JP2023053773A - Polymer material substrate surface treatment method and polymer material production method - Google Patents

Polymer material substrate surface treatment method and polymer material production method Download PDF

Info

Publication number
JP2023053773A
JP2023053773A JP2021163010A JP2021163010A JP2023053773A JP 2023053773 A JP2023053773 A JP 2023053773A JP 2021163010 A JP2021163010 A JP 2021163010A JP 2021163010 A JP2021163010 A JP 2021163010A JP 2023053773 A JP2023053773 A JP 2023053773A
Authority
JP
Japan
Prior art keywords
polymer material
material substrate
surface treatment
ultraviolet rays
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021163010A
Other languages
Japanese (ja)
Inventor
挙子 中村
Takako Nakamura
哲男 土屋
Tetsuo Tsuchiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2021163010A priority Critical patent/JP2023053773A/en
Publication of JP2023053773A publication Critical patent/JP2023053773A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

To provide a polymer material substrate surface treatment method and a polymer material production method which are able to realize high water repellency of a polymer material substrate of various surface chemical structures without introducing a chemical structure corresponding to a binder.SOLUTION: The polymer material substrate surface treatment method comprises reacting a vinyl compound represented by the general formula (1) defined by R-CH=CH2 with a surface of a polymer material substrate (excluding fabric substrates) under irradiation with ultraviolet rays, thereby imparting water repellency to the surface of the polymer material substrate. (In the formula, R represents an alkyl group having 6 or more carbon atoms.)SELECTED DRAWING: None

Description

本発明は、ポリマー材料基材の表面処理方法及びポリマー材料の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for surface treatment of a polymeric material substrate and a method for producing a polymeric material.

ポリマー材料基材の表面に撥水性を付与する方法として、ポリマー材料基材の表面上へフッ素含有化合物を各種方法でコーティングする方法が知られている。発明者らも、撥水性を発現する表面処理法として、フッ素含有化合物の存在下で、紫外線を照射する表面処理方法を見いだしている(特許文献1)。 As a method for imparting water repellency to the surface of a polymer material substrate, methods of coating the surface of the polymer material substrate with a fluorine-containing compound by various methods are known. The inventors have also discovered a surface treatment method of irradiating ultraviolet rays in the presence of a fluorine-containing compound as a surface treatment method for developing water repellency (Patent Document 1).

しかしながら、これらのフッ素含有化合物を使用する方法は、フッ素加工剤に関する国際規制のため、環境に配慮して非フッ素系加工剤などを使用したフッ素フリーの改質処理への転換が求められている。 However, the method using these fluorine-containing compounds is required to be converted to a fluorine-free modification treatment using non-fluorine-based processing agents in consideration of the environment due to international regulations on fluorine-containing processing agents. .

また、すでに開発されている非フッ素系加工剤などを使用したフッ素フリーの撥水処理方法としては、アルコキシドイオンの求核反応を利用した有機化学的方法(非特許文献1)、アルキルボランを使用した表面改質方法(特許文献2)、光表面改質を用いた方法(特許文献3及び4)、シランカップリング反応を利用した方法(特許文献5)などが知られている。 In addition, as fluorine-free water repellent treatment methods using non-fluorine-based processing agents that have already been developed, organic chemical methods using nucleophilic reactions of alkoxide ions (Non-Patent Document 1) and alkylborane are used. A surface modification method (Patent Document 2), a method using photosurface modification (Patent Documents 3 and 4), a method using a silane coupling reaction (Patent Document 5), and the like are known.

特許第6011852号公報Japanese Patent No. 6011852 特表2019-518119号公報Japanese translation of PCT publication No. 2019-518119 特表2019-532008号公報Japanese Patent Application Publication No. 2019-532008 特開2019-099786号公報JP 2019-099786 A 特開2020-029468号公報Japanese Patent Application Laid-Open No. 2020-029468

J. H. Lee,S. H. Park, S. H. Kim, Polymers, 12, 178 (2020)J. H. Lee, S. H. Park, S. H. Kim, Polymers, 12, 178 (2020)

しかしながら、これらのフッ素フリーの撥水処理方法においては、アルコキシドイオン生成のために必要な薬剤処理により副反応が起きる可能性が高いこと(非特許文献1)、一般的に反応性が高く制御の難しいアルキルボランを使用すること(特許文献2)、処理薬剤との反応のために基材表面化学構造が水酸基などに限定されること(特許文献3及び5)、基材及び処理薬剤双方の化学構造を精密に制御する必要があること(特許文献4)など、バインダーに相当する化学構造を導入することなく撥水処理することや、ポリマー材料基材の表面化学構造を限定することなく撥水処理することは困難であった。 However, in these fluorine-free water repellent treatment methods, there is a high possibility that side reactions will occur due to the chemical treatment necessary for generating alkoxide ions (Non-Patent Document 1), and generally the reactivity is high and controllable. The use of difficult alkylboranes (Patent Document 2), the substrate surface chemical structure being limited to hydroxyl groups and the like due to reaction with treatment chemicals (Patent Documents 3 and 5), the chemistry of both the substrate and the treatment chemicals Water repellent treatment without introducing a chemical structure corresponding to a binder, such as the need to precisely control the structure (Patent Document 4), and water repellent without limiting the surface chemical structure of the polymer material substrate. It was difficult to process.

