JP2023060551A - Gas pipe deterioration degree determination program - Google Patents

Gas pipe deterioration degree determination program Download PDF

Info

Publication number
JP2023060551A
JP2023060551A JP2021170209A JP2021170209A JP2023060551A JP 2023060551 A JP2023060551 A JP 2023060551A JP 2021170209 A JP2021170209 A JP 2021170209A JP 2021170209 A JP2021170209 A JP 2021170209A JP 2023060551 A JP2023060551 A JP 2023060551A
Authority
JP
Japan
Prior art keywords
degree
information
deterioration
gas pipe
association
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021170209A
Other languages
Japanese (ja)
Inventor
綾子 澤田
Ayako Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Assest Co Ltd
Original Assignee
Assest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Assest Co Ltd filed Critical Assest Co Ltd
Priority to JP2021170209A priority Critical patent/JP2023060551A/en
Publication of JP2023060551A publication Critical patent/JP2023060551A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To enable automatic and accurate determination of a degree of deterioration of a gas pipe.SOLUTION: A gas pipe deterioration degree determination program for determining the degree of deterioration of gas piping in a determination target area is provided, the program being configured to make a computer perform: an information acquisition step of acquiring satellite image information captured by a satellite to include the determination target area; and a determination step of utilizing three or more levels of association between reference satellite image information captured by the satellite in the past to include each determination target area and the degree of deterioration of gas piping to determine the degree of deterioration of the gas piping, by giving priority to ones with higher levels of association, on the basis of the reference satellite image information corresponding to the satellite image information acquired in the information acquisition step.SELECTED DRAWING: Figure 7

Description

本発明は、ガス管の劣化度合を判別するガス管劣化度合判別プログラムに関する。 The present invention relates to a gas pipe deterioration degree determination program for determining the degree of deterioration of a gas pipe.

ガス管は、生活のライフラインを形成する上で欠かせないインフラである。このようなガス管も長きに亘る使用を経て劣化し、何れは交換が必要な時期が到来する。このようなガス管の劣化を事前に予測することができれば、効果的なガス管路の更新ができ、しかも耐震化を踏まえたガスインフラを整備する上でも効果的である。 Gas pipes are an indispensable infrastructure in forming a lifeline of life. Such a gas pipe also deteriorates after being used for a long time, and the time will come when it will be necessary to replace it. If such deterioration of gas pipes can be predicted in advance, it will be possible to renew gas pipes effectively, and it will also be effective in developing gas infrastructure based on seismic resistance.

しかしながら、従来において、このようなガス管の劣化度合を自動的かつ高精度に判別できるシステムが未だ案出されていないのが現状であった。 However, in the past, the current situation is that a system capable of automatically and highly accurately discriminating the degree of deterioration of such a gas pipe has not yet been devised.

そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、特段のスキルや経験が無くても、人手に頼ることなく、ガス管の劣化度合を自動的かつ高精度に判別できるガス管劣化度合判別プログラムを提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and the purpose thereof is to automatically detect the degree of deterioration of a gas pipe without relying on human labor without special skill or experience. To provide a program for discriminating the degree of deterioration of a gas pipe that can be discriminated effectively and accurately.

本発明に係るガス管劣化度合判別プログラムは、判別対象領域におけるガス管の劣化度合を判別するガス管劣化度合判別プログラムにおいて、判別対象領域を含むように人工衛星から撮像した衛星画像情報を取得する情報取得ステップと、過去において各判別対象領域を含むように人工衛星から撮像した参照用衛星画像情報と、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した衛星画像情報に応じた参照用衛星画像情報に基づき、上記連関度のより高いものを優先させてガス管の劣化度合を判別する判別ステップとをコンピュータに実行させることを特徴とする。 A gas pipe deterioration degree determination program according to the present invention acquires satellite image information captured from an artificial satellite so as to include a determination target region in a gas pipe deterioration degree determination program for determining the degree of deterioration of a gas pipe in a determination target region. An information acquisition step, reference satellite image information captured from an artificial satellite in the past so as to include each discrimination target area, and the degree of deterioration of the gas pipe are obtained in the above information acquisition step using three or more degrees of association. and a determination step of determining the degree of deterioration of the gas pipe by prioritizing the reference satellite image information corresponding to the obtained satellite image information.

特段のスキルや経験が無くても、人手に頼ることなく、ガス管の劣化度合を自動的かつ高精度に判別できる。 Even if you do not have special skills or experience, you can automatically and highly accurately determine the degree of deterioration of gas pipes without relying on human labor.

本発明を適用したシステムの全体構成を示すブロック図である。1 is a block diagram showing the overall configuration of a system to which the present invention is applied; FIG. 探索装置の具体的な構成例を示す図である。It is a figure which shows the specific structural example of a search apparatus. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation|movement of this invention.

以下、本発明を適用したガス管劣化度合判別プログラムについて、図面を参照しながら詳細に説明をする。 A gas pipe deterioration degree determination program to which the present invention is applied will be described in detail below with reference to the drawings.

第1実施形態
図1は、本発明を適用したガス管劣化度合判別プログラムが実装されるガス管劣化度合判別システム1の全体構成を示すブロック図である。ガス管劣化度合判別システム1は、情報取得部9と、情報取得部9に接続された探索装置2と、探索装置2に接続されたデータベース3とを備えている。
First Embodiment FIG. 1 is a block diagram showing the overall configuration of a gas pipe deterioration degree determination system 1 in which a gas pipe deterioration degree determination program to which the present invention is applied is installed. A gas pipe deterioration degree determination system 1 includes an information acquisition unit 9 , a search device 2 connected to the information acquisition unit 9 , and a database 3 connected to the search device 2 .

情報取得部9は、本システムを活用する者が各種コマンドや情報を入力するためのデバイスであり、具体的にはキーボードやボタン、タッチパネル、マウス、スイッチ等により構成される。情報取得部9は、テキスト情報を入力するためのデバイスに限定されるものではなく、マイクロフォン等のような音声を検知してこれをテキスト情報に変換可能なデバイスで構成されていてもよい。また情報取得部9は、カメラ等の画像を撮影可能な撮像装置として構成されていてもよい。情報取得部9は、紙媒体の書類から文字列を認識できる機能を備えたスキャナで構成されていてもよい。また情報取得部9は、後述する探索装置2と一体化されていてもよい。情報取得部9は、検知した情報を探索装置2へと出力する。また情報取得部9は地図情報をスキャニングすることで位置情報を特定する手段により構成されていてもよい。また情報取得部9は、温度センサ、湿度センサ、風向センサ、を測るための照度センサで構成されていてもよい。また情報取得部9は、天候についてのデータを気象庁や民間の天気予報会社から取得する通信インターフェースで構成されていてもよい。また情報取得部9は身体に装着して身体のデータを検出するための身体センサで構成されていてもよく、この身体センサは、例えば体温、心拍数、血圧、歩数、歩く速度、加速度を検出するためのセンサで構成されていてもよい。また身体センサは人間のみならず動物の生体データを取得するものであってもよい。また情報取得部9は図面等の情報をスキャニングしたり、或いはデータベースから読み出すことで取得するデバイスとして構成されていてもよい。情報取得部9は、これら以外に臭気や香りを検知する臭気センサにより構成されていてもよい。 The information acquisition unit 9 is a device for a person using this system to input various commands and information. The information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an imaging device capable of capturing an image, such as a camera. The information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper document. Moreover, the information acquisition part 9 may be integrated with the searching device 2 which will be described later. The information acquisition unit 9 outputs the detected information to the searching device 2 . Further, the information acquisition unit 9 may be configured by means for specifying position information by scanning map information. Further, the information acquisition unit 9 may be configured with an illuminance sensor for measuring a temperature sensor, a humidity sensor, and a wind direction sensor. The information acquisition unit 9 may also be configured with a communication interface that acquires weather data from the Meteorological Agency or a private weather forecast company. The information acquisition unit 9 may be composed of a body sensor worn on the body to detect body data, and the body sensor detects, for example, body temperature, heart rate, blood pressure, number of steps, walking speed, and acceleration. It may be configured with a sensor for Also, the body sensor may acquire biological data not only of humans but also of animals. The information acquisition unit 9 may be configured as a device that acquires information such as drawings by scanning or reading from a database. The information acquisition unit 9 may be configured by an odor sensor that detects odors and scents in addition to these.

データベース3は、政策提案を行う上で必要な様々な情報が蓄積される。政策提案を行う上で必要な情報としては、後述する各参照用情報波動データ流量データが、出力データとしてのガス管の劣化度合や提言すべき政策との関係において蓄積されている。 The database 3 accumulates various information necessary for making policy proposals. As the information necessary for making policy proposals, each reference information wave data flow rate data described later is accumulated in relation to the degree of deterioration of gas pipes as output data and policies to be proposed.

つまり、データベース3には、このような参照用情報波動データ流量データの何れか1以上と、ガス管の劣化度合や提言すべき政策が互いに紐づけられて記憶されている。 That is, in the database 3, any one or more of such reference information wave data flow rate data, the degree of deterioration of the gas pipe, and the policy to be recommended are associated with each other and stored.

探索装置2は、例えば、パーソナルコンピュータ(PC)等を始めとした電子機器で構成されているが、PC以外に、携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末等、他のあらゆる電子機器で具現化されるものであってもよい。ユーザは、この探索装置2による探索解を得ることができる。 The search device 2 is composed of an electronic device such as a personal computer (PC), for example, but in addition to the PC, it is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc. It may be one that is made into. A user can obtain a search solution by this search device 2 .

図2は、探索装置2の具体的な構成例を示している。この探索装置2は、探索装置2全体を制御するための制御部24と、操作ボタンやキーボード等を介して各種制御用の指令を入力するための操作部25と、有線通信又は無線通信を行うための通信部26と、各種判断を行う判別部27と、ハードディスク等に代表され、実行すべき検索を行うためのプログラムを格納するための記憶部28とが内部バス21にそれぞれ接続されている。さらに、この内部バス21には、実際に情報を表示するモニタとしての表示部23が接続されている。 FIG. 2 shows a specific configuration example of the search device 2. As shown in FIG. This searching device 2 performs wired or wireless communication with a control unit 24 for controlling the entire searching device 2 and an operation unit 25 for inputting various control commands via operation buttons, keyboards, etc. A communication unit 26 for searching, a determination unit 27 for making various judgments, and a storage unit 28, represented by a hard disk or the like, for storing a program for performing a search to be executed are connected to the internal bus 21, respectively. . Further, the internal bus 21 is connected with a display unit 23 as a monitor for actually displaying information.

制御部24は、内部バス21を介して制御信号を送信することにより、探索装置2内に実装された各構成要素を制御するためのいわゆる中央制御ユニットである。また、この制御部24は、操作部25を介した操作に応じて各種制御用の指令を内部バス21を介して伝達する。 The controller 24 is a so-called central control unit for controlling each component implemented in the search device 2 by transmitting control signals via the internal bus 21 . In addition, the control unit 24 transmits commands for various controls through the internal bus 21 according to operations through the operation unit 25 .

操作部25は、キーボードやタッチパネルにより具現化され、プログラムを実行するための実行命令がユーザから入力される。この操作部25は、上記実行命令がユーザから入力された場合には、これを制御部24に通知する。この通知を受けた制御部24は、判別部27を始め、各構成要素と協調させて所望の処理動作を実行していくこととなる。この操作部25は、前述した情報取得部9として具現化されるものであってもよい。 The operation unit 25 is embodied by a keyboard or a touch panel, and a user inputs an execution command for executing a program. The operation unit 25 notifies the control unit 24 when the execution command is input by the user. Upon receiving this notification, the control unit 24 cooperates with each component including the determination unit 27 to execute desired processing operations. The operation unit 25 may be embodied as the information acquisition unit 9 described above.

判別部27は、探索解を判別する。この判別部27は、判別動作を実行するに当たり、必要な情報として記憶部28に記憶されている各種情報や、データベース3に記憶されている各種情報を読み出す。この判別部27は、人工知能により制御されるものであってもよい。この人工知能はいかなる周知の人工知能技術に基づくものであってもよい。 The determination unit 27 determines the search solution. The determination unit 27 reads various information stored in the storage unit 28 and various information stored in the database 3 as necessary information in executing the determination operation. This determination unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any known artificial intelligence technology.

表示部23は、制御部24による制御に基づいて表示画像を作り出すグラフィックコントローラにより構成されている。この表示部23は、例えば、液晶ディスプレイ(LCD)等によって実現される。 The display unit 23 is composed of a graphic controller that creates a display image based on control by the control unit 24 . The display unit 23 is implemented by, for example, a liquid crystal display (LCD).

記憶部28は、ハードディスクで構成される場合において、制御部24による制御に基づき、各アドレスに対して所定の情報が書き込まれるとともに、必要に応じてこれが読み出される。また、この記憶部28には、本発明を実行するためのプログラムが格納されている。このプログラムは制御部24により読み出されて実行されることになる。 When the storage unit 28 is configured with a hard disk, predetermined information is written to each address based on the control by the control unit 24, and this information is read as necessary. The storage unit 28 also stores a program for executing the present invention. This program is read and executed by the control unit 24 .

上述した構成からなるガス管劣化度合判別システム1における動作について説明をする。 The operation of the gas pipe deterioration degree determination system 1 configured as described above will be described.

