JP2023064370A - Hydrogen generating material and manufacturing method thereof - Google Patents

Hydrogen generating material and manufacturing method thereof Download PDF

Info

Publication number
JP2023064370A
JP2023064370A JP2021174614A JP2021174614A JP2023064370A JP 2023064370 A JP2023064370 A JP 2023064370A JP 2021174614 A JP2021174614 A JP 2021174614A JP 2021174614 A JP2021174614 A JP 2021174614A JP 2023064370 A JP2023064370 A JP 2023064370A
Authority
JP
Japan
Prior art keywords
hydrogen
water
hydrogen generating
resin
generating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021174614A
Other languages
Japanese (ja)
Inventor
博志 泉田
Hiroshi Izumida
哲也 松井
Tetsuya Matsui
雅喜 中山
Masaki Nakayama
啓介 岩崎
Keisuke Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP2021174614A priority Critical patent/JP2023064370A/en
Publication of JP2023064370A publication Critical patent/JP2023064370A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a hydrogen generating material capable of supplying more hydrogen even in applications where the usage time is short.SOLUTION: A hydrogen generating material is characterized by containing a hydrogen generator that generates molecular hydrogen by reacting with water and containing a water-absorbing resin.SELECTED DRAWING: None

Description

本発明は、新規な水素発生材料に関する。より具体的には、水又は水を含む液体と接触した際に水素を発生する材料に関する The present invention relates to novel hydrogen generating materials. More specifically, it relates to materials that generate hydrogen when in contact with water or liquids containing water.

近年、水素ガスあるいは水素を含む水又は液体を人体に作用させた際に、人体にいろいろな有益な効能が得られることが明らかとなりつつある。このため、水素を発生させる材料、水素を密封した製品等が種々提案されている。 In recent years, it has become clear that various beneficial effects can be obtained on the human body when hydrogen gas or water or liquid containing hydrogen is applied to the human body. For this reason, various proposals have been made for materials that generate hydrogen, products in which hydrogen is sealed, and the like.

例えば、水と接触することにより水素を発生する材料であって、(1)a)水と反応して水素を発生し得る水素発生粒子、b)被覆用樹脂及びc)マトリックス用樹脂を含み、(2)少なくとも当該材料表面から突出する水素発生粒子の表面が被覆用樹脂を含む被覆層で覆われている、ことを特徴とする水素発生材料が知られている(特許文献1)。 For example, a material that generates hydrogen upon contact with water, comprising: (1) a) hydrogen-generating particles capable of reacting with water to generate hydrogen, b) a coating resin, and c) a matrix resin, (2) A hydrogen generating material is known in which at least the surfaces of hydrogen generating particles protruding from the surface of the material are covered with a coating layer containing a coating resin (Patent Document 1).

特開2019-182699号公報JP 2019-182699 A

しかしながら、従来技術のような水素発生材料では、水素発生速度が遅く、短時間では十分な水素量を供給することは困難である。従って、このような水素発生材料は、例えば使用時間が短い用途には適していない。 However, with hydrogen generating materials such as those of the prior art, the rate of hydrogen generation is slow, and it is difficult to supply a sufficient amount of hydrogen in a short period of time. Therefore, such hydrogen generating materials are not suitable for short duration applications, for example.

従って、本発明の主な目的は、使用時間が短い用途でもより多くの水素を供給することが可能な水素発生材料を提供することにある。 SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a hydrogen generating material capable of supplying a large amount of hydrogen even when used for a short period of time.

本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の構造を有する材料が上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive research in view of the problems of the prior art, the inventors have found that a material having a specific structure can achieve the above objects, and have completed the present invention.

