JP2023068734A - Floor cross-member - Google Patents

Floor cross-member Download PDF

Info

Publication number
JP2023068734A
JP2023068734A JP2021180005A JP2021180005A JP2023068734A JP 2023068734 A JP2023068734 A JP 2023068734A JP 2021180005 A JP2021180005 A JP 2021180005A JP 2021180005 A JP2021180005 A JP 2021180005A JP 2023068734 A JP2023068734 A JP 2023068734A
Authority
JP
Japan
Prior art keywords
floor
resin
hat
cross
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021180005A
Other languages
Japanese (ja)
Other versions
JP7264203B1 (en
Inventor
和彦 樋貝
Kazuhiko Higai
毅 塩崎
Takeshi Shiozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021180005A priority Critical patent/JP7264203B1/en
Priority to PCT/JP2022/029938 priority patent/WO2023079804A1/en
Application granted granted Critical
Publication of JP7264203B1 publication Critical patent/JP7264203B1/en
Publication of JP2023068734A publication Critical patent/JP2023068734A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units

Abstract

To provide a floor cross-member which enables weight reduction of vehicle body and has excellent vibration-damping properties.SOLUTION: A floor cross-member 1 according to the present invention, in a vehicle body structure including: a floor 3; a pair of side sills 5 provided on both ends of the floor 3 in a width direction of a vehicle body and extends in a longitudinal direction of the vehicle body; a floor tunnel 7 located in a central part of the floor 3 in the width direction of the vehicle body and extends in the longitudinal direction of the vehicle body; and a floor frame 9 which extends in the longitudinal direction of the vehicle body between the floor tunnel 7 and the side sill 5 and is fixed to a lower surface of the floor 3, is arranged such that one end is fixed to the side sill 5 and the other end is fixed to the floor tunnel 7 on an upper surface of the floor 3 and the floor cross-member intersects the floor frame 9 in a plan view and comprises: a hat cross-section member 11 which has a top plate 11a, vertical walls 11b and a flanges 11c; a resin 13 affixed or applied to the inner surface and/or outer surface of the hat cross-section member 11; and a reinforcing plate 15 laid out to cover the resin 13 and is bonded to the resin 13.SELECTED DRAWING: Figure 1

Description

本発明は、自動車の下部を構成する骨格部品であるフロアクロスメンバに関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floor cross member, which is a frame component forming the lower portion of an automobile.

自動車の骨格部品の一つであるフロアクロスメンバ19は、図9に示すように、自動車床を構成するフロア3(フロアパネル)上において車体幅方向に延在することで車体の剛性や強度を向上させる機能を有するものである。また、フロア3下にバッテリーケースが搭載される電気自動車においては、側面衝突時に生じるサイドシル5側からの入力荷重がバッテリーケースに入力することを防ぐ機能も有する。 As shown in FIG. 9, the floor cross member 19, which is one of the frame parts of the automobile, extends in the width direction of the vehicle body on the floor 3 (floor panel) that constitutes the floor of the automobile, thereby increasing the rigidity and strength of the vehicle body. It has the function of improving In addition, in an electric vehicle in which a battery case is mounted under the floor 3, it also has a function of preventing the input load from the side sill 5 side, which is generated in the event of a side collision, from being input to the battery case.

したがって、フロアクロスメンバ19は高レベルな強度が求められる部品である。そこでフロアクロスメンバ19の剛性を向上させるため、厚肉化やHP1.5GPを超える超ハイテン化が進んでいるが、これに伴う重量アップや製造コストが課題となっている。そこで下記のように車両構造変更に関わる多くの技術が存在している。 Therefore, the floor cross member 19 is a component that requires a high level of strength. Therefore, in order to improve the rigidity of the floor cross member 19, thickening and ultra-high tensile strength exceeding HP1.5GP are progressing, but the weight increase and manufacturing cost associated with this are problems. Therefore, there are many technologies related to vehicle structure modification as described below.

例えば特許文献1では、「車両のフロアパネルと、前記フロアパネルの下方に車幅方向に互いに離間して配置され車両前後方向に延びる一対のサイドメンバと、前記フロアパネルの上方に前記車幅方向に延びて配置されるフロアクロスメンバと、を備えた車体のフロア構造であって、前記一対のサイドメンバの間において、前記フロアクロスメンバの下部には前記サイドメンバの外側の下部より上方に位置する凹部を有し、前記フロアパネルは前記凹部に沿って形成され、前記一対のサイドメンバに着脱可能に連結される強度部材を備えたことを特徴とする車体のフロア構造」が開示されている。
上記技術は、フロアクロスメンバの下部に、上側に凹む凹部が設けられていることにより、フロアパネル下のスペースを増加させて電池ユニットの搭載スペースを確保する効果がある。また、エンジン車においては、上記強度部材(ブレース)によって一対のサイドメンバを連結することで、側面衝突に対する強度を確保できる。
For example, in Patent Document 1, "a floor panel of a vehicle, a pair of side members arranged spaced apart from each other in the vehicle width direction below the floor panel and extending in the vehicle front-rear direction, and above the floor panel in the vehicle width direction. and a floor cross member arranged to extend from the side member, wherein the lower part of the floor cross member is positioned above the outer lower part of the side member between the pair of side members. A floor structure of a vehicle body, characterized in that the floor panel has a recess formed along the recess and is provided with a reinforcing member that is detachably connected to the pair of side members. .
The above technique has the effect of increasing the space under the floor panel and securing the mounting space for the battery unit by providing the concave portion recessed upward in the lower portion of the floor cross member. Further, in an engine vehicle, strength against side collision can be ensured by connecting a pair of side members with the reinforcing member (brace).

また、特許文献2では、「車両のフロアと、前記フロア下に搭載されたバッテリパックと、前記バッテリパック上方を横切るように車両左右方向に延びて前記フロアに設けられたクロスメンバと、備え、前記クロスメンバは、右半分および左半分のそれぞれに中央に向けて高くなる傾斜部を有する、車両の下部車体構造」が開示されている。
上記技術は、側面衝突時、傾斜部が衝突荷重を中央部に伝えて中央部を押し上げ、クロスメンバが上方に向けて屈曲するので、バッテリパックがある下方への変形が抑止される。これにより、バッテリパックへの衝突荷重の入力が抑制される。
Further, in Patent Document 2, "a floor of a vehicle, a battery pack mounted under the floor, and a cross member provided on the floor extending in the left-right direction of the vehicle so as to traverse above the battery pack, A vehicle lower body structure is disclosed, in which the cross member has inclined portions on the right and left halves, respectively, which rise toward the center.
In the above technology, in the event of a side collision, the inclined portion transmits the collision load to the central portion and pushes up the central portion, bending the cross member upward, thereby suppressing downward deformation of the battery pack. This suppresses the input of the collision load to the battery pack.

特許文献3では、「車両のフロアパネルの車両幅方向の両外側にそれぞれ配設され、車両前後方向に沿って延在された一対のロッカと、車両幅方向を長手方向として配置されると共に長手方向の両端部が前記一対のロッカにそれぞれ固定され、車両前後方向に離間して配置された複数のクロスメンバと、を備え、車両前後方向に隣り合うクロスメンバの離間距離は、前記車両の側面衝突時に入力された入力荷重に対する前記ロッカの曲げ反力が前記入力荷重以上となるように設定されている車両側部構造」が開示されている。
上記技術は、車両の側面衝突時において必要なサイドシル(ロッカ)の曲げ反力Nを確保することができ、例えばポール衝突の際に、ポールの車両幅方向の内側への侵入を抑制することができる。
In Patent Document 3, "a pair of rockers arranged on both sides of a vehicle floor panel in the vehicle width direction and extending in the vehicle front-rear direction, and a pair of rockers arranged with the vehicle width direction as the longitudinal direction and a plurality of cross members each fixed to the pair of rockers at both ends in the direction of the vehicle and spaced apart in the longitudinal direction of the vehicle; A vehicle side structure is disclosed in which the bending reaction force of the rocker with respect to the input load applied at the time of collision is set to be greater than or equal to the input load.
The above technology can ensure the necessary bending reaction force N of the side sill (rocker) in the event of a side collision of the vehicle. can.