ガス管劣化度合判別システム1では、例えば図3に示すように、参照用波動データと、ガス管の劣化度合との3段階以上の連関度が予め設定されていることが前提となる。なお、ガス管は、各建築構造物につながるガス管、或いはプラントに用いられるガス管を問わず、ガスが流れるいかなる管が含まれる。参照用波動データとは、ガス管から発せられ、或いはガス管を反射してきたあらゆる電磁波、光波、音波、振動等からなるデータである。音波は、ガス管からの音のデータで構成されるものであってもよい。ガス管内を水が流れるときに発せられる音を時系列的に録音したものであってもよい。またガス管に取り付けられ音波を検知可能なセンサにより取得されたデータで構成されるものであってもよい。また振動は、ガス管内に水が流れるときにガス管が振動する場合のその振動波である。振動波をいかなる方法で検知するかについては、例えば振動センサ、ひずみセンサ以外に、その振動が音波となって表れる場合、超音波センサ等により検知されるものであってもよい。また電磁波、光からなる波動データとしては、通常の画像データや、スペクトルデータで構成されるものであってもよい。参照用波動データは、非破壊検査において使用されるあらゆる波動を利用したデータも含まれる。 In the gas pipe deterioration degree determination system 1, for example, as shown in FIG. 3, it is assumed that three or more degrees of correlation between the reference wave data and the degree of deterioration of the gas pipe are set in advance. The gas pipe includes any pipe through which gas flows, regardless of whether it is a gas pipe connected to each building structure or a gas pipe used in a plant. The reference wave data is data consisting of all electromagnetic waves, light waves, sound waves, vibrations, etc. emitted from the gas pipe or reflected from the gas pipe. A sound wave may consist of sound data from a gas pipe. Sounds emitted when water flows in a gas pipe may be recorded in time series. Alternatively, it may be composed of data acquired by a sensor attached to a gas pipe and capable of detecting sound waves. Vibration is the vibration wave of the gas pipe when it vibrates when water flows through it. Regarding the method of detecting the vibration wave, for example, in addition to the vibration sensor and the strain sensor, when the vibration appears as a sound wave, it may be detected by an ultrasonic sensor or the like. The wave data composed of electromagnetic waves and light may be composed of normal image data or spectrum data. Reference wave data also includes data using all waves used in non-destructive inspection.

これらの参照用波動データは、年単位、月単位、週単位、日単位、時間単位、分単位等あらゆる時系列的単位で管理可能とされている。 These reference wave data can be managed in any time-series units such as yearly, monthly, weekly, daily, hourly, and minutely.

劣化度合は、ガス管の劣化の度合を例えば百分率等で示すものであってもよいが、これに限定されるものではなく、劣化の度合が、高い、普通、低い、の3段階で示されるものであってもよいし、要交換、交換の必要なし、の2段階で示されるものであってもよい。また劣化度合としては、劣化の状況に関する情報で構成されていてもよく、例えば、腐食が●%進んでいる、ガス管内に固形物の塊ができている、等の状況を示す情報で構成されていてもよい。このような劣化度合の評価は、その分野の専門家や業者等により実際に判定されたものであってもよい。 The degree of deterioration may indicate the degree of deterioration of the gas pipe, for example, as a percentage, but it is not limited to this, and the degree of deterioration is indicated in three stages: high, normal, and low. Alternatively, it may be indicated in two stages, that is, replacement required and replacement not required. Further, the degree of deterioration may be composed of information about the state of deterioration, for example, it is composed of information indicating the state such as progress of corrosion by %, formation of lumps of solids in the gas pipe, etc. may be Such evaluation of the degree of deterioration may be one actually determined by an expert in the field, a trader, or the like.

図3の例では、入力データとして、参照用波動データP01、P02、P03であるものとする。このような入力データとしての参照用波動データP01、P02、P03は、出力としての劣化度合に連結している。 In the example of FIG. 3, the input data are reference wave data P01, P02, and P03. Such reference wave data P01, P02, P03 as input data are linked to the degree of deterioration as output.

参照用波動データP01、P02、P03は、この出力解としての劣化度合A~Dに対して3段階以上の連関度を通じて互いに連関しあっている。この劣化度合は、例えばAは劣化度合が95%、Bは劣化度合が60%等のように示されている。参照用波動データがこの連関度を介して左側に配列し、各劣化度合が連関度を介して右側に配列している。連関度は、左側に配列された参照用波動データに対して、何れの劣化度合と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用波動データが、いかなる劣化度合に紐付けられる可能性が高いかを示す指標であり、各参照用波動データについて最も確からしい劣化度合を選択する上での的確性を示すものである。図3の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としての劣化度合と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としての劣化度合と互いに関連度合いが低いことを示している。 The reference wave data P01, P02, and P03 are associated with each other through three or more levels of association with the deterioration degrees A to D as output solutions. The degree of deterioration is indicated by, for example, A having a deterioration degree of 95% and B having a deterioration degree of 60%. The wave data for reference is arranged on the left side through this degree of association, and each degradation degree is arranged on the right side through the degree of association. The degree of relevance indicates the degree of deterioration and the degree of relevance to the reference wave data arranged on the left side. In other words, the degree of association is an index indicating the degree of deterioration that each reference wave data is likely to be associated with, and is used to select the most probable degree of deterioration for each reference wave data. It indicates the accuracy of In the example of FIG. 3, w13 to w19 are shown as association degrees. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of deterioration and the degree of correlation between each combination as an intermediate node as an output. , and conversely, the closer to one point, the lower the degree of deterioration as an output and the degree of correlation between each combination as an intermediate node.

Figure 2023060551000002
Figure 2023060551000002

探索装置2は、このような図3に示す3段階以上の連関度w13~w19を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用波動データと、その場合の劣化度合の何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することで図3に示す連関度を作り上げておく。なお、参照用波動データは、例えば時系列的なデータに限定されるものではなく、FFT変換されて周波数軸に変換されたデータで構成されるものであってもよい。 The search device 2 acquires three or more degrees of association w13 to w19 shown in FIG. 3 in advance. In other words, the search device 2 accumulates past data sets to determine which of the reference wave data and the degree of deterioration in that case has been adopted and evaluated in determining the actual search solution, and analyzes these. , to create the degree of association shown in FIG. Note that the reference wave data is not limited to, for example, time-series data, and may be composed of data that has been FFT-transformed and transformed into the frequency axis.

この分析、解析は人工知能により行うようにしてもよい。かかる場合には、各参照用波動データと、その場合における劣化度合のデータセットを学習させる。波動データP01である場合に、劣化度合Aの事例が多い場合には、この劣化度合の評価につながる連関度をより高く設定し、劣化度合Bの事例が多い場合には、この劣化度合の評価につながる連関度をより高く設定する。例えば波動データP01についての参照用波動データの例では、劣化度合Aと、劣化度合Cにリンクしているが、以前の事例から劣化度合Aにつながるw13の連関度を7点に、劣化度合Cにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, each reference wave data and a data set of the degree of deterioration in that case are learned. In the case of the wave data P01, if there are many cases of deterioration degree A, the degree of association leading to the evaluation of this deterioration degree is set higher, and if there are many cases of deterioration degree B, this deterioration degree is evaluated. Set a higher degree of association leading to For example, in the example of reference wave data for wave data P01, deterioration degree A and deterioration degree C are linked. is set to 2 points.

また、この図3に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 3 may be composed of nodes of a neural network in artificial intelligence. That is, the weighting coefficients for the outputs of the nodes of this neural network correspond to the degrees of association described above. Moreover, it is not limited to a neural network, and may be composed of all decision-making factors that constitute artificial intelligence.

かかる場合には、図4に示すように、入力データとして各地域の参照用波動データが入力され、出力データとして劣化度合が出力され、入力ノードと出力ノードの間に少なくとも1以上の隠れ層が設けられ、機械学習させるようにしてもよい。入力ノード又は隠れ層ノードの何れか一方又は両方において上述した連関度が設定され、これが各ノードの重み付けとなり、これに基づいて出力の選択が行われる。そして、この連関度がある閾値を超えた場合に、その出力を選択するようにしてもよい。 In such a case, as shown in FIG. 4, reference wave data for each region is input as input data, the degree of deterioration is output as output data, and at least one or more hidden layers exist between the input node and the output node. may be provided and machine-learned. Either or both of the input nodes and the hidden layer nodes are set with the above-mentioned degree of relevance, which serves as a weighting for each node, based on which the output is selected. Then, when the degree of association exceeds a certain threshold, the output may be selected.

このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たに劣化度合の判別を行う上で、上述した学習済みデータを利用して劣化度合を探索することとなる。劣化度合の予め類型化された分類の何れに該当するかを判別するようにしてもよい。 Such a degree of association becomes learned data in terms of artificial intelligence. After such learned data is created, the above-described learned data is used to search for the degree of deterioration when actually newly determining the degree of deterioration. It may be determined which one of the preliminarily categorized classifications of the degree of deterioration corresponds.

新たに劣化度合を探索する場合には、波動データの入力を受け付ける。波動データの詳細は、上述した参照用波動データの説明を引用することにより、以下での説明を省略する。 When searching for a new degree of deterioration, input of wave data is accepted. Details of the wave data are omitted below by citing the description of the reference wave data described above.

次にこの入力された波動データを参照用波動データと照合する。かかる場合には、予め取得した図3(表1)に示す連関度を参照する。例えば、新たに取得した波動データがP02と同一かこれに類似するものである場合には、連関度を介して劣化度合Bがw15、劣化度合Cが連関度w16で関連付けられている。かかる場合には、連関度の最も高い劣化度合Bを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる劣化度合Cを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Next, this input wave data is collated with the reference wave data. In such a case, reference is made to the degree of association shown in FIG. 3 (Table 1), which has been acquired in advance. For example, if the newly acquired wave data is the same as or similar to P02, the degree of deterioration B is associated with w15 and the degree of deterioration C is associated with w16. In such a case, the degree of deterioration B with the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the degree of deterioration C, which has a low degree of association but the association itself is recognized, may be selected as the optimum solution. In addition, it is of course possible to select an output solution that is not connected by an arrow, and any other priority may be used as long as it is based on the degree of association.

ちなみに、波動データと参照用波動データの照合は、仮にこれらのデータが、ある期間の平均値で表されている場合には、その平均値が±10%の範囲内に入っているか否かで同一及び類似であるか否かを判別するようにしてもよい。また、波動データが時系列的推移グラフで示されるものであれば、その傾向の類似性に基づいて判別されるものであってもよい。 By the way, matching of wave data and reference wave data depends on whether or not the average value is within ±10% if these data are represented by the average value of a certain period. You may make it discriminate|determine whether it is the same and similar. Alternatively, if the wave data is represented by a time-series transition graph, the determination may be made based on the similarity of trends.

このようにして、新たに取得する波動データから、最も好適な劣化度合を探索し、ユーザに表示することができる。この探索結果を見ることにより、その地域で、今後どのような劣化度合になりえるかを事前に判別することができる。劣化度合が提案されることで、新たに政策を立案する上でそれを参考にすることができる。 In this way, it is possible to search for the most suitable degree of deterioration from newly acquired wave data and display it to the user. By looking at the result of this search, it is possible to determine in advance what kind of degree of deterioration is likely to occur in that area in the future. By proposing the degree of deterioration, it can be used as a reference when formulating new policies.

図5の例では、参照用波動データと、参照用流量データとの組み合わせの連関度が形成される例である。参照用流量データとは、ガス管の流量に関するデータである。ガス管の流量は、ガス管に取り付けられた流量計、又はその流量計によりセンシングされたデータを無線通信により取得したデータで構成されるものであってもよい。参照用流量データは、単位時間について計測された流量について各種統計処理されたデータで構成されていてもよく、平均値等で構成されていてもよいし、時系列的に測定した流量の標準偏差等で構成されていてもよい。また、時系列的に測定した流量の変化傾向そのもの、或いはこれらを類型化したもので構成されていてもよい。 The example of FIG. 5 is an example in which the degree of association is formed between combinations of reference wave data and reference flow data. The reference flow rate data is data relating to the flow rate of the gas pipe. The flow rate of the gas pipe may be composed of a flow meter attached to the gas pipe, or data obtained by wireless communication of data sensed by the flow meter. The reference flow rate data may be composed of various statistically processed data on the flow rate measured per unit time, may be composed of an average value, etc., or the standard deviation of the flow rate measured in time series etc. Moreover, it may be composed of the change tendency itself of the flow rate measured in chronological order, or a typed version thereof.

劣化度合は、波動データに加え、流量データにも依拠する。このため、参照用波動データに加えて、参照用流量データを学習データに組み合わせ判断することで、劣化度合をより高精度に判別することができる。このため、参照用波動データに加えて、参照用流量データを組み合わせて上述した連関度を形成しておく。 The degree of deterioration depends on the flow rate data in addition to the wave data. Therefore, by combining the reference flow rate data with the learning data in addition to the reference wave data, it is possible to determine the degree of deterioration with higher accuracy. Therefore, in addition to reference wave data, reference flow rate data is combined to form the above-described degree of association.