すなわち、本発明は、下記の水素発生材料に係る。
1. 水と反応して分子状水素を発生する水素発生剤と、吸水性樹脂とを含むことを特徴とする水素発生材料。
2. 前記水素発生剤が、金属及び水素化金属の少なくとも1種である、前記項1に記載の水素発生材料。
3. 前記水素発生剤は粒子状であり、前記粒子の体積平均粒子径が1~100μmである、前記項1又は2に記載の水素発生材料。
4. 前記吸水性樹脂がポリアルキレンオキサイド系樹脂を含む、前記項1~3のいずれかに記載の水素発生材料。
5. 前記吸水性樹脂が、さらにポリオレフィン樹脂又はスチロール樹脂の少なくとも1種を含む、前記項1~4のいずれかに記載の水素発生材料。
That is, the present invention relates to the following hydrogen generating material.
1. A hydrogen generating material comprising: a hydrogen generating agent that reacts with water to generate molecular hydrogen; and a water absorbent resin.
2. 2. The hydrogen generating material according to item 1, wherein the hydrogen generating agent is at least one of metal and metal hydride.
3. 3. The hydrogen generating material according to item 1 or 2, wherein the hydrogen generating agent is particulate, and the particles have a volume average particle diameter of 1 to 100 μm.
4. 4. The hydrogen generating material according to any one of items 1 to 3, wherein the water-absorbent resin contains a polyalkylene oxide resin.
5. 5. The hydrogen generating material according to any one of items 1 to 4, wherein the water absorbent resin further contains at least one of polyolefin resin and styrene resin.

本発明によれば、使用時間が短い用途でもより多くの水素を供給することが可能な水素発生材料を提供することができる。特に、本発明では、水素発生剤のいわば支持体として吸水性樹脂を用いているので、本発明材料中で水素発生剤が水と接触できる機会(頻度)が高まり、それによって効果的に水素を発生させることが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the hydrogen-producing material which can supply more hydrogen can be provided even in the use for a short time. In particular, in the present invention, since the water-absorbing resin is used as a so-called support for the hydrogen generating agent, the opportunity (frequency) for the hydrogen generating agent to come into contact with water in the material of the present invention increases, thereby effectively releasing hydrogen. can be generated.

本発明の水素発生材料(本発明材料)は、水と反応して分子状水素を発生する水素発生剤と、吸水性樹脂とを含むことを特徴とする。従って、本発明材料は、基本的には水素発生剤と吸水性樹脂から構成されるが、本発明の効果を妨げない範囲内で他の成分(樹脂成分、添加剤等)が含まれていても良い。 The hydrogen generating material of the present invention (the material of the present invention) is characterized by containing a hydrogen generating agent that reacts with water to generate molecular hydrogen, and a water absorbent resin. Therefore, the material of the present invention is basically composed of a hydrogen generating agent and a water-absorbent resin, but may contain other components (resin components, additives, etc.) within a range that does not interfere with the effects of the present invention. Also good.

水素発生剤は、水と反応して分子状水素を供給する物質であれば限定的でなく、特に金属及び水素化金属(金属水素化物)の少なくとも1種を好適に用いることができる。ここで、上記の水としては、液体単体の水(HO)(純水、水道水等)のほか、水を含む組成物(水溶液又は水分散液)中に含まれる水、水蒸気等のいずれであっても良い。 The hydrogen generating agent is not limited as long as it is a substance that reacts with water to supply molecular hydrogen, and in particular at least one of metals and metal hydrides (metal hydrides) can be preferably used. Here, the above water includes water (H 2 O) (pure water, tap water, etc.) as a single liquid, water contained in a composition containing water (aqueous solution or water dispersion), water vapor, etc. Either one may be used.

金属としては、例えばマグネシウム、アルミニウム等の金属単体及びそれらを含む合金からなる群から選択される少なくとも1種を挙げることができる。 Examples of the metal include at least one selected from the group consisting of elemental metals such as magnesium and aluminum and alloys containing them.

水素化金属としては、例えば水素化マグネシウム、水素化カルシウム、水素化バリウム、水素化ベリリウム、水素化ストロンチウム、水素化リチウム、水素化ナトリウム、水素化ホウ素ナトリウム、水素化リチウムナトリウム、水素化ケイ素、水素化アルミニウム等を挙げることができる。これらは、1種又は2種以上で用いることができる。 Examples of metal hydrides include magnesium hydride, calcium hydride, barium hydride, beryllium hydride, strontium hydride, lithium hydride, sodium hydride, sodium borohydride, sodium lithium hydride, silicon hydride, hydrogen aluminum chloride and the like. These can be used singly or in combination of two or more.