本発明は、上記事情に鑑みてなされたものであって、バインダーに相当する化学構造を導入することなく、様々な表面化学構造のポリマー材料基材に対して、高い撥水性を発現させることができる、ポリマー材料基材の表面処理方法、及び、ポリマー材料の製造方法を提供する。 The present invention has been made in view of the above circumstances, and it is possible to express high water repellency to polymer material substrates having various surface chemical structures without introducing a chemical structure corresponding to a binder. Provided are a method for surface treatment of a polymeric material substrate and a method for producing a polymeric material, which can be used.

本発明者らは、様々な表面化学構造のポリマー材料基材の表面に対し、ビニル基を有する炭化水素系薬剤を、紫外線を照射することにより、アルキル基を化学結合させることができ、高い撥水性を発現させることができることを見いだし、本発明を完成させた。
すなわち、本発明は、以下の技術を提供するものである。
The present inventors discovered that by irradiating a hydrocarbon-based agent having a vinyl group on the surface of a polymer material substrate having various surface chemical structures with ultraviolet rays, the alkyl group can be chemically bonded, resulting in high repellency. The inventors have found that water can be expressed, and completed the present invention.
That is, the present invention provides the following techniques.

[1] ポリマー材料基材(ただし、布帛基材を除く。)の表面に、下記一般式(1)で表されるビニル化合物を接触させ、紫外線を照射することにより、前記ポリマー材料基材の表面に撥水性を付与する、ポリマー材料基材の表面処理方法。
R-CH=CH (1)
(式中、Rは炭素数6以上のアルキル基を示す。)
[2] 前記Rが、炭素数6~20のアルキル基である、[1]に記載のポリマー材料基材の表面処理方法。
[3] 前記紫外線の波長が150~400nmである、[1]又は[2]に記載のポリマー材料基材の表面処理方法。
[4] 前記ポリマー材料基材の表面への到達照度が0.1~100mW/cmとなるよう紫外線を照射する、[1]~[3]のいずれか1項に記載のポリマー材料基材の表面処理方法。
[5] ポリマー材料基材(ただし、布帛基材を除く。)の表面に、下記一般式(1)で表されるビニル化合物を接触させ、紫外線を照射する工程を含む、ポリマー材料の製造方法。
R-CH=CH (1)
(式中、Rは炭素数6以上のアルキル基を示す。)
[6] 前記Rが、炭素数6~20のアルキル基である、[5]に記載のポリマー材料の製造方法。
[7] 前記紫外線の波長が150~400nmである、[5]又は[6]に記載のポリマー材料の製造方法。
[8] 前記ポリマー材料基材の表面への到達照度が0.1~100mW/cmとなるよう紫外線を照射する、[5]~[7]のいずれか1項に記載のポリマー材料の製造方法。
[1] A vinyl compound represented by the following general formula (1) is brought into contact with the surface of a polymer material substrate (excluding a fabric substrate) and irradiated with ultraviolet rays to remove the polymer material substrate. A method for surface treatment of a polymer material substrate for imparting water repellency to the surface.
R-CH=CH 2 (1)
(In the formula, R represents an alkyl group having 6 or more carbon atoms.)
[2] The method for surface treatment of a polymer material substrate according to [1], wherein R is an alkyl group having 6 to 20 carbon atoms.
[3] The method for surface treatment of a polymer material substrate according to [1] or [2], wherein the ultraviolet rays have a wavelength of 150 to 400 nm.
[4] The polymer material substrate according to any one of [1] to [3], wherein ultraviolet rays are irradiated so that the illuminance reaching the surface of the polymer material substrate is 0.1 to 100 mW/cm 2 . surface treatment method.
[5] A method for producing a polymer material, comprising the step of bringing a vinyl compound represented by the following general formula (1) into contact with the surface of a polymer material substrate (excluding a fabric substrate) and irradiating with ultraviolet rays. .
R-CH=CH 2 (1)
(In the formula, R represents an alkyl group having 6 or more carbon atoms.)
[6] The method for producing a polymer material according to [5], wherein R is an alkyl group having 6 to 20 carbon atoms.
[7] The method for producing a polymer material according to [5] or [6], wherein the ultraviolet rays have a wavelength of 150 to 400 nm.
[8] Manufacture of the polymer material according to any one of [5] to [7], wherein ultraviolet rays are irradiated so that the illuminance reaching the surface of the polymer material substrate is 0.1 to 100 mW/cm 2 . Method.

本発明によれば、バインダーに相当する化学構造を導入することなく、様々な表面化学構造のポリマー材料基材に対して、高い撥水性を発現させることができる、ポリマー材料基材の表面処理方法、及び、ポリマー材料の製造方法が提供される。 According to the present invention, there is provided a method for surface treatment of a polymer material substrate that can develop high water repellency to polymer material substrates having various surface chemical structures without introducing a chemical structure corresponding to a binder. and methods of making polymeric materials are provided.

