JP2023064567A - Cu STAVE ABRASION DETECTION SENSOR - Google Patents

Cu STAVE ABRASION DETECTION SENSOR Download PDF

Info

Publication number
JP2023064567A
JP2023064567A JP2021174912A JP2021174912A JP2023064567A JP 2023064567 A JP2023064567 A JP 2023064567A JP 2021174912 A JP2021174912 A JP 2021174912A JP 2021174912 A JP2021174912 A JP 2021174912A JP 2023064567 A JP2023064567 A JP 2023064567A
Authority
JP
Japan
Prior art keywords
stave
wear
detection
sensor
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021174912A
Other languages
Japanese (ja)
Inventor
基樹 本田
Motoki Honda
莉菜 金子
Rina Kaneko
晋一 平田
Shinichi Hirata
邦義 阿南
Kuniyoshi Anami
龍 垣手
Ryu Kakite
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamari Industries Ltd
Nippon Steel Corp
Original Assignee
Yamari Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamari Industries Ltd, Nippon Steel Corp filed Critical Yamari Industries Ltd
Priority to JP2021174912A priority Critical patent/JP2023064567A/en
Publication of JP2023064567A publication Critical patent/JP2023064567A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Blast Furnaces (AREA)

Abstract

To provide an abrasion detection sensor capable of accurately measuring progress of abrasion of a Cu stave over a long period of time even at a site where a temperature level is extremely high and a temperature fluctuation is sharp in a furnace.SOLUTION: An electric circuit 2 whose electrical characteristics are caused to change by damage and disconnection due to abrasion of a Cu stave is housed in a sensor body 3, a plurality of lead wire units 4 having detection lead wires 40 that cause the change in electrical characteristics are arranged so as to extend to different positions in a length direction of a tip side member 30 of the sensor body 3, and the detection lead wires are connected in series with resistors as detection elements constituting the electric circuit 2, and sets of each detection lead wire and each resistor are connected in parallel with each other. The tip side member 30 consists of a rod-shaped body made of Cu or Cu alloy solid material, a plurality of housing holes 33 are provided to individually house the lead wire units 4, and the lead wire units 4 are housed inside the housing holes 33.SELECTED DRAWING: Figure 2

Description

本発明は、高炉内壁に設置されているステーブの損耗を検出する損耗検出センサに関する。 TECHNICAL FIELD The present invention relates to a wear detection sensor that detects wear of a stave installed on the inner wall of a blast furnace.

従来、高炉稼働中においても容易に計測が可能な方法として、ステーブ取付ボルトの端部に超音波探触子を接触させて、該ステーブ取付ボルトの長さを超音波にて検出することによりステーブの損耗を検出するセンサ(特許文献1)や、ステーブに埋設されたマーカーに同じく超音波を印加し、その反射時間からマーカーの長さを検出し、これによりステーブの損耗を検出するセンサ(特許文献2)が提案されている。 Conventionally, as a method that can be easily measured even during operation of the blast furnace, the stave by contacting an ultrasonic probe to the end of the stave mounting bolt and detecting the length of the stave mounting bolt with ultrasonic waves A sensor that detects the wear of the stave (Patent Document 1), and a sensor that also applies ultrasonic waves to a marker embedded in the stave and detects the length of the marker from the reflection time, thereby detecting the wear of the stave (Patent Reference 2) has been proposed.

また、高炉内壁に設置されているCuステーブ内に挿入され、該Cuステーブの損耗を検出する損耗検出センサにおいて、前記Cuステーブの損耗に併せて損耗・断線することで、電気特性変化を引き起こす電気回路が、センサ外壁を構成する金属管の内部に内蔵されており、前記電気回路を構成して前記電気特性変化を引き起こす検出用導線として、前記Cuステーブとともに損耗が予定される先端側部位における長さ方向の異なる位置まで延びる複数の検出用導線が配され、各検出用導線は、前記金属管における炉外となる基端側の位置まで延び、該基端側にて前記電気回路を構成する検出素子として抵抗器が直列接続されたうえで、各検出用導線および抵抗器の組が互いに並列接続されており、この並列接続された電気回路の合成抵抗値の変化に応じてCuステーブの損耗を検出することも提案されている(特許文献3参照)。 In addition, in the wear detection sensor that is inserted into the Cu stave installed on the inner wall of the blast furnace and detects the wear of the Cu stave, the wear and disconnection along with the wear of the Cu stave causes electrical property changes. A circuit is built inside a metal tube that constitutes the outer wall of the sensor, and as a detection lead wire that constitutes the electric circuit and causes the change in electrical characteristics, the length at the tip side portion where wear is expected with the Cu stave A plurality of detection lead wires extending to different positions in the longitudinal direction are arranged, and each detection lead wire extends to a position on the base end side outside the furnace in the metal tube, and constitutes the electric circuit on the base end side. After a resistor is connected in series as a detection element, each detection lead wire and a set of resistors are connected in parallel with each other, and the Cu stave wears according to the change in the combined resistance value of the parallel-connected electric circuit. is also proposed (see Patent Document 3).

特開昭61-264110号公報JP-A-61-264110 特開昭63-73088号公報JP-A-63-73088 特開2020-164996号公報JP 2020-164996 A

特許文献1,2に示されるように、超音波により前記ステーブ取付ボルトやマーカーの長さを測定するものでは、測定時のボルト/マーカーの温度やボルト/マーカーとステーブ又は超音波測定の探触子との接触状況、ステーブの内側面の堆積状況等によって測定誤差が大きくなり、精度の向上に限界があるという課題があった。 As shown in Patent Documents 1 and 2, when the length of the stave mounting bolt or marker is measured by ultrasonic waves, the temperature of the bolt / marker at the time of measurement, the bolt / marker and the stave or the probe of ultrasonic measurement There was a problem that the measurement error increased depending on the contact situation with the child, the accumulation situation on the inner surface of the stave, etc., and there was a limit to the improvement of accuracy.

一方、特許文献3に開示されたCuステーブの損耗検出センサでは、高炉稼働中であっても、内蔵された電気回路が、Cuステーブの損耗に併せて損耗・断線し、これにより並列回路の合成抵抗値の変化をみて、高炉内壁に設置されているCuステーブの損耗を精度よく、効率的に検出することができ、一つの回路でこれら複数回の抵抗値変化を捉えることができる。また、Cuステーブとともに損耗が予定される先端側部位の内部に、前記電気回路を構成して抵抗値変化を引き起こす検出用導線が配されているので、この検出用導線の断線に基づいた確実な損耗状況の検出が行われ、高精度の検出が可能である。 On the other hand, in the Cu stave wear detection sensor disclosed in Patent Document 3, even during the operation of the blast furnace, the built-in electric circuit wears and breaks along with the wear of the Cu stave, thereby synthesizing a parallel circuit. By looking at the change in resistance value, the wear of the Cu stave installed on the inner wall of the blast furnace can be detected accurately and efficiently, and one circuit can capture these multiple resistance value changes. In addition, since the detection lead wire that constitutes the electric circuit and causes the resistance value change is arranged inside the tip side portion that is expected to be worn along with the Cu stave, reliable detection based on the disconnection of the detection lead wire A wear condition is detected, and highly accurate detection is possible.