水素発生剤の形態は、特に限定さないが、通常は粉末状であることが好ましい。この場合の粉末を構成する粒子の平均粒径は、特に限定されないが、例えば体積平均粒子径が1~100μmのものが好ましい。従って、例えば体積平均粒子径が10~50μmの粒子も好適に用いることができる。体積平均粒子径が1μm未満である場合は、粒子どうしが凝集しやすくなり、吸水性樹脂への分散性が低下するおそれがある。また、平均粒径が100μmを超えると、粒子の重さが樹脂への分散性低下に影響するおそれがある。ここで、体積平均粒子径とは、レーザー回折法により測定された粒子群の体積累積粒度分布の結果から平均粒径D50(50%粒子径)を算出した値である。 Although the form of the hydrogen generating agent is not particularly limited, it is usually preferably in the form of powder. The average particle diameter of the particles constituting the powder in this case is not particularly limited, but, for example, a volume average particle diameter of 1 to 100 μm is preferable. Therefore, particles having a volume average particle diameter of 10 to 50 μm, for example, can also be preferably used. When the volume average particle size is less than 1 μm, the particles tend to agglomerate, and the dispersibility in the water-absorbing resin may deteriorate. Moreover, when the average particle diameter exceeds 100 μm, the weight of the particles may affect the deterioration of the dispersibility in the resin. Here, the volume average particle size is a value obtained by calculating the average particle size D50 (50% particle size) from the results of the volume cumulative particle size distribution of the particle group measured by the laser diffraction method.

また、粒子は、上記金属又は水素化金属のみにより構成されても良いが、本発明の効果を妨げない限り、例えば樹脂に粒子が混練された造粒物の形態でも良いし、粒子の表面が樹脂等で被覆された複合粒子の形態等であっても良い。 In addition, the particles may be composed of only the above metal or metal hydride, but as long as the effects of the present invention are not hindered, for example, the particles may be in the form of granules kneaded with a resin, or the surfaces of the particles may be It may be in the form of composite particles coated with resin or the like.

本発明材料における水素発生剤の含有量は、所望の水素発生量等に応じて適宜設定することができ、例えば本発明材料中0.1~10重量%程度とすることができるが、これに限定されない。この範囲内に設定することによって、水素発生剤の分散性がより高くなり、より高い水素発生速度を得ることができる。 The content of the hydrogen generating agent in the material of the present invention can be appropriately set according to the desired hydrogen generation amount and the like, and can be, for example, about 0.1 to 10% by weight in the material of the present invention. Not limited. By setting it within this range, the dispersibility of the hydrogen generating agent becomes higher, and a higher hydrogen generation rate can be obtained.

吸水性樹脂は、特に水素発生剤の支持体として機能するとともに、水との接触を促進する機能を有する。このため、吸水性樹脂が水素発生剤を内包したり、あるいは吸水性樹脂に水素発生剤が分散されることで支持体等として機能できる。 The water-absorbent resin functions particularly as a support for the hydrogen generating agent and has a function of promoting contact with water. Therefore, the water-absorbent resin can function as a support or the like by encapsulating the hydrogen-generating agent or by dispersing the hydrogen-generating agent in the water-absorbent resin.

吸水性樹脂は、樹脂材料として吸水性を謳うものであれば特に限定されないが、例えばアクリル酸-ビニルアルコール共重合体、ポリアルキレンオキサイド系樹脂、ポリエチレンオキサイド系樹脂、ポリビニルアルコール系樹脂等の少なくとも1種を吸水性樹脂(本発明吸水性樹脂)として好適に用いることができる。その中でも、ポリアルキレンオキサイド系樹脂(例えば変性ポリアルキレンオキサイド)が、コンパウンド時の取扱いが容易であるとともに、比較的少ない配合量でベース樹脂に吸水性能を付与できるという点でより好ましい。 The water-absorbing resin is not particularly limited as long as it is a resin material that claims water-absorbing properties. For example, acrylic acid-vinyl alcohol copolymer, polyalkylene oxide resin, polyethylene oxide resin, polyvinyl alcohol resin, etc. Seeds can be suitably used as the water absorbent resin (the water absorbent resin of the present invention). Among these, polyalkylene oxide-based resins (eg, modified polyalkylene oxide) are more preferable because they are easy to handle during compounding and can impart water absorption performance to the base resin with a relatively small amount.