図5の例では、入力データとして例えば参照用波動データP01~P03、参照用流量データP14~17であるものとする。このような入力データとしての、参照用波動データに対して、参照用流量データが組み合わさったものが、図5に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、劣化度合が表示されている。 In the example of FIG. 5, the input data are, for example, reference wave data P01-P03 and reference flow data P14-17. An intermediate node shown in FIG. 5 is obtained by combining reference flow data with reference wave data as such input data. Each intermediate node is also connected to an output. In this output, the degree of deterioration is displayed as an output solution.

参照用波動データと参照用流量データとの各組み合わせ(中間ノード)は、この出力解としての、劣化度合に対して3段階以上の連関度を通じて互いに連関しあっている。参照用波動データと参照用流量データがこの連関度を介して左側に配列し、劣化度合が連関度を介して右側に配列している。連関度は、左側に配列された参照用波動データと参照用流量データに対して、劣化度合と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用波動データと参照用流量データが、いかなる劣化度合に紐付けられる可能性が高いかを示す指標であり、参照用波動データと参照用流量データから最も確からしい劣化度合を選択する上での的確性を示すものである。このため、これらの参照用波動データと参照用流量データの組み合わせで、最適な劣化度合を探索していくこととなる。 Each combination (intermediate node) of the reference wave data and the reference flow data is associated with each other through three or more levels of association with the degree of deterioration as the output solution. Wave data for reference and flow rate data for reference are arranged on the left side through the degree of association, and the degree of deterioration is arranged on the right side through the degree of association. The degree of association indicates the degree of correlation between the reference wave data and the reference flow rate data arranged on the left side and the degree of deterioration. In other words, the degree of association is an index that indicates the degree of deterioration that each reference wave data and reference flow rate data is likely to be associated with. This indicates the accuracy in selecting the probable degree of deterioration. Therefore, the optimal degree of deterioration is searched for by combining these reference wave data and reference flow rate data.

図5の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 5, w13 to w22 are shown as association degrees. These w13 to w22 are shown in 10 stages as shown in Table 1. The closer to 10 points, the higher the degree of correlation between each combination as an intermediate node and the output. The closer it is, the lower the degree of correlation between each combination as an intermediate node and the output.

探索装置2は、このような図5に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用波動データと参照用流量データ、並びにその場合の劣化度合が何れが見合うものであったか、過去のデータを蓄積しておき、これらを分析、解析することで図5に示す連関度を作り上げておく。 The search device 2 acquires in advance three or more degrees of association w13 to w22 shown in FIG. In other words, the search device 2 accumulates past data as to which of the reference wave data and the reference flow rate data and the degree of deterioration in that case was suitable for determining the actual search solution, By analyzing these, the degree of association shown in FIG. 5 is created.

この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用波動データP01で、参照用流量データP16である場合に、その劣化度合を過去のデータから分析する。劣化度合がAの事例が多い場合には、この劣化度合Aにつながる連関度をより高く設定し、劣化度合Bの事例が多く、劣化度合Aの事例が少ない場合には、劣化度合Bにつながる連関度を高くし、劣化度合Aにつながる連関度を低く設定する。例えば中間ノード61aの例では、劣化度合Aと劣化度合Bの出力にリンクしているが、以前の事例から劣化度合Aにつながるw13の連関度を7点に、劣化度合Bにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference wave data P01 and the reference flow rate data P16, the degree of deterioration thereof is analyzed from the past data. When there are many cases of deterioration degree A, the degree of association leading to this deterioration degree A is set higher. The degree of association is set high, and the degree of association leading to deterioration degree A is set low. For example, in the example of the intermediate node 61a, the outputs of deterioration degree A and deterioration degree B are linked. The degree is set to 2 points.

また、この図5に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。その他、人工知能に関する構成は、図4における説明と同様である。 Further, the degree of association shown in FIG. 5 may be composed of nodes of a neural network in artificial intelligence. That is, the weighting coefficients for the outputs of the nodes of this neural network correspond to the degrees of association described above. Moreover, it is not limited to a neural network, and may be composed of all decision-making factors that constitute artificial intelligence. In addition, the configuration related to artificial intelligence is the same as described in FIG.

図5に示す連関度の例で、ノード61bは、参照用波動データP01に対して、参照用流量データP14の組み合わせのノードであり、劣化度合Cの連関度がw15、劣化度合Eの連関度がw16となっている。ノード61cは、参照用波動データP02に対して、参照用流量データP15、P17の組み合わせのノードであり、劣化度合Bの連関度がw17、劣化度合Dの連関度がw18となっている。 In the example of the degree of association shown in FIG. 5, the node 61b is a node of the combination of the reference flow data P14 with respect to the reference wave data P01, the degree of deterioration C is w15, and the degree of deterioration E is w15. is w16. The node 61c is a node of a combination of the reference flow data P15 and P17 with respect to the reference wave data P02.

このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから劣化度合を判別する際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際に劣化度合を判別しようとする地域を同様に入力する。そしてデータベース3内にある、各地域毎に整理されている波動データと流量データを取得する。 Such a degree of association becomes learned data in terms of artificial intelligence. After creating such learned data, the above-described learned data is used to actually determine the degree of deterioration. In such a case, the region for which the degree of deterioration is to be determined is similarly input. Then, the wave data and the flow rate data arranged for each region in the database 3 are acquired.

このようにして新たに取得した波動データ、流量データに基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した図5(表1)に示す連関度を参照する。例えば、新たに取得した波動データがP02と同一かこれに類似するものである場合であって、流量データがP17と同一か類似である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、劣化度合Cがw19、劣化度合Dが連関度w20で関連付けられている。かかる場合には、連関度の最も高い劣化度合Cを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる劣化度合Dを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Based on the wave motion data and the flow rate data newly acquired in this way, the optimum degree of deterioration is searched for. In such a case, reference is made to the degrees of association shown in FIG. 5 (Table 1) that have been acquired in advance. For example, when the newly acquired wave data is the same as or similar to P02, and the flow rate data is the same or similar to P17, the node 61d is associated via the degree of association. This node 61d is associated with the degree of deterioration C by w19 and the degree of deterioration D by w20. In such a case, the degree of deterioration C with the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the degree of deterioration D, which has a low degree of association but still has the association itself, may be selected as the optimum solution. In addition, it is of course possible to select an output solution that is not connected by an arrow, and any other priority may be used as long as it is based on the degree of association.

また、入力から伸びている連関度w1~w12の例を以下の表2に示す。 Table 2 below shows examples of degrees of association w1 to w12 extending from the input.

Figure 2023060551000003
Figure 2023060551000003

この入力から伸びている連関度w1~w12に基づいて中間ノード61が選択されていてもよい。つまり連関度w1~w12が大きいほど、中間ノード61の選択における重みづけを重くしてもよい。しかし、この連関度w1~w12は何れも同じ値としてもよく、中間ノード61の選択における重みづけは何れも全て同一とされていてもよい。 Intermediate nodes 61 may be selected based on degrees of association w1 to w12 extending from this input. In other words, the greater the degree of association w1 to w12, the heavier the weight in selecting the intermediate node 61 may be. However, the degrees of association w1 to w12 may all have the same value, and the weighting in selecting the intermediate nodes 61 may all be the same.

なお、本発明によれば、上述した参照用波動データに加え、上述した参照用流量データの代わりに、過去において取得したガス管の内圧に関する参照用内圧データとの組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the reference wave data described above, instead of the reference flow rate data described above, a combination of reference internal pressure data related to the internal pressure of gas pipes obtained in the past, and the degree of deterioration with respect to the combination You may make it search for a solution based on the degree of association of three or more steps with.

参照用流量データの代わりに説明変数として加えられるこの参照用内圧データは、ガス管の内圧の関するデータである。ガス管の内圧は、ガス管に取り付けられた内圧計、又はその内圧計によりセンシングされたデータを無線通信により取得したデータで構成されるものであってもよい。参照用内圧データは、単位時間について計測された内圧について各種統計処理されたデータで構成されていてもよく、平均値等で構成されていてもよいし、時系列的に測定した内圧の標準偏差等で構成されていてもよい。また、時系列的に測定した内圧の変化傾向そのもの、或いはこれらを類型化したもので構成されていてもよい。 This reference internal pressure data, which is added as an explanatory variable instead of the reference flow data, is data relating to the internal pressure of the gas pipe. The internal pressure of the gas pipe may be composed of an internal pressure gauge attached to the gas pipe or data sensed by the internal pressure gauge and obtained by wireless communication. The reference internal pressure data may be composed of various statistically processed data on the internal pressure measured per unit time, may be composed of average values, etc., or may be the standard deviation of the internal pressure measured in chronological order. etc. Moreover, it may be composed of the change tendency itself of the internal pressure measured in chronological order, or a typed version thereof.

このようなガス管の内圧も劣化度合に影響を及ぼすことから、参照用波動データと組み合わせ、連関度を通じて劣化度合を判別することで、判別精度を向上させることができる。解探索時には、実際に判別対象のガス管の波動データと、内圧データとを取得する。新たに取得した波動データと、内圧データに基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 Since the internal pressure of such a gas pipe also affects the degree of deterioration, it is possible to improve the accuracy of determination by determining the degree of deterioration through the degree of association in combination with the reference wave data. At the time of searching for a solution, wave motion data and internal pressure data of the gas pipe to be actually discriminated are obtained. Based on newly acquired wave motion data and internal pressure data, search for the optimum degree of deterioration. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

なお、本発明によれば、上述した参照用波動データに加え、上述した参照用流量データの代わりにガス管のガス漏れ履歴に関する参照用ガス漏れ履歴情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-described reference wave data, instead of the above-described reference flow rate data, a combination of reference gas leak history information relating to the gas leak history of gas pipes, and the degree of deterioration with respect to the combination. The solution search may be performed based on the degrees of association of three or more stages.

参照用流量データの代わりに説明変数として加えられるこの参照用ガス漏れ履歴情報は、そのガス管における今までのガス漏れ履歴に関するあらゆる情報を含むものである。ガス漏れ履歴は、そのガス管が今まで一度もガス漏れが無かったか、又はガス漏れが以前において発生した場合には、ガス漏れした日時、回数、ガス漏れの程度等に関する情報が参照用ガス漏れ履歴情報に含まれる。 This reference gas leak history information, which is added as an explanatory variable instead of the reference flow rate data, includes all information related to the past gas leak history in the gas pipe. The gas leak history indicates whether the gas pipe has never had a gas leak, or if a gas leak has occurred in the past, the date and time of the gas leak, the number of gas leaks, the degree of gas leak, etc. Included in historical information.

解探索時には、実際にその劣化度合の判別対象のガス管における波動データと、ガス漏れ履歴情報とを取得する。新たに取得した波動データと、ガス漏れ履歴情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 When searching for a solution, wave data and gas leak history information in the gas pipe whose degree of deterioration is to be actually determined are obtained. Based on newly acquired wave data and gas leak history information, search for the optimum degree of deterioration. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

なお、本発明によれば、上述した参照用波動データに加え、上述した参照用流量データの代わりにガス管が敷設されている道路の舗装状態に関する参照用舗装情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the reference wave data described above, instead of the reference flow rate data described above, a combination of reference pavement information regarding the pavement state of the road on which the gas pipe is laid, and The solution search may be performed based on three or more levels of association with the degree of deterioration.

参照用流量データの代わりに説明変数として加えられるこの参照用舗装情報は、そのガス管が敷設されている道路の舗装状態に関するあらゆる情報を含むものである。ガス管が敷設されている道路とは、そのガス管が地中に配管されている場合、その直上の道路を含むものである。舗装状態は、その舗装がなされているか否かに加え、舗装がなされている場合には、その舗装が施された年、またその舗装が更新された場合にはその更新年で示されるものであってもよい。また舗装状態を判別するために、道路の画像をカメラにより撮像し、その画像解析を通じて判別するようにしてもよい。また画像は、スペクトルカメラにより撮像したスペクトル画像であってもよい。これらの画像解析を行う場合には、以前において学習させた特徴量に基づいて判別するようにしてもよい。このとき、人工知能を活用し、画像データと路面の荒れ具合のデータセットを学習させておき、実際に参照用舗装情報を取得する際には、これらの学習させた画像データと照らし合わせて、その舗装状態を判別するようにしてもよい。 This reference pavement information, which is added as an explanatory variable instead of the reference flow data, includes all information about the pavement condition of the road on which the gas pipe is laid. A road on which a gas pipe is laid includes a road directly above the gas pipe when the gas pipe is laid underground. The pavement condition is indicated by whether or not the pavement is being paved, and if pavement is being paved, the year the pavement was made, and if the pavement was renewed, the year of renewal. There may be. Further, in order to determine the pavement condition, an image of the road may be captured by a camera and the image may be analyzed. The image may also be a spectral image captured by a spectral camera. When performing these image analyses, determination may be made based on previously learned feature amounts. At this time, artificial intelligence is used to learn image data and road surface roughness data sets, and when actually acquiring reference pavement information, these learned image data are compared, You may make it discriminate|determine the pavement state.