実験例1の表面処理前のポリマー材料基材、及び、1-オクタデセンを反応させた表面処理後のポリマー材料のXPSスペクトルである。2 shows XPS spectra of the polymer material substrate before surface treatment and the polymer material after surface treatment with 1-octadecene in Experimental Example 1. FIG. 実験例1の表面処理前のポリマー材料基材、及び、1-オクタデセンを反応させた表面処理後のポリマー材料のC1sスペクトルである。2 shows C1s spectra of the polymer material substrate before surface treatment in Experimental Example 1 and the polymer material after surface treatment with 1-octadecene. 実験例2の表面処理前のポリマー材料基材、及び、1-オクタデセンを反応させた表面処理後のポリマー材料のXPSスペクトルである。2 shows XPS spectra of the polymer material substrate before surface treatment and the polymer material after surface treatment with 1-octadecene in Experimental Example 2. FIG. 実験例2の表面処理前のポリマー材料基材、及び、1-オクタデセンを反応させた表面処理後のポリマー材料のC1sスペクトルである。2 shows C1s spectra of the polymer material substrate before surface treatment in Experimental Example 2 and the polymer material after surface treatment with 1-octadecene. フィルム状のポリエチレンテレフタレートをポリマー材料基材としたときの、表面処理前のポリマー材料基材、及び、1-オクタデセンを反応させることによる表面アルキル化処理後のポリマー材料の紫外可視光の透過スペクトルである。UV-visible light transmission spectra of the polymer material base before surface treatment and the polymer material after surface alkylation treatment by reacting with 1-octadecene when film-like polyethylene terephthalate is used as the polymer material base. be. フィルム状のポリエチレンテレフタレートをポリマー材料基材としたときの、表面処理前のポリマー材料基材、及び、1-テトラデセンを反応させることによる表面アルキル化処理後のポリマー材料の紫外可視光の透過スペクトルである。Ultraviolet and visible light transmission spectra of a polymer material base before surface treatment and a polymer material after surface alkylation treatment by reacting with 1-tetradecene when film-like polyethylene terephthalate is used as the polymer material base. be. 各種ポリマー材料に1-オクタデセン溶液を塗布した後、キセノンエキシマランプを照射して得られる、表面処理が施されたポリマー材料の処理前後のATR法によるFT-IR差スペクトルである。1 shows FT-IR difference spectra by the ATR method before and after treatment of surface-treated polymer materials obtained by applying a 1-octadecene solution to various polymer materials and then irradiating them with a xenon excimer lamp.

<ポリマー材料基材の表面処理方法>
本発明の一実施形態に係るポリマー材料基材の表面処理方法は、ポリマー材料基材(ただし、布帛基材を除く。)の表面に、下記一般式(1)で表されるビニル化合物を接触させ、紫外線を照射することにより、前記ポリマー材料基材の表面に撥水性を付与する、ポリマー材料基材の表面処理方法である。
R-CH=CH (1)
(式中、Rは炭素数6以上のアルキル基を示す。)
<Surface treatment method for polymer material substrate>
A method for surface treatment of a polymer material substrate according to one embodiment of the present invention comprises bringing a vinyl compound represented by the following general formula (1) into contact with the surface of a polymer material substrate (excluding a fabric substrate). and applying ultraviolet rays to impart water repellency to the surface of the polymer material substrate.
R—CH═CH 2 (1)
(In the formula, R represents an alkyl group having 6 or more carbon atoms.)

本実施形態に係るポリマー材料基材の表面処理方法において、ポリマー材料基材としては、各種汎用性ポリマーおよび機能性ポリマーの基材を使用することができる。ポリマー材料基材の形状としては制限がなく、板状、フィルム状、粉末状、ペレット状等広く使用することができる。ただし、布帛基材を除く。本明細書においては、表面処理前のポリマー材料をポリマー材料基材と云い、表面処理後のものを、ポリマー材料と云うことがある。 In the method for surface treatment of a polymer material substrate according to the present embodiment, substrates of various general-purpose polymers and functional polymers can be used as the polymer material substrate. The shape of the polymer material substrate is not limited, and a wide range of shapes such as plate, film, powder, and pellets can be used. However, fabric substrates are excluded. In this specification, the polymer material before the surface treatment is sometimes called the polymer material substrate, and the one after the surface treatment is sometimes called the polymer material.

本実施形態に係るポリマー材料基材の表面処理方法において、前記Rが、炭素数6~20のアルキル基であることが好ましく、炭素数8~20のアルキル基であることがより好ましく、炭素数10~20のアルキル基であることがさらに好ましく、炭素数12~18のアルキル基であることが特に好ましい。前記アルキル基は直鎖状、分岐鎖状、又は環状のいずれでもよく、直鎖状であることが好ましい。前記Rが、炭素数12~18の直鎖状のアルキル基であることがさらに好ましい。 In the method for surface treatment of a polymer material substrate according to the present embodiment, R is preferably an alkyl group having 6 to 20 carbon atoms, more preferably an alkyl group having 8 to 20 carbon atoms. An alkyl group having 10 to 20 carbon atoms is more preferable, and an alkyl group having 12 to 18 carbon atoms is particularly preferable. The alkyl group may be linear, branched or cyclic, preferably linear. More preferably, R is a linear alkyl group having 12 to 18 carbon atoms.

本実施形態に係るポリマー材料基材の表面処理方法において、紫外線の光源としては公知のものが用いることができる。その例を挙げると、低圧水銀灯、高圧水銀灯、ArF又はXeClエキシマレーザー、エキシマランプ等である。このように、本発明は、広範囲の波長の光を利用できる。 In the method for surface treatment of a polymer material substrate according to the present embodiment, a known ultraviolet light source can be used. Examples include low-pressure mercury lamps, high-pressure mercury lamps, ArF or XeCl excimer lasers, excimer lamps, and the like. Thus, the present invention can utilize light of a wide range of wavelengths.

本実施形態に係るポリマー材料基材の表面処理方法において、前記ビニル化合物のビニル基からポリマー材料基材への電子移動によって、アルキル基をポリマー材料基材表面のポリマー材料基材由来の元素と化学結合させるために、紫外線照射を照射する。前記紫外線の波長は150nm~400nmとするのが好ましく、170nm~300nmとするのがより好ましい。 In the method for surface treatment of a polymeric material substrate according to the present embodiment, the alkyl group is chemically treated with an element derived from the polymeric material substrate on the surface of the polymeric material substrate by electron transfer from the vinyl group of the vinyl compound to the polymeric material substrate. For bonding, they are exposed to UV radiation. The wavelength of the ultraviolet rays is preferably 150 nm to 400 nm, more preferably 170 nm to 300 nm.