なお、本発明において、吸水性樹脂とは、デシケータにて十分に乾燥した吸収性樹脂(粒状又はシート状)を十分な量の純水(23℃)に浸して24時間後に取り出し、表面の水分をふき取ったときの重量(吸水率)が元の吸収性樹脂の重量よりも0.2%以上増加するものと定義する。 In the present invention, the water-absorbent resin means that the absorbent resin (granular or sheet-like) sufficiently dried in a desiccator is immersed in a sufficient amount of pure water (23 ° C.) and taken out after 24 hours. The weight (water absorption) when wiped off is defined as an increase of 0.2% or more from the weight of the original absorbent resin.

本発明材料中における吸水性樹脂の含有量は、例えば用いる水素発生剤の種類、所望の水素発生量等に応じて適宜設定することができる。従って、例えば20~99.9重量%程度(さらには30~95質量%程度)の範囲内で設定することもできるが、これに限定されない。 The content of the water-absorbing resin in the material of the present invention can be appropriately set according to, for example, the type of hydrogen generating agent used, the desired amount of hydrogen generation, and the like. Therefore, it can be set within a range of, for example, about 20 to 99.9% by weight (furthermore, about 30 to 95% by weight), but is not limited to this.

本発明材料では、主として吸水速度の制御、強度、加工性等の向上の目的で、上記吸水性樹脂(特に本発明吸水性樹脂)とは別途に、例えばスチロール樹脂、ポリエステル樹脂(ポリエチレンテレフタレート等)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、ポリエチレングリコール等の少なくとも1種の樹脂を適宜併用しても良い。これらの樹脂の配合量は、例えば本発明材料中30~80重量%程度とすることもできるが、これに限定されない。 In the material of the present invention, for the purpose of mainly controlling the water absorption rate, strength, and improving workability, for example, styrene resin, polyester resin (polyethylene terephthalate, etc.) , polyolefin resins (polyethylene, polypropylene, etc.), and at least one resin such as polyethylene glycol may be used in combination as appropriate. The blending amount of these resins can be, for example, about 30 to 80% by weight in the material of the present invention, but is not limited to this.

また、本発明では、必要に応じて、例えばでんぷん、セルロース等の吸水剤を併用することもできる。例えば、比較的吸水性が低い樹脂(例えばポリエチレン、ポリプロピレン等のポリオレフィン樹脂、スチロール樹脂等)に添加することにより吸水性を高めた樹脂組成物を用いることもできる。この場合の吸水剤の添加量は、特に限定されないが、通常は樹脂100重量部に対して5~50重量部程度とすることができる。 Moreover, in the present invention, a water-absorbing agent such as starch or cellulose can be used in combination, if necessary. For example, it is also possible to use a resin composition whose water absorbency is increased by adding it to a resin having relatively low water absorbency (for example, polyolefin resin such as polyethylene and polypropylene, styrene resin, etc.). The amount of the water-absorbing agent added in this case is not particularly limited, but it can usually be about 5 to 50 parts by weight per 100 parts by weight of the resin.

本発明材料の形態は、本発明の効果を妨げない範囲内において、特に限定されず、例えば粉末状(造粒物)、成形体等のいずれでも良い。 The form of the material of the present invention is not particularly limited as long as the effects of the present invention are not impaired, and may be, for example, a powder (granule), a compact, or the like.

本発明材料の製造方法は、特に限定されず、例えば所望の形態、用いる原料の種類等に応じて適宜選択することができる。 The method for producing the material of the present invention is not particularly limited, and can be appropriately selected according to, for example, the desired form, the type of raw material to be used, and the like.

一般的には、吸水性樹脂を含む樹脂成分に水素発生剤を添加する工程を含む方法を採用すれば良い。添加方法は、公知又は市販の混合機、ニーダー等の各種の装置を用いれば良い。 In general, a method including a step of adding a hydrogen generating agent to a resin component containing a water absorbent resin may be employed. As for the method of addition, various devices such as known or commercially available mixers and kneaders may be used.

水素発生剤を添加する方法は、特に限定されないが、例えばa)水素発生剤を熱可塑性の樹脂成分(例えば、吸水性樹脂を含む溶融物)と混練する方法、b)樹脂成分(吸水性樹脂等)が溶剤に溶解した溶液又は溶剤に分散した分散液に水素発生剤を分散する方法等を採用することができる。 The method of adding the hydrogen generating agent is not particularly limited. etc.) dissolved in a solvent or a method of dispersing the hydrogen generating agent in a dispersion liquid dispersed in a solvent.