しかも、前記検出用導線が、金属管の炉外の位置となる基端側まで延び、該基端側にて前記電気回路を構成する検出素子として抵抗器が直列に接続されているので、400℃程度の高温となる先端側に耐熱性のある検出用導線のみが配置され、一般的には200℃以上の高温下で動作保証されていない検出素子(抵抗器)が、炉外側の低温部に配置されることにより、10年以上の長期間に亘ってセンサの精度を確保することも可能である。 Moreover, since the detection conducting wire extends to the base end side of the metal tube outside the furnace, and the resistor is connected in series as a detection element constituting the electric circuit on the base end side, 400 Only the heat-resistant detection lead wire is placed on the tip side where the temperature is about ℃, and the detection element (resistor), which is not guaranteed to operate at a high temperature of 200℃ or higher, is placed in the low temperature part outside the furnace. , it is possible to ensure the accuracy of the sensor for a long period of ten years or more.

上述の特許文献3に開示されたCuステーブの損耗検出センサでは、損耗検出センサの先端側部位にCu又はCu合金製の保護管が設けられ、この保護管内に損耗進行を検出する検出用導線が所定の本数で、かつ各々所定の位置に配置されるとともに、保護管内部の隙間には充填材として耐熱性、シール性、絶縁性を兼ねた耐熱セメントやMgO微粉等が充填されており、センサ先端部の温度が400℃以下である高炉の通常操業状態では、何らの問題なく使用することができる。しかし、高生産、高酸素富化、高PCR(高微粉炭吹き込み比)で操業される高炉の場合、センサ先端部の温度が、高頻度で、かつ長期間に亘って例えば800℃以上の高温状態となるので、前記充填材が早期に損傷して、検出用導線が炉内の高温ガスに晒されることが避けられない。この結果、Cuステーブやセンサの先端保護管が損耗する前に検出用導線が損耗・断線することによる誤検出、つまりCuステーブの損耗がセンサの検出点まで達していないにも拘らず、損耗が生じていると誤検出が生じることが確認された。 In the Cu stave wear detection sensor disclosed in the above-mentioned Patent Document 3, a Cu or Cu alloy protective tube is provided at the tip side portion of the wear detection sensor, and a detection lead wire for detecting the progress of wear is provided in this protective tube. In addition to being arranged in a predetermined number and in each predetermined position, the gap inside the protective tube is filled with heat-resistant cement, MgO fine powder, etc., which has heat resistance, sealing properties, and insulation as a filler, and the sensor It can be used without any problem under normal operating conditions of a blast furnace where the tip temperature is 400° C. or less. However, in the case of a blast furnace operated with high production, high oxygen enrichment, and high PCR (high pulverized coal injection ratio), the temperature at the tip of the sensor frequently rises to a high temperature of, for example, 800°C or higher for a long period of time. As a result, premature damage to the filling material and exposure of the sensing wire to the hot gas within the furnace is inevitable. As a result, erroneous detection due to wear and disconnection of the detection lead wire before the Cu stave and the sensor tip protection tube wear, that is, the wear of the Cu stave has not reached the detection point of the sensor. It was confirmed that erroneous detection occurs when it occurs.

特に、先端保護管の外径が例えば20mm以上である大径の損耗検出センサでは、Cuステーブからの熱伝導による冷却効果が不十分になり易いので、充填材の劣化・損傷等が顕著となり、Cuステーブの損耗を測定する精度が低下し易い傾向がある。すなわち、先端保護管の炉内側に位置する充填材が表面側から徐々に損傷・剥離して、先端保護管の内部が、Na、Zn等アルカリ成分を含む炉内の高温ガスに曝された状態で、急激な温度変動を生じると、先端保護管の内部の検出用導線被覆が損傷し、Fe粉、C粉等からなる炉内装入物が複数の損傷検出用導線と接触して、検出用導線の絶縁状態を維持することが困難となる。この結果、検出回路の電気的特性が変動して、先端保護管内の充填材の早期損傷に起因した見かけ上の損耗進行等が生じることが判明した。 In particular, in a large-diameter wear detection sensor with a tip protection tube having an outer diameter of, for example, 20 mm or more, the cooling effect due to heat conduction from the Cu stave is likely to be insufficient, so deterioration and damage of the filler become noticeable. There is a tendency that the accuracy of measuring the wear of the Cu stave tends to decrease. That is, the filler located inside the furnace of the tip protection tube is gradually damaged and peeled off from the surface side, and the inside of the tip protection tube is exposed to the high-temperature gas in the furnace containing alkaline components such as Na and Zn. However, if a sudden temperature change occurs, the coating of the detection lead wire inside the tip protection tube is damaged, and the furnace contents made of Fe powder, C powder, etc. come into contact with multiple damage detection lead wires, It becomes difficult to maintain the insulation of the conductor. As a result, it was found that the electrical characteristics of the detection circuit fluctuated, causing apparent wear progress due to early damage to the filling material in the tip protection tube.

そこで、上述の状況に鑑み、本発明が解決しようとするところは、炉内の温度レベルが極めて高く、かつ温度変動の激しい高炉のシャフト下部~炉腹部位においても、Cuステーブの損耗進行を長期に亘って精度よく測定できる損耗検出センサを提供する点にある。 Therefore, in view of the above-mentioned situation, what the present invention aims to solve is that even in the lower part of the shaft to the belly of the blast furnace, where the temperature level in the furnace is extremely high and the temperature fluctuates rapidly, the progress of wear of the Cu stave is prevented for a long period of time. The object is to provide a wear detection sensor capable of measuring with high precision over a range of temperatures.

本発明は、以下の発明を包含する。 The present invention includes the following inventions.

(1) 高炉内壁に設置されているCuステーブ内に挿入され、該Cuステーブの損耗を検出する高炉のCuステーブの損耗検出センサであって、前記Cuステーブの損耗に伴って損耗・断線することで、電気特性変化を引き起こす電気回路がセンサ本体内に収容されており、前記電気回路を構成して前記電気特性変化を引き起こす検出用導線を有する複数の導線ユニットが、前記Cuステーブとともに損耗が予定される前記センサ本体の先端側部材における長さ方向の異なる位置まで伸びるように配され、前記各導線ユニットの検出用導線は、前記センサ本体における炉外となる基端部側の位置まで伸び、該基端部側にて前記電気回路を構成する検出素子として抵抗器が直列接続されたうえで、前記各検出用導線及び前記各抵抗器の組が互いに並列接続されており、前記センサ本体の少なくとも前記Cuステーブとともに損耗が予定される先端側部材は、CuまたはCu合金製無垢材の棒状体からなり、前記先端側部材には、前記各導線ユニットをそれぞれ個別に収容する複数の収容孔が設けられるとともに、前記導線ユニットが、前記収容孔の内部に収容され、前記並列接続された前記電気回路の合成抵抗値の変化によりCuステーブの損耗を検出する、高炉のCuステーブの損耗検出センサ。 (1) A blast furnace Cu stave wear detection sensor that is inserted into a Cu stave installed on the inner wall of a blast furnace and detects wear of the Cu stave, and is worn or disconnected as the Cu stave wears. The electric circuit that causes the change in electrical characteristics is housed in the sensor body, and a plurality of conductor units having detection conductors that constitute the electric circuit and cause the change in the electrical characteristics are expected to be worn together with the Cu stave. are arranged to extend to different positions in the length direction of the tip side member of the sensor main body, and the detection lead wires of the respective lead wire units extend to positions on the base end side outside the furnace in the sensor main body, A resistor is connected in series as a detection element constituting the electric circuit on the base end side, and a set of each detection lead wire and each resistor is connected in parallel with each other. At least the tip side member, which is expected to be worn together with the Cu stave, is made of a rod-shaped body made of Cu or Cu alloy solid material, and the tip side member has a plurality of accommodation holes for individually accommodating each of the conductor units. A wear detection sensor for a Cu stave of a blast furnace, wherein the lead wire unit is accommodated inside the accommodation hole and detects wear of the Cu stave by a change in the combined resistance value of the electric circuits connected in parallel.