反応の高効率化のためには、200nm以下の波長を有する紫外線を照射することが好ましい。 In order to improve the efficiency of the reaction, it is preferable to irradiate ultraviolet rays having a wavelength of 200 nm or less.

本実施形態に係るポリマー材料基材の表面処理方法において、ポリマー材料基材への到達照度が0.1~100mW/cmとなるよう紫外線を照射することが好ましい。また、照射時間は、1分間~6時間程度であってもよく、1分間~30分間程度とするのが好ましい。これらの条件は好ましい範囲であり、必ずしもこれに特に制限されるものではない。 In the method for surface treatment of a polymer material substrate according to the present embodiment, it is preferable to irradiate the polymer material substrate with ultraviolet rays so that the illuminance reaching the polymer material substrate is 0.1 to 100 mW/cm 2 . The irradiation time may be about 1 minute to 6 hours, preferably about 1 minute to 30 minutes. These conditions are preferred ranges and are not necessarily particularly limited thereto.

本実施形態に係るポリマー材料基材の表面処理方法において、ポリマー材料基材(ただし、布帛基材を除く。)の表面に、一般式(1)で表されるビニル化合物を接触させる方法としては、前記ビニル化合物を液体としてポリマー材料基材に接触させる方法、前記ビニル化合物の溶液をポリマー材料基材へスプレー又は塗布する方法、ビニル化合物の溶液へポリマー材料基材を浸漬させた後に乾燥させる方法、ポリマー材料基材の存在下、前記ビニル化合物を気体として反応容器に導入する方法など、ドライプロセス、ウェットプロセスの双方の工程を利用することができる。 In the method for surface treatment of a polymer material substrate according to the present embodiment, the surface of the polymer material substrate (excluding the fabric substrate) is contacted with the vinyl compound represented by the general formula (1). , a method of contacting the polymer material substrate with the vinyl compound as a liquid, a method of spraying or applying a solution of the vinyl compound onto the polymer material substrate, and a method of immersing the polymer material substrate in the solution of the vinyl compound and then drying it. , a method of introducing the vinyl compound as a gas into a reaction vessel in the presence of a polymer material substrate, and the like.

本実施形態に係るポリマー材料基材の表面処理方法において、アルキル化反応は室温下で容易に進行する。これは、本発明の大きな特徴の一つでもある。しかし、加熱を否定するものではない。必要に応じて加熱することも可能である。 In the method for surface treatment of a polymer material substrate according to this embodiment, the alkylation reaction proceeds easily at room temperature. This is also one of the major features of the present invention. However, it does not deny heating. It is also possible to heat if necessary.

本明細書において、室温とは、外部系から加熱も冷却もしていない温度を云う。室温は、1~30℃であってよく、15~25℃であってよい。 As used herein, room temperature refers to a temperature that is neither heated nor cooled by an external system. The room temperature may be 1-30°C, and may be 15-25°C.

本実施形態に係るポリマー材料基材の表面処理方法は、ビニル化合物を接触させたポリマー材料基材に紫外線を照射するだけの安全かつ簡便な反応操作により、基材劣化を起こすことなくポリマー材料表面上にアルキル基が導入され、高い撥水性を発現できるという優れた効果を奏する。 The method for surface treatment of a polymer material substrate according to the present embodiment is a safe and simple reaction operation in which a polymer material substrate in contact with a vinyl compound is irradiated with ultraviolet rays to treat the surface of the polymer material without causing deterioration of the substrate. An alkyl group is introduced thereon, and an excellent effect of being able to express high water repellency is exhibited.

本実施形態に係るポリマー材料基材の表面処理方法は、加工の際に加熱処理をする必要がないため、使用エネルギー削減に寄与できる。さらに、従来ポリマー材料基材に撥水性を付与する表面処理として利用されているフッ素やシリコーン含有表面処理剤を使用することなく、架橋剤に相当する化学構造を介することなく、高い撥水性を付与できる。 The method for surface treatment of a polymer material substrate according to the present embodiment does not require heat treatment during processing, and thus can contribute to the reduction of energy consumption. In addition, high water repellency is imparted without the use of fluorine- or silicone-containing surface treatment agents, which are conventionally used as surface treatments to impart water repellency to polymer material substrates, and without the use of a chemical structure equivalent to a cross-linking agent. can.

<ポリマー材料の製造方法>
本実施形態に係るポリマー材料の製造方法は、下記一般式(1)で表されるビニル化合物を接触させ、紫外線を照射する工程を含む。
R-CH=CH (1)
(式中、Rは炭素数6以上のアルキル基を示す。)
<Method for producing polymer material>
A method for producing a polymer material according to the present embodiment includes a step of contacting a vinyl compound represented by the following general formula (1) and irradiating with ultraviolet rays.
R—CH═CH 2 (1)
(In the formula, R represents an alkyl group having 6 or more carbon atoms.)

本実施形態に係るポリマー材料の製造方法により、表面に撥水性が付与されたポリマー材料を得ることができる。本実施形態に係るポリマー材料の製造方法の詳細は、上述のポリマー材料基材の表面処理方法と同じである。 A polymer material having a water-repellent surface can be obtained by the method for producing a polymer material according to the present embodiment. The details of the method for producing the polymer material according to this embodiment are the same as the method for surface treatment of the polymer material substrate described above.