混合した後においては、必要に応じて所望の形態に成形することもできる。例えば、プレス成形、押出し成形等の公知の成形方法を採用することができる。 After mixing, it can be molded into a desired shape, if necessary. For example, known molding methods such as press molding and extrusion molding can be employed.

例えば、本発明材料は、シート状の成形体として提供することができる。本発明材料がシート状である場合、その厚みは限定されないが、例えば0.1~10mmの範囲であると、水素供給先へ過不足なく効率的に水素を供給することができる。 For example, the material of the present invention can be provided as a sheet-like molding. When the material of the present invention is in the form of a sheet, its thickness is not limited, but if it is in the range of 0.1 to 10 mm, for example, hydrogen can be efficiently supplied to the hydrogen supply destination without excess or deficiency.

本発明材料では、一般に水素発生剤を含む量が多いほど、表面に露出する水素発生剤の量が増えるため、水と反応しやすくなる。かかる見地より、前記のように、水素発生剤の含有量は、例えば0.1~10重量%程度とすることができる。 In the present invention material, generally, the larger the amount of the hydrogen generating agent contained, the more the amount of the hydrogen generating agent exposed to the surface, and the easier it is to react with water. From this point of view, as described above, the content of the hydrogen generating agent can be, for example, about 0.1 to 10% by weight.

また、このシート状成形体の一方の面又は両面に、例えば紙、金属缶、金属板、金属箔、金属蒸着膜、不織布、布、樹脂からなる群から選択される1種又は2種以上の層が積層された積層体の形態を採用することもできる。 In addition, on one or both sides of this sheet-like molded body, for example, one or more selected from the group consisting of paper, metal cans, metal plates, metal foils, metal deposition films, nonwoven fabrics, cloths, and resins It is also possible to adopt a form of a laminate in which layers are laminated.

さらに、本発明材料は、平坦なシート状のまま使用してもよいが、エンボス状に成形しても良いし、容器形状に成形しても良い。また、発泡させて発泡体としても良い。 Further, the material of the present invention may be used in the form of a flat sheet as it is, but may be formed into an embossed shape or a container shape. Moreover, it is good also as a foam by foaming.

また、本発明材料が粒子状(造粒物)の形態をとることもできる。この場合の造粒物の大きさは特に限定されないが、例えば体積平均粒子径が0.1~10mm程度が好ましい。体積平均粒子径が0.1mm未満の場合は、造粒物が舞いやすく作業性が悪くなるおそれがある。また、10mmを超えると、単位重量当たりの表面積が小さいため、水素発生速度が低下するおそれがある。本発明材料が上記の構成を備えることによって、水素発生速度が大きくなり、すなわち短時間での水素発生量が多くなる。 The material of the present invention can also take the form of particles (granules). Although the size of the granules in this case is not particularly limited, for example, the volume average particle diameter is preferably about 0.1 to 10 mm. If the volume-average particle size is less than 0.1 mm, the granules tend to float and workability may deteriorate. On the other hand, if it exceeds 10 mm, the surface area per unit weight is so small that the hydrogen generation rate may decrease. When the material of the present invention has the above structure, the rate of hydrogen generation increases, that is, the amount of hydrogen generated in a short period of time increases.

本発明材料において、その発生した水素を利用する対象(水素供給先)としては、本発明材料と直接又は間接的に接触させて水素を供給する対象であれば良い。特に、水素の作用(例えば還元作用)により物性を維持ないしは改善できるものが好ましい。 In the material of the present invention, the object to which the generated hydrogen is used (hydrogen supply destination) may be any object to which hydrogen is supplied through direct or indirect contact with the material of the present invention. In particular, those that can maintain or improve physical properties by the action of hydrogen (for example, reduction action) are preferred.

