因による表示ムラ等に対する対策が課題として残る。 FIG. 2 is a table showing experimental results of samples 1 to 4 at a temperature of 25.degree. U-60* was used as an antistatic agent. In the table, the antistatic agent is written as dopant. Samples 1, 2, and 3 were obtained by changing the concentration of the charge removal agent to 50 ppm and changing the orientation film material to A, B, and C. Sample 4 does not contain any antistatic agent (concentration of 0 ppm). The experiment was conducted by changing the frequency to 60, 90, 120, 150, 200, 300, 500 and 1000 (Hz). When there was display unevenness that could be visually observed, it was evaluated as x, and when there was no display unevenness when visually observed, it was evaluated as ○. Sample 1 and sample 2 were all x. Samples 3 and 4 were all ◯. However, since Sample 4 does not contain an antistatic agent, countermeasures against display unevenness caused by static electricity remain a problem.

図3は、サンプル1~サンプル4の、温度80℃での実験結果を示す表である。サンプル1、サンプル2に加え、サンプル3も×となった。サンプル4は○であったが、帯電除去剤を含まないので対策が必要である。そこで、帯電除去剤の濃度を、5ppmに下げたサンプル5、2.5ppmに下げたサンプル6を作成した。 FIG. 3 is a table showing experimental results of samples 1 to 4 at a temperature of 80.degree. In addition to sample 1 and sample 2, sample 3 was also x. Sample 4 was evaluated as ◯, but since it does not contain an antistatic agent, a countermeasure is required. Therefore, Sample 5, in which the concentration of the charge removal agent was lowered to 5 ppm, and Sample 6, in which the concentration was lowered to 2.5 ppm, were prepared.

図4、図5は、サンプル5、サンプル6に対する、25℃、80℃の雰囲気温度における実験結果を示す表である。サンプル5は、帯電除去防止剤の濃度を5ppmとし、配向膜材料はCである。サンプル6は、帯電防止剤の濃度を2.5ppmとし、配向膜材料はCである。比較のため、サンプル3、サンプル4の実験結果も併せて示した。サンプル5,6は全周波数で○の実験結果であった。帯電除去剤をドープして(ドーパント濃度 > 0)静電気対策を取れば、ドーパント濃度が5ppm以下の領域で、表示ムラが生じない、満足できる結果が得られると考えられる。 4 and 5 are tables showing experimental results for samples 5 and 6 at ambient temperatures of 25° C. and 80° C., respectively. In sample 5, the concentration of the antistatic agent was 5 ppm, and C was used as the alignment film material. Sample 6 has an antistatic agent concentration of 2.5 ppm and an alignment film material of C. Experimental results of samples 3 and 4 are also shown for comparison. Samples 5 and 6 had experimental results of ◯ at all frequencies. If antistatic measures are taken by doping an antistatic agent (dopant concentration > 0), it is considered that a satisfactory result without display unevenness can be obtained in a region where the dopant concentration is 5 ppm or less.

静電容量Cは、印加電圧Vとアンカリング強度AΘの関数であることが判っている(非特許文献1,非特許文献2を参照)。図6A,6Bに示されているC-V測定のプロットからアンカリング強度AΘを読みとることができる。横軸に印加電圧Vの逆数、縦軸に静電容量Cを示すグラフを用いる。静電容量は初期値C0で規格化した。 It is known that the capacitance C is a function of the applied voltage V and the anchoring strength AΘ (see Non-Patent Document 1 and Non-Patent Document 2). The anchoring strength AΘ can be read from the CV measurement plots shown in FIGS. 6A and 6B. A graph is used in which the reciprocal of the applied voltage V is plotted on the horizontal axis and the capacitance C is plotted on the vertical axis. The capacitance was normalized by the initial value C0.