以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 The present invention will be described in more detail below with reference to specific examples. However, the present invention is by no means limited to the examples shown below.

(X線光電子分光(XPS)分析)
X線光電子分光(XPS)装置(アルバックファイ製、ESCA5800、データ解析ソフトウェア:PHI MultiPakTM)を用いて、次の測定条件により、表面処理前のポリマー材料基材、及び、表面処理後のポリマー材料の表面を分析した。これにより、表面から深さおよそ5nmまでの元素成分及びその結合状態を分析することができる。
X線源:単色化AlKα、ビーム径800μmφ、出力100W、測定エリア:800μmφ測定、試料傾斜角度:45°
(X-ray photoelectron spectroscopy (XPS) analysis)
Using an X-ray photoelectron spectroscopy (XPS) device (manufactured by ULVAC-PHI, ESCA5800, data analysis software: PHI MultiPak ), under the following measurement conditions, the polymer material substrate before surface treatment and the polymer material after surface treatment surface was analyzed. This makes it possible to analyze the elemental components and their bonding states up to a depth of approximately 5 nm from the surface.
X-ray source: monochromatic AlKα, beam diameter 800 μmφ, output 100 W, measurement area: 800 μmφ measurement, sample tilt angle: 45°

XPSスペクトルにおいて、結合エネルギー0~1000eVの範囲の、全元素成分のピーク面積の総和に対する、結合エネルギー280~300eVの範囲の炭素成分のピーク面積の割合を、炭素含有率として求めた。 In the XPS spectrum, the ratio of the peak area of the carbon component in the binding energy range of 280 to 300 eV to the total peak area of all the elemental components in the binding energy range of 0 to 1000 eV was obtained as the carbon content.

285.0eV付近の炭素-炭素結合のピーク面積(C-C)、286.0eV付近の炭素-窒素結合のピーク面積(C-N,C-O,C-Cl)、及び、288eV付近の炭素-酸素結合のピーク面積(C=O)の合計の面積に対する、285.0eV付近の炭素-炭素結合のピーク面積(C-C)の割合を、炭素-炭素結合含有率として求めた。 Carbon-carbon bond peak area (C-C) near 285.0 eV, carbon-nitrogen bond peak area (C-N, C-O, C-Cl) near 286.0 eV, and carbon near 288 eV The ratio of the carbon-carbon bond peak area (CC) near 285.0 eV to the total area of the oxygen bond peak area (C=O) was obtained as the carbon-carbon bond content.

(水接触角の測定方法)
表面処理前のポリマー材料基材、及び、表面処理後のポリマー材料について、それぞれ、協和界面科学社製接触角計DMo-501を用いて水に対する接触角を測定した。測定温度は、室温であり、水滴量は2μlとした。
(Method for measuring water contact angle)
The contact angle to water of the polymer material substrate before the surface treatment and the polymer material after the surface treatment were measured using a contact angle meter DMo-501 manufactured by Kyowa Interface Science Co., Ltd., respectively. The measurement temperature was room temperature, and the amount of water droplets was 2 μl.

(透過度の測定方法)
フィルム状の試料について、紫外可視分光光度計(株式会社島津製作所製UV-3150)を用いて、200~800nmの波長範囲の透過度を測定した。
(Method for measuring transmittance)
The transmittance in the wavelength range of 200 to 800 nm was measured for the film-shaped sample using an ultraviolet-visible spectrophotometer (UV-3150 manufactured by Shimadzu Corporation).

(ATR法によるFT-IRの測定方法)
表面処理前のポリマー材料基材、及び、表面処理後のポリマー材料について、それぞれ、日本分光株式会社製フーリエ変換赤外分光光度計FT/IR-680へATRユニット(ATR500M,Geプリズム)を付属させて測定した。測定温度は室温、測定室環境は大気である。装置付属の解析ソフトウェアを用い、共通ピーク(C=Oピークなど)強度を打ち消すように係数を設定し、表面処理後スペクトルから表面処理前スペクトルを差し引いて、FT-IR差スペクトルを求めた。
(Measurement method of FT-IR by ATR method)
For the polymer material base material before surface treatment and the polymer material after surface treatment, an ATR unit (ATR500M, Ge prism) was attached to a Fourier transform infrared spectrophotometer FT/IR-680 manufactured by JASCO Corporation. measured by The measurement temperature is room temperature, and the measurement room environment is the atmosphere. Using the analysis software attached to the device, a coefficient was set so as to cancel out the common peak (C=O peak, etc.) intensity, and the spectrum before surface treatment was subtracted from the spectrum after surface treatment to obtain an FT-IR difference spectrum.

(実験例1)
厚さ1mmの板状の各種ポリマー材料基材(ポリエチレン、ポリプロピレン、PMMA、ポリ塩化ビニル、ABS樹脂、ポリカーボネート、ナイロン6)の表面に、1-オクタデセンの2.3g/Lヘキサン溶液を塗布し、キセノンエキシマランプを室温で20分間照射した。紫外線照射の波長は172nmである。
(Experimental example 1)
A 2.3 g / L hexane solution of 1-octadecene was applied to the surface of various plate-shaped polymer material substrates (polyethylene, polypropylene, PMMA, polyvinyl chloride, ABS resin, polycarbonate, nylon 6) with a thickness of 1 mm, A xenon excimer lamp was irradiated for 20 minutes at room temperature. The wavelength of ultraviolet irradiation is 172 nm.