また、水素供給先は、水又は水を含む液体であっても良いし、水を含む固体あるいは気体であっても良い。従って、例えばa)飲料、食肉類、魚介類、野菜、果物等の食材、b)前記食材を原材料とする加工食品のほか、例えば生花、菌類、細菌類、植物の種子、輸血用血液、輸液、風呂水、洗濯水、洗剤、大気、創傷被覆材、化粧品、オムツ、ペット用飲料、飼育水槽水、微生物、土壌、餌、室内空間、人体、動物、植物等が水素供給先として挙げられる。これらは、水素供給先であると同時に水素発生材料への水分供給源にもなり得るが、水分供給源と水素供給先とが異なっていても良い。特に、水素供給先は、水素発生材料への水分供給源であることが好ましい。 Moreover, the hydrogen supply destination may be water or a liquid containing water, or may be a solid or gas containing water. Therefore, for example, a) foodstuffs such as beverages, meats, seafood, vegetables, fruits, etc., b) processed foods made from the above foodstuffs as raw materials, as well as fresh flowers, fungi, bacteria, plant seeds, blood for transfusion, and infusion solutions. , bath water, washing water, detergents, air, wound dressings, cosmetics, diapers, pet beverages, aquarium water, microorganisms, soil, food, indoor spaces, human bodies, animals, plants, etc. These can serve as both a hydrogen supply destination and a water supply source to the hydrogen generating material at the same time, but the water supply source and the hydrogen supply destination may be different. In particular, the hydrogen supply destination is preferably a moisture supply source for the hydrogen generating material.

以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。 EXAMPLES Examples and comparative examples are shown below to describe the features of the present invention more specifically. However, the scope of the present invention is not limited to the examples.

実施例1
市販の水素化マグネシウム粉末(和光純薬工業株式会社 体積平均粒子径D50:15μm)を、変性ポリアルキレンオキサイド系吸水性樹脂(住友精化株式会社「アクアコークTWB」)に練り込み、水素化マグネシウム含有コンパウンドを作製した。その割合は、吸水性樹脂全量に対して水素化マグネシウム粉末6重量%とした。
水素化マグネシウム含有コンパウンドを凍結粉砕し、粒子径10mm以下の吸水性水素発生材料を得た。なお、原材料樹脂の吸水能(水を含んだときの水分率)は2000%であった。
Example 1
Commercially available magnesium hydride powder (Wako Pure Chemical Industries, Ltd. volume average particle size D50: 15 μm) is kneaded into a modified polyalkylene oxide water absorbent resin (Sumitomo Seika Co., Ltd. "Aquacork TWB"), magnesium hydride A containing compound was made. The ratio was 6% by weight of the magnesium hydride powder with respect to the total amount of the water absorbent resin.
A magnesium hydride-containing compound was freeze-pulverized to obtain a water-absorbing hydrogen generating material having a particle size of 10 mm or less. The water absorption capacity (moisture content when water is included) of the raw material resin was 2000%.

実施例2
市販の水素化マグネシウム粉末(和光純薬工業株式会社 体積平均粒子径D50:15μm)を事前に市販のポリエチレン樹脂(株式会社プライムポリマー「SP2020」)68重量%と変性ポリアルキレンオキサイド系吸水性樹脂(住友精化株式会社「アクアコークTWB」、吸水率:約3100重量%)32重量%との混合樹脂を溶融させて練り込み、水素化マグネシウム含有コンパウンドを作製した。その割合は、混合樹脂全量に対して水素化マグネシウム粉末5重量%とした。
水素化マグネシウム含有コンパウンドを十分に乾燥させた状態で溶融押出成形法によりフィルム状(厚み約1mm)に製膜し、吸水性水素発生材料を得た。このとき、吸水性水素発生材料に対する水素化マグネシウム粉末は5重量%とし、吸水性水素発生材料に対する吸水性樹脂の含有量は約30重量%とした。なお、原材料の混合樹脂の吸水能は700%であった。
Example 2
Commercially available magnesium hydride powder (Wako Pure Chemical Industries, Ltd., volume average particle diameter D50: 15 μm) is mixed in advance with 68% by weight of a commercially available polyethylene resin (Prime Polymer Co., Ltd. “SP2020”) and a modified polyalkylene oxide-based water absorbent resin ( Sumitomo Seika Co., Ltd. "Aquacoke TWB", water absorption: about 3100% by weight) 32% by weight mixed resin was melted and kneaded to prepare a compound containing magnesium hydride. The ratio was 5% by weight of the magnesium hydride powder with respect to the total amount of the mixed resin.
The magnesium hydride-containing compound was sufficiently dried and then formed into a film (thickness: about 1 mm) by a melt extrusion method to obtain a water-absorbing hydrogen generating material. At this time, the content of the magnesium hydride powder relative to the water-absorbing hydrogen generating material was set at 5% by weight, and the content of the water-absorbing resin relative to the water-absorbing hydrogen generating material was set at approximately 30% by weight. The water absorption capacity of the mixed resin as the raw material was 700%.