特開2018-161934号公報JP 2018-161934 A 特開2019-151294号公報JP 2019-151294 A 特開2019-31219号公報JP 2019-31219 A

上述した特許文献1の技術は、側面衝突に対して一定の効果をもたらす一方で、部品点数の増加によって重量やコストが増加し、車体製造が複雑化する。
また、特許文献2の技術は、バッテリーケースの変形が抑えられるが、フロアクロスメンバが上方(車両内部方向)に向かって凸となるように屈曲しているため、キャビン容積が低下して設計自由度が著しく低下する。
また、特許文献3の技術は、車両の側面衝突時において必要なサイドシルの曲げ反力Nを確保することができるが、フロアクロスメンバの設置位置が限定される。フロアクロスメンバはシートレールの固定にも使用されるので、フロアクロスメンバの設置位置が限定されると車両設計の自由度が大幅に低下する。
Although the technique of Patent Document 1 described above has a certain effect against side collisions, the increase in the number of parts increases the weight and cost, and complicates the manufacturing of the vehicle body.
In addition, although the technique of Patent Document 2 suppresses deformation of the battery case, the floor cross member is bent upward (toward the inside of the vehicle), so the cabin volume is reduced and the design is free. degree drops significantly.
Further, the technique disclosed in Patent Document 3 can secure the necessary bending reaction force N of the side sill at the time of a side collision of the vehicle, but the installation position of the floor cross member is limited. Since the floor cross member is also used to fix the seat rails, if the installation position of the floor cross member is limited, the degree of freedom in vehicle design is greatly reduced.

上述のように、フロアクロスメンバの剛性及び強度向上や、バッテリーを搭載するバッテリー式電気自動車(BEV)、プラグインハイブリッド車(PHEV)やハイブリッド車(HV)等の自動車の側面衝突時に発生するサイドシルからの大荷重がバッテリーケースに入力することを防ぐ機能向上の技術開示は多くあるが、大幅な重量アップや製造コストアップを伴ったり、車両設計の自由度を低下させたりするという問題があった。 As mentioned above, the rigidity and strength of floor cross members have been improved, and the side sills that occur during side collisions in vehicles such as battery electric vehicles (BEV), plug-in hybrid vehicles (PHEV), and hybrid vehicles (HV). Although there are many technical disclosures for improving the function to prevent large loads from entering the battery case, there were problems such as a significant increase in weight and manufacturing costs, and a reduction in the degree of freedom in vehicle design. .

本発明は、かかる課題を解決するためになされたものであり、側面衝突時にバッテリーを搭載した自動車のバッテリーケースの変形を抑制するとともに、軽量化が可能で、制振性にも優れ、キャビン容積を低下させたり車両設計の自由度を低下させたりすることのないフロアクロスメンバを提供することを目的とする。 The present invention has been made to solve such problems, and suppresses deformation of the battery case of an automobile equipped with a battery in the event of a side collision. To provide a floor cross member which does not lower the vehicle design flexibility.

(1)本発明に係るフロアクロスメンバは、車体の床部分の少なくとも一部を構成するフロアと、該フロアの車体幅方向の両端部に設けられて車体前後方向に延在する一対のサイドシルと、前記フロアの車体幅方向中央部に位置して車体前後方向に延在するフロアトンネルと、該フロアトンネルと前記サイドシルとの間で車体前後方向に延在して前記フロアの下面に固定されるフロアフレームとを備えて構成された車体構造において、前記フロアの上面において、一端が前記サイドシルに、他端が前記フロアトンネルにそれぞれ固定され、平面視で前記フロアフレームと交差するように配置されるものであって、天板部、縦壁部及びフランジ部を有するハット断面部材と、該ハット断面部材の内面及び/又は外面に貼付又は塗布された樹脂と、該樹脂を覆うように配設されて該樹脂と接着された補強板とを備えたことを特徴とするものである。 (1) A floor cross member according to the present invention comprises a floor that constitutes at least a part of a floor portion of a vehicle body, and a pair of side sills that are provided at both ends of the floor in the width direction of the vehicle body and extend in the longitudinal direction of the vehicle body. a floor tunnel positioned at the center of the floor in the vehicle width direction and extending in the vehicle longitudinal direction; and a floor tunnel extending in the vehicle longitudinal direction between the floor tunnel and the side sills and fixed to the lower surface of the floor. and a floor frame, one end of which is fixed to the side sill and the other end of which is fixed to the floor tunnel on the upper surface of the floor, and are arranged to intersect the floor frame in a plan view. A hat cross-sectional member having a top plate portion, a vertical wall portion, and a flange portion, a resin attached or applied to the inner surface and/or the outer surface of the hat cross-sectional member, and a resin disposed so as to cover the resin. and a reinforcing plate adhered to the resin.

(2)また、上記(1)に記載のものにおいて、前記樹脂は、前記フロアの上面に配置した状態において、前記ハット断面部材における前記フロアフレームよりも車体幅方向外側に位置する範囲にのみ設けられていることを特徴とするものである。 (2) In addition, in the above-mentioned (1), the resin is provided only in a range of the hat cross-section member located outside the floor frame in the vehicle width direction in the state of being arranged on the upper surface of the floor. It is characterized by being

(3)また、上記(1)又は(2)に記載のものにおいて、前記樹脂は、前記ハット断面部材の前記縦壁部のみに設けられていることを特徴とするものである。 (3) Further, in the above (1) or (2), the resin is provided only on the vertical wall portion of the hat cross-section member.

(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、前記樹脂の厚みが0.1~5mm、前記補強板の厚みが0.15~1mmであることを特徴とするものである。 (4) In addition, in any one of (1) to (3) above, the thickness of the resin is 0.1 to 5 mm, and the thickness of the reinforcing plate is 0.15 to 1 mm. .

本発明に係るフロアクロスメンバは、天板部、縦壁部及びフランジ部を有するハット断面部材と、該ハット断面部材の内面及び/又は外面に貼付又は塗布された樹脂と、該樹脂を覆うように配設されて該樹脂と接着された補強板とを備えたことにより、剛性が向上するとともに、軽量化が可能であり、制振性にも優れる。
また、フロアクロスメンバの設置位置を限定するものではないので、車両設計の自由度を低下させることがない。さらに、従来のフロアクロスメンバの形状を大きく変える必要もないのでキャビン容積が小さくなることもない。
A floor cross member according to the present invention comprises a hat cross-sectional member having a top plate portion, a vertical wall portion and a flange portion, a resin attached or applied to the inner surface and/or the outer surface of the hat cross-sectional member, and a resin covering the resin. By providing the reinforcing plate which is disposed in and adhered to the resin, the rigidity is improved, the weight can be reduced, and the damping property is also excellent.
In addition, since the installation position of the floor cross member is not limited, the flexibility of vehicle design is not reduced. Furthermore, since there is no need to change the shape of the conventional floor cross member significantly, the cabin volume is not reduced.

本発明の一実施の形態に係るフロアクロスメンバを説明する図である。It is a figure explaining the floor cross member concerning one embodiment of the present invention. 図1のフロアクロスメンバの比較例として、従来のフロアクロスメンバの断面を示す図である。FIG. 2 is a cross-sectional view of a conventional floor cross member as a comparative example of the floor cross member of FIG. 1; 図1のフロアクロスメンバの縦壁部の面剛性を評価するためのモデル(発明モデル)と、図2の従来のフロアクロスメンバの縦壁部の面剛性を評価するためのモデル(従来モデル)を説明する図である。A model (invention model) for evaluating the surface rigidity of the vertical wall portion of the floor cross member shown in Fig. 1 and a model (conventional model) for evaluating the surface rigidity of the vertical wall portion of the conventional floor cross member shown in Fig. 2 It is a figure explaining. 図3の従来モデルと発明モデルの面剛性を評価した結果を示すグラフである。FIG. 4 is a graph showing results of evaluating the surface stiffness of the conventional model and the invention model shown in FIG. 3. FIG. 側面衝突時におけるフロアクロスメンバの変形状態を説明する図である。FIG. 4 is a diagram for explaining the deformation state of the floor cross member at the time of side collision; 図1のフロアクロスメンバの他の態様を説明する図である。FIG. 4 is a diagram illustrating another aspect of the floor cross member of FIG. 1; 実施例に係る試験体の一例を示す図である。It is a figure which shows an example of the test body which concerns on an Example. 実施例に係る発明例4及び比較例1の衝突試験時の荷重-ストローク曲線を示す図である。FIG. 10 is a diagram showing load-stroke curves during a collision test of Invention Example 4 and Comparative Example 1 according to the working example. 車体の下部構造を示す斜視図であり、フロアクロスメンバの設置状態を説明する図である。FIG. 4 is a perspective view showing the lower structure of the vehicle body, and is a diagram for explaining the installation state of the floor cross member.