その後、表面処理後のポリマー材料をヘキサンで洗浄し、減圧下で乾燥させた。これらのうち、PMMA、ポリ塩化ビニル、ABS樹脂、ポリカーボネート及びナイロン6をポリマー材料基材としたときの、表面処理前のポリマー材料基材及び表面処理後のポリマー材料のXPS測定を実施した。また、それぞれの表面の水に対する接触角を測定した。
XPS測定の結果を、図1に示す。また、C1sスペクトルを、図2に示す。
炭素含有率の測定結果を表1に示す。
水に対する接触角の測定結果を表2に示す。
The polymer material after surface treatment was then washed with hexane and dried under reduced pressure. Among these, when PMMA, polyvinyl chloride, ABS resin, polycarbonate and nylon 6 were used as the polymer material base material, XPS measurement was performed on the polymer material base material before surface treatment and the polymer material after surface treatment. Also, the contact angle of each surface to water was measured.
The results of XPS measurements are shown in FIG. Also, the C1s spectrum is shown in FIG.
Table 1 shows the measurement results of the carbon content.
Table 2 shows the measurement results of the contact angle with water.

Figure 2023053773000001
Figure 2023053773000001

Figure 2023053773000002
Figure 2023053773000002

ポリマー材料基材の表面に、1-オクタデセンを反応させることにより、炭素成分の増加が観測され(図1、表1)、導入されたアルキル基由来である炭素-炭素結合成分の増加を確認された(図2)。
また、水に対する接触角が100°以上を示し、撥水性が付与された(表2)。
By reacting 1-octadecene on the surface of the polymer material substrate, an increase in the carbon component was observed (FIG. 1, Table 1), and an increase in the carbon-carbon bond component derived from the introduced alkyl group was confirmed. (Fig. 2).
Moreover, the contact angle with water was 100° or more, and water repellency was imparted (Table 2).

(実験例2)
厚さ50μmのフィルム状の各種ポリマー材料基材(ポリエチレンテレフタレート(東レ株式会社製ルミラー(登録商標) T60)、ポリイミド(東レ・デュポン株式会社製カプトン(登録商標) 200H))の表面に、1-オクタデセンの1.6g/Lヘキサン溶液を塗布し、キセノンエキシマランプを室温で20分間照射した。紫外線照射の波長は172nmである。
(Experimental example 2)
1- A 1.6 g/L hexane solution of octadecene was applied and irradiated with a xenon excimer lamp at room temperature for 20 minutes. The wavelength of ultraviolet irradiation is 172 nm.

その後、表面処理後のポリマー材料をヘキサンで洗浄し、減圧下で乾燥させた。これらの表面処理前のポリマー材料基材及び表面処理後のポリマー材料のXPS測定を実施した。また、それぞれの透過度を測定した。
XPS測定の結果を、図3に示す。また、C1sスペクトルを、図4に示す。
ポリエチレンテレフタレートをポリマー材料基材としたときの、表面処理前のポリマー材料基材及び表面アルキル化処理後のポリマー材料の透過度の測定結果を図5に示す。
炭素含有率の測定結果を表3に示す。
水に対する接触角の測定結果を表4に示す。
The polymer material after surface treatment was then washed with hexane and dried under reduced pressure. XPS measurement was performed on the polymer material base material before surface treatment and the polymer material after surface treatment. In addition, each transmittance was measured.
The results of XPS measurements are shown in FIG. Also, the C1s spectrum is shown in FIG.
FIG. 5 shows the measurement results of the permeability of the polymer material base material before surface treatment and the polymer material after surface alkylation treatment when polyethylene terephthalate was used as the polymer material base material.
Table 3 shows the measurement results of the carbon content.
Table 4 shows the measurement results of the contact angle with water.

Figure 2023053773000003
Figure 2023053773000003

Figure 2023053773000004
Figure 2023053773000004

ポリマー材料基材の表面に、1-オクタデセンを反応させることにより、炭素成分の増加が観測され(図3、表3)、導入されたアルキル基由来である炭素-炭素結合成分の増加を確認された(図4)。
また、水に対する接触角が100°以上を示し、撥水性が付与された(表4)。
By reacting 1-octadecene on the surface of the polymer material substrate, an increase in the carbon component was observed (FIG. 3, Table 3), and an increase in the carbon-carbon bond component derived from the introduced alkyl group was confirmed. (Fig. 4).
Moreover, the contact angle with water was 100° or more, and water repellency was imparted (Table 4).

さらに、透明性ポリマー材料(ポリエチレンテレフタレート)について、アルキル化表面処理後のポリマー材料の透過度は表面処理前と比較してほぼ変化がなく、1-オクタデセンを反応させても、ポリマー材料基材の透明性を保持することができ、アルキル基導入の基材への影響は少ないことが確認された(図5)。 Furthermore, with regard to the transparent polymer material (polyethylene terephthalate), the transmittance of the polymer material after the alkylation surface treatment is almost unchanged compared to that before the surface treatment, and even if 1-octadecene is reacted, the transparency of the polymer material base material It was confirmed that transparency could be maintained and that the introduction of alkyl groups had little effect on the base material (Fig. 5).

(実験例3)
厚さ50μmのフィルム状のポリマー材料基材(ポリエチレンテレフタレート(東レ株式会社製ルミラー(登録商標) T60)の表面、1-テトラデセンの60g/Lヘキサン溶液を塗布し、キセノンエキシマランプを室温で20分間照射した。紫外線照射の波長は172nmである。
(Experimental example 3)
A 60 g/L hexane solution of 1-tetradecene was applied to the surface of a film-like polymer material substrate (polyethylene terephthalate (Lumirror (registered trademark) T60 manufactured by Toray Industries, Inc.) having a thickness of 50 μm, and a xenon excimer lamp was applied at room temperature for 20 minutes. The wavelength of UV irradiation is 172 nm.