(2) 前記検出素子を介して前記電気回路がデータ処理装置に接続される、(1)記載の高炉用Cuステーブの損耗検出センサ。 (2) The Cu stave wear detection sensor for a blast furnace according to (1), wherein the electric circuit is connected to a data processing device via the detection element.

(3) 前記センサ本体内に温度センサが収容されている、(1)又は(2)記載の高炉用Cuステーブの損耗検出センサ。 (3) The Cu stave wear detection sensor for blast furnace according to (1) or (2), wherein a temperature sensor is accommodated in the sensor main body.

本発明によれば、高炉の稼働時にCuステーブが高温に加熱されると、その熱が、CuまたはCu合金製無垢材の棒状体からなる先端側部材から、検出用導線を有する各導線ユニットに対して迅速に伝達されて、Cuステーブとセンサ本体の先端側部材とが同様の温度分布状態となり、Cuステーブに損耗が生じるとセンサ本体の先端側部材も略同時に損耗が生じる。したがって、Cuステーブに損耗が生じる前に、検出用導線が炉内の高温ガスに晒されることに起因した誤検出の発生が効果的に防止され、Cuステーブの損耗進行を長期に亘って精度よく測定することができる。また、高炉稼働中であっても、センサの先端側部材に内蔵された電気回路が、Cuステーブの損耗に併せて損耗・断線し、これにより並列回路の合成抵抗値の変化をみて、高炉内壁に設置されているCuステーブの損耗をより精度良く、効率的に検出することができ、一つの回路でこれら複数回の抵抗値変化を捉えることができる。これにより、高炉用Cuステーブの損耗量をより精度良く、一つの回路として連続して検出を行うことができる。 According to the present invention, when the Cu stave is heated to a high temperature during operation of the blast furnace, the heat is transferred from the tip side member made of a rod-shaped solid material made of Cu or Cu alloy to each conducting wire unit having a detecting conducting wire. In contrast, the Cu stave and the tip side member of the sensor body are in a similar temperature distribution state, and when the Cu stave is worn, the tip side member of the sensor body is also worn almost at the same time. Therefore, before the Cu stave wears, the occurrence of erroneous detection due to the exposure of the detection lead wire to the high temperature gas in the furnace is effectively prevented, and the wear progress of the Cu stave can be accurately monitored over a long period of time. can be measured. In addition, even while the blast furnace is in operation, the electric circuit built into the tip side member of the sensor wears and breaks along with the wear of the Cu stave, and this changes the combined resistance value of the parallel circuit. It is possible to detect the wear of the Cu stave installed in the more accurately and efficiently, and it is possible to capture the resistance value change of these multiple times with one circuit. Thereby, the wear amount of the Cu stave for blast furnaces can be detected more accurately and continuously as one circuit.

また、Cuステーブとともに損耗が予定される先端側部材の内部に、前記電気回路を構成して抵抗値変化を引き起こす検出用導線を配したので、検出用導線の断線に基づいた確実な損耗状況の検出が行われ、高精度の検出が可能となる。さらに、前記先端側部材の内部に、該先端側部材における長さ方向の異なる位置まで延びる複数の検出用導線を配したので、Cuステーブの損耗を複数の位置で検出でき、より詳細な損耗状況の把握が可能となる。しかも、前記検出用導線が金属管の炉外の位置となる基端側まで延び、該基端側にて前記電気回路を構成する検出素子として抵抗器が直列に接続されているので、高温となる先端側に耐熱性のある検出用導線のみ配置し、一般的には200℃以上の高温下で動作保証されていない検出素子(抵抗器)を、炉外側の低温部に配置して、20年以上の長期間に亘ってセンサの精度を確保することも可能となる。 In addition, since the detection lead wire that constitutes the electric circuit and causes the resistance value change is arranged inside the tip side member that is expected to be worn along with the Cu stave, the reliable wear situation based on the disconnection of the detection lead wire Detection is performed, and highly accurate detection is possible. Furthermore, since a plurality of detection conductors extending to different positions in the length direction of the tip side member are arranged inside the tip side member, the wear of the Cu stave can be detected at a plurality of positions, and a more detailed wear situation can be grasped. Moreover, since the detection lead wire extends to the base end side of the metal tube outside the furnace, and the resistor is connected in series as a detection element constituting the electric circuit on the base end side, the high temperature Only a heat-resistant detection lead wire is placed on the tip side, and a detection element (resistor) that is not guaranteed to operate at a high temperature of 200 ° C or higher is generally placed in a low temperature part outside the furnace. It is also possible to ensure the accuracy of the sensor over a long period of years or more.

また、前記検出素子としての抵抗器を介して前記電気回路がデータ処理装置に接続されるものでは、高炉用Cuステーブの損耗管理をオンラインで行うことができるとともに、高炉の高さ方向および円周方向の各部位にセンサ複数本を適正に配置することによる高炉全体の測定・管理も効率的に行うことが可能となる。 In addition, in the one in which the electric circuit is connected to a data processing device via a resistor as the detection element, it is possible to perform on-line wear management of the Cu stave for blast furnaces, and the height direction and circumference of the blast furnace By appropriately arranging multiple sensors at each position in the direction, it becomes possible to efficiently perform measurement and management of the entire blast furnace.

さらに、前記センサ本体内に温度センサが内蔵されたものでは、損耗状況の管理に加えて高炉用Cuステーブの温度状況を測定することで、損耗進行度合いと温度レベルとの関係性といったより詳細な高炉状況を得ることができるとともに、従来のCuステーブの温度測定を目的に設置している高炉用Cuステーブ温度計の交換品としての運用が、センサ本体および取付フランジ等を従来の高炉用Cuステーブ温度計と同寸法にて設計することで可能となる。 Furthermore, in the case where the temperature sensor is built in the sensor body, by measuring the temperature status of the Cu stave for blast furnace in addition to managing the wear status, more detailed information such as the relationship between the degree of wear progress and the temperature level can be obtained. In addition to being able to obtain the blast furnace status, it can be used as a replacement for the blast furnace Cu stave thermometer installed for the purpose of measuring the temperature of the conventional Cu stave. This is possible by designing with the same dimensions as the thermometer.