解探索時には、実際にその劣化度合の判別対象のガス管における波動データと、そのガス管が敷設されている道路の舗装状態に関する舗装情報を取得する。舗装情報の取得時には、上述した画像解析、ひいては人工知能を活用して判別するようにしてもよい。次に、新たに取得した波動データと、舗装情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 When searching for a solution, wave data in the gas pipe whose degree of deterioration is actually to be determined and pavement information regarding the pavement state of the road on which the gas pipe is laid are obtained. At the time of acquiring pavement information, determination may be made using the above-described image analysis and artificial intelligence. Next, based on the newly acquired wave data and pavement information, the optimal degree of deterioration is searched for. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

なお、本発明によれば、上述した参照用波動データに加え、上述した参照用流量データの代わりにガス管が敷設されている道路の交通量に関する参照用交通量情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the reference wave data described above, instead of the reference flow rate data described above, a combination of reference traffic volume information related to the traffic volume of a road on which a gas pipe is laid, and the combination The solution search may be performed based on three or more levels of association with the degree of deterioration of .

参照用流量データの代わりに説明変数として加えられるこの参照用交通量情報は、そのガス管が敷設されている道路の交通量に関するあらゆる情報を含むものである。参照用交通量情報は、当該道路における車両又は通行人の通行量に関する情報である。この交通量とは、単位時間当たりの車両や通行人の通行する数である。交通量が多い道路に敷設されているガス管ほど劣化が早まるので、これを説明変数に含めて判別する。 This reference traffic volume information, which is added as an explanatory variable in place of the reference flow data, includes all information regarding the traffic volume of the road on which the gas pipe is laid. The reference traffic volume information is information related to the volume of traffic of vehicles or passers-by on the road. The traffic volume is the number of vehicles and passers-by per unit time. Gas pipes laid on roads with more traffic deteriorate more quickly, so this is included in the explanatory variables for determination.

このような参照用交通量情報、交通量情報は、市区町村や国、その他の機関によって行われる交通量調査のデータをそのまま利用してもよいし、単位時間において撮像した道路上の画像に基づいて判別するようにしてもよい。かかる場合には画像に映っている車両や通行人の数を検査者が一つずつカウントしてもよいし、周知のディープラーニング技術を利用して車両や通行人を抽出して特定し、その特定した車両や通行人の単位時間あたりの数をカウントするようにしてもよい。 For such reference traffic volume information and traffic volume information, traffic volume survey data conducted by municipalities, the national government, or other organizations may be used as is, or may be an image of the road taken per unit time. You may make it discriminate|determine based on. In such a case, the inspector may count the number of vehicles and passers-by in the image one by one, or use well-known deep learning technology to extract and identify the vehicles and passers-by. The number of identified vehicles or passersby per unit time may be counted.

解探索時には、実際にその劣化度合の判別対象のガス管における波動データと、そのガス管が敷設されている道路の交通量に関する交通量情報を取得する。交通量情報の取得時には、上述した画像解析、ひいてはディープラーニング技術を活用して判別するようにしてもよい。次に、新たに取得した波動データと、交通量情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 When searching for a solution, wave data in the gas pipe whose degree of deterioration is actually to be determined and traffic volume information on the traffic volume of the road on which the gas pipe is laid are obtained. At the time of obtaining the traffic information, the image analysis described above and furthermore the deep learning technology may be used for determination. Next, based on the newly acquired wave data and traffic information, the optimum degree of deterioration is searched for. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

なお、本発明によれば、上述した参照用波動データに加え、上述した参照用流量データの代わりに参照用属性情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-described reference wave data, a combination of reference attribute information instead of the above-described reference flow data, and the degree of deterioration with respect to the combination are based on three or more levels of association. It is also possible to search for a solution using

参照用流量データの代わりに説明変数として加えられるこの参照用属性情報、属性情報は、ガス管が配設された建築構造物に居住し、勤務し、又は通過する人の年齢や健康状態、年収、生年月日、出身地、家庭環境、また子供が就学中であれば、その学費と今後かかる見込みの学費、当該個人が現在就職活動中か、就業中か等も含まれる。健康状態については、当該個人が全くの健康体であるか、或いは先天的に何らかの障害があるのか否かと障害の程度、また生まれた後に後天的に発生した障害があるか否かとその障害の程度、また生後に何らかの疾病にかかったか否か、現状もその疾病が継続しているか否かとその程度、アレルギーの状態、炎症の状態、怪我の状態、持病の状態、服用している薬剤の状況等、健康状態を示すあらゆる情報が含まれる。この参照用属性情報に含まれる健康状態は、心拍数や脈拍数、血液データ、心電図データ、X線画像等、医療データそのものから導かれたものであってもよい。これらは何れも各家庭からの申告や提出文書、医師の診断書等を通じて得られるものであってもよい。この参照用属性情報を上述した参照用情報P34~P36に当てはめる場合には、例えば参照用情報P34は、年齢46歳、出身地:静岡、年収〇万円、〇×企業に勤務、家庭環境:妻と長男、長女の4人家族、長男は高校性、長女は中学生、健康状態:過去に胃潰瘍で手術した経験があり、参照用情報P35は、年齢38歳、出身地:東京、年収〇万円、▲〇企業に勤務、家庭環境:妻と長女の3人家族、長女は小学生、健康状態:良好等である。 This reference attribute information added as an explanatory variable in place of the reference flow data, the attribute information is the age, health condition, and annual income of people who live, work, or pass through the building structure in which the gas pipe is installed. , date of birth, place of birth, home environment, if the child is in school, the tuition fee and expected future tuition fee, and whether the individual is currently job hunting or working. Regarding the state of health, whether the individual is in perfect health, or whether or not he or she has any congenital disability and the degree of the disability, and whether or not the individual has acquired a disability after birth and the degree of the disability. Also, whether or not you suffered from any disease after birth, whether or not the disease continues and its degree, allergy status, inflammation status, injury status, chronic disease status, medications you are taking, etc. , including any information indicating health status. The health condition included in this reference attribute information may be derived from medical data such as heart rate, pulse rate, blood data, electrocardiogram data, and X-ray images. Any of these may be obtained through a report from each family, a submitted document, a doctor's certificate, or the like. When this reference attribute information is applied to the reference information P34 to P36 described above, for example, the reference information P34 is age 46, hometown: Shizuoka, annual income: 00,000 yen, works at 0x company, home environment: Family of four, wife, eldest son, eldest daughter, eldest son in high school, eldest daughter in junior high school, health condition: had surgery for gastric ulcer in the past, reference information P35 is age 38, hometown: Tokyo, annual income 00,000 Yen, work at 〇 company, family environment: wife and eldest daughter, eldest daughter in elementary school, health condition: good, etc.

参照用属性情報、属性情報は、その建築構造物に存在する法人に関するあらゆる情報である。ここでいう属性とは、その法人の業種や技術分野、歴史、沿革、資本金、規模、従業員数、設立年数等が含まれるが、これに限定されるものでは無く、社風や従業の士気、採用者数等も含まれる。 Attribute information for reference, attribute information is all information about the corporation existing in the building structure. The attributes here include the type of business, technical field, history, history, capital, scale, number of employees, years of establishment, etc., but are not limited to these, and include corporate culture, employee morale, It also includes the number of hires.

このような参照用属性情報、属性情報は、各地域、国毎に管理しているデータベースや統計的なデータについては公開情報から取得するようにしてもよいが、路上に設置した監視カメラ等から撮像した画像に映し出されている人を画像解析することで、年齢、性別等を判別し、それを参照用属性情報、属性情報として取得するようにしてもよい。 Such reference attribute information and attribute information may be obtained from databases and statistical data managed by each region and country from public information, but from surveillance cameras installed on the road It is also possible to determine the age, gender, etc. of a person appearing in a captured image by analyzing the image, and to acquire it as attribute information for reference and attribute information.

解探索時には、実際にその劣化度合の判別対象の地域における波動データと、属性情報とを取得する。新たに取得した波動データと、属性情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 When searching for a solution, the wave data and the attribute information in the region whose degree of deterioration is to be actually determined are acquired. Based on newly acquired wave data and attribute information, search for the optimum degree of deterioration. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

なお、本発明によれば、上述した参照用波動データに加え、上述した参照用流量データの代わりにガス管が敷設されている地域の災害履歴に関する参照用災害履歴情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-described reference wave data, instead of the above-described reference flow rate data, a combination of reference disaster history information related to the disaster history of the area where the gas pipe is laid, and the combination The solution search may be performed based on three or more levels of association with the degree of deterioration of .

参照用流量データの代わりに説明変数として加えられるこの参照用災害履歴情報、災害履歴情報は、そのガス管が敷設されている地域において、以前においていかなる災害が起こったかを示す情報である。ここでいう災害とは、地震、火災、台風、洪水、落雷等、いかなる自然災害、又は人為的な原因による人災も含まれる。この参照用災害履歴情報は、災害の種類に加えて、災害の程度や被害状況も含まれる。例えば地震の場合、その震度やマグニチュード、家屋の倒壊状況や地面の地割れの程度等の情報も含まれる。 This reference disaster history information and disaster history information, which are added as explanatory variables instead of the reference flow data, are information indicating what kind of disaster occurred in the past in the area where the gas pipe is laid. The term "disaster" as used herein includes any natural disaster, such as an earthquake, fire, typhoon, flood, or lightning strike, or a man-made disaster caused by man-made causes. This reference disaster history information includes not only the type of disaster but also the extent of the disaster and the state of damage. For example, in the case of an earthquake, information such as the seismic intensity and magnitude, the state of collapse of houses, and the extent of cracks in the ground is also included.

このような参照用災害履歴情報、災害履歴情報は、市区町村や国、その他の機関によって行われるデータをそのまま利用してもよいし、単位時間において撮像した道路上の画像に基づいて判別するようにしてもよい。かかる場合には画像に映っている洪水の状況や地割れの状況を検査者が一つずつカウントしてもよいし、周知のディープラーニング技術を利用して洪水の状況や地割れの状況を抽出して特定するようにしてもよい。 Such reference disaster history information and disaster history information may be data provided by municipalities, the national government, or other organizations as they are. You may do so. In such a case, the inspector may count the conditions of floods and cracks in the image one by one, or extract the conditions of floods and cracks using well-known deep learning technology. You may make it specify.

解探索時には、実際にその劣化度合の判別対象のガス管における波動データと、そのガス管が敷設されている地域の以前の災害状況に関する災害履歴情報を取得する。災害履歴情報の取得時には、上述した画像解析、ひいてはディープラーニング技術を活用して判別するようにしてもよい。次に、新たに取得した波動データと、災害履歴情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 During the search for a solution, wave data in the gas pipe whose degree of deterioration is to be actually determined and disaster history information related to previous disaster conditions in the area where the gas pipe is laid are acquired. At the time of acquiring the disaster history information, determination may be made using the above-described image analysis, and by extension, the deep learning technology. Next, based on the newly obtained wave data and the disaster history information, search is made for the optimum degree of deterioration. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

なお、本発明によれば、上述した参照用波動データに加え、上述した参照用流量データの代わりにガス管の施工履歴に関する参照用施工履歴情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the above-described reference wave data, instead of the above-described reference flow rate data, a combination of reference construction history information related to the construction history of gas pipes, and the degree of deterioration with respect to the combination. A solution search may be performed based on the degrees of association of stages or higher.

参照用流量データの代わりに説明変数として加えられるこの参照用施工履歴情報、施工履歴情報は、そのガス管が敷設されている地域において、以前においていかなる施工が行われてきたかを示す情報である。ここでいう施工履歴とは、ガス管が配設された時期、地中に埋設された時期に関する情報、ガス管が工事により交換された時期、補修された時期、また補修された場合にはその補修内容に関する情報も含まれる。 This reference construction history information and construction history information, which are added as explanatory variables instead of the reference flow data, are information indicating what kind of construction has been done in the past in the area where the gas pipe is laid. The construction history here means information on when the gas pipe was installed, when it was buried underground, when the gas pipe was replaced due to construction work, when it was repaired, and if it was repaired, It also contains information about the content of the repair.

このような参照用施工履歴情報、施工履歴情報は、市区町村や国、施工会社、その他の機関によって行われるデータをそのまま利用してもよい。 For such reference construction history information and construction history information, data provided by municipalities, the country, construction companies, and other institutions may be used as they are.

解探索時には、実際にその劣化度合の判別対象のガス管における波動データと、そのガス管の施工履歴に関する施工履歴情報を取得する。次に、新たに取得した波動データと、施工履歴情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 When searching for a solution, wave data in the gas pipe whose degree of deterioration is to be actually determined and construction history information relating to the construction history of the gas pipe are acquired. Next, based on the newly acquired wave motion data and the construction history information, the optimal degree of deterioration is searched for. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

なお、本発明によれば、上述した参照用波動データに加え、上述した参照用流量データの代わりにガス管の材質に関する参照用材質情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the reference wave data described above, there are three or more stages of combinations of reference material information regarding the material of the gas pipe instead of the reference flow rate data described above, and the degree of deterioration with respect to the combination. The solution search may be performed based on the degree of association between .

参照用流量データの代わりに説明変数として加えられるこの参照用材質情報、材質情報は、ガス管を構成する材料に関するあらゆる情報が含まれる。ガス管の材料は、管体の材料以外に、管体間を接続するためのボルト等の締結器具の材料もすべて含まれる。 This reference material information added as an explanatory variable in place of the reference flow rate data, and the material information include all kinds of information about the material that constitutes the gas pipe. Materials for gas pipes include all materials for fasteners such as bolts for connecting pipes, in addition to materials for pipes.