本発明の一実施の形態に係るフロアクロスメンバ1は、図9に示したような車体の下部構造において、フロア3上に車体幅方向に延在するように設けられ、車体の剛性や強度を向上させるものである。
以下、図1を用いて具体的に説明する。なお、図1の斜視図は、図9における一対のサイドシル5の一方からフロアトンネル7までの間の部分を拡大して示したものであり、図9で図示を省略したフロアフレーム9も図中に示されている。図1において図9と対応する部分には同一の符号を付す。
A floor cross member 1 according to an embodiment of the present invention is provided on a floor 3 to extend in the width direction of the vehicle body in the lower structure of the vehicle body as shown in FIG. It improves.
A specific description will be given below with reference to FIG. The perspective view of FIG. 1 is an enlarged view of the portion between one of the pair of side sills 5 and the floor tunnel 7 in FIG. 9, and the floor frame 9, which is omitted in FIG. shown in In FIG. 1, parts corresponding to those in FIG. 9 are given the same reference numerals.

本実施の形態のフロアクロスメンバ1は、図1に示すように、車体の床部分の少なくとも一部を構成するフロア3と、フロア3の車体幅方向の両端部に設けられて車体前後方向に延在する一対のサイドシル5と、フロア3の車体幅方向中央部に位置して車体前後方向に延在するフロアトンネル7と、フロアトンネル7とサイドシル5との間で車体前後方向に延在してフロア3の下面に固定されるフロアフレーム9とを備えて構成された車体構造において、フロア3の上面において、一端がサイドシル5に、他端がフロアトンネル7にそれぞれ固定され、平面視でフロアフレーム9と交差するように配置されるものである。
なお、これらの部材は、図1の黒点で示す部分でスポット溶接されている。
As shown in FIG. 1, the floor cross member 1 of the present embodiment includes a floor 3 that constitutes at least a part of the floor portion of the vehicle body, and a floor 3 that is provided at both ends of the floor 3 in the width direction of the vehicle body and extends in the front-rear direction of the vehicle body. A pair of extending side sills 5, a floor tunnel 7 positioned at the center of the floor 3 in the vehicle width direction and extending in the vehicle longitudinal direction, and a floor tunnel 7 extending in the vehicle longitudinal direction between the floor tunnel 7 and the side sills 5. and a floor frame 9 fixed to the lower surface of the floor 3. On the upper surface of the floor 3, one end is fixed to the side sill 5, and the other end is fixed to the floor tunnel 7. It is arranged so as to cross the frame 9 .
These members are spot-welded at the portions indicated by black dots in FIG.

上述したフロアクロスメンバ1は、図1のA-A断面図に示すように、ハット断面形状の部品であり、金属製のハット断面部材11と、ハット断面部材11の内面に貼付又は塗布された樹脂13と、樹脂13を覆うように配設された補強板15とを備えている。
フロアクロスメンバ1の各構成について詳細に説明する。
The above-described floor cross member 1 is a hat-shaped cross-sectional part, as shown in the AA cross-sectional view of FIG. A resin 13 and a reinforcing plate 15 arranged to cover the resin 13 are provided.
Each configuration of the floor cross member 1 will be described in detail.

<ハット断面部材>
ハット断面部材11は、天板部11a、縦壁部11b及びフランジ部11cを有するハット断面形状の金属製(例えば鋼板製)の部材である。ハット断面部材11のフランジ部11cがフロア3の上面に接合されており、天板部11a及び縦壁部11bに連続する接合しろ11dがサイドシル5(具体的にはサイドシル5を構成し、車体内側に配置されるサイドシルインナ5a)に接合されている。ハット断面部材11の素材としては、強度及び剛性を高めるため、例えば980MPa以上の高強度ハイテン材が用いられる。
<Hat section member>
The hat cross-sectional member 11 is a hat cross-sectional metal (eg, steel plate) member having a top plate portion 11a, a vertical wall portion 11b, and a flange portion 11c. The flange portion 11c of the hat cross-section member 11 is joined to the upper surface of the floor 3, and the joining margin 11d continuous with the top plate portion 11a and the vertical wall portion 11b forms the side sill 5 (specifically, the side sill 5, which is inside the vehicle body). is joined to the side sill inner 5a) arranged in the . As the material of the hat cross-section member 11, a high-strength high-tensile material of, for example, 980 MPa or more is used in order to increase strength and rigidity.

<樹脂>
樹脂13は、ハット断面部材11の内面に所定の接着強度で貼付又は塗布されたものである。樹脂13は、予め成形されたもの(射出成形樹脂部品)をハット断面部材11に貼付してもよいし、成形前の材料をハット断面部材11に塗布して焼付することによって形成してもよい。
<Resin>
The resin 13 is attached or applied to the inner surface of the hat section member 11 with a predetermined adhesive strength. The resin 13 may be a pre-molded material (injection-molded resin part) that is attached to the hat cross-sectional member 11, or may be formed by applying a pre-molded material to the hat cross-sectional member 11 and baking the material. .

樹脂13の厚みの下限は、樹脂13を塗布して形成する場合には均一に塗布可能な0.1mm程度、フィルム状の樹脂13を貼付する場合には20μm程度となる。
また、樹脂13の厚みの上限は、コストの観点から5mm程度とするのが好ましい。
The lower limit of the thickness of the resin 13 is about 0.1 mm, which enables uniform coating when the resin 13 is applied, and about 20 μm when the film-like resin 13 is attached.
Also, the upper limit of the thickness of the resin 13 is preferably about 5 mm from the viewpoint of cost.

<補強板>
補強板15は、樹脂13を覆うように設けられるものであり、樹脂13と補強板15は所定の強度で接着されている。また、補強板15の端部は、ハット断面部材11の縦壁部11bにスポット溶接によって固定されている。
補強板15は、ハット断面部材11の縦壁部11bより樹脂13が剥離するのを防止し、後述するように樹脂と協働して縦壁部11bの面剛性を向上して、フロアクロスメンバ1の剛性を向上するものである。
<Reinforcing plate>
The reinforcing plate 15 is provided so as to cover the resin 13, and the resin 13 and the reinforcing plate 15 are adhered with a predetermined strength. Further, the end portion of the reinforcing plate 15 is fixed to the vertical wall portion 11b of the hat section member 11 by spot welding.
The reinforcing plate 15 prevents the resin 13 from peeling off the vertical wall portion 11b of the hat cross-section member 11, and cooperates with the resin to improve the surface rigidity of the vertical wall portion 11b as described later, thereby providing a floor cross member. 1 to improve the rigidity.

本実施の形態における縦壁部11bの面剛性向上の効果は、後述するように補強板15の素材の引張強度に大きく依存しないため、ハット断面部材11の素材よりも引張強度は低くてもよく、製造コスト低減の観点から、引張強度270MPa級~590MPa級でよい。また、補強板15は、樹脂13がハット断面部材11の縦壁部11bから剥離するのを防止すればよいので、補強板15の板厚はハット断面部材11の素材の板厚よりも薄肉でよく、軽量化及び製造コスト低減の観点から、板厚0.15~1mmの鋼板がよい。
引張強度270MPa級~590MPa級としたのは、270MPa級が通常使用される鋼板において最も引張強度が低く、590MPa級を越えるとコストが大きく上昇するためである。この範囲の中では、特にJIS規格SPCC等の普通鋼と呼ばれる安価な一般的な冷間圧延鋼板のグレードである270MPa級(いわゆる、軟鋼)がコスト面から好ましい。また、板厚0.15~1mmとしたのは、0.15mm未満では製造コストが上昇し、1mmを超えると軽量化効果が低下するためである。
Since the effect of improving the surface rigidity of the vertical wall portion 11b in the present embodiment does not greatly depend on the tensile strength of the material of the reinforcing plate 15 as described later, the tensile strength may be lower than that of the material of the hat section member 11. , from the viewpoint of manufacturing cost reduction, a tensile strength of 270 MPa class to 590 MPa class is sufficient. Further, since the reinforcing plate 15 only needs to prevent the resin 13 from peeling off the vertical wall portion 11b of the hat cross-section member 11, the thickness of the reinforcing plate 15 should be thinner than the thickness of the material of the hat cross-section member 11. A steel plate with a thickness of 0.15 to 1 mm is often preferable from the viewpoint of weight reduction and manufacturing cost reduction.
The tensile strength of the 270 MPa class to 590 MPa class is selected because the 270 MPa class has the lowest tensile strength among the steel sheets normally used, and if the 590 MPa class is exceeded, the cost increases significantly. Within this range, 270 MPa grade (so-called mild steel), which is a grade of inexpensive general cold-rolled steel plate called ordinary steel such as JIS standard SPCC, is particularly preferable from the viewpoint of cost. The reason why the plate thickness is set to 0.15 to 1 mm is that if the thickness is less than 0.15 mm, the manufacturing cost rises, and if it exceeds 1 mm, the effect of weight reduction decreases.