本発明の実施形態に係る損耗検出センサの概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a wear detection sensor according to an embodiment of the present invention; FIG. 前記損耗検出センサの設置状態を示す断面図である。It is a sectional view showing the installation state of the wear detection sensor. 前記損耗検出センサの導線ユニットを示す断面図である。4 is a cross-sectional view showing a lead wire unit of the wear detection sensor; FIG. 前記損耗検出センサの電気回路を示すイメージ図である。4 is an image diagram showing an electric circuit of the wear detection sensor; FIG. 前記損耗検出センサの先端側部材を示す要部説明図である。FIG. 4 is an explanatory view of a main part showing a tip side member of the wear detection sensor; (a)パターンにおける合成抵抗値の変化を示すグラフである。(a) It is a graph which shows the change of the combined resistance value in a pattern. (b)パターンにおける合成抵抗値の変化を示すグラフである。(b) is a graph showing a change in combined resistance value in a pattern;

次に、本発明の実施形態を添付図面に基づき詳細に説明する。 Embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

図2は、本発明に係る損耗検出センサ1が取り付けられる高炉内壁を示している。この高炉内壁は、冷却水管路101が設けられたCuステーブ100と、その外面側に配設されたキャスタブル(耐火骨材)102と、その外面側に配設された鉄皮からなるライニング103とを備えている。このライニング103には、損耗検出センサ1の挿通部61と取付用の取合フランジ62とを有する計装ガイド管6が、シールプレート63を介して溶接、固定されている。 FIG. 2 shows a blast furnace inner wall to which the wear detection sensor 1 according to the invention is mounted. The inner wall of the blast furnace includes a Cu stave 100 provided with a cooling water pipe 101, a castable (refractory aggregate) 102 disposed on the outer surface side, and a lining 103 made of an iron skin disposed on the outer surface side. It has An instrumentation guide tube 6 having an insertion portion 61 for the wear detection sensor 1 and a fitting flange 62 for attachment is welded and fixed to the lining 103 via a seal plate 63 .

本発明に係る損耗検出センサ1は、図1及び図5にも示すように、Cuステーブ100の損耗に伴って損耗・断線することで、電気特性変化を引き起こす電気回路2が内蔵されたセンサ本体3を有している。このセンサ本体3の先端側部材30には、前記電気回路2を構成して、その電気特性変化を引き起こす検出用導線40を有する複数の導線ユニット4が配置されている。 The wear detection sensor 1 according to the present invention, as shown in FIGS. 1 and 5, is a sensor main body having a built-in electric circuit 2 that causes changes in electrical characteristics by wear and disconnection due to wear of the Cu stave 100. 3. A plurality of lead wire units 4 having detection lead wires 40 that constitute the electric circuit 2 and cause a change in its electrical characteristics are arranged on the tip side member 30 of the sensor main body 3 .

また、センサ本体3の長手方向略中央部には、前記取合フランジ62に固定される取付合フランジ11と、この取付合フランジ11をセンサ本体3に固定するためのコンプレッションフィッティング12とが設けられている。そして、取付合フランジ11が計装ガイド管6の取合フランジ62にボルト止めされる等により、センサ本体3の先端側部材30がCuステーブ100内に挿入された状態で固定されるようになっている。 In addition, a mounting flange 11 fixed to the mounting flange 62 and a compression fitting 12 for fixing the mounting flange 11 to the sensor main body 3 are provided at substantially the central portion in the longitudinal direction of the sensor main body 3 . ing. Then, the mounting flange 11 is bolted to the mounting flange 62 of the instrumentation guide pipe 6, so that the tip side member 30 of the sensor main body 3 is inserted into the Cu stave 100 and fixed. ing.

導線ユニット4は、図3に示すように、Cu材またはステンレス鋼等からなる金属製保護管41と、その先端部を封止する封止体42とを有している。金属製保護管41内には、その長さ方向に延びるように検出用導線40が配設されるとともに、この検出用導線40が金属製保護管41の先端部近傍において折り返されることにより、この検出用導線40が損耗検出センサ1の基端部側から先端部側に延びるように設置されている。また、金属製保護管41内には、MgO等の耐熱性及び絶縁性を有する粒状物からなる充填材43が充填され、この充填材43によって金属製保護管41と検出用導線40との隙間が埋められている。 As shown in FIG. 3, the wire unit 4 has a metal protective tube 41 made of Cu material, stainless steel, or the like, and a sealing body 42 that seals the tip portion. A detection lead wire 40 is disposed in the metal protection tube 41 so as to extend in the longitudinal direction thereof, and the detection lead wire 40 is folded near the tip of the metal protection tube 41, thereby A detection lead wire 40 is installed so as to extend from the base end side to the tip end side of the wear detection sensor 1 . In addition, the metal protective tube 41 is filled with a filler 43 made of a heat-resistant and insulating granular material such as MgO. is filled.

上述のように各検出用導線40が金属製保護管41内に配設されることで安定して保持され、それぞれの先端部に位置する折り返し点が正確に固定される。また、金属製保護管41内に配設されたMgO等からなる充填材43により各検出用導線40の耐熱性及び絶縁性が保持されるため、その短絡等を効果的に防止するとともに、検出用導線40が炉内の高温ガスに晒されることによる損傷を防止することができる。 As described above, each detection lead wire 40 is stably held by arranging it in the metal protective tube 41, and the turn-back point located at each tip is accurately fixed. In addition, since the heat resistance and insulation of each detection lead wire 40 are maintained by the filler 43 made of MgO or the like arranged in the metal protection tube 41, short circuits and the like can be effectively prevented, and the detection It is possible to prevent the lead wire 40 from being damaged by being exposed to the hot gas in the furnace.

センサ本体3の先端側部材30は、Cuステーブ100と同質の材料、具体的には、CuまたはCu合金製無垢材の棒状体からなっている。このような先端側部材30は、Cuステーブ100と同程度の損耗性を有し、Cuステーブ100に損耗が生じると、これと一体的に損耗する。このため、先端側部材30の内部に収容された導線ユニット4の検出用導線40も、Cuステーブ100の損耗面と同じ位置で損耗し、該検出用導線40の断線による電気特性変化を引き起こし、精度よくCuステーブ100の損耗を検出できるように構成されている。同じ趣旨で、導線ユニット4の金属製保護管41及び検出用導線40についてもCuステーブ100と同材質のCu又はCu合金製の導線を用いることが好ましい。 The tip side member 30 of the sensor main body 3 is made of the same material as the Cu stave 100, specifically, a rod-shaped body made of solid material made of Cu or Cu alloy. Such a tip end side member 30 has wearability comparable to that of the Cu stave 100, and when the Cu stave 100 wears, it wears integrally with it. For this reason, the detection lead wire 40 of the lead wire unit 4 housed inside the tip side member 30 is also worn at the same position as the worn surface of the Cu stave 100, causing a change in electrical characteristics due to disconnection of the detection lead wire 40, It is configured so that the wear of the Cu stave 100 can be detected with high accuracy. For the same reason, it is preferable to use the Cu stave 100 and the Cu stave 100 and Cu or Cu alloy conducting wire for the metal protective tube 41 and the detecting conducting wire 40 of the conducting wire unit 4 .

