JP2023050354A - Water treatment apparatus - Google Patents

Water treatment apparatus Download PDF

Info

Publication number
JP2023050354A
JP2023050354A JP2021160413A JP2021160413A JP2023050354A JP 2023050354 A JP2023050354 A JP 2023050354A JP 2021160413 A JP2021160413 A JP 2021160413A JP 2021160413 A JP2021160413 A JP 2021160413A JP 2023050354 A JP2023050354 A JP 2023050354A
Authority
JP
Japan
Prior art keywords
electrode
water
treated
product
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021160413A
Other languages
Japanese (ja)
Inventor
弘樹 奈良
Hiroki Nara
浩史 藤田
Hiroshi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021160413A priority Critical patent/JP2023050354A/en
Priority to PCT/JP2022/028980 priority patent/WO2023053701A1/en
Publication of JP2023050354A publication Critical patent/JP2023050354A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation

Abstract

To provide a water treatment apparatus capable of effectively removing a humic substance from treatment target water.SOLUTION: A water treatment apparatus comprises: an electrolysis cell 4 to which treatment target water 21 including a humic substance 11b flows in; a first electrode 10a and a second electrode 10b soaked in the treatment target water 21 in the electrolysis cell 4; and an electric source 5 applying electric current to between the first electrode 10a and the second electrode 10b, wherein the first electrode 10a and the second electrode 10b are composed of a material from which iron ion 11c is eluted by applying electric current from the electric source 5. The first electrode 10a and the second electrode 10b are arranged in a manner that, on applying electric current from the electric source 5, a first product material 11f formed by reaction of the humic substance 11b and iron ion 11c on the anode side aggregates with a second product material 11g formed by reaction of hydroxide ion 11d and iron ion 11c on