比較例1
市販の水素化マグネシウム粉末(和光純薬工業株式会社 体積平均粒子径D50:15μm)を市販のポリエチレン樹脂に練り込み、水素化マグネシウム含有コンパウンドを作製した。その割合は、ポリエチレン樹脂全量に対して水素化マグネシウム粉末6重量%とした。得られた水素発生材料の粒子径は10mm以下であった。なお、原材料樹脂の吸水能は0.05%であった。
Comparative example 1
Commercially available magnesium hydride powder (Wako Pure Chemical Industries, Ltd. volume average particle size D50: 15 μm) was kneaded into a commercially available polyethylene resin to prepare a compound containing magnesium hydride. The ratio was 6% by weight of the magnesium hydride powder with respect to the total weight of the polyethylene resin. The particle size of the obtained hydrogen generating material was 10 mm or less. The water absorption capacity of the raw material resin was 0.05%.

比較例2
市販の水素化マグネシウム粉末(和光純薬工業株式会社 体積平均粒子径D50:15μm)を市販のポリエチレン樹脂に練り込み、水素化マグネシウム含有コンパウンドを作製した。その割合は、ポリエチレン樹脂全量に対して水素化マグネシウム粉末5重量%とした。水素化マグネシウム含有コンパウンドを溶融押出成形法によりフィルム状(厚み約1mm)に製膜し、水素発生材料を得た。
Comparative example 2
Commercially available magnesium hydride powder (Wako Pure Chemical Industries, Ltd. volume average particle size D50: 15 μm) was kneaded into a commercially available polyethylene resin to prepare a compound containing magnesium hydride. The ratio was 5% by weight of the magnesium hydride powder with respect to the total weight of the polyethylene resin. A compound containing magnesium hydride was formed into a film (about 1 mm thick) by a melt extrusion method to obtain a hydrogen generating material.

試験例1
各実施例及び比較例で得られた試料の水素発生能を以下の手順にて評価した。まず、500mLスリ付き三角フラスコに試料1gを投入した後、三角フラスコの口まで純水を満たした。次いで、特製のガラス管貫通スリつき蓋を被せた。これにより、蓋を被せた際に、三角フラスコ内の純水が溢れ、三角フラスコ内の気層が除かれた。その後、水素発生により内圧が高くなり、純水がガラス管を通って排出された。気温が約20℃に管理された室内に保管し、4時間経過後に溶存水素濃度及び水に溶けなかった水素ガス量を測定した。溶存水素濃度は、溶存水素センサー(製品名「H2-500sensor」UNISENSE社製,隔膜電極法による溶存水素濃度測定装置)を用いて測定した。溶存水素濃度及び水に溶けなかった水素ガス量を各試料の水素化マグネシウム濃度(重量%)で除した値、すなわち単位水素化マグネシウム量当たりの水素発生量として比較した。その結果を表1に示す。
Test example 1
The hydrogen generating ability of the samples obtained in each example and comparative example was evaluated by the following procedure. First, after putting 1 g of a sample into a 500 mL conical flask with a pickpocket, pure water was filled up to the mouth of the conical flask. Then, it was covered with a specially made lid with a hole that penetrates the glass tube. As a result, when the lid was put on, the pure water in the Erlenmeyer flask overflowed and the air layer in the Erlenmeyer flask was removed. After that, the internal pressure increased due to hydrogen generation, and pure water was discharged through the glass tube. It was stored in a room where the temperature was controlled at about 20°C, and after 4 hours, the concentration of dissolved hydrogen and the amount of hydrogen gas not dissolved in water were measured. The dissolved hydrogen concentration was measured using a dissolved hydrogen sensor (product name "H2-500sensor" manufactured by UNISENSE, a dissolved hydrogen concentration measuring device using a diaphragm electrode method). Values obtained by dividing the dissolved hydrogen concentration and the amount of hydrogen gas not dissolved in water by the magnesium hydride concentration (% by weight) of each sample, ie, the hydrogen generation amount per unit amount of magnesium hydride, were compared. Table 1 shows the results.