センサ本体3の先端側部材30には、その長手方向に延びる深孔加工が施されることにより、前記複数の導線ユニット4をそれぞれ個別に収容する複数の収容孔33が設けられるとともに、各収容孔33の内部に各導線ユニット4がそれぞれ収容されるように構成されている。また、各収容孔33の孔深さが調整されることにより、各収容孔33の先端位置(A1、A2、・・・)、つまりセンサ本体3の先端面から距離が、それぞれ異なるように設定されている。 The tip side member 30 of the sensor main body 3 is provided with a plurality of accommodation holes 33 for individually accommodating the plurality of conductor units 4 by performing deep hole processing extending in the longitudinal direction. Each conductor unit 4 is configured to be accommodated inside the hole 33 . Further, by adjusting the hole depth of each accommodation hole 33, the tip positions (A1, A2, . It is

上述の構成において、各導線ユニット4を各収容孔33内に挿入した際に、各導線ユニット4の先端側に位置する検出用導線40の折り返し点が、それぞれ先端側部材30内の異なる位置に配置されようになっている。この結果、Cuステーブ100に損耗が生じた際に、センサ本体3の先端側に位置する検出用導線40から順に損耗・断線が発生して、電気回路2に順次電気特性の変化が引き起こされる。また、検出用導線40の先端部からなる検出部を、センサ本体3の先端側部材30内にまとめることで、多くの検出点を配置することが可能となる。 In the above-described configuration, when each conductor unit 4 is inserted into each accommodation hole 33, the folding points of the detection conductors 40 located on the tip side of each conductor unit 4 are located at different positions within the tip side member 30. are arranged. As a result, when the Cu stave 100 wears, wear and disconnection occur sequentially from the detection lead wire 40 located on the tip side of the sensor body 3, and the electrical characteristics of the electric circuit 2 change sequentially. In addition, by collecting the detection portions, which are the tip portions of the detection conducting wires 40, in the tip side member 30 of the sensor main body 3, it becomes possible to arrange many detection points.

また、先端側部材30の長さが、Cuステーブ100の少なくとも炉内側先端から冷却水管路101の炉内側の内周面に対応する位置までの範囲以上とされることにより、先端側部材30内に収容された導線ユニット4の検出用導線40により当該範囲における損耗の程度を検出できるように構成することが好ましい。すなわち、Cuステーブ100の損耗が冷却水管路101に至る前に、損耗の程度を検出・把握し、冷却水管路101が損傷して水漏れを起こす前に事前に対処できるように、前記先端側部材30の長さを設定することが好ましい。 Further, the length of the tip side member 30 is at least the range from the tip of the Cu stave 100 to the position corresponding to the inner peripheral surface of the inside of the furnace of the cooling water pipe 101 or more, so that the inside of the tip side member 30 It is preferable that the detection lead wire 40 of the lead wire unit 4 accommodated in the inner part is configured to detect the degree of wear in the area. That is, before the wear of the Cu stave 100 reaches the cooling water pipe 101, the degree of wear is detected and grasped, and the tip side so that it can be dealt with in advance before the cooling water pipe 101 is damaged and water leaks. Preferably, the length of member 30 is set.

電気回路2を構成する各検出用導線40の基端側は、図1及び図4に示すように、センサ本体3の先端側部材30、及びその基端側に位置する中間保護管31を通じてセンサ本体3内における炉外側に位置する部位まで延びるとともに、中間保護管31の基端側に位置する基端側保護管32内において、同じく電気回路2を構成する各検出素子21にそれぞれ接続されている。すなわち、炉内側に位置する高温の部位には耐熱性のある導線ユニット4のみが配置され、炉外側に位置する低温の部位に検出素子21が配置されている。これにより炉内に生じた温度変化の影響が検出素子21に及ぶのを防止するように構成されている。 As shown in FIGS. 1 and 4, the proximal end of each detection lead wire 40 constituting the electric circuit 2 is connected to the sensor through the distal end member 30 of the sensor main body 3 and the intermediate protective tube 31 located on the proximal end thereof. Extending to a portion located outside the furnace in the main body 3, inside the proximal side protective tube 32 located on the proximal side of the intermediate protective tube 31, each of the detection elements 21 similarly constituting the electric circuit 2 is connected to each detection element 21. there is That is, only the heat-resistant conductor unit 4 is arranged at the high-temperature portion located inside the furnace, and the detection element 21 is arranged at the low-temperature portion located outside the furnace. As a result, the detection element 21 is prevented from being affected by the temperature change occurring inside the furnace.

本発明に係る損耗検出センサ1は、上述のようにセンサ本体3の少なくともCuステーブ100とともに損耗が予定される先端側部材30が、CuまたはCu合金製無垢材の棒状体からなり、かつ先端側部材30に各導線ユニット4をそれぞれ個別に収容する複数の収容孔33が設けられるとともに、導線ユニット4が収容孔33の内部にそれぞれ収容されたものである。このため、損耗検出センサ1の先端部分に設けられた金属製保護管内に、損耗進行を検出する検出用導線と耐熱セメントやMgO微粉等からなる充填材が充填された従来技術のように、センサ先端部の温度が、高頻度で、かつ長期間に亘って例えば800℃以上の高温状態となった場合に、前記充填材が早期に損傷して、検出用導線が炉内の高温ガスに晒されることがなく、これに起因した誤検出の発生を防止することができる。 In the wear detection sensor 1 according to the present invention, as described above, the tip side member 30, which is expected to be worn together with at least the Cu stave 100 of the sensor body 3, is made of a solid rod made of Cu or Cu alloy, and the tip side The member 30 is provided with a plurality of housing holes 33 for individually housing the conductor units 4 , and the conductor units 4 are housed inside the housing holes 33 . For this reason, as in the prior art in which the metal protective tube provided at the tip of the wear detection sensor 1 is filled with a detection lead wire for detecting the progress of wear and a filler made of heat-resistant cement, MgO fine powder, etc., the sensor When the temperature of the tip portion frequently reaches a high temperature state of, for example, 800° C. or higher for a long period of time, the filling material is damaged early, and the detection lead wire is exposed to the high temperature gas in the furnace. It is possible to prevent erroneous detection caused by this.