上述した本実施の形態のフロアクロスメンバ1が、従来の一般的なフロアクロスメンバ19と比べて、剛性を向上させ、かつ軽量化も可能である理由について以下に説明する。 The reason why the above-described floor cross member 1 of the present embodiment can improve the rigidity and reduce the weight as compared with the conventional general floor cross member 19 will be explained below.

従来の一般的なフロアクロスメンバ19は、図2に示すように、金属製のハット断面部材11のみで構成されていたが、この場合、強度及び剛性を高めるには、ハット断面部材11の板厚を厚くする必要があり、重量が増加していた。 As shown in FIG. 2, a conventional general floor cross member 19 is composed only of a metal hat cross-section member 11. In this case, the plate of the hat cross-section member 11 is required to increase the strength and rigidity. It had to be thicker, which added weight.

この点、ハット断面部材11に樹脂13と補強板15を設けた本実施の形態のフロアクロスメンバ1は、樹脂13と補強板15を設けた部分の見かけの板厚が厚くなっているが、金属よりも低密度の樹脂13を用いているので、従来のようにハット断面部材11自体の板厚を厚くする場合と比べて重量が増加しにくい。 In this regard, in the floor cross member 1 of the present embodiment in which the resin 13 and the reinforcing plate 15 are provided on the hat cross-section member 11, the apparent thickness of the portion where the resin 13 and the reinforcing plate 15 are provided is increased. Since the resin 13 having a density lower than that of metal is used, the weight is less likely to increase as compared with the case where the plate thickness of the hat cross-section member 11 itself is increased as in the related art.

そして、金属製のハット断面部材11と補強板15で樹脂13を挟んでサンドイッチ構造としたことにより、縦壁部11bの面剛性を向上させることができる。ここで、縦壁部11bの面剛性とは、縦壁部11bの端部より縦壁部11bの面内方向に荷重が入力し、座屈変形が開始する前の剛性(曲げ剛性)である。この点について、図3、図4に基づいて説明する。 By forming a sandwich structure in which the resin 13 is sandwiched between the metal hat cross-section member 11 and the reinforcing plate 15, the surface rigidity of the vertical wall portion 11b can be improved. Here, the surface rigidity of the vertical wall portion 11b is the rigidity (bending rigidity) before buckling deformation starts when a load is input in the in-plane direction of the vertical wall portion 11b from the end portion of the vertical wall portion 11b. . This point will be described with reference to FIGS. 3 and 4. FIG.

図3に、従来のフロアクロスメンバ19(図2参照)の面剛性を評価するためのモデルとして、鋼板(ハット断面部材11)のみから構成された従来モデルと、本実施の形態のフロアクロスメンバ1(図1(b)参照)の面剛性を評価するためのモデルとして、サンドイッチ構造とした発明モデルを示す。図3において図1、図2と対応する部分には同一の符号を付す。
従来モデルのような鋼板単体の曲げ剛性(面剛性)は一般的に材料のヤング率Eと、断面2次モーメントIとの積EIで与えられる。
これに対し、発明モデルのようにサンドイッチ構造となっている場合の面剛性EIは、下記式(1)を用いて求めることができる。
FIG. 3 shows, as a model for evaluating the surface rigidity of a conventional floor cross member 19 (see FIG. 2), a conventional model composed only of a steel plate (hat section member 11) and a floor cross member of the present embodiment. 1 (see FIG. 1(b)). In FIG. 3, parts corresponding to those in FIGS. 1 and 2 are denoted by the same reference numerals.
The flexural rigidity (surface rigidity) of a single steel plate, such as that of conventional models, is generally given by the product EI of the material's Young's modulus E and the geometrical moment of inertia I.
On the other hand, the surface rigidity EI in the case of a sandwich structure like the invention model can be obtained using the following formula (1).

Figure 2023068734000002
Figure 2023068734000002

上記式(1)において、Lは積層材の幅、iは材料、nは層の数、Eiは材料iのヤング率、hiはi=1の材料から材料iの層までの厚み、λはi=1の材料の表面から積層材の中立面までの距離である。 In the above formula (1), L is the width of the laminated material, i is the material, n is the number of layers, E i is the Young's modulus of material i, hi is the thickness from the material of i = 1 to the layer of material i, λ is the distance from the surface of the i=1 material to the midplane of the laminate.

図3の従来モデルと発明モデルを略同一の重量とした場合の面剛性EIの違いを比較したのでその結果を図4に示す。
図4は、従来モデルのハット断面部材11の厚みを1.2t(総厚み1.2t)として算出した面剛性EIと、発明モデルのハット断面部材11の厚みを0.6t、樹脂13の厚みを1.5t、補強板15の厚みを0.3t(総厚み2.4t)とし、式(1)を用いて算出した面剛性EIを比較したものである。図4における両モデルの重量比は、従来モデルの重量を基準(1.00)としたとき、発明モデルは0.97であった。
図4に示されるように、発明モデルの面剛性(1.65×10-7GPa・m4)は従来モデル(0.31×10-7GPa・m4)の5.3倍に向上した。このように、発明モデルのハット断面部材11(金属製)の板厚を従来モデルよりも薄くして、金属よりも低密度でヤング率の低い樹脂13に置き換えて、補強板15とのサンドイッチ構造の総厚みを従来モデルの板厚よりも厚くすることにより、発明モデルは、従来モデルと同程度の重量でも面剛性を著しく上昇させることができる。
FIG. 4 shows the results of comparing the difference in surface stiffness EI when the weight of the conventional model and the invention model shown in FIG. 3 is substantially the same.
FIG. 4 shows the surface stiffness EI calculated assuming that the thickness of the hat cross-section member 11 of the conventional model is 1.2t (total thickness of 1.2t), the thickness of the hat cross-section member 11 of the invention model of 0.6t, and the thickness of the resin 13 of 1.5t. , and the thickness of the reinforcing plate 15 is set to 0.3 t (total thickness of 2.4 t). The weight ratio of the two models in FIG. 4 was 0.97 for the invention model when the weight of the conventional model was taken as the standard (1.00).
As shown in FIG. 4, the surface rigidity of the invention model (1.65×10 −7 GPa·m 4 ) is 5.3 times higher than that of the conventional model (0.31×10 −7 GPa·m 4 ). In this way, the plate thickness of the hat cross-section member 11 (made of metal) of the invention model is made thinner than that of the conventional model, and the resin 13, which has a lower density and a lower Young's modulus than metal, is used to form a sandwich structure with the reinforcing plate 15. By making the total thickness of the plate thicker than that of the conventional model, the invention model can significantly increase the surface rigidity even if the weight is about the same as that of the conventional model.

樹脂13及び補強板15は、フロアクロスメンバ1の全長に亘って設けてもよいが、軽量化の観点から、側面衝突時に変形が生じやすい場所にのみ設けるようにしてもよい。そこで、側面衝突時における従来のフロアクロスメンバ1の変形状態を図5に基づいて説明する。 The resin 13 and the reinforcing plate 15 may be provided over the entire length of the floor cross member 1, but from the viewpoint of weight reduction, they may be provided only in places where deformation is likely to occur in a side collision. Therefore, the deformation state of the conventional floor cross member 1 at the time of side collision will be described with reference to FIG.

図5は、車体の側面がポール17に衝突した場合のフロアクロスメンバ1の変形の様子を模式的に示した平面図である。図5(a)は衝突前の状態、図5(b)は図中の黒矢印方向に車体が移動してポール17に衝突した状態を示している。
フロアクロスメンバ1は、長手方向におけるフロアトンネル7寄りの範囲に図示しないFrフレームエクステンションやその他フレームが接合されていることが多いので、相対的にサイドシル5側の変形耐力が低くなり、変形が生じやすい。
5 is a plan view schematically showing how the floor cross member 1 deforms when the side of the vehicle body collides with the pole 17. FIG. FIG. 5(a) shows the state before the collision, and FIG. 5(b) shows the state where the vehicle body moves in the direction of the black arrow and collides with the pole 17. FIG.
Since the floor cross member 1 is often joined with Fr frame extensions (not shown) and other frames in the longitudinal direction near the floor tunnel 7, the deformation resistance on the side sill 5 side is relatively low, and deformation occurs. Cheap.