このような参照用材質情報、材質情報は、ガス管のメーカーや、その他の機関によって行われるデータをそのまま利用してもよい。 For such reference material information and material information, data provided by gas pipe manufacturers or other institutions may be used as they are.

解探索時には、実際にその劣化度合の判別対象のガス管における波動データと、そのガス管の材質に関する材質情報を取得する。次に、新たに取得した波動データと、材質歴情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 When searching for a solution, wave data in the gas pipe whose degree of deterioration is to be actually determined and material information about the material of the gas pipe are obtained. Next, based on the newly obtained wave data and the material history information, the optimum degree of deterioration is searched for. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

上述した連関度においては、10段階評価で連関度を表現しているが、これに限定されるものではなく、3段階以上の連関度で表現されていればよく、逆に3段階以上であれば100段階でも1000段階でも構わない。一方、この連関度は、2段階、つまり互いに連関しているか否か、1又は0の何れかで表現されるものは含まれない。 In the above-mentioned degree of relevance, the degree of relevance is expressed by a 10-level evaluation, but it is not limited to this, and it may be expressed by a degree of relevance of 3 or more stages. For example, 100 steps or 1000 steps may be used. On the other hand, this degree of association does not include those expressed in two stages, that is, whether or not they are associated with each other, either 1 or 0.

上述した構成からなる本発明によれば、特段のスキルや経験が無くても、誰でも手軽にガス管の劣化度合の判別・探索を行うことができる。また本発明によれば、この探索解の判断を、人間が行うよりも高精度に行うことが可能となる。更に、上述した連関度を人工知能(ニューラルネットワーク等)で構成することにより、これを学習させることでその判別精度を更に向上させることが可能となる。 According to the present invention configured as described above, anyone can easily determine and search for the degree of deterioration of a gas pipe without special skill or experience. Further, according to the present invention, it is possible to judge the search solution with a higher degree of accuracy than a human being does. Furthermore, by configuring the degree of association described above with artificial intelligence (neural network, etc.) and making it learn, it is possible to further improve the discrimination accuracy.

なお、上述した入力データ、及び出力データは、学習させる過程で完全に同一のものが存在しない場合も多々あることから、これらの入力データと出力データを類型別に分類した情報であってもよい。つまり、入力データを構成する情報P01、P02、・・・・P15、16、・・・は、その情報の内容に応じて予めシステム側又はユーザ側において分類した基準で分類し、その分類した入力データと出力データとの間でデータセットを作り、学習させるようにしてもよい。 Since the above-described input data and output data may not be exactly the same in many cases during the learning process, information obtained by classifying these input data and output data according to type may be used. That is, the information P01, P02, . . . P15, 16, . A data set may be created between the data and the output data for learning.

また本発明は、図6に示すように参照用情報Uと参照用情報Vという2種類以上の情報の組み合わせの連関度に基づいて劣化度合を判別するものである。この参照用情報Uが参照用波動データであり、参照用情報Vが参照用波動データ以外の他の参照用情報の何れかであるものとする。 Further, according to the present invention, as shown in FIG. 6, the degree of deterioration is determined based on the degree of association between a combination of two or more types of information, ie, information for reference U and information for reference V. FIG. It is assumed that this reference information U is reference wave data, and reference information V is any reference information other than reference wave data.

このとき、参照用情報Uについて得られた出力をそのまま入力データとして、参照用情報Vとの組み合わせの中間ノード61を介して出力(劣化度合)と関連付けられていてもよい。例えば、参照用情報U(参照用波動データ)について、図3に示すように出力解を出した後、これをそのまま入力として、他の参照用情報Vとの間での連関度を利用し、出力(劣化度合)を探索するようにしてもよい。 At this time, the output obtained for the reference information U may be used as input data as it is, and may be associated with the output (deterioration degree) through the intermediate node 61 of the combination with the reference information V. FIG. For example, after generating an output solution for reference information U (reference wave data) as shown in FIG. The output (degree of deterioration) may be searched.

また、本発明によれば、3段階以上に設定されている連関度を介して最適な解探索を行う点に特徴がある。連関度は、上述した10段階以外に、例えば0~100%までの数値で記述することができるが、これに限定されるものではなく3段階以上の数値で記述できるものであればいかなる段階で構成されていてもよい。 Moreover, according to the present invention, it is characterized in that the optimum solution search is performed through the degree of association set to three or more stages. The degree of association can be described by a numerical value of, for example, 0 to 100% in addition to the 10 stages described above, but is not limited to this, and can be described by a numerical value of 3 or more stages. may be configured.

このような3段階以上の数値で表される連関度に基づいて最も確からしい劣化度合、を判別することで、探索解の可能性の候補として複数考えられる状況下において、当該連関度の高い順に探索して表示することも可能となる。このように連関度の高い順にユーザに表示できれば、より確からしい探索解を優先的に表示することも可能となる。 By discerning the most probable degree of deterioration based on the degree of association represented by numerical values of three or more stages, in a situation where there are multiple candidates for the possibility of a search solution, It is also possible to search and display. If it is possible to display to the user in descending order of degree of association in this way, it is also possible to preferentially display more probable search solutions.

これに加えて、本発明によれば、連関度が1%のような極めて低い出力の判別結果も見逃すことなく判断することができる。連関度が極めて低い判別結果であっても僅かな兆候として繋がっているものであり、何十回、何百回に一度は、その判別結果として役に立つ場合もあることをユーザに対して注意喚起することができる。 In addition to this, according to the present invention, it is possible to make a judgment without overlooking even a very low output discrimination result such as a correlation degree of 1%. Remind the user that even discrimination results with an extremely low degree of association are connected as slight signs, and that once in dozens or hundreds of times, the discrimination results may be useful. be able to.

更に本発明によれば、このような3段階以上の連関度に基づいて探索を行うことにより、閾値の設定の仕方で、探索方針を決めることができるメリットがある。閾値を低くすれば、上述した連関度が1%のものであっても漏れなく拾うことができる反面、より適切な判別結果を好適に検出できる可能性が低く、ノイズを沢山拾ってしまう場合もある。一方、閾値を高くすれば、最適な探索解を高確率で検出できる可能性が高い反面、通常は連関度は低くてスルーされるものの何十回、何百回に一度は出てくる好適な解を見落としてしまう場合もある。いずれに重きを置くかは、ユーザ側、システム側の考え方に基づいて決めることが可能となるが、このような重点を置くポイントを選ぶ自由度を高くすることが可能となる。 Furthermore, according to the present invention, there is an advantage that a search policy can be determined by setting thresholds by performing a search based on three or more degrees of association. If the threshold value is lowered, even if the degree of association is 1%, it can be picked up without omission. be. On the other hand, if the threshold is set high, the possibility of detecting the optimal search solution with high probability is high. Sometimes the solution is overlooked. It is possible to decide which one to place emphasis on based on the way of thinking of the user side and the system side, and it is possible to increase the degree of freedom in selecting such points to place emphasis on.

更に本発明では、上述した連関度を更新させるようにしてもよい。この更新は、例えばインターネットを始めとした公衆通信網を介して提供された情報を反映させるようにしてもよい。また参照用波動データを初めとする各参照用情報を取得し、これらに対する劣化度合に関する知見、情報、データを取得した場合、これらに応じて連関度を上昇させ、或いは下降させる。 Furthermore, in the present invention, the degree of association described above may be updated. This update may reflect information provided via a public communication network such as the Internet, for example. Further, when each reference information including the reference wave data is acquired, and knowledge, information, and data regarding the degree of deterioration thereof are acquired, the degree of association is increased or decreased according to these.

係る場合には、その参照用波動データを初めとする各参照用情報と実際にあったか否か、またその危険度や兆候の判別結果の事例を収集し、その事例の数に応じて連関度を上昇させ、或いは下降させる。このとき、上述した波動データを始めとする、参照用情報に応じた情報を取得して、判別を行った際に、これらに基づいて更新を行うようにしてもよい。 In such a case, collect examples of whether or not there was an actual match with each reference information, including the reference wave data, and the results of determining the degree of danger and symptoms, and calculate the degree of association according to the number of examples. Raise or lower. At this time, information corresponding to the reference information, including the above-described wave data, may be acquired and updated based on these when the determination is made.

つまり、この更新は、人工知能でいうところの学習に相当する。新たなデータを取得し、これを学習済みデータに反映させることを行っているため、学習行為といえるものである。 In other words, this update corresponds to learning in terms of artificial intelligence. Since new data is acquired and reflected in the learned data, it can be said that it is a learning act.

また学習済モデルを最初に作り上げる過程、及び上述した更新は、教師あり学習のみならず、教師なし学習、ディープラーニング、強化学習等を用いるようにしてもよい。教師なし学習の場合には、入力データと出力データのデータセットを読み込ませて学習させる代わりに、入力データに相当する情報を読み込ませて学習させ、そこから出力データに関連する連関度を自己形成させるようにしてもよい。 Also, the process of initially building a trained model and the above-described updating may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like. In the case of unsupervised learning, instead of loading and learning datasets of input and output data, learning is performed by loading information corresponding to the input data, and from there self-forming the degree of association related to the output data. You can let it run.

第2実施形態
以下、第2実施形態について説明をする。この第2実施形態を実行する上では、第1実施形態において使用する劣化度合提案システム1、情報取得部9、探索装置2、データベース3を同様に使用する。これらの各構成の説明は、第1実施形態の説明を引用することで以下での説明を省略する。
Second Embodiment A second embodiment will be described below. In executing this second embodiment, the deterioration degree proposal system 1, the information acquisition unit 9, the search device 2, and the database 3 used in the first embodiment are used in the same manner. Description of each of these configurations is omitted below by citing the description of the first embodiment.

第2実施形態では、一のガス管に着目してその劣化度合を判別するのではなく、判別対象領域における各ガス管の劣化度合を判別するものである。判別対象領域は、いかなる広さの単位で構成されていてもよいが、例えば、ある地点を中心とした半径数m~数kmの範囲で構成されていてもよい。また判別対象領域は、市区町村単位、番地単位の領域であってもよい。判別対象領域内の地中に埋設された全てのガス管の劣化度合を判別するものに限定されるものではなく、その中の一部を判別対象とするものであってもよい。 In the second embodiment, the degree of deterioration of each gas pipe in the determination target region is determined instead of determining the degree of deterioration of one gas pipe. The determination target area may be configured in units of any size, and may be configured, for example, in the range of a radius of several meters to several kilometers around a certain point. Also, the discrimination target area may be an area in units of municipalities or in units of addresses. It is not limited to determining the degree of deterioration of all the gas pipes buried in the ground within the determination target area, and some of them may be determined.

かかる場合には、先ず参照用衛星画像情報と、劣化度合のデータセットを学習させる。参照用衛星画像情報、衛星画像情報は、その地域を含むように人工衛星から撮像した衛星画像で構成される。この参照用衛星画像情報、衛星画像情報は、衛星の画像以外に、衛星から電磁波を放射し、その反射特性を取得したデータで構成されるものであればいかなるものであってもよい。 In such a case, the satellite image information for reference and the dataset of the degree of deterioration are first learned. The reference satellite image information and the satellite image information are composed of satellite images taken from artificial satellites so as to include the area. The satellite image information for reference and the satellite image information may be anything other than satellite images as long as they are composed of data obtained by radiating electromagnetic waves from a satellite and acquiring the reflection characteristics of the electromagnetic waves.

図7の例では、入力データとして、各地域における参照用衛星画像情報P01、P02、P03であるものとする。このような入力データとしての参照用市衛星画像情報P01、P02、P03は、出力としての劣化度合に連結している。 In the example of FIG. 7, it is assumed that the input data are reference satellite image information P01, P02, and P03 in each region. Such reference city satellite image information P01, P02, and P03 as input data are linked to the degree of deterioration as output.

参照用衛星画像情報P01、P02、P03は、この出力解としての劣化度合A~Bに対して3段階以上の連関度を通じて互いに連関しあっている。参照用衛星画像情報がこの連関度を介して左側に配列し、各劣化度合が連関度を介して右側に配列している。連関度は、左側に配列された参照用衛星画像情報に対して、何れの劣化度合と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用衛星画像情報が、いかなる劣化度合に紐付けられる可能性が高いかを示す指標であり、各参照用衛星画像情報について最も確からしい劣化度合を選択する上での的確性を示すものである。 The reference satellite image information P01, P02, and P03 are associated with each other through three or more levels of association with the deterioration degrees A to B as output solutions. The satellite image information for reference is arranged on the left side through this degree of association, and each deterioration degree is arranged on the right side through the degree of association. The degree of relevance indicates the degree of deterioration and degree of high relevance to the reference satellite image information arranged on the left side. In other words, the degree of association is an index indicating the degree of deterioration that each piece of reference satellite image information is likely to be associated with, and the most probable degree of deterioration is selected for each piece of reference satellite image information. It shows the accuracy of the above.

また、この連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Also, this degree of association may be composed of nodes of a neural network in artificial intelligence. That is, the weighting coefficients for the outputs of the nodes of this neural network correspond to the degrees of association described above. Moreover, it is not limited to a neural network, and may be composed of all decision-making factors that constitute artificial intelligence.

このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを、以前の各地域の参照用衛星画像情報と、劣化度合とのデータセットを通じて作った後に、実際にこれから新たに劣化度合の判別を行う上で、上述した学習済みデータを利用して劣化度合を探索することとなる。これらのデータセットは、業者が管理しているデータベースから読み出すことで作成するようにしてもよい。解探索の方法は、上述した第1実施形態と同様であることから以下での説明を省略する。 Such a degree of association becomes learned data in terms of artificial intelligence. After creating such learned data through a data set of reference satellite image information for each region and the degree of deterioration, the learned data described above is used to actually determine the degree of deterioration. is used to search for the degree of deterioration. These data sets may be created by reading from a database managed by a vendor. Since the solution search method is the same as that of the above-described first embodiment, the description thereof will be omitted.

図8の例では、参照用衛星画像情報と、参照用気象情報との組み合わせの連関度が形成される例である。参照用気象情報、気象情報は、その撮影時における天気(晴、曇り、雨)、災害(台風、大雨等)、気温、湿度等の情報を示す。これ以外に、風向き、風速、雷雨、台風、旱魃等に関するあらゆるデータで構成されるものであってもよい。参照用気象情報、気象情報の取得は、その時点における天候を、気象庁のデータから取り込むようにしてもよいし、又は自ら把握した天候を入力するようにしてもよい。 The example of FIG. 8 is an example in which the degree of association is formed for a combination of reference satellite image information and reference weather information. Reference weather information and weather information indicate information such as weather (clear, cloudy, rain), disaster (typhoon, heavy rain, etc.), temperature, humidity, etc. at the time of shooting. In addition to this, it may consist of all kinds of data related to wind direction, wind speed, thunderstorms, typhoons, droughts, and the like. For obtaining the reference weather information and weather information, the weather at that point in time may be taken in from the data of the Meteorological Agency, or the weather ascertained by oneself may be input.

判別対象領域におけるガス管の劣化度合は、衛星画像情報に加え、気象情報にも依拠する。このため、参照用衛星画像情報に加えて、参照用気象情報を学習データに組み合わせ判断することで、劣化度合をより高精度に判別することができる。このため、参照用衛星画像情報に加えて、参照用気象情報を組み合わせて上述した連関度を形成しておく。 The degree of deterioration of the gas pipe in the determination target area depends on weather information in addition to satellite image information. Therefore, by combining reference weather information with learning data in addition to reference satellite image information, the degree of deterioration can be determined with higher accuracy. Therefore, in addition to the reference satellite image information, the reference weather information is combined to form the above-described degree of association.

図8の例では、入力データとして例えば参照用衛星画像情報P01~P03、参照用気象情報P14~17であるものとする。このような入力データとしての、参照用衛星画像情報に対して、参照用気象情報が組み合わさったものが、図8に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、劣化度合が表示されている。 In the example of FIG. 8, the input data are, for example, reference satellite image information P01 to P03 and reference weather information P14 to P17. The intermediate node shown in FIG. 8 is a combination of the reference satellite image information as such input data and the reference weather information. Each intermediate node is also connected to an output. In this output, the degree of deterioration is displayed as an output solution.

参照用衛星画像情報と参照用気象情報との各組み合わせ(中間ノード)は、この出力解としての、劣化度合に対して3段階以上の連関度を通じて互いに連関しあっている。参照用衛星画像情報と参照用気象情報がこの連関度を介して左側に配列し、劣化度合が連関度を介して右側に配列している。連関度は、左側に配列された参照用衛星画像情報と参照用気象情報に対して、劣化度合と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用衛星画像情報と参照用気象情報が、いかなる劣化度合に紐付けられる可能性が高いかを示す指標であり、参照用衛星画像情報と参照用気象情報から最も確からしい劣化度合を選択する上での的確性を示すものである。このため、これらの参照用衛星画像情報と参照用気象情報の組み合わせで、最適な劣化度合を探索していくこととなる。 Each combination (intermediate node) of the reference satellite image information and the reference weather information is associated with each other through three or more levels of association with the degree of deterioration as the output solution. The satellite image information for reference and the weather information for reference are arranged on the left side through the degree of association, and the degree of deterioration is arranged on the right side through the degree of association. The degree of relevance indicates the degree of deterioration and the degree of relevance to the reference satellite image information and the reference weather information arranged on the left side. In other words, the degree of association is an index indicating the degree of deterioration that each reference satellite image information and reference weather information is likely to be associated with. This indicates the accuracy in selecting the most probable degree of deterioration from the Therefore, the optimum degree of deterioration is searched for by combining the reference satellite image information and the reference weather information.

図8の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 8, w13 to w22 are shown as association degrees. These w13 to w22 are shown in 10 stages as shown in Table 1. The closer to 10 points, the higher the degree of correlation between each combination as an intermediate node and the output. The closer it is, the lower the degree of correlation between each combination as an intermediate node and the output.

探索装置2は、このような図8に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用衛星画像情報と参照用気象情報、並びにその場合の劣化度合が何れが見合うものであったか、過去のデータを蓄積しておき、これらを分析、解析することで図8に示す連関度を作り上げておく。 The search device 2 acquires in advance three or more degrees of association w13 to w22 shown in FIG. In other words, the search device 2 accumulates past data as to which of the reference satellite image information, the reference weather information, and the degree of deterioration in that case is suitable for determining the actual search solution. , and by analyzing these, the degree of association shown in FIG. 8 is created.

また、この図8に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。その他、人工知能に関する構成は、図4、5における説明と同様である。 Further, the degree of association shown in FIG. 8 may be composed of nodes of a neural network in artificial intelligence. That is, the weighting coefficients for the outputs of the nodes of this neural network correspond to the degrees of association described above. Moreover, it is not limited to a neural network, and may be composed of all decision-making factors that constitute artificial intelligence. Other configurations relating to artificial intelligence are the same as those described in FIGS.

図8に示す連関度の例で、ノード61bは、参照用衛星画像情報P01に対して、参照用気象情報P14の組み合わせのノードであり、劣化度合Cの連関度がw15、劣化度合Eの連関度がw16となっている。ノード61cは、参照用衛星画像情報P02に対して、参照用気象情報P15、P17の組み合わせのノードであり、劣化度合Bの連関度がw17、劣化度合Dの連関度がw18となっている。 In the example of the degree of association shown in FIG. 8, the node 61b is a node that combines the reference weather information P14 with the reference satellite image information P01. degree is w16. The node 61c is a node of a combination of the reference weather information P15 and P17 with respect to the reference satellite image information P02.

このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから劣化度合を判別する際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際に劣化度合を判別しようとする地域を同様に入力する。そしてデータベース3内にある、各地域毎に整理されている衛星画像情報と気象情報を取得する。 Such a degree of association becomes learned data in terms of artificial intelligence. After creating such learned data, the above-described learned data is used to actually determine the degree of deterioration. In such a case, the region for which the degree of deterioration is to be determined is similarly input. Then, satellite image information and weather information arranged for each region in the database 3 are acquired.

このようにして新たに取得した衛星画像情報、気象情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した図8(表1)に示す連関度を参照する。例えば、新たに取得した衛星画像情報がP02と同一かこれに類似するものである場合であって、気象情報がP17と同一か類似である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、劣化度合Cがw19、劣化度合Dが連関度w20で関連付けられている。かかる場合には、連関度の最も高い劣化度合Cを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる劣化度合Dを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Based on the satellite image information and weather information newly acquired in this way, the optimum degree of deterioration is searched for. In such a case, reference is made to the degrees of association shown in FIG. 8 (Table 1) that have been acquired in advance. For example, when the newly acquired satellite image information is the same as or similar to P02 and the weather information is the same or similar to P17, the node 61d is associated via the degree of association. This node 61d is associated with the degree of deterioration C by w19 and the degree of deterioration D by w20. In such a case, the degree of deterioration C with the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the degree of deterioration D, which has a low degree of association but still has the association itself, may be selected as the optimum solution. In addition, it is of course possible to select an output solution that is not connected by an arrow, and any other priority may be used as long as it is based on the degree of association.

なお、本発明によれば、上述した参照用衛星画像情報に加え、上述した参照用気象情報の代わりにガス管が敷設されている判別対象領域の土壌に関する参照用土壌情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the reference satellite image information described above, instead of the reference weather information described above, a combination of reference soil information related to the soil in the determination target area where the gas pipe is laid; The solution search may be performed based on three or more levels of association with the degree of deterioration for the combination.

参照用気象情報の代わりに説明変数として加えられるこの参照用土壌情報は、そのガス管が敷設されている判別対象領域の土壌に関するあらゆる情報を含むものである。参照用土壌情報の例としては、土壌の成分、pH、含水量、温度等が含まれる。実際に土壌の成分を採取し、化学的分析手法に基づいて分析された結果を用いてもよいし、周知の土壌センサにより検知されたデータを用いてもよい。また土壌をカメラにより撮像した画像、更にこれを周知のディープラーニング技術を活用し、画像の特徴的な部分のみを抽出したものも用いてもよい。また参照用土壌情報は、これ以外に、地盤の硬さについて、例えばボーリング調査を行った測定値等が含められるものであってもよい。 This reference soil information, which is added as an explanatory variable instead of the reference weather information, includes all information related to the soil in the determination target area where the gas pipe is laid. Examples of reference soil information include soil components, pH, water content, temperature, and the like. The results obtained by actually sampling soil components and analyzing them based on a chemical analysis method may be used, or data detected by a well-known soil sensor may be used. An image of the soil captured by a camera, or an image obtained by extracting only a characteristic portion of the image using well-known deep learning technology may also be used. In addition, the reference soil information may include, for example, a measured value obtained by conducting a boring survey for the hardness of the ground.

解探索時には、実際にその劣化度合の判別対象領域における衛星画像情報と、そのガス管が敷設されている判別対象領域の土壌情報を取得する。次に、新たに取得した衛星画像情報と、土壌情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 During the search for a solution, satellite image information in the determination target area of the degree of deterioration and soil information in the determination target area where the gas pipe is actually laid are acquired. Next, based on the newly acquired satellite image information and soil information, the optimum degree of deterioration is searched. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

なお、本発明によれば、上述した参照用衛星画像情報に加え、上述した参照用気象情報の代わりにガス管が敷設されている判別対象領域の地域に関する参照用地域情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 According to the present invention, in addition to the reference satellite image information described above, instead of the reference weather information described above, a combination of the reference area information regarding the area of the determination target area in which the gas pipe is laid; The solution search may be performed based on three or more levels of association with the degree of deterioration for the combination.

参照用気象情報の代わりに説明変数として加えられるこの参照用地域情報、地域情報は、関東地方や東京都等といった括りでもよいが、市区町村、町名、番地レベルで細分化されていてもよい。このようにグループ化、細分化された地域がある中で、各セグメント化された地域における景況感、イベント、事故、事件、災害、伝染病等がこの参照用地域情報として反映される。例えば参照用情報P34は、東京都千代田区では、〇〇事件が発生、参照用情報P35は、奈良県は景況感指数〇〇等である。 This reference area information and area information added as explanatory variables instead of reference weather information may be grouped such as the Kanto region or Tokyo, but may be subdivided at the municipality, town name, or address level. . While there are such grouped and subdivided areas, business sentiment, events, accidents, incidents, disasters, epidemics, etc. in each segmented area are reflected as this reference area information. For example, the reference information P34 is the occurrence of the XX incident in Chiyoda Ward, Tokyo, and the reference information P35 is the business sentiment index XX in Nara Prefecture.

解探索時には、実際にその劣化度合の判別対象領域における衛星画像情報と、そのガス管が敷設されている判別対象領域の地域情報を取得する。次に、新たに取得した衛星画像情報と、地域情報に基づいて、最適な劣化度合を探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて劣化度合を探索する。 At the time of searching for a solution, satellite image information in the determination target area of the degree of deterioration and area information of the determination target area where the gas pipe is actually laid are acquired. Next, based on newly obtained satellite image information and area information, the optimum degree of deterioration is searched for. In such a case, the degree of deterioration is searched based on the method described above by referring to the degree of association acquired in advance.

なお、この第2実施形態における参照用情報は、上述以外に、領域単位の参照用波動データ、参照用流量データ、参照用内圧データ、参照用ガス漏れ履歴情報、参照用舗装情報、参照用交通量情報等と、上述した参照用衛星画像情報との間で連関度が形成されるものであってもよい。 In addition to the above, the reference information in the second embodiment includes area-based reference wave data, reference flow rate data, reference internal pressure data, reference gas leakage history information, reference pavement information, reference traffic A degree of association may be formed between the quantity information and the above-described reference satellite image information.

また、これ以外に上述した参照用衛星画像情報に加え、上述した参照用情報の代わりに参照用外部環境情報との組み合わせと、当該組み合わせに対する劣化度合との3段階以上の連関度に基づいて解探索を行うようにしてもよい。 In addition to this, in addition to the reference satellite image information described above, a combination of reference external environment information instead of the reference information described above and the degree of deterioration with respect to the combination are solved based on three or more levels of association. You may make it search.