すなわち、高炉の稼働時にCuステーブ100が高温に加熱されると、その熱がCuまたはCu合金製無垢材の棒状体からなる先端側部材30に対して迅速に伝達されて、両者が同様の温度分布状態となるため、Cuステーブ100に損耗が生じるとセンサ本体3の先端側部材30も略同時に損耗が生じることになる。したがって、Cuステーブ100に損耗が生じる前に、検出用導線40が炉内に露出することに起因した誤検出の発生が効果的に防止され、Cuステーブ100の損耗進行を長期に亘って精度よく測定することができる。なお、Cuステーブ100の熱を、先端部材30内の導線ユニット4に対しても、より迅速に伝達し、Cuステーブ100と導線ユニット4とを略同時に損耗させるようにして、検出精度をさらに向上させるためには、各導線ユニット4の周面を収容孔33の内面に密着させた状態とすることが好ましい。 That is, when the Cu stave 100 is heated to a high temperature during operation of the blast furnace, the heat is quickly transmitted to the tip side member 30 made of a rod-shaped body made of Cu or Cu alloy solid material, and both are at a similar temperature. Because of the distributed state, when the Cu stave 100 is worn, the tip side member 30 of the sensor body 3 is also worn substantially at the same time. Therefore, before the Cu stave 100 wears, the occurrence of erroneous detection due to the detection lead wire 40 being exposed in the furnace is effectively prevented, and the wear progress of the Cu stave 100 can be accurately monitored over a long period of time. can be measured. In addition, the heat of the Cu stave 100 is also transmitted more quickly to the conductor unit 4 in the tip member 30, and the Cu stave 100 and the conductor unit 4 are worn at approximately the same time, thereby further improving the detection accuracy. For this purpose, it is preferable that the peripheral surface of each conductor unit 4 is brought into close contact with the inner surface of the accommodation hole 33 .

上述のように検出用導線40が損耗・断線して引き起こす電気回路2の電気特性変化は、本例では検出用導線40の断線による抵抗値変化としている。すなわち、Cuステーブ100の損耗に応じて先端側部材30に内蔵されたた導線ユニット4の検出用導線40が損耗し、この検出用導線40が断線することで抵抗値が変化することを利用して、Cuステーブ100の損耗状況を検出するものである。その他、例えば検出用導線40の導通の有無により断線を判定することにより、Cuステーブ100の損耗状況を検出するものや、検出用導線40に熱電対線を使用し、その起電力測定により断線を判定することによりCuステーブ100の損耗状況を検出するもの等であってもよい。 As described above, the change in the electrical characteristics of the electric circuit 2 caused by the wear and disconnection of the detection lead wire 40 is assumed to be the change in the resistance value due to the disconnection of the detection lead wire 40 in this example. That is, according to the wear of the Cu stave 100, the detection lead wire 40 of the lead wire unit 4 built in the tip side member 30 is worn, and the resistance value changes due to the disconnection of the detection lead wire 40. , to detect the state of wear of the Cu stave 100 . In addition, for example, by determining the disconnection based on the presence or absence of conduction of the detection lead wire 40, the wear status of the Cu stave 100 is detected, or the thermocouple wire is used for the detection lead wire 40, and the electromotive force measurement is used to detect the disconnection. It may be one that detects the state of wear of the Cu stave 100 by determining.

本実施形態では、図4に示すように、上記検出素子21として、各検出用導線40の基端側に、電気回路2を構成する抵抗器9がそれぞれ直列接続されたうえで、各検出用導線40および抵抗器9の組が互いに並列接続され、外部の計測器91にて合成抵抗値を計測できるように構成されている。すなわち、本実施形態では、電気回路2が、Cuステーブ100に挿入される先端側部材30における長さ方向の異なる位置まで延び、Cuステーブ100の損耗に併せて順次断線する複数の検出用導線40と、これに接続された抵抗器9とからなる各径路を並列に接続した並列回路からなり、各経路(検出用導線40)が断線する毎に段階的に増加する合成抵抗値を捉えることで、Cuステーブ100の損耗状況を把握するように構成されている。 In this embodiment, as shown in FIG. 4, as the detection element 21, the resistors 9 constituting the electric circuit 2 are connected in series to the base ends of the respective detection lead wires 40, and then each detection element 21 is connected in series. A pair of conductors 40 and resistors 9 are connected in parallel with each other, and are configured so that the combined resistance value can be measured by an external measuring instrument 91 . That is, in the present embodiment, the electric circuit 2 extends to different positions in the length direction in the tip side member 30 inserted into the Cu stave 100, and a plurality of detection conducting wires 40 that are sequentially disconnected along with the wear of the Cu stave 100. and a resistor 9 connected thereto are connected in parallel to form a parallel circuit. , the state of wear of the Cu stave 100 is grasped.

各検出用導線40および抵抗器9からなる経路の抵抗値(抵抗器9の抵抗値)を一定値とした場合、センサ本体3の先端側部材30の損耗量が少なく、断線経路数も少ない損耗の初期段階では、その合成抵抗値の変化が後述のように微小となり、高い検出精度が要求される。これに対し、各検出用導線40および抵抗器9からなる経路の抵抗値(抵抗器9の抵抗値)を、経路断線による抵抗値変化が常に一定の変化量(増加量)となるように設定した場合、合成抵抗値の変化が後述のように一定となり、電気回路2をデータ処理装置に接続することで、特別な電気信号の処理を必要とせず、損耗状況を常に視覚的に把握し易いデータとして出力することが可能となる。 When the resistance value of the path composed of each detection lead wire 40 and the resistor 9 (resistance value of the resistor 9) is set to a constant value, the amount of wear of the tip side member 30 of the sensor main body 3 is small, and the number of disconnection paths is also small. In the initial stage of , the change in the combined resistance value becomes minute as described later, and high detection accuracy is required. On the other hand, the resistance value of the path (resistance value of the resistor 9) composed of each lead wire 40 for detection and the resistor 9 is set so that the change in the resistance value due to the disconnection of the path is always a constant amount of change (increase amount). In this case, the change in the combined resistance becomes constant as will be described later, and by connecting the electric circuit 2 to a data processing device, no special electric signal processing is required, and the state of wear and tear can be easily grasped visually at all times. It becomes possible to output as data.

例えば、表1に示すように、各検出用導線40の断線検出位置をセンサ先端から10mm間隔で、10経路分だけ配置し、各径路が持つ抵抗値Ωを、それぞれ(a)断線毎の抵抗値の増加量が一定となるように設定(20Ω、60Ω、120Ω・・)、(b)各径路の抵抗値を一定(100Ω)に設定し、センサ先端からの損耗状況に応じて、検知用導線40が先端側(経路1)から順次断線された場合の合成抵抗値を求めた(表2)。 For example, as shown in Table 1, the disconnection detection position of each detection lead wire 40 is arranged at intervals of 10 mm from the sensor tip for 10 paths, and the resistance value Ω of each path is calculated as (a) resistance for each disconnection (20 Ω, 60 Ω, 120 Ω . . . ), (b) set the resistance value of each path to a constant value (100 Ω), A combined resistance value was obtained when the conducting wire 40 was sequentially disconnected from the tip side (path 1) (Table 2).

図6は、表2に示された(a)パターンにおける合成抵抗値Ωの変化を示すグラフである。また、図7は、表2に示された(b)パターンにおける合成抵抗値Ωの変化を示すグラフである。Cuステーブの損耗に応じて、位置Akまでの検出用導線40が断線した場合の合成抵抗値Ωの値Rkは、1/{(1/Rk+1)+(1/Rk+2)+・・・+(1/Rn)}で算出される。 FIG. 6 is a graph showing changes in combined resistance value Ω in pattern (a) shown in Table 2. In FIG. FIG. 7 is a graph showing changes in combined resistance value Ω in pattern (b) shown in Table 2. In FIG. The value Rk of the combined resistance value Ω when the detection lead wire 40 to the position Ak is disconnected according to the wear of the Cu stave is 1/{(1/Rk+1)+(1/Rk+2)+...+( 1/Rn)}.