図6Aに25℃雰囲気中のサンプル1~サンプル4のC-V測定プロットを示す。サンプル1~サンプル4のプロットは、LCRメーターを使用して、RpCp(並列等価回路)モードにおいて、f=1kHzでの容量値Cpを測定した実測値である。ここで、RpはRpCpモードにおける等価並列抵抗であり、CpはRpCpモードにおける等価並列容量成分である。また、アンカリング強度AΘは、例えばLCD-master(シンテック社製)を使用して得られたシミュレーション値である。C-V特性のプロットから、サンプル1~サンプル4でアンカリング強度に差が生じていることが判る。アンカリング強度AΘを実線及び破線で示す。尚、アンカリング強度AΘの実線及び破線は、図2の表示ムラがなかったサンプル3及びサンプル4のプロットに沿って得られたシミュレーション値である。換言すれば、アンカリング強度AΘの実線はサンプル3のプロットに沿うように算出されており、破線はサンプル4のプロットに沿うように算出されている。この結果から、アンカリング強度AΘの実線及び破線の範囲内であれば、表示ムラが生じないアンカリング強度の範囲であると推察できる。よって、アンカリング強度AΘが、10.0x10∧-5~14.0x10∧-5(J/m2)の範囲であれば、25℃で表示ムラが生じないことが判った。 FIG. 6A shows CV measurement plots of Samples 1 to 4 in a 25° C. atmosphere. The plots of samples 1 to 4 are actual measurements of the capacitance value Cp at f=1 kHz in RpCp (parallel equivalent circuit) mode using an LCR meter. Here, Rp is the equivalent parallel resistance in RpCp mode, and Cp is the equivalent parallel capacitance component in RpCp mode. Also, the anchoring strength AΘ is a simulation value obtained using, for example, LCD-master (manufactured by Shintech). From the CV characteristic plots, it can be seen that samples 1 to 4 have different anchoring strengths. The anchoring strength AΘ is indicated by a solid line and a dashed line. The solid line and broken line of the anchoring strength AΘ are simulation values obtained along the plots of samples 3 and 4 in which there was no display unevenness in FIG. In other words, the solid line of the anchoring strength AΘ is calculated along the plot of sample 3, and the broken line is calculated along the plot of sample 4. From this result, it can be inferred that the anchoring strength within the range of the solid line and the broken line of the anchoring strength AΘ is the range of the anchoring strength in which display unevenness does not occur. Therefore, it was found that display unevenness does not occur at 25° C. if the anchoring strength AΘ is in the range of 10.0×10̂-5 to 14.0×10̂-5 (J/m2).

図6Bに25℃雰囲気中のサンプル5~サンプル6のC-V測定プロットを、サンプル3、サンプル4のC-V測定プロットと共に示す。アンカリング強度AΘを実線、1点破線、破線で示す。ここで、アンカリング強度AΘの1点破線は、図6Aの実線及び破線に加え、サンプル4~サンプル6のプロットに沿うように新たに算出された線である。 FIG. 6B shows the CV measurement plots of Samples 5 and 6 in an atmosphere of 25° C. together with the CV measurement plots of Samples 3 and 4. As shown in FIG. The anchoring strength AΘ is indicated by a solid line, a one-dot dashed line, and a dashed line. Here, the one-dot dashed line of the anchoring strength AΘ is a newly calculated line along the plots of Samples 4 to 6 in addition to the solid and dashed lines in FIG. 6A.

C-V特性のプロットから、サンプル3のアンカリング強度と、サンプル4~6のアンカリング強度と、が乖離している。サンプル3は、図3及び図5に示されているように80℃の雰囲気温度で表示ムラが生じている。よって、アンカリング強度AΘが、12.0x10∧-5~14.0x10∧-5(J/m2)の範囲であれば、80℃でも表示ムラが生じないことが判った。 From the plot of the CV characteristics, the anchoring strength of sample 3 and the anchoring strengths of samples 4 to 6 diverge. Sample 3 causes display unevenness at an ambient temperature of 80° C., as shown in FIGS. Therefore, it was found that display unevenness does not occur even at 80° C. if the anchoring strength AΘ is in the range of 12.0×10∧-5 to 14.0×10∧-5 (J/m2).

以上、実施例に沿って本発明を説明したが、これらは制限的なものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは問う業者に自明であろう。 Although the present invention has been described along with the embodiments, these are not restrictive. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, etc. are possible.

Claims (4)