Figure 2023064370000001
Figure 2023064370000001

表1の結果からも明らかなように、本発明の水素発生材料は、吸水性樹脂中に水素発生剤を含有させることで、4時間という比較的短時間でより多くの水素を供給できることがわかる。 As is clear from the results in Table 1, the hydrogen generating material of the present invention can supply more hydrogen in a relatively short time of 4 hours by including a hydrogen generating agent in the water absorbent resin. .

Claims (5)

水と反応して分子状水素を発生する水素発生剤と、吸水性樹脂とを含むことを特徴とする水素発生材料。 A hydrogen generating material comprising: a hydrogen generating agent that reacts with water to generate molecular hydrogen; and a water absorbent resin. 前記水素発生剤が、金属及び水素化金属の少なくとも1種である、請求項1に記載の水素発生材料。 2. The hydrogen generating material according to claim 1, wherein the hydrogen generating agent is at least one of a metal and a metal hydride. 前記水素発生剤は粒子状であり、前記粒子の体積平均粒子径が1~100μmである、請求項1又は2に記載の水素発生材料。 3. The hydrogen generating material according to claim 1, wherein the hydrogen generating agent is particulate, and the particles have a volume average particle diameter of 1 to 100 μm. 前記吸水性樹脂としてポリアルキレンオキサイド系樹脂を含む、請求項1~3のいずれかに記載の水素発生材料。 The hydrogen generating material according to any one of claims 1 to 3, comprising a polyalkylene oxide resin as the water absorbent resin. さらにポリオレフィン樹脂及びスチロール樹脂の少なくとも1種を含む、請求項1~4のいずれかに記載の水素発生材料。 The hydrogen generating material according to any one of claims 1 to 4, further comprising at least one of polyolefin resin and styrene resin.
JP2021174614A 2021-10-26 2021-10-26 Hydrogen generating material and manufacturing method thereof Pending JP2023064370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021174614A JP2023064370A (en) 2021-10-26 2021-10-26 Hydrogen generating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021174614A JP2023064370A (en) 2021-10-26 2021-10-26 Hydrogen generating material and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2023064370A true JP2023064370A (en) 2023-05-11

Family

ID=86271639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021174614A Pending JP2023064370A (en) 2021-10-26 2021-10-26 Hydrogen generating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2023064370A (en)

Similar Documents

Publication Publication Date Title
BRPI0616389A2 (en) heating cells comprising exothermic compositions with gel-forming absorbent material
JP2006506226A5 (en)
WO2008026597A1 (en) Desiccant composition, molded desiccant, method of controlling equilibrium humidity for the same, and method of controlling equilibrium humidity retention time
CN107614422A (en) Chlorine dioxide generator and its manufacture method
JP5464436B2 (en) Oxygen absorbent, oxygen-absorbing resin composition, and oxygen-absorbing film
US5725795A (en) Oxygen absorber and method for producing same
KR101299161B1 (en) Moisture absorbing film
JP2019182699A (en) Hydrogen generating material and manufacturing method therefor
EP1081178B1 (en) Water-swellable crosslinked polymer, its composition, and their production processes and uses
KR20120094554A (en) Moisture absorbing film
JP5840705B2 (en) Resin composition for moisture-absorbing film, moisture-absorbing film for packaging, and method for producing the same
JP2023064370A (en) Hydrogen generating material and manufacturing method thereof
JP2001525449A (en) Oxygen scavenging composition
WO2005087365A1 (en) Oxygen absorber
EP0223928A2 (en) Thermoplastic resin composition
JPWO2014021430A1 (en) Method for producing oxygen absorbent
JP5234530B1 (en) Oxygen absorber composition, oxygen absorber package using the same, and method of deoxygenation
JP3252866B2 (en) Oxygen absorber
JPS63281964A (en) Oxygen absorbable resin composition containing hydrophylic filler
JPS59147076A (en) Heat-generating composition
JP2018115140A (en) Antibacterial deodorant polymer hydrogel and manufacturing method therefor
KR20160122097A (en) Coating agent for environment-friendly packing paper and packing paper using the same
JP2991907B2 (en) Antibacterial water absorption sheet
CN102675708B (en) Resin composition for water absorbing film, water absorbing film for packing, and manufacturing method thereof
JP2576646B2 (en) Oxygen absorbing sheet