参照用外部環境情報、外部環境情報は、外部環境に関するあらゆる情報である。ここでいう外部環境情報は、経済データ(GDP、雇用統計、鉱工業生産指数、設備投資、労働力調査、消費者物価指数、日銀短観等)、家計データ(家計消費状況調査、家計データ、1週間の平均就業時間、貯蓄額の統計データ、年収の統計データ等)、不動産データ(オフィス空室率、坪単価、賃料相場、地価、空き家データ等)、自然環境データ(災害データ、気温データ、降水量データ、風向きデータ、湿度データ等)に代表されるものである。外部環境情報は、これらのデータの一部、全部が反映されるもの以外に、政治、経済、社会、技術の進化、流行、トレンド、疫病、天災事変等、あらゆる外部環境に関する情報を含めてもよい。また参照用外部環境情報は、このような外部環境情報はテキスト情報により定義されるものであってもよいし、これらがパターン(例えば、GDPの伸び率が急激が、あるいは徐々に増加するか等のパターン)等により類型化されていてもよい。また参照用外部環境情報、環境情報は、ある特定の地域における観光客数、県内総生産等で示されるものであってもよい。 Reference external environment information and external environment information are all information related to the external environment. The external environment information here refers to economic data (GDP, employment statistics, industrial production index, capital investment, labor force survey, consumer price index, Bank of Japan Tankan, etc.), household data (household consumption survey, household data, weekly average working hours, statistical data on savings, statistical data on annual income, etc.), real estate data (office vacancy rate, unit price per tsubo, rent market, land price, vacant house data, etc.), natural environment data (disaster data, temperature data, precipitation data, etc.) volume data, wind direction data, humidity data, etc.). External environmental information may include information on any external environment such as politics, economy, society, technological evolution, epidemics, trends, epidemics, natural disasters, etc., in addition to those that reflect part or all of these data good. The reference external environment information may be defined by text information, or may be defined by a pattern (for example, whether the GDP growth rate is rapid or gradual). patterns). Also, the reference external environment information and environment information may be indicated by the number of tourists in a specific area, the prefectural gross product, and the like.

解探索時には、実際に衛星画像情報に加え、判別対象領域における外部環境情報とを取得する。新たに取得した衛星画像情報と、外部環境情報に基づいて、解探索する。かかる場合には、予め取得した連関度を参照し、上述した方法に基づいて解探索する。 During the solution search, in addition to the satellite image information, the external environment information in the discrimination target area is actually acquired. Solution search is performed based on the newly acquired satellite image information and external environment information. In such a case, the degree of association obtained in advance is referred to, and a solution search is performed based on the method described above.

なお、第1実施形態、第2実施形態は、上述した実施の形態に限定されるものでは無く、例えば図9に示すように、基調となる参照用情報と、劣化度合との3段階以上の連関度を利用するようにしてもよい。かかる場合には、新たに取得した情報に応じた参照用情報と劣化度合との3段階以上の連関度に基づき、解探索を行うことになる。基調となる参照用情報は、上述した全ての参照用情報(参照用波動データ、参照用流量データ、参照用内圧データ、参照用ガス漏れ履歴情報、参照用舗装情報、参照用交通量情報、参照用属性情報、参照用衛星画像情報、参照用気象情報、参照用土壌情報、参照用地域情報、参照用外部環境情報、参照用災害履歴情報、参照用材質情報、参照用施工履歴情報等)を適用可能である。 Note that the first embodiment and the second embodiment are not limited to the embodiments described above. For example, as shown in FIG. A degree of association may be used. In such a case, the solution search is performed based on three or more levels of association between the reference information corresponding to the newly acquired information and the degree of deterioration. The basic reference information includes all of the above-mentioned reference information (reference wave data, reference flow rate data, reference internal pressure data, reference gas leak history information, reference pavement information, reference traffic volume information, reference attribute information for reference, satellite image information for reference, weather information for reference, soil information for reference, regional information for reference, external environment information for reference, disaster history information for reference, material information for reference, construction history information for reference, etc.) Applicable.

これらの場合も同様に、学習用データとして用いられた参照用情報に応じた情報が入力された場合に、上述した方法に基づいて解探索が行われることとなる。 In these cases, similarly, when information corresponding to reference information used as learning data is input, solution search is performed based on the above-described method.

連関度を通じて求められる探索解は、更に、他の参照用情報に基づいて修正され、或いは重み付けを変化させるようにしてもよい。 The search solution obtained through the degree of association may be further modified or weighted based on other reference information.

ここでいう他の参照用情報とは、上述した参照用情報の何れかを基調となる参照用情報とした場合、当該基調となる参照用情報以外のいかなる参照用情報に該当する。 The other reference information referred to here corresponds to any reference information other than the basic reference information when any of the reference information described above is used as the basic reference information.

例えば、他の参照用情報の一つとして、ある参照用気象情報Fにおいて、以前において劣化度合Bが判別される経緯が多かったものとする。このような参照用気象情報Fに応じた気象情報を新たに取得したとき、劣化度合としての探索解Bに対して、重み付けを上げる処理を行い、換言すれば劣化度合の探索解Bにつながるようにする処理を行うように予め設定しておく。 For example, it is assumed that there have been many circumstances in which the degree of deterioration B was determined in a certain reference weather information F as one of the other reference information. When new weather information corresponding to such reference weather information F is acquired, the search solution B as the degree of deterioration is subjected to a process of increasing the weight, in other words, it is connected to the search solution B of the degree of deterioration. It is set in advance so as to perform processing to

例えば、他の参照用情報Gが、より劣化度合としての探索解Cを示唆するような分析結果であり、参照用情報Fが、より劣化度合としての探索解Dを示唆するような分析結果であるものとする。このように参照用情報との間での設定の後、実際に取得した情報が参照用情報Gと同一又は類似する場合には、劣化度合Cの重み付けを上げる処理を行う。これに対して、実際に取得した情報が参照用情報Fと同一又は類似する場合には、劣化度合Dの重み付けを上げる処理を行う。つまり、劣化度合につながる連関度そのものを、この参照用情報F~Hに基づいてコントロールするようにしてもよい。或いは、劣化度合を上述した連関度のみで決定した後、この求めた探索解に対して参照用情報F~Hに基づいて修正を加えるようにしてもよい。後者の場合において、参照用情報F~Hに基づいてどのように探索解としての劣化度合にいかなるウェートで修正を加えるかは、都度システム側において設計したものを反映させることとなる。 For example, the other reference information G is an analysis result that suggests a search solution C as a higher degree of deterioration, and the reference information F is an analysis result that suggests a search solution D as a higher degree of deterioration. Assume that there is After the setting with the reference information in this way, when the actually acquired information is the same as or similar to the reference information G, processing for increasing the weighting of the degree of deterioration C is performed. On the other hand, when the actually acquired information is the same as or similar to the reference information F, a process of increasing the weighting of the degree of deterioration D is performed. In other words, the degree of association itself leading to the degree of deterioration may be controlled based on the reference information FH. Alternatively, after determining the degree of deterioration based only on the degree of association described above, the obtained search solution may be corrected based on the reference information F to H. FIG. In the latter case, how and with what weight the degree of deterioration as a search solution is corrected based on the reference information F to H depends on what is designed on the system side each time.

また参照用情報は、何れか1種で構成される場合に限定されるものではなく、2種以上の参照用情報に基づいて解探索するようにしてもよい。かかる場合も同様に、参照用情報の示唆する劣化度合につながるケースほど、連関度を介して求められた探索解としての当該判別類型をより高く修正するようにしてもよい。 The reference information is not limited to any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the discrimination type as a search solution obtained through the degree of association may be corrected to be higher for a case leading to the degree of deterioration suggested by the reference information.

同様に、図10に示すように、基調となる参照用情報と、他の参照用情報とを有する組み合わせに対する、劣化度合との連関度を形成する場合においても、基調となる参照用情報は、いかなる参照用情報(参照用波動データ、参照用流量データ、参照用内圧データ、参照用ガス漏れ履歴情報、参照用舗装情報、参照用交通量情報、参照用属性情報、参照用衛星画像情報、参照用気象情報、参照用土壌情報、参照用地域情報、参照用外部環境情報、参照用災害履歴情報、参照用材質情報、参照用施工履歴情報等)も適用可能である。他の参照用情報は、基調となる参照用情報以外のいかなる参照用情報が含まれる。 Similarly, as shown in FIG. 10, even in the case of forming the degree of association with the degree of deterioration for a combination of reference information that is the keynote and other reference information, the reference information that is the keynote is Any reference information (reference wave data, reference flow rate data, reference internal pressure data, reference gas leak history information, reference pavement information, reference traffic volume information, reference attribute information, reference satellite image information, reference weather information for reference, soil information for reference, area information for reference, external environment information for reference, disaster history information for reference, material information for reference, construction history information for reference, etc.) are also applicable. Other reference information includes any reference information other than the underlying reference information.

このとき、基調となる参照用情報が、参照用衛星画像情報であれば、他の参照用情報としては、これ以外のいかなる参照用情報が含まれる。 At this time, if the basic reference information is the reference satellite image information, the other reference information includes any other reference information.

かかる場合も同様に解探索を行うことで、劣化度合を推定することができる。このとき、上述した図9に示すように、連関度を通じて得られた探索解に対して、更なる他の参照用情報(参照用情報F、G、H等)を通じて、劣化度合を修正するようにしてもよい。 Even in such a case, the degree of deterioration can be estimated by searching for solutions in the same manner. At this time, as shown in FIG. 9 described above, the degree of deterioration of the search solution obtained through the degree of association is corrected through other reference information (reference information F, G, H, etc.). can be

このとき、他の参照用情報が1のみならず、2以上組み合わさるようにして連関度が学習されるものであってもよい。 At this time, the degree of association may be learned by combining not only one piece of other reference information but also two or more pieces of information.

また、図11に示すように基調となる参照用情報のみと、劣化度合との間で連関度が形成されるものであってもよい。この基調となる参照用情報は、第1実施形態、第2実施形態におけるいかなる参照用情報(参照用波動データ、参照用流量データ、参照用内圧データ、参照用ガス漏れ履歴情報、参照用舗装情報、参照用交通量情報、参照用属性情報、参照用衛星画像情報、参照用気象情報、参照用土壌情報、参照用地域情報、参照用外部環境情報、参照用災害履歴情報、参照用材質情報、参照用施工履歴情報等)も適用可能である。この図11の解探索方法は、図3の説明を引用することで以下での説明を省略する。 Further, as shown in FIG. 11, the degree of association may be formed between only the reference information that is the keynote and the degree of deterioration. This basic reference information is any reference information (reference wave data, reference flow rate data, reference internal pressure data, reference gas leak history information, reference pavement information, etc.) in the first and second embodiments. , reference traffic information, reference attribute information, reference satellite image information, reference weather information, reference soil information, reference area information, reference external environment information, reference disaster history information, reference material information, Construction history information for reference, etc.) can also be applied. Description of the solution search method in FIG. 11 will be omitted by citing the description of FIG.

なお、第1実施形態、第2実施形態において、探索解としては何れも劣化度合を探索する場合を例にとり説明をしたが、これに限定されるものではない。例えば、予め、各劣化度合にガス管の交換時期が紐付けられていてもよい。かかる場合には、劣化度合Aに対してガス管の交換時期pが、劣化度合Bに対してガス管の交換時期qが、劣化度合Cに対して、ガス管の交換時期rがそれぞれ紐付けられて予めデータベースとして保存されている。ここでいうガス管の交換時期とは、今すぐガス管を交換すべきか否かの情報に加えて、ガス管を何日後、何週間後、何か月後、何年度に交換すべきかを示すものであってもよい。 In addition, in the first embodiment and the second embodiment, the case of searching for the degree of deterioration as a search solution has been described as an example, but the present invention is not limited to this. For example, the replacement timing of the gas pipe may be linked in advance to each degree of deterioration. In this case, the gas pipe replacement timing p is associated with the deterioration degree A, the gas pipe replacement timing q is associated with the deterioration degree B, and the gas pipe replacement timing r is associated with the deterioration degree C. and stored in advance as a database. The gas pipe replacement timing mentioned here indicates whether or not the gas pipe should be replaced immediately, as well as the number of days, weeks, months, and year in which the gas pipe should be replaced. can be anything.

また、第1実施形態、第2実施形態において、探索解としては劣化度合を探索する代わりに、図12に示すように、ガス管の交換時期を探索するようにしてもよい。かかる場合には、参照用情報に対して劣化度合の代替としてガス管の交換時期を紐付けて学習させるようにしてもよい。かかる場合には、上述した劣化度合を全てガス管の交換時期に置き換えて具現化ができる。 Further, in the first embodiment and the second embodiment, instead of searching for the degree of deterioration as a search solution, as shown in FIG. 12, it is possible to search for replacement timing of the gas pipe. In such a case, the replacement timing of the gas pipe may be associated with the reference information as a substitute for the degree of deterioration and learned. In such a case, all of the deterioration degrees described above can be embodied by replacing them with the replacement timing of the gas pipe.