特に、フロア3の下面に固定されたフロアフレーム9よりも車体幅方向外側に位置する範囲に樹脂13及び補強板15を設けるようにするとよい。フロアフレーム9が固定された部分はフロア3が変形しにくいので、平面視でフロアフレーム9と交差するフロアクロスメンバ1においても、当該部分より車体幅方向外側の範囲が特に変形が生じやすい。
したがって、フロアフレーム9よりも車体幅方向外側に位置する範囲にのみ樹脂13及び補強板15を設けるようにすれば、特に変形が生じやすい範囲を補強しつつ、効率的に軽量化できるのでより好ましい。
また、平面視でフロアクロスメンバ1とフロアフレーム9と交差する位置は、フロアクロスメンバ1におけるサイドシル5側の端部から全長のおよそ50%以内の範囲であるので、この範囲に樹脂13及び補強板15を設けるようにすれば、変形が生じやすいサイドシル5側を補強すると共に軽量化を図れるので好ましい。
In particular, it is preferable to provide the resin 13 and the reinforcing plate 15 in a range located outside the floor frame 9 fixed to the lower surface of the floor 3 in the vehicle width direction. Since the portion where the floor frame 9 is fixed is less likely to deform the floor 3, even in the floor cross member 1 that intersects the floor frame 9 in a plan view, deformation is particularly likely to occur in the area outside the portion in the vehicle width direction.
Therefore, if the resin 13 and the reinforcing plate 15 are provided only in the area located outside the floor frame 9 in the width direction of the vehicle body, it is possible to reinforce the area where deformation is particularly likely to occur and to efficiently reduce the weight, which is more preferable. .
Further, since the position where the floor cross member 1 and the floor frame 9 intersect in a plan view is within about 50% of the total length from the end of the floor cross member 1 on the side sill 5 side, the resin 13 and the reinforcement are placed in this range. If the plate 15 is provided, it is possible to reinforce the side sill 5 side which is likely to be deformed and to reduce the weight, which is preferable.

また、図5(b)に示すように、衝突部分の両側のフロアクロスメンバ1の変形は、衝突部分に向かって屈曲する折れモードとなることが多い。
図5(b)のような折れモードの変形時には、天板部11aが面内変形となるのに対し、縦壁部11bは面外変形となるので、縦壁部11bは天板部11aより変形しやすい。
したがって、図6に示すように、ハット断面部材11の縦壁部11bのみに樹脂13及び補強板15を設けるようにすれば、折れモードの変形に効果的であると共に軽量化が期待できる。
Further, as shown in FIG. 5(b), the deformation of the floor cross members 1 on both sides of the collision portion is often in a bending mode in which they are bent toward the collision portion.
At the time of deformation in the folding mode as shown in FIG. 5B, the top plate portion 11a undergoes in-plane deformation, whereas the vertical wall portion 11b undergoes out-of-plane deformation. Easy to deform.
Therefore, as shown in FIG. 6, if the resin 13 and the reinforcing plate 15 are provided only on the vertical wall portion 11b of the hat section member 11, it is effective for deformation in the folding mode and can be expected to reduce weight.

なお、ハット断面部材11と樹脂13と補強板15とが一体となって荷重を受けることで面剛性が効果的に向上するので、ハット断面部材11と樹脂13、及び、樹脂13と補強板15は所定の強度で接着されている必要がある。この点について具体例をあげて説明する。 In addition, since the hat section member 11, the resin 13, and the reinforcing plate 15 are united to receive the load, the surface rigidity is effectively improved. must be adhered with a certain strength. This point will be described with a specific example.

例えば、ハット断面部材11の板厚を1.0mm、樹脂13の厚みを1.0mm、補強板15(鉄製)の板厚を0.6mmとした場合、ハット断面部材11と樹脂13、樹脂13と補強板15とがそれぞれ接着されていれば、面剛性EIは271.5GPa・mm4となる(鉄のヤング率を206GPa、樹脂13のヤング率を2GPaとした)。ここで、樹脂13と補強板15が接着されていない場合には、接着されているハット断面部材11と樹脂13の面剛性EIは19.3GPa・mm4、補強板15単体の面剛性EIは3.7GPa・mm4であるので、合計しても23GPa・mm4となり、全体としての面剛性が著しく低下する。
したがって、ハット断面部材11と樹脂13と補強板15が一体で荷重を受けられるよう、ハット断面部材11と樹脂13が十分な強度で接着され、かつ、樹脂13と補強板15が十分な強度で接着されていることが重要である。
For example, when the plate thickness of the hat section member 11 is 1.0 mm, the thickness of the resin 13 is 1.0 mm, and the plate thickness of the reinforcing plate 15 (made of iron) is 0.6 mm, the hat section member 11 and the resin 13, and the resin 13 and the reinforcing plate 15 are adhered to each other, the surface rigidity EI is 271.5 GPa·mm 4 (Young's modulus of iron is 206 GPa, and Young's modulus of resin 13 is 2 GPa). Here, when the resin 13 and the reinforcing plate 15 are not adhered, the surface rigidity EI of the bonded hat section member 11 and the resin 13 is 19.3 GPa·mm 4 , and the surface rigidity EI of the reinforcing plate 15 alone is 3.7. Since it is GPa·mm 4 , the total is 23 GPa·mm 4 , and the surface rigidity as a whole is remarkably lowered.
Therefore, the hat cross-section member 11 and the resin 13 are bonded with sufficient strength so that the hat cross-section member 11, the resin 13 and the reinforcing plate 15 can receive the load together, and the resin 13 and the reinforcing plate 15 are bonded with sufficient strength. It is important that they are glued together.

接着強度としては、例えば5MPa以上が好ましい。接着強度が5MPa以上あれば、図5のような折れモードの変形において、90°程度までの曲げ変形であれば、鋼板から接着剤が剥離しない。
なお、フロアクロスメンバ1の端部に関しては、衝突の初期に軸圧壊して蛇腹状に座屈変形する場合があり(図5(b)参照)、曲げ変形よりも変形量が大きくなる。変形の初期に樹脂13が剥離すると、次の(蛇腹)変形時の耐力が低下するため、軸圧壊のように大きな変形が想定される部位は接着強度を10MPa以上とするのがより好ましい。
また、図5のように2つのフロアクロスメンバ1の間にポール17が衝突するような場合は、フロアクロスメンバ1の変形が折れモードとなるが、1つのフロアクロスメンバ1の軸方向にポール17が衝突する場合には、フロアクロスメンバ1の変形量は図5(b)の場合よりもさらに大きくなる。そのような場合にも接着強度を10MPa以上としておけば、樹脂13の剥離を防止できる。
The adhesive strength is preferably 5 MPa or more, for example. If the adhesive strength is 5 MPa or more, the adhesive will not separate from the steel plate if the bending deformation is up to about 90° in the bending mode deformation as shown in FIG.
The end of the floor cross member 1 may be axially crushed at the initial stage of the collision and undergo bellows-like buckling deformation (see FIG. 5(b)), and the amount of deformation is greater than the bending deformation. If the resin 13 peels off at the initial stage of deformation, the yield strength at the time of subsequent (accordion) deformation is reduced. Therefore, it is more preferable to set the adhesive strength to 10 MPa or more for portions where large deformation such as axial crushing is expected.
Also, when the pole 17 collides between two floor cross members 1 as shown in FIG. 17 collides, the amount of deformation of the floor cross member 1 becomes even greater than in the case of FIG. 5(b). Even in such a case, peeling of the resin 13 can be prevented by setting the adhesive strength to 10 MPa or more.

<樹脂厚の決定方法>
前述したように、本発明はフロアクロスメンバ1の樹脂13の厚みを限定するものではないが、樹脂13が薄すぎると縦壁部11bの面剛性向上の効果が低くなり、厚すぎると軽量化の効果が低くなる場合がある。よって、両者のバランスを考慮して樹脂厚を決定するのが好ましい。以下に、そのような樹脂厚の決定方法の一例について説明する。
<Method for determining resin thickness>
As described above, the present invention does not limit the thickness of the resin 13 of the floor cross member 1, but if the resin 13 is too thin, the effect of improving the surface rigidity of the vertical wall portion 11b will be reduced, and if it is too thick, the weight will be reduced. may be less effective. Therefore, it is preferable to determine the resin thickness in consideration of the balance between the two. An example of such a resin thickness determination method will be described below.

まず、検討のベースとなるようなハット断面部材11を用意し、重量と、縦壁部11bの面剛性を求める。
ここでは、板厚1.6mmの鋼板製のハット断面部材13を用意し、重量(フロアの重量を含む)と縦壁部11bにおける面剛性を求めた(下記表1の≪ベース≫参照)。
First, a hat cross-section member 11 is prepared as a basis for examination, and the weight and surface rigidity of the vertical wall portion 11b are obtained.
Here, a steel hat section member 13 having a thickness of 1.6 mm was prepared, and the weight (including the weight of the floor) and surface rigidity of the vertical wall portion 11b were determined (see <<base>> in Table 1 below).