Figure 2023064567000002
Figure 2023064567000002

Figure 2023064567000003
Figure 2023064567000003

(a)パターンの場合におけるグラフでは、図6に示すように、損耗の進行度合いに関わらず常に合成抵抗値Ωの変化量(増加量)が、一定となる。これに対して、(b)パターンの場合におけるグラフでは、図7に示すように、損耗初期段階における合成抵抗値Ωの変化量が僅かであることが分かる。電気回路2と接続する測定器を考えた場合、(b)パターンでは、損耗初期段階のわずかな合成抵抗値Ωの変化を測定するために高い検出精度が必要となる。これに対して、(a)パターンでは、損耗の全段階で合成抵抗値Ωが一定の割合で変化量するために、一定の検出精度で過不足なく測定することができる。また、得られるデータについても、(a)パターンの場合には常に一定の変化量であるから定量的に損耗状況を把握し易いことが明らかである。 In the graph in the case of pattern (a), as shown in FIG. 6, the amount of change (increase) in the combined resistance value Ω is always constant regardless of the progress of wear. On the other hand, in the graph for the pattern (b), as shown in FIG. 7, it can be seen that the amount of change in the combined resistance value Ω in the initial stage of wear is small. Considering a measuring instrument connected to the electric circuit 2, the pattern (b) requires high detection accuracy in order to measure a slight change in the combined resistance value Ω in the initial stage of wear. On the other hand, in the pattern (a), since the combined resistance value Ω changes at a constant rate in all stages of wear, it is possible to measure with a constant detection accuracy without excess or deficiency. As for the obtained data, in the case of pattern (a), since the amount of change is always constant, it is clear that it is easy to grasp the state of wear quantitatively.

そして、合成抵抗値Ωの変化が生じる電気回路2を外部のデータ処理装置としての計測器91に接続するだけで、特別な電気信号の処理を必要とすることなく、Cuステーブ100の損耗状況が容易に判定可能なデータを出力することができる。このような計測器91により、Cuステーブ100の損耗状況のオンライン管理が可能である。また、計測器91が出力する信号を、有線または無線の通信網を介して別途設けたデータ処理装置に送信するように構成すれば、遠隔でのオンライン監視も可能となる。 Then, by simply connecting the electric circuit 2 in which the combined resistance value Ω changes to the measuring instrument 91 as an external data processing device, the wear condition of the Cu stave 100 can be determined without requiring special electric signal processing. Data that can be easily determined can be output. Such a measuring instrument 91 enables on-line management of the wear status of the Cu stave 100 . Further, if the signal output from the measuring instrument 91 is configured to be transmitted to a separately provided data processing device via a wired or wireless communication network, remote online monitoring becomes possible.

また、本例の損耗検出センサ1は、図1、図4、図5に示すように、熱電対50等からなる温度センサ5を内蔵し、この温度センサ5がセンサ本体3の基端側から延出して外部の計測器51に接続されたものであってもよい。前記温度センサ5として熱電対以外を使用可能であることは勿論であり、かつ温度センサ5の測温位置も任意に設定できる。このような温度センサ5を備えた損耗検出センサ1は、高炉の測温機能を併せ持ち、Cuステーブ100の損耗進行と温度履歴との関係も把握可能とされている。 As shown in FIGS. 1, 4 and 5, the wear detection sensor 1 of this embodiment incorporates a temperature sensor 5 comprising a thermocouple 50 or the like. It may be extended and connected to an external measuring instrument 51 . It goes without saying that a temperature sensor other than a thermocouple can be used as the temperature sensor 5, and the temperature measurement position of the temperature sensor 5 can be arbitrarily set. The wear detection sensor 1 having such a temperature sensor 5 also has a function of measuring the temperature of the blast furnace, and is capable of grasping the relationship between the progress of wear of the Cu stave 100 and the temperature history.

上述のような温度センサ5付きの損耗検出センサ1とすれば、高炉の操業解析、設備管理に効果的であり、しかもセンサの外形寸法や接続用合フランジを既設のステーブ温度計と同じサイズに設定することで、該ステーブ温度計と交換して使用することが可能となり、既設の高炉に対して容易に設置することができる。例えば、口径11mmの設置孔に既設のステーブ温度計が設置された高炉の場合、前記温度センサ5を備えた損耗検出センサ1の外径を10mm程度とすることにより、高炉の稼働中であっても通常の定期点検時等に温度センサ5付きの損耗検出センサ1を既設のステーブ温度計と交換して取り付けることが可能である。 If the wear detection sensor 1 with the temperature sensor 5 as described above is used, it is effective for blast furnace operation analysis and facility management. By setting, it becomes possible to replace the stave thermometer and use it, and it can be easily installed in the existing blast furnace. For example, in the case of a blast furnace in which an existing stave thermometer is installed in an installation hole with a diameter of 11 mm, by setting the outer diameter of the wear detection sensor 1 equipped with the temperature sensor 5 to about 10 mm, the blast furnace is in operation It is also possible to replace the existing stave thermometer with the wear detection sensor 1 with the temperature sensor 5 at the time of regular periodic inspection.

なお、Cuステーブ100を新規に設計する際等において、例えば口径30mmの設置孔を高炉のCuステーブ100に設け、この設置孔に29mm程度の外径を有するとともに、温度センサ5と多数(26本程度)の導線ユニット4が配設された損耗検出センサ1を設置することも可能である。このように多点検出型の損耗検出センサ1を用いることで、Cuステーブ100の損耗進行を、容易かつ詳細に検出することができる。 In addition, when designing a new Cu stave 100, for example, an installation hole with a diameter of 30 mm is provided in the Cu stave 100 of the blast furnace, and the installation hole has an outer diameter of about 29 mm. It is also possible to install the wear detection sensor 1 in which the wire unit 4 is arranged. By using the multi-point detection type wear detection sensor 1 in this way, the progress of wear of the Cu stave 100 can be detected easily and in detail.

損耗検出センサ1は、高炉の高さ方向、円周方向に複数配置することで、高炉操業、炉体管理センサにも成り得る。本発明の損耗検出センサ1は、高炉内壁に設置されているCuステーブの損耗進行を20年以上の長期間にわたりオンラインにて精度良く検出することが可能となり、高炉寿命に関わる箇所(朝顔部、炉腹部、シャフト下部)の炉体管理に適している。 By arranging a plurality of wear detection sensors 1 in the height direction and the circumferential direction of the blast furnace, they can also serve as a blast furnace operation and furnace body control sensor. The wear detection sensor 1 of the present invention makes it possible to accurately detect the progress of wear of the Cu stave installed on the inner wall of the blast furnace online for a long period of 20 years or more. It is suitable for controlling the furnace body (furnace belly, shaft lower part).