1 ガス管劣化度合判別システム
2 探索装置
21 内部バス
23 表示部
24 制御部
25 操作部
26 通信部
27 判別部
28 記憶部
61 ノード
1 gas pipe deterioration degree determination system 2 search device 21 internal bus 23 display unit 24 control unit 25 operation unit 26 communication unit 27 determination unit 28 storage unit 61 node

Claims (13)

判別対象領域におけるガス管の劣化度合を判別するガス管劣化度合判別プログラムにおいて、
判別対象領域を含むように人工衛星から撮像した衛星画像情報を取得する情報取得ステップと、
過去において各判別対象領域を含むように人工衛星から撮像した参照用衛星画像情報と、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した衛星画像情報に応じた参照用衛星画像情報に基づき、上記連関度のより高いものを優先させてガス管の劣化度合を判別する判別ステップとをコンピュータに実行させること
を特徴とするガス管劣化度合判別プログラム。
In a gas pipe deterioration degree determination program for determining the degree of deterioration of a gas pipe in a determination target area,
an information acquisition step of acquiring satellite image information captured from an artificial satellite so as to include a discrimination target area;
The satellite image information acquired in the information acquisition step is obtained by using three or more levels of correlation between the reference satellite image information captured from the artificial satellite so as to include each discrimination target area in the past and the degree of deterioration of the gas pipe. a determination step of determining the degree of deterioration of the gas pipe by prioritizing one with a higher degree of correlation based on the corresponding reference satellite image information.
上記情報取得ステップでは、判別対象領域の気象に関する気象情報を取得し、
上記判別ステップでは、上記参照用衛星画像情報と、過去において各判別対象領域について取得した気象に関する参照用気象情報とを有する組み合わせと、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した衛星画像情報に応じた参照用衛星画像情報と、気象情報に応じた参照用気象情報とを有する組み合わせとの間でより高い連関度が設定されているガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
In the information acquisition step, weather information relating to the weather in the determination target area is acquired,
In the determination step, a combination of the reference satellite image information and the reference weather information related to the weather acquired for each determination target area in the past, and the degree of deterioration of the gas pipe are used in three or more levels of association. , a gas pipe in which a higher degree of association is set between a combination of reference satellite image information corresponding to the satellite image information obtained in the information obtaining step and reference weather information corresponding to the weather information; 2. The gas pipe deterioration degree determination program according to claim 1, wherein the deterioration degree is determined.
上記情報取得ステップでは、判別対象領域の気象に関する気象情報を取得し、
上記判別ステップでは、上記連関度のより高いものを優先させるとともに、更に上記気象情報に基づいてガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
In the information acquisition step, weather information relating to the weather in the determination target area is acquired,
2. The gas pipe deterioration degree determination program according to claim 1, wherein, in said determination step, priority is given to items having a higher degree of correlation, and further, the degree of deterioration of the gas pipe is determined based on said weather information.
上記情報取得ステップでは、判別対象領域の土壌に関する土壌情報を取得し、
上記判別ステップでは、上記参照用衛星画像情報と、過去において各判別対象領域について取得した土壌に関する参照用土壌情報とを有する組み合わせと、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した衛星画像情報に応じた参照用衛星画像情報と、土壌情報に応じた参照用土壌情報とを有する組み合わせとの間でより高い連関度が設定されているガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
The information acquisition step acquires soil information about the soil in the determination target area,
In the determination step, a combination of the reference satellite image information and the reference soil information related to the soil acquired in the past for each determination target area and the degree of deterioration of the gas pipe are combined, and three or more degrees of association are used. , a gas pipe for which a higher degree of correlation is set between a combination of reference satellite image information corresponding to the satellite image information obtained in the information obtaining step and reference soil information corresponding to the soil information; 2. The gas pipe deterioration degree determination program according to claim 1, wherein the deterioration degree is determined.
上記情報取得ステップでは、判別対象領域の土壌に関する土壌情報を取得し、
上記判別ステップでは、上記連関度のより高いものを優先させるとともに、更に上記土壌情報に基づいてガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
The information acquisition step acquires soil information about the soil in the determination target area,
2. The gas pipe deterioration degree determination program according to claim 1, wherein, in said determination step, priority is given to items having a higher degree of association, and further, the degree of deterioration of the gas pipe is determined based on said soil information.
上記情報取得ステップでは、判別対象領域の地域に関する地域情報を取得し、
上記判別ステップでは、上記参照用衛星画像情報と、過去において各判別対象領域について取得した地域に関する参照用地域情報とを有する組み合わせと、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した衛星画像情報に応じた参照用衛星画像情報と、地域情報に応じた参照用地域情報とを有する組み合わせとの間でより高い連関度が設定されているガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
The information acquisition step acquires regional information about the region of the discrimination target region,
In the determination step, a combination of the reference satellite image information and the reference area information related to the area acquired for each determination target area in the past, and the degrees of association with the degree of deterioration of the gas pipe are used in three or more stages. , gas pipes for which a higher degree of association is set between a combination of reference satellite image information corresponding to the satellite image information obtained in the information obtaining step and reference area information corresponding to area information; 2. The gas pipe deterioration degree determination program according to claim 1, wherein the deterioration degree is determined.
上記情報取得ステップでは、判別対象領域のガス管のガス漏れ履歴に関するガス漏れ履歴情報を取得し、
上記判別ステップでは、上記参照用衛星画像情報と、ガス管のガス漏れ履歴に関する参照用ガス漏れ履歴情報とを有する組み合わせと、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した衛星画像情報に応じた参照用衛星画像情報と、ガス漏れ履歴情報に応じた参照用ガス漏れ履歴情報とを有する組み合わせとの間でより高い連関度が設定されているガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
The information acquisition step acquires gas leak history information related to the gas leak history of the gas pipe in the determination target region,
In the determination step, a combination of the reference satellite image information and the reference gas leak history information related to the gas leak history of the gas pipe and the degree of deterioration of the gas pipe are combined, and three or more degrees of association are used to determine the A gas for which a higher degree of correlation is set between a combination having reference satellite image information corresponding to the satellite image information obtained in the information obtaining step and reference gas leakage history information corresponding to the gas leakage history information. 2. The program for determining the degree of deterioration of a gas pipe according to claim 1, wherein the degree of deterioration of the gas pipe is determined.
上記情報取得ステップでは、判別対象領域の道路の舗装状態に関する舗装情報を取得し、
上記判別ステップでは、上記参照用波動データと、道路の舗装状態に関する参照用舗装情報とを有する組み合わせと、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した波動データに応じた参照用波動データと、舗装情報に応じた参照用舗装情報とを有する組み合わせとの間でより高い連関度が設定されているガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
The information acquisition step acquires pavement information related to the pavement condition of the road in the determination target area,
In the determining step, a combination of the reference wave data and the reference pavement information related to the pavement state of the road, and the degree of deterioration of the gas pipe are used in three or more levels of association, and are acquired in the information acquisition step. characterized by determining the degree of deterioration of a gas pipe for which a higher correlation is set between a combination of reference wave data corresponding to the wave data obtained and reference pavement information corresponding to the pavement information. 2. The gas pipe deterioration degree determination program according to claim 1.
上記情報取得ステップでは、判別対象領域の道路の交通量に関する交通量情報を取得し、
上記判別ステップでは、上記参照用波動データと、道路の交通量に関する参照用交通量情報とを有する組み合わせと、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した波動データに応じた参照用波動データと、交通量情報に応じた参照用交通量情報とを有する組み合わせとの間でより高い連関度が設定されているガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
In the information acquisition step, traffic volume information related to the traffic volume of the road in the determination target area is acquired,
In the determination step, a combination of the reference wave data and the reference traffic volume information related to the traffic volume of the road and the degree of deterioration of the gas pipe are combined in three or more levels of association, and in the information acquisition step, Determining the degree of deterioration of a gas pipe for which a higher degree of association is set between a combination of reference wave data corresponding to acquired wave data and reference traffic information corresponding to traffic information. The gas pipe deterioration degree determination program according to claim 1.
上記情報取得ステップでは、判別対象のガス管が敷設されている地域の災害履歴に関する災害履歴情報を取得し、
上記判別ステップでは、上記参照用波動データと、ガス管が敷設されている地域の災害履歴に関する参照用災害履歴情報とを有する組み合わせと、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した波動データに応じた参照用波動データと、災害履歴情報に応じた参照用災害履歴情報とを有する組み合わせとの間でより高い連関度が設定されているガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
In the information acquisition step, the disaster history information related to the disaster history of the area where the gas pipe to be determined is laid is acquired,
In the determination step, a combination of the reference wave data and the reference disaster history information related to the disaster history of the area where the gas pipe is laid and the degree of deterioration of the gas pipe are used in three or more stages of association. A gas pipe in which a higher degree of correlation is set between a combination having reference wave data corresponding to the wave data obtained in the information obtaining step and reference disaster history information corresponding to the disaster history information. 2. The gas pipe deterioration degree determination program according to claim 1, wherein the degree of deterioration of the gas pipe is determined.
上記情報取得ステップでは、判別対象のガス管の材質に関する材質情報を取得し、
上記判別ステップでは、上記参照用波動データと、ガス管の材質に関する参照用材質情報とを有する組み合わせと、ガス管の劣化度合との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した波動データに応じた参照用波動データと、材質情報に応じた参照用材質情報とを有する組み合わせとの間でより高い連関度が設定されているガス管の劣化度合を判別すること
を特徴とする請求項1記載のガス管劣化度合判別プログラム。
In the information acquisition step, material information relating to the material of the gas pipe to be determined is acquired,
In the determination step, three or more degrees of association between the combination of the reference wave data and the reference material information related to the material of the gas pipe and the degree of deterioration of the gas pipe are used, and the information is obtained in the information acquisition step. The degree of deterioration of a gas pipe for which a higher degree of association is set between a combination having reference wave data corresponding to the wave data and reference material information corresponding to material information is determined. 2. The gas pipe deterioration degree determination program according to claim 1.
上記連関度は、人工知能におけるニューラルネットワークのノードで構成されること
を特徴とする請求項1~11のうち何れか1項記載のガス管劣化度合判別プログラム。
12. The gas pipe deterioration degree determination program according to any one of claims 1 to 11, wherein the degree of association is composed of nodes of a neural network in artificial intelligence.
判別対象領域における交換時期を判別するガス管交換時期判別プログラムにおいて、
判別対象領域を含むように人工衛星から撮像した衛星画像情報を取得する情報取得ステップと、
過去において各判別対象領域を含むように人工衛星から撮像した参照用衛星画像情報と、ガス管の交換時期との3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した衛星画像情報に応じた参照用衛星画像情報に基づき、上記連関度のより高いものを優先させてガス管の交換時期を判別する判別ステップとをコンピュータに実行させること
を特徴とするガス管交換時期判別プログラム。
In the gas pipe replacement time determination program for determining the replacement time in the determination target area,
an information acquisition step of acquiring satellite image information captured from an artificial satellite so as to include a discrimination target area;
The satellite image information acquired in the above information acquisition step is obtained by using three or more degrees of correlation between reference satellite image information captured from an artificial satellite so as to include each discrimination target area in the past and the replacement timing of the gas pipe. A gas pipe replacement time determination program for causing a computer to execute a determination step of determining a gas pipe replacement time based on the corresponding reference satellite image information with a higher degree of correlation being prioritized.
JP2021170209A 2021-10-18 2021-10-18 Gas pipe deterioration degree determination program Pending JP2023060551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021170209A JP2023060551A (en) 2021-10-18 2021-10-18 Gas pipe deterioration degree determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021170209A JP2023060551A (en) 2021-10-18 2021-10-18 Gas pipe deterioration degree determination program

Publications (1)

Publication Number Publication Date
JP2023060551A true JP2023060551A (en) 2023-04-28

Family

ID=86098303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021170209A Pending JP2023060551A (en) 2021-10-18 2021-10-18 Gas pipe deterioration degree determination program

Country Status (1)

Country Link
JP (1) JP2023060551A (en)

Similar Documents

Publication Publication Date Title
Gandini et al. Climate change risk assessment: A holistic multi-stakeholder methodology for the sustainable development of cities
Iizuka et al. Modeling future urban sprawl and landscape change in the Laguna de Bay Area, Philippines
Xu et al. Extraction of urban built-up areas from nighttime lights using artificial neural network
Xu et al. Risk assessment model of agricultural drought disaster based on grey matter-element analysis theory
Nong et al. Livelihood vulnerability to climate change: A case of farm households in Northeast Vietnam
Leonardi et al. GIS-multicriteria analysis using AHP to evaluate the landslide risk in road lifelines
JP2023059365A (en) Water pipe deterioration degree determination program
Li et al. Geological Disaster Susceptibility Evaluation Using a Random Forest Empowerment Information Quantity Model
JP2023060551A (en) Gas pipe deterioration degree determination program
JP2023060550A (en) Gas pipe deterioration degree determination program
Oduro Appiah et al. Built-up area expansion in the Wa Municipality of Ghana: implications for vegetation cover loss and fragmentation
JP2023059364A (en) Water pipe deterioration degree determination program
Mazor et al. Implementing an operational framework to develop a streamflow duration assessment method: A case study from the arid west United States
JP2023046777A (en) Equipment maintenance inspection system
WO2020226003A1 (en) Borrower reliability determination program and system
JP2022033692A (en) Inundation damage prediction program
JP2023057475A (en) Future Scenario Proposal Program
JP2021174265A (en) Change rate determination program of accommodation charges
JP2023057476A (en) Administrative problem search program
JP2023057477A (en) Future Scenario Proposal Program
JP2023057478A (en) Administration problem search program
Pratomo Can rural-urban migrants escape from poverty? Evidence from four indonesian cities
JP2023075554A (en) Maintenance contractor selection program
JP2023075557A (en) Maintenance frequency prediction program
JP2023046776A (en) Facility maintenance inspection system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20241011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20241011