次に、本実施の形態に係るフロアクロスメンバ1を構成するハット断面部材11として、上記ベースとなるハット断面部材11の板厚よりも板厚が薄いものを用意する。
ここでは、板厚0.8mm≪No.1≫、1.0mm≪No.2≫、1.2mm≪No.3≫の3種類のハット断面部材11を用意した。補強板15は、板厚0.4mmの鋼板製のものを用いることした(≪No.1≫~≪No.3≫で共通)。
Next, as the hat cross-section member 11 constituting the floor cross member 1 according to the present embodiment, a hat cross-section member 11 having a thickness smaller than that of the hat cross-section member 11 serving as the base is prepared.
Here, three types of hat cross-section members 11 having plate thicknesses of 0.8 mm <<No.1>>, 1.0 mm <<No.2>>, and 1.2 mm <<No.3>> were prepared. The reinforcing plate 15 is made of steel plate having a thickness of 0.4 mm (same for <<No.1>> to <<No.3>>).

上記≪No.1≫~≪No.3≫のハット断面部材11と補強板15を用いて図1のようなフロアクロスメンバ1を構成する場合に、縦壁部11bの面剛性が≪ベース≫の面剛性と同程度になるように調整したときの樹脂厚を求めた(A)。
また、フロアクロスメンバ1の重量が≪ベース≫の重量と同程度になるように調整したときの樹脂厚を求めた(B)。その結果を表1に示す。
なお、表1の重量にはフロア3の重量(0.9kg共通)も含まれている。また、面剛性は縦壁部11bにおけるものとする。
When constructing the floor cross member 1 as shown in FIG. The resin thickness was obtained when the surface rigidity was adjusted to be approximately the same as the surface rigidity of (A).
Also, the resin thickness was obtained when the weight of the floor cross member 1 was adjusted to be approximately the same as the weight of the <<base>> (B). Table 1 shows the results.
The weight in Table 1 includes the weight of floor 3 (0.9 kg common). Also, the surface rigidity is assumed to be that of the vertical wall portion 11b.

Figure 2023068734000003
Figure 2023068734000003

表1に示す≪No.1≫~≪No.3≫のAは、ハット断面部材11の板厚を≪ベース≫よりも薄くして、鋼板よりもヤング率の低い樹脂13を設け、補強板15とのサンドイッチ構造の総厚みを≪ベース≫の板厚よりも厚くして≪ベース≫の面剛性(70GPa・mm4)と同程度の面剛性を確保しつつ、鋼板よりも低密度の樹脂を用いることによる軽量化の効果を最大化したものである。その軽量化率は、≪No.1≫で21%、≪No.2≫で12%、≪No.3≫で4%となっている。 A of <<No.1>> to <<No.3>> shown in Table 1 makes the plate thickness of the hat cross-section member 11 thinner than the <<base>>, provides a resin 13 having a lower Young's modulus than the steel plate, and provides a reinforcing plate. The total thickness of the sandwich structure with 15 is thicker than the plate thickness of the <<base>> to ensure the same level of surface rigidity as the <<base>> surface rigidity (70GPa・mm 4 ), while the resin has a lower density than the steel plate. It maximizes the effect of weight reduction by using The weight reduction rate is 21% for <<No.1>>, 12% for <<No.2>>, and 4% for <<No.3>>.

一方、≪No.1≫~≪No.3≫のBは、≪ベース≫の重量(3.59kg)と同程度の重量となるまで樹脂厚を厚くし、Aよりもサンドイッチ構造の総厚みを厚くして、面剛性向上の効果を最大化したものである。その面剛性向上率は、≪No.1≫で1599%、≪No.2≫で796%、≪No.3≫で171%となっている。 On the other hand, for ≪No.1≫ to ≪No.3≫ B, the resin thickness is thickened until it reaches the same weight as the ≪base≫ (3.59 kg), and the total thickness of the sandwich structure is thicker than A. By doing so, the effect of improving the surface rigidity is maximized. The surface rigidity improvement rate is 1599% for <<No.1>>, 796% for <<No.2>>, and 171% for <<No.3>>.

表1の結果に基づき、≪ベース≫よりも面剛性を低下させずに最大限軽量化できるAの場合の樹脂厚を下限値とし、≪ベース≫よりも重量を増加させずに最大限面剛性を向上できるBの場合の樹脂厚を上限値として、樹脂厚を決定する。したがって、≪No.1≫(ハット断面部材11の板厚hc=0.8mm、補強板15の板厚hp=0.4mm)の場合は、0.45mm~4.0mmの範囲内で樹脂厚を設定すればよい。同様に、≪No.2≫(ハット断面部材11の板厚hc=1.0mm、補強板15の板厚hp=0.4mm)の場合は、0.25mm~2.5mmの範囲内、≪No.3≫(ハット断面部材11の板厚hc=1.2mm、補強板15の板厚hp=0.4mm)の場合は、0.02mm~0.8mmの範囲内で樹脂厚を設定すればよい。
上記のようにすることで、軽量化と面剛性(曲げ剛性)向上のバランスを考慮して樹脂13の厚みを決定することができる。
Based on the results in Table 1, the lower limit is the resin thickness in the case of A, which allows the maximum weight reduction without lowering the surface rigidity than the <<base>>, and the maximum surface rigidity without increasing the weight over the <<base>>. The resin thickness is determined with the upper limit of the resin thickness in the case of B that can improve the . Therefore, in the case of <<No.1>> (thickness hc of hat section member 11 = 0.8mm, thickness of reinforcing plate 15 hp = 0.4mm), the resin thickness should be set within the range of 0.45mm to 4.0mm. good. Similarly, in the case of <<No.2>> (thickness hc of hat section member 11 = 1.0mm, thickness of reinforcing plate 15 hp = 0.4mm), within the range of 0.25mm to 2.5mm, <<No.3>> When the plate thickness hc of the hat section member 11 is 1.2 mm and the plate thickness hp of the reinforcing plate 15 is 0.4 mm, the resin thickness may be set within the range of 0.02 mm to 0.8 mm.
By doing so, the thickness of the resin 13 can be determined in consideration of the balance between weight reduction and improvement in surface rigidity (flexural rigidity).

以上のように、本実施の形態によれば、ハット断面部材11の内面に貼付又は塗布された樹脂13と、樹脂13を覆うように配設されて接着された補強板15とを備えたことにより、剛性が向上すると共にフロアクロスメンバ1の軽量化も可能である。
また、フロアクロスメンバ1の設置位置を限定するものではないので、車両設計の自由度を低下させることもなく、キャビン容積を小さくするものでもない。
なお、本実施の形態は、制振性も向上させることができる。この点については、後述の実施例で具体的に説明する。
As described above, according to the present embodiment, the resin 13 is attached or applied to the inner surface of the hat cross-section member 11, and the reinforcing plate 15 is arranged and adhered so as to cover the resin 13. As a result, the rigidity of the floor cross member 1 can be improved and the weight of the floor cross member 1 can be reduced.
Moreover, since the installation position of the floor cross member 1 is not limited, the degree of freedom in vehicle design is not reduced, and the cabin volume is not reduced.
It should be noted that this embodiment can also improve damping properties. This point will be specifically described in the examples below.

上記の実施の形態ではフロアクロスメンバ1のハット断面部材11の内面に樹脂13及び補強板15が設けられた例を用いて説明したが、本発明はこれに限らず、ハット断面部材11の外面に樹脂13及び補強板15が設けられたものでもよい。また、ハット断面部材11の内面及び外面にそれぞれ樹脂13及び補強板15が設けられたものでもよい。 In the above embodiment, the resin 13 and the reinforcing plate 15 are provided on the inner surface of the hat section member 11 of the floor cross member 1, but the present invention is not limited to this. The resin 13 and the reinforcing plate 15 may be provided on the base. Alternatively, the inner surface and the outer surface of the hat section member 11 may be provided with the resin 13 and the reinforcing plate 15, respectively.

本発明の作用効果を評価する具体的な実験を行ったので、その結果について以下に説明する。
本実施例においては、フロアクロスメンバ1に相当するハット断面形状の部品と、フロア3に相当する平板とからなる筒状の試験体(長さ200mm)を用意し、衝突特性を評価する衝突試験と、振動特性を評価する打撃振動試験を行った。
Specific experiments were conducted to evaluate the effects of the present invention, and the results will be described below.
In this embodiment, a cylindrical specimen (200 mm in length) consisting of a hat-shaped cross-sectional part corresponding to the floor cross member 1 and a flat plate corresponding to the floor 3 is prepared, and a collision test is performed to evaluate the collision characteristics. Then, an impact vibration test was conducted to evaluate the vibration characteristics.