対向配置され、透光性を有する第1、第2の基板と、
前記第1、第2の基板の対向面上に形成された所定パターンの第1、第2の透明電極であり、電極を略長方形状に除去して形成された複数のスリットを有し、一方の基板上のスリットと他方の基板上のスリットとが、該スリットの長手方向と直交する方向に沿って、交互に配置されている第1、第2の透明電極と、
前記第1、第2の透明電極を覆って形成された第1、第2の垂直配向膜と、
前記第1、第2の垂直配向膜間のスペースを充填する液晶層であって、非イオン性物質を含んで形成され、静電気放電による危害を低下させる機能を有する帯電除去機能剤を添加された液晶層と、
を含むマルチドメイン垂直配向型液晶表示装置。
First and second substrates arranged to face each other and having translucency;
First and second transparent electrodes having a predetermined pattern formed on the opposing surfaces of the first and second substrates, and having a plurality of slits formed by removing the electrodes in a substantially rectangular shape. first and second transparent electrodes in which slits on one substrate and slits on the other substrate are alternately arranged along a direction orthogonal to the longitudinal direction of the slits;
first and second vertical alignment films formed to cover the first and second transparent electrodes;
A liquid crystal layer filling the space between the first and second vertical alignment films, the liquid crystal layer containing a non-ionic material and added with an antistatic agent having a function of reducing damage caused by electrostatic discharge. a liquid crystal layer;
A multi-domain vertically aligned liquid crystal display device comprising:
前記液晶層に含まれる帯電除去機能剤の濃度は、正(> 0)で、5ppm以下である請求項1に記載のマルチドメイン垂直配向型液晶表示装置。 2. The multi-domain vertical alignment liquid crystal display device according to claim 1, wherein the concentration of the charge removing functional agent contained in the liquid crystal layer is positive (>0) and 5 ppm or less. 25℃における前記液晶層のアンカリング強度が、
10.0x10∧-5~14.0x10∧-5(J/m2)
の範囲である請求項1または2に記載のマルチドメイン垂直配向型液晶表示装置。
The anchoring strength of the liquid crystal layer at 25° C. is
10.0x10∧-5 to 14.0x10∧-5 (J/m2)
3. The multi-domain vertical alignment liquid crystal display device according to claim 1, wherein the range is .
80℃における前記液晶層のアンカリング強度が、
12.0x10∧-5~14.0x10∧-5(J/m2)
の範囲である請求項1または2に記載のマルチドメイン垂直配向型液晶表示装置。
The anchoring strength of the liquid crystal layer at 80° C. is
12.0x10∧-5 to 14.0x10∧-5 (J/m2)
3. The multi-domain vertical alignment liquid crystal display device according to claim 1, wherein the range is .
JP2021182773A 2021-11-09 2021-11-09 Liquid crystal display device Pending JP2023070535A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021182773A JP2023070535A (en) 2021-11-09 2021-11-09 Liquid crystal display device
PCT/JP2022/041617 WO2023085289A1 (en) 2021-11-09 2022-11-08 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021182773A JP2023070535A (en) 2021-11-09 2021-11-09 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2023070535A true JP2023070535A (en) 2023-05-19

Family

ID=86331588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021182773A Pending JP2023070535A (en) 2021-11-09 2021-11-09 Liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2023070535A (en)
WO (1) WO2023085289A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW434310B (en) * 1995-07-13 2001-05-16 Merck Patent Gmbh Liquid crystal composition
KR20070035303A (en) * 2005-09-27 2007-03-30 삼성전자주식회사 Liquid crystal display and method of manufacturing thereof
JP5242969B2 (en) * 2007-08-03 2013-07-24 株式会社ジャパンディスプレイウェスト Liquid crystal display
JP5706147B2 (en) * 2010-12-13 2015-04-22 京セラディスプレイ株式会社 Liquid crystal display
CN104774622B (en) * 2014-01-15 2018-01-26 江苏和成显示科技股份有限公司 Negative liquid crystal composition and the display device comprising the liquid-crystal composition
JP6121594B2 (en) * 2016-05-02 2017-04-26 スタンレー電気株式会社 Liquid crystal display

Also Published As

Publication number Publication date
WO2023085289A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
JP5767687B2 (en) Liquid crystal display device and manufacturing method thereof
KR100223601B1 (en) Lcd device
KR101353809B1 (en) Liquid crystal display device with controllable viewing angle and driving method thereof
JP5313216B2 (en) Liquid crystal display
JP2572537B2 (en) Liquid crystal display device and manufacturing method thereof
JP5096857B2 (en) Liquid crystal display element
KR100807922B1 (en) Liquid crystal display
JPH09197420A (en) Liquid crystal element
KR20000014978A (en) Lcd with an in-plane switching mode
US9581869B2 (en) In-plane switching mode liquid crystal display device and fabrication method thereof
KR100288766B1 (en) Wide viewing angle liquid crystal display device
WO2023085289A1 (en) Liquid crystal display device
EP2495610A1 (en) Liquid crystal display element
JP2014002327A (en) Liquid crystal display device
JP5213482B2 (en) Liquid crystal display element
JP5308944B2 (en) Liquid crystal display device and driving method of liquid crystal display device
JP2005024676A (en) Liquid crystal display
WO2011129247A1 (en) Liquid crystal display device
KR100306806B1 (en) Liquid crystal display
JP2012108252A (en) Liquid crystal display element and manufacturing method for the same
JP5570710B2 (en) Liquid crystal display element and manufacturing method thereof
KR100293807B1 (en) Liquid crystal display
JP5304786B2 (en) Liquid crystal display
KR100228432B1 (en) Method for improving voltage conservative force of lcd device
KR100448051B1 (en) Wide viewing angle liquid crystal display