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。また、本発明に係る損耗検出センサ1の先端側部材30を、FCDステーブや鋳鋼製ライナーの損耗を検出するために同等の材質FCDや鋳鋼とすることにより、各々の損耗検出センサとして応用することも可能である。 Although the embodiments of the present invention have been described above, the present invention is by no means limited to such embodiments, and can of course be embodied in various forms without departing from the gist of the present invention. In addition, the tip side member 30 of the wear detection sensor 1 according to the present invention can be applied as each wear detection sensor by using the same material FCD or cast steel to detect the wear of the FCD stave or cast steel liner. is also possible.

1 損耗検出センサ
2 電気回路
3 センサ本体
5 温度センサ
6 計装ガイド管
9 抵抗器
11 取付合フランジ
21 検出素子
30 先端側部材
31 中間保護管
32 基端側保護管
40 検出用導線
50 熱電対
51 計測器
60 コンプレッションフィッティング
62 取合フランジ
91 計測器
100 Cuステーブ
101 冷却水管路
102 キャスタブル
103 鉄皮
Reference Signs List 1 Wear detection sensor 2 Electric circuit 3 Sensor main body 5 Temperature sensor 6 Instrumentation guide tube 9 Resistor 11 Mounting flange 21 Detection element 30 Distal side member 31 Intermediate protection tube 32 Base end side protection tube 40 Lead wire for detection 50 Thermocouple 51 Measuring instrument 60 Compression fitting 62 Mating flange 91 Measuring instrument 100 Cu stave 101 Cooling water pipe 102 Castable 103 Steel shell

Claims (3)

高炉内壁に設置されているCuステーブ内に挿入され、該Cuステーブの損耗を検出する高炉のCuステーブの損耗検出センサであって、
前記Cuステーブの損耗に伴って損耗・断線することで、電気特性変化を引き起こす電気回路がセンサ本体内に収容されており、
前記電気回路を構成して前記電気特性変化を引き起こす検出用導線を有する複数の導線ユニットが、前記Cuステーブとともに損耗が予定される前記センサ本体の先端側部材における長さ方向の異なる位置まで伸びるように配され、
前記各導線ユニットの検出用導線は、前記センサ本体における炉外となる基端部側の位置まで伸び、該基端部側にて前記電気回路を構成する検出素子として抵抗器が直列接続されたうえで、前記各検出用導線及び前記各抵抗器の組が互いに並列接続されており、
前記センサ本体の少なくとも前記Cuステーブとともに損耗が予定される先端側部材は、CuまたはCu合金製無垢材の棒状体からなり、
前記先端側部材には、前記各導線ユニットをそれぞれ個別に収容する複数の収容孔が設けられるとともに、前記導線ユニットが、前記収容孔の内部に収容され、
前記並列接続された前記電気回路の合成抵抗値の変化によりCuステーブの損耗を検出する、
高炉のCuステーブの損耗検出センサ。
A blast furnace Cu stave wear detection sensor that is inserted into a Cu stave installed on the inner wall of a blast furnace and detects wear of the Cu stave,
An electric circuit that causes a change in electrical characteristics due to wear and disconnection due to wear of the Cu stave is housed in the sensor body,
A plurality of lead wire units having a detection lead wire that constitutes the electric circuit and causes the change in electrical characteristics extend to different positions in the length direction of the tip side member of the sensor body, which is expected to be worn together with the Cu stave. distributed to
The detection lead wire of each lead wire unit extends to a position on the base end side outside the furnace in the sensor main body, and a resistor is connected in series as a detection element constituting the electric circuit on the base end side. In addition, each of the detection lead wires and each resistor set is connected in parallel with each other,
At least the tip side member of the sensor body, which is expected to wear out together with the Cu stave, is made of a rod-shaped solid material made of Cu or Cu alloy,
The distal end member is provided with a plurality of housing holes for individually housing the respective conductor units, and the conductor units are housed inside the housing holes,
Detecting wear of the Cu stave by a change in the combined resistance value of the electric circuit connected in parallel,
Blast furnace Cu stave wear detection sensor.
前記検出素子を介して前記電気回路がデータ処理装置接続される、
請求項1記載の高炉のCuステーブの損耗検出センサ。
the electrical circuit is connected to a data processing device via the sensing element;
The Cu stave wear detection sensor for a blast furnace according to claim 1.
前記センサ本体内に温度センサが収容されている、
請求項1又は2記載の高炉のCuステーブの損耗検出センサ。
a temperature sensor is housed within the sensor body;
A wear detection sensor for a Cu stave of a blast furnace according to claim 1 or 2.
JP2021174912A 2021-10-26 2021-10-26 Cu STAVE ABRASION DETECTION SENSOR Pending JP2023064567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021174912A JP2023064567A (en) 2021-10-26 2021-10-26 Cu STAVE ABRASION DETECTION SENSOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021174912A JP2023064567A (en) 2021-10-26 2021-10-26 Cu STAVE ABRASION DETECTION SENSOR

Publications (1)

Publication Number Publication Date
JP2023064567A true JP2023064567A (en) 2023-05-11

Family

ID=86271425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021174912A Pending JP2023064567A (en) 2021-10-26 2021-10-26 Cu STAVE ABRASION DETECTION SENSOR

Country Status (1)

Country Link
JP (1) JP2023064567A (en)

Similar Documents

Publication Publication Date Title
US6139180A (en) Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
US4442706A (en) Probe and a system for detecting wear of refractory wall
US11221257B2 (en) Temperature probe
US20200256737A1 (en) Mineral insulated sheathed assembly with grounded and ungrounded temperature sensors
US8739621B2 (en) Electrical heating element and method of measuring a filling level
PL197746B1 (en) Behind the brick thermocouple
EP3548855B1 (en) Shorted thermocouple diagnostic
JP2008254017A (en) Method and apparatus for diagnosing mold thermocouple in continuous casting facility
JP2023064567A (en) Cu STAVE ABRASION DETECTION SENSOR
JP7356684B2 (en) Device for estimating the amount of thinning of a metal member and method for estimating the amount of thinning of a metal member using the same
JP3177887U (en) Sheath type temperature measuring device
JP2005003575A (en) Temperature measuring sensor, refractory body, and diagnostic method for fireproof lining
US10393593B2 (en) Measuring arrangement comprising first and second pairs of thermowires
JP7396594B2 (en) Blast furnace Cu stave wear detection sensor
US4995732A (en) Method and apparatus for continuous measurement of the temperature of electroconductive melt and the thickness of refractory lining
JPH10325759A (en) Temperature sensor
RU72757U1 (en) THERMOELECTRIC CONVERTER FOR MEASURING SURFACE SURFACE TEMPERATURE (OPTIONS)
CN2338739Y (en) Thermo-couple for continuously testing temp. of molten steel in steel smelting furnace
JP3016989B2 (en) Blast furnace refractory residual thickness measurement method
JPS5916816Y2 (en) Temperature distribution detection sensor
RU2617458C2 (en) Smart temperature measurements device
KR101246498B1 (en) Probe for blast furnace
JP6225032B2 (en) Thermocouple inspection device and thermocouple inspection method
JP2020134137A (en) Moisture sensor and sensor for vapor pressure measurement device
KR20110050990A (en) Stave of furnace thickness measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240827