上記試験体には、発明例として、図7のようにハット断面部材11の天板部11aと縦壁部11bの内側に樹脂13と補強板15を設けたものや、図6のように縦壁部11bの内側のみに樹脂13と補強板15を設けたものを用意した。
また、比較例として、図2のようにハット断面部材11のみから構成されるものを用意した。
試験体におけるハット断面部材11に鋼板を用い、平板には、いずれも板厚1.0mmの440MPaの鋼を用いた。
なお、図7において、図1と対応する部分には同一の符号を付す。
As an example of the invention, the above-mentioned specimens were provided with a resin 13 and a reinforcing plate 15 inside the top plate portion 11a and the vertical wall portion 11b of the hat cross-section member 11 as shown in FIG. One having the resin 13 and the reinforcing plate 15 provided only inside the wall portion 11b was prepared.
Also, as a comparative example, a hat made up of only the hat cross-section member 11 as shown in FIG. 2 was prepared.
A steel plate was used for the hat section member 11 of the test body, and a steel plate having a thickness of 1.0 mm and a pressure of 440 MPa was used for the flat plate.
7, parts corresponding to those in FIG. 1 are denoted by the same reference numerals.

衝突試験では、試験体の軸方向(長手方向)に試験速度8.9m/sの打撃パンチで荷重を入力し、試験体を200mmから180mmまで20mm軸方向に変形させた。その際の荷重とストローク(軸圧壊変形量)を計測して荷重-ストローク曲線を取得し、該荷重-ストローク曲線の最大荷重(kN)を試験体の衝突に対する耐力(衝突耐力と称す)とした。衝突耐力の最大値は、軸圧壊変形の開始直後の弾性変形を経て塑性変形に転じる際の荷重を示すものであり、この値が高いほど衝突時の変形が生じにくく、衝突特性が良好であると言える。 In the impact test, a load was input in the axial direction (longitudinal direction) of the test piece by an impact punch at a test speed of 8.9m/s, and the test piece was deformed 20mm in the axial direction from 200mm to 180mm. The load and stroke (amount of axial crushing deformation) at that time were measured to obtain a load-stroke curve, and the maximum load (kN) of the load-stroke curve was taken as the resistance to collision of the specimen (referred to as collision resistance). . The maximum value of crash resistance indicates the load at which the load changes from elastic deformation immediately after the start of axial crushing deformation to plastic deformation. I can say.

打撃振動試験では、吊り下げた試験体の天板部11aのエッジ付近に加速度センサー(小野測器製:NP-3211)を取り付け、インパクトハンマ(小野測器製:GK-3100)で試験体の縦壁部11bを打撃加振し、インパクトハンマから得られる加振力と試験体で計測した加速度をFFTアナライザ(小野測器製:CF-7200A)に取り込み、周波数応答関数を算出した。ここで、周波数応答関数は、5回の打撃試験結果の平均化処理とカーブフィットにより算出した。そして、算出した周波数応答関数により振動モード解析を行い200HzにおけるAccelerance(m/s2/N)を算出した。 In the impact vibration test, an acceleration sensor (manufactured by Ono Sokki: NP-3211) was attached near the edge of the top plate 11a of the suspended test object, and an impact hammer (manufactured by Ono Sokki: GK-3100) was used to move the test object. The vertical wall portion 11b was hit and vibrated, and the excitation force obtained from the impact hammer and the acceleration measured by the test body were taken into an FFT analyzer (manufactured by Ono Sokki: CF-7200A) to calculate the frequency response function. Here, the frequency response function was calculated by averaging the results of five impact tests and curve fitting. Accelerance (m/s 2 /N) at 200 Hz was calculated by performing vibration mode analysis using the calculated frequency response function.

試験体である発明例及び比較例の詳細(ハット断面部材11と補強板15の鋼板の引張強度と板厚、及び樹脂厚)と上記試験の結果を表2に示す。また、衝突試験において得られる荷重-ストローク曲線の一例として、発明例4と比較例1の荷重-ストローク曲線を図8に示す。
なお、表2において、「断面方向の樹脂・補強板の貼付け位置」に記載の「全周」とは、図7のようにハット断面部材11の天板部11aと縦壁部11bの内側に樹脂13と補強板15を設けたことを示す。
Table 2 shows the details (tensile strength and plate thickness of the steel plates of the hat section member 11 and the reinforcing plate 15, and the resin thickness) of the invention examples and the comparative examples, which are test bodies, and the results of the above tests. FIG. 8 shows the load-stroke curves of Invention Example 4 and Comparative Example 1 as an example of the load-stroke curves obtained in the collision test.
In Table 2, "perimeter" described in "Position of resin/reinforcing plate in cross-sectional direction" means inside top plate portion 11a and vertical wall portion 11b of hat cross-section member 11 as shown in FIG. It shows that the resin 13 and the reinforcing plate 15 are provided.

Figure 2023068734000004
Figure 2023068734000004

表2に示すように、発明例1~4は、ハット断面部材11の長手方向全長に亘って、天板部11aと縦壁部11bに樹脂13と補強板15を設けた例である(図7参照)。
また、発明例5は、ハット断面部材11の全長の40%の範囲にのみ、天板部11aと縦壁部11bに樹脂13と補強板15を設けた例である(図7参照)。
また、発明例6は、ハット断面部材11の長手方向全長に亘って、縦壁部11bにのみ樹脂13と補強板15を設けた例である(図6参照)。
As shown in Table 2, invention examples 1 to 4 are examples in which resin 13 and reinforcing plate 15 are provided on top plate portion 11a and vertical wall portion 11b over the entire length in the longitudinal direction of hat cross-section member 11 (Fig. 7).
Inventive example 5 is an example in which resin 13 and reinforcing plate 15 are provided on top plate portion 11a and vertical wall portion 11b only in a range of 40% of the total length of hat cross-section member 11 (see FIG. 7).
Inventive example 6 is an example in which the resin 13 and the reinforcing plate 15 are provided only on the vertical wall portion 11b over the entire longitudinal length of the hat cross-section member 11 (see FIG. 6).

発明例1は、比較例と比較して重量が-0.09kg(-3%)軽量化されつつ、衝突耐力は+60kN(+19%)増加し、制振性も大幅に低下した。
また、発明例2は樹脂厚が他の発明例よりも薄い例であるが、この場合にも比較例と比較して重量が-0.13kg(-4%)軽量化されつつ、衝突耐力は+10kN(+3%)増加し、制振性も大幅に低下した。
In Invention Example 1, the weight was reduced by -0.09 kg (-3%) compared to the Comparative Example, while the impact strength was increased by +60 kN (+19%) and the damping performance was greatly reduced.
In addition, although Invention Example 2 is an example in which the resin thickness is thinner than the other Invention Examples, the weight is reduced by -0.13 kg (-4%) compared to the Comparative Example, while the crash resistance is + It increased by 10kN (+3%), and the damping performance was greatly reduced.

上述のように発明例1、2は、比較例よりも軽量化しつつ、衝突耐力も向上できることが示された。 As described above, invention examples 1 and 2 were shown to be lighter than the comparative example and to improve crash resistance.

発明例3は、比較例と比較して衝突耐力は同等(±0%)であるが、発明例1、2と比較して-0.35kg(-10%)減と、最も軽量化しており、制振性も大幅に向上した。
また、発明例4は、比較例と比較して+1.11kg(+31%)重量増とはなったが、衝突耐力は+290kN(+94%)増加し、比較例の約2倍となった。制振性も大幅に低下した。
Inventive example 3 has the same impact strength (±0%) as the comparative example, but compared to inventive examples 1 and 2, it is -0.35 kg (-10%) lighter, which is the lightest weight. Vibration damping is also greatly improved.
In addition, although invention example 4 has a weight increase of +1.11 kg (+31%) compared to the comparative example, the impact strength is increased by +290 kN (+94%), which is about double that of the comparative example. rice field. The damping property was also greatly reduced.

上述のように発明例3は、比較例と同等の衝突耐力で、重量を大きく低減できることが示された。
また、発明例4は、比較例よりも若干の重量増で、衝突耐力を大きく向上できることが示された。
As described above, it was shown that the invention example 3 can greatly reduce the weight while maintaining the same collision resistance as the comparative example.
In addition, it was shown that invention example 4 can greatly improve crash strength with a slight increase in weight as compared to comparative examples.