その後、表面処理後のポリマー材料をヘキサンで洗浄し、減圧下で乾燥させた。水に対する接触角が100°を示し、撥水性が付与された。
表面処理前のポリマー材料基材及び表面アルキル化処理後のポリマー材料の透過度の測定結果を図6に示す。
アルキル化表面処理後のポリマー材料の透過度は表面処理前と比較してほぼ変化がなく、1-テトラデセンを反応させても、ポリマー材料基材の透明性を保持することができ、アルキル基導入の基材への影響は少ないことが確認された(図6)。
The polymer material after surface treatment was then washed with hexane and dried under reduced pressure. The contact angle with water was 100°, and water repellency was imparted.
FIG. 6 shows the measurement results of the transmittance of the polymer material substrate before surface treatment and the polymer material after surface alkylation treatment.
The transmittance of the polymer material after the alkylation surface treatment is almost unchanged compared to that before the surface treatment, and even if 1-tetradecene is reacted, the transparency of the polymer material substrate can be maintained. It was confirmed that there was little effect on the base material (Fig. 6).

図7は、各種ポリマー材料に1-オクタデセン溶液を塗布した後、キセノンエキシマランプを照射して得られる、表面処理が施されたポリマー材料の処理前後のATR法によるFT-IR差スペクトルである。いずれのポリマー材料においても、当該表面処理により、ポリマー材料の表面にアルキル基が導入されたことが確認できた。 FIG. 7 shows FT-IR difference spectra by the ATR method before and after treatment of surface-treated polymer materials obtained by applying a 1-octadecene solution to various polymer materials and then irradiating them with a xenon excimer lamp. It was confirmed that alkyl groups were introduced to the surfaces of the polymer materials by the surface treatment in all polymer materials.

ポリマー材料基材の表面に、ビニル化合物を接触させ、紫外線を照射することにより、バインダーに相当する化学構造を導入することなく、様々な表面化学構造のポリマー材料基材に対して、基材の劣化を起こすことなく、高い撥水性を発現可能であることが明らかとなった。 By bringing the vinyl compound into contact with the surface of the polymer material substrate and irradiating it with ultraviolet rays, the polymer material substrates having various surface chemical structures are exposed to the substrate without introducing a chemical structure corresponding to the binder. It became clear that high water repellency can be expressed without causing deterioration.

本発明のポリマー材料基材の表面処理方法は、末端部に炭素-炭素二重結合を有するビニル化合物に紫外線照射をするだけで、ポリマー材料基材表面上にアルキル基を化学結合させることができる。すなわち、本発明のポリマー材料基材の表面処理方法は、光反応を利用する安全かつ簡便な方法である。従来用いられてきたフッ素含有化合物を使用することなく、バインダーに相当する化学構造を導入することなく、様々な表面化学構造のポリマー材料基材に対して、フッ素系表面処理材料と同程度の高い撥水性を発現することができる。
ポリマー材料基材が、耐熱性、耐薬品性、耐光性に劣る場合であっても、室温下での反応が可能であることから、様々な表面化学構造のポリマー材料基材に対しての適用が可能であり、光照射による基材劣化を起こすことなく、ポリマー材料表面上にアルキル基を導入することができる。
したがって、本発明のポリマー材料基材の表面処理方法は、撥水性が付与された部材、回路基板、環境対応製品、工業製品全般の部材などの製造方法として、利用可能である。
In the method for treating the surface of a polymer material substrate of the present invention, an alkyl group can be chemically bonded to the surface of a polymer material substrate simply by irradiating a vinyl compound having a carbon-carbon double bond at its end with an ultraviolet ray. . That is, the method for surface treatment of a polymer material substrate of the present invention is a safe and convenient method utilizing photoreaction. Without using conventionally used fluorine-containing compounds and without introducing a chemical structure corresponding to a binder, it can be applied to polymer material substrates with various surface chemical structures as high as fluorine-based surface treatment materials. Water repellency can be expressed.
Even if the polymer material substrate is inferior in heat resistance, chemical resistance, and light resistance, it is possible to react at room temperature, so it can be applied to polymer material substrates with various surface chemical structures. is possible, and alkyl groups can be introduced onto the polymer material surface without causing deterioration of the substrate due to light irradiation.
Therefore, the method for surface treatment of a polymer material substrate of the present invention can be used as a method for manufacturing members imparted with water repellency, circuit boards, eco-friendly products, and members of industrial products in general.