発明例5は、他の発明例よりも長手方向の樹脂13の貼付範囲が少ない例であるが、この場合にも比較例と比較して重量が-0.47kg(-13%)軽量化されつつ、衝突耐力は+20kN(+6%)増加し、制振性も大幅に低下した。
また、発明例6は、縦壁部11bのみに樹脂13を設けた例であるが、この場合にも比較例と比較して重量が-0.39kg(-11%)軽量化されつつ、衝突耐力は+30kN(+10%)増加し、制振性も大幅に低下した。
Inventive Example 5 is an example in which the lengthwise direction of the resin 13 pasting range is smaller than in the other inventive examples. , the impact strength increased by +20kN (+6%), and the damping performance decreased significantly.
In addition, the invention example 6 is an example in which the resin 13 is provided only on the vertical wall portion 11b. was increased by +30kN (+10%), and the damping performance was greatly reduced.

上述のように長手方向の全長に亘って樹脂13を設けていない発明例5の場合にも、一定の衝突耐力向上効果があることが示された。
同様に、縦壁部11bのみに樹脂13を設けた発明例6の場合にも、一定の衝突耐力向上効果があることが示された。
As described above, even in the case of Invention Example 5 in which the resin 13 was not provided over the entire length in the longitudinal direction, it was shown that there was a certain impact strength improvement effect.
Similarly, in the case of Invention Example 6 in which the resin 13 was provided only on the vertical wall portion 11b, it was shown that there was a certain impact strength improvement effect.

1 フロアクロスメンバ
3 フロア
5 サイドシル
5a サイドシルインナ
7 フロアトンネル
9 フロアフレーム
11 ハット断面部材
11a 天板部
11b 縦壁部
11d 接合しろ
11c フランジ部
13 樹脂
15 補強板
17 ポール
19 フロアクロスメンバ(従来例)
1 floor cross member 3 floor 5 side sill 5a side sill inner 7 floor tunnel 9 floor frame 11 hat section member 11a top plate portion 11b vertical wall portion 11d joining margin 11c flange portion 13 resin 15 reinforcing plate 17 pole 19 floor cross member (conventional example)

Claims (4)

車体の床部分の少なくとも一部を構成するフロアと、該フロアの車体幅方向の両端部に設けられて車体前後方向に延在する一対のサイドシルと、前記フロアの車体幅方向中央部に位置して車体前後方向に延在するフロアトンネルと、該フロアトンネルと前記サイドシルとの間で車体前後方向に延在して前記フロアの下面に固定されるフロアフレームとを備えて構成された車体構造において、
前記フロアの上面において、一端が前記サイドシルに、他端が前記フロアトンネルにそれぞれ固定され、平面視で前記フロアフレームと交差するように配置されるフロアクロスメンバであって、
天板部、縦壁部及びフランジ部を有するハット断面部材と、
該ハット断面部材の内面及び/又は外面に貼付又は塗布された樹脂と、
該樹脂を覆うように配設されて該樹脂と接着された補強板とを備えたことを特徴とするフロアクロスメンバ。
a floor that constitutes at least part of a floor portion of the vehicle body; a pair of side sills that are provided at both ends of the floor in the vehicle width direction and extend in the vehicle front-rear direction; and a floor frame extending in the longitudinal direction of the vehicle between the floor tunnel and the side sill and fixed to the lower surface of the floor. ,
A floor cross member having one end fixed to the side sill and the other end fixed to the floor tunnel on the upper surface of the floor, and arranged so as to intersect the floor frame in plan view,
a hat cross-sectional member having a top plate portion, a vertical wall portion and a flange portion;
a resin attached or applied to the inner surface and/or the outer surface of the hat cross-section member;
A floor cross member comprising a reinforcing plate disposed so as to cover the resin and adhered to the resin.
前記樹脂は、前記フロアの上面に配置した状態において、前記ハット断面部材における前記フロアフレームよりも車体幅方向外側に位置する範囲にのみ設けられていることを特徴とする請求項1に記載のフロアクロスメンバ。 2. The floor according to claim 1, wherein the resin is provided only in a range of the hat cross-section member located outside of the floor frame in the vehicle width direction in a state of being arranged on the upper surface of the floor. cross member. 前記樹脂は、前記ハット断面部材の前記縦壁部のみに設けられていることを特徴とする請求項1又は2に記載のフロアクロスメンバ。 3. The floor cross member according to claim 1, wherein the resin is provided only on the vertical wall portion of the hat section member. 前記樹脂の厚みが0.1~5mm、前記補強板の厚みが0.15~1mmであることを特徴とする請求項1乃至3のいずれか一項に記載のフロアクロスメンバ。 4. The floor cross member according to claim 1, wherein the resin has a thickness of 0.1 to 5 mm, and the reinforcing plate has a thickness of 0.15 to 1 mm.
JP2021180005A 2021-11-04 2021-11-04 floor cross member Active JP7264203B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021180005A JP7264203B1 (en) 2021-11-04 2021-11-04 floor cross member
PCT/JP2022/029938 WO2023079804A1 (en) 2021-11-04 2022-08-04 Floor crossmember

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021180005A JP7264203B1 (en) 2021-11-04 2021-11-04 floor cross member

Publications (2)

Publication Number Publication Date
JP7264203B1 JP7264203B1 (en) 2023-04-25
JP2023068734A true JP2023068734A (en) 2023-05-18

Family

ID=86096170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021180005A Active JP7264203B1 (en) 2021-11-04 2021-11-04 floor cross member

Country Status (2)

Country Link
JP (1) JP7264203B1 (en)
WO (1) WO2023079804A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215092A (en) * 2009-03-17 2010-09-30 Mazda Motor Corp Lower part structure of vehicle body
JP2017124644A (en) * 2016-01-12 2017-07-20 本田技研工業株式会社 Vehicle body structure
JP2018149836A (en) * 2017-03-10 2018-09-27 マツダ株式会社 Lower body structure of vehicle
CN210284388U (en) * 2019-06-03 2020-04-10 上汽通用五菱汽车股份有限公司 Rear floor crossbeam connection structure
WO2020129327A1 (en) * 2018-12-20 2020-06-25 Jfeスチール株式会社 Automotive crashworthiness energy absorption part and production method for same
JP6729762B1 (en) * 2019-05-28 2020-07-22 Jfeスチール株式会社 Collision energy absorbing component for automobile and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215092A (en) * 2009-03-17 2010-09-30 Mazda Motor Corp Lower part structure of vehicle body
JP2017124644A (en) * 2016-01-12 2017-07-20 本田技研工業株式会社 Vehicle body structure
JP2018149836A (en) * 2017-03-10 2018-09-27 マツダ株式会社 Lower body structure of vehicle
WO2020129327A1 (en) * 2018-12-20 2020-06-25 Jfeスチール株式会社 Automotive crashworthiness energy absorption part and production method for same
JP6729762B1 (en) * 2019-05-28 2020-07-22 Jfeスチール株式会社 Collision energy absorbing component for automobile and manufacturing method thereof
CN210284388U (en) * 2019-06-03 2020-04-10 上汽通用五菱汽车股份有限公司 Rear floor crossbeam connection structure

Also Published As

Publication number Publication date
WO2023079804A1 (en) 2023-05-11
JP7264203B1 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
JP5776451B2 (en) Vehicle body structure
US10150511B2 (en) Body structure of vehicle
KR101501816B1 (en) Vehicle component
JP4648047B2 (en) Automotive panel structure
WO2017135163A1 (en) Vehicle front-end structure
CN113365905B (en) Vehicle body frame member
KR102019219B1 (en) Vehicle rear structure
CN113316537B (en) Automobile engine hood
JP4764035B2 (en) Automotive panel structure
JP7264203B1 (en) floor cross member
US7390055B2 (en) Engine hood for automobiles
JP7281559B2 (en) Tunnels with integrated lateral stiffeners
JP7264204B1 (en) Automotive battery case protection structure and floor cross member
JP7215557B1 (en) Battery case and battery case cross member
JP7282302B1 (en) Automotive side sill structure
JP7282303B1 (en) car body undercarriage
WO2023090112A1 (en) Body lower structure and side sill structure for automotive vehicle
JP7207452B2 (en) Automobile structural member and manufacturing method thereof
US11981370B2 (en) Structural member for vehicle
JP7255657B1 (en) Side sill internal structure
US20220177034A1 (en) Structural member for vehicle
CN108609059B (en) Chassis structure of vehicle
JP6142978B1 (en) Vehicle front structure
JP2023163773A (en) Rocker and vehicle structure including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R150 Certificate of patent or registration of utility model

Ref document number: 7264203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150