Claims (8)

ポリマー材料基材(ただし、布帛基材を除く。)の表面に、下記一般式(1)で表されるビニル化合物を接触させ、紫外線を照射することにより、前記ポリマー材料基材の表面に撥水性を付与する、ポリマー材料基材の表面処理方法。
R-CH=CH (1)
(式中、Rは炭素数6以上のアルキル基を示す。)
A vinyl compound represented by the following general formula (1) is brought into contact with the surface of a polymer material substrate (excluding a fabric substrate) and irradiated with ultraviolet rays to make the surface of the polymer material substrate repellent. A surface treatment method for a polymeric material substrate that imparts water-based properties.
R—CH═CH 2 (1)
(In the formula, R represents an alkyl group having 6 or more carbon atoms.)
前記Rが、炭素数6~20のアルキル基である、請求項1に記載のポリマー材料基材の表面処理方法。 2. The method for surface treatment of a polymer material substrate according to claim 1, wherein said R is an alkyl group having 6 to 20 carbon atoms. 前記紫外線の波長が150~400nmである、請求項1又は2に記載のポリマー材料基材の表面処理方法。 3. The method for surface treatment of a polymer material substrate according to claim 1, wherein said ultraviolet rays have a wavelength of 150 to 400 nm. 前記ポリマー材料基材の表面への到達照度が0.1~100mW/cmとなるよう紫外線を照射する、請求項1~3のいずれか一項に記載のポリマー材料基材の表面処理方法。 The method for surface treatment of a polymer material substrate according to any one of claims 1 to 3, wherein the ultraviolet rays are irradiated so that the illuminance reaching the surface of the polymer material substrate is 0.1 to 100 mW/cm 2 . ポリマー材料基材(ただし、布帛基材を除く。)の表面に、下記一般式(1)で表されるビニル化合物を接触させ、紫外線を照射する工程を含む、ポリマー材料の製造方法。
R-CH=CH (1)
(式中、Rは炭素数6以上のアルキル基を示す。)
A method for producing a polymer material, comprising the step of bringing a vinyl compound represented by the following general formula (1) into contact with the surface of a polymer material substrate (excluding a fabric substrate) and irradiating with ultraviolet rays.
R—CH═CH 2 (1)
(In the formula, R represents an alkyl group having 6 or more carbon atoms.)
前記Rが、炭素数6~20のアルキル基である、請求項5に記載のポリマー材料の製造方法。 6. The method for producing a polymer material according to claim 5, wherein said R is an alkyl group having 6 to 20 carbon atoms. 前記紫外線の波長が150~400nmである、請求項5又は6に記載のポリマー材料の製造方法。 7. The method for producing a polymer material according to claim 5, wherein the ultraviolet rays have a wavelength of 150-400 nm. 前記ポリマー材料基材の表面への到達照度が0.1~100mW/cmとなるよう紫外線を照射する、請求項5~7のいずれか1項に記載のポリマー材料の製造方法。 The method for producing a polymer material according to any one of claims 5 to 7, wherein the ultraviolet rays are irradiated so that the illuminance reaching the surface of the polymer material substrate is 0.1 to 100 mW/cm 2 .
JP2021163010A 2021-10-01 2021-10-01 Polymer material substrate surface treatment method and polymer material production method Pending JP2023053773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021163010A JP2023053773A (en) 2021-10-01 2021-10-01 Polymer material substrate surface treatment method and polymer material production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021163010A JP2023053773A (en) 2021-10-01 2021-10-01 Polymer material substrate surface treatment method and polymer material production method

Publications (1)

Publication Number Publication Date
JP2023053773A true JP2023053773A (en) 2023-04-13

Family

ID=85873181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021163010A Pending JP2023053773A (en) 2021-10-01 2021-10-01 Polymer material substrate surface treatment method and polymer material production method

Country Status (1)

Country Link
JP (1) JP2023053773A (en)

Similar Documents

Publication Publication Date Title
Hozumi et al. Spatially defined surface modification of poly (methyl methacrylate) using 172 nm vacuum ultraviolet light
Wang et al. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation
US6117497A (en) Solid surface modification method and apparatus
Jia et al. Polymer surface oxidation by light-activated chlorine dioxide radical for metal–plastics adhesion
US10174424B2 (en) Methods for the photo-initiated chemical vapor deposition (PICVD) of coatings and coatings produced by these methods
Bahners et al. Super-hydrophilic surfaces by photo-induced micro-folding
CN108676193B (en) Plastic surface modification method
KR0155460B1 (en) Method of making thin film
Cheng et al. Surface modification of polytetrafluoroethylene by atmospheric pressure plasma-grafted polymerization
Aminuzzaman et al. Photochemical surface modification and characterization of double-decker-shaped polysilsesquioxane hybrid thin films
JP2023053773A (en) Polymer material substrate surface treatment method and polymer material production method
Zhang et al. Surface modification of poly (tetrafluoroethylene) films by low energy Ar+ ion-beam activation and UV-induced graft copolymerization
Jiao et al. Vapor-enhanced covalently bound ultra-thin films on oxidized surfaces for enhanced resolution imaging
Kim et al. Metallization of polymer through a novel surface modification applying a photocatalytic reaction
Ghoreishi et al. Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface
Wang et al. Room-temperature direct heterogeneous bonding of glass and polystyrene substrates
US8541621B2 (en) Polymerization initiator having aryl azide and surface modification method of cyclic olefin copolymer using the same
Bourg et al. Surface functionalization of cyclic olefin copolymer by plasma‐enhanced chemical vapor deposition using atmospheric pressure plasma jet for microfluidic applications
Höfler et al. Photoreactive molecular layers containing aryl ester units: Preparation, UV patterning and post-exposure modification
KR20170018571A (en) POSS/semifluorinated polymer having water and oil repellent and preparation method thereof and method of surface processing using POSS/semifluorinated polymer
Cesaria et al. [18F] F-DOPA synthesis by poly (dimethylsiloxane)-based platforms: thermal aging protocol to reduce chemicals-induced damage
JP2019210349A (en) Surface treatment method for polymer material
JP6019738B2 (en) Method for producing substrate having hydrophilic layer
JP2009270067A (en) Photocurable composition, cured product and photocurable resin film
JP6493658B2 (en) Method for producing highly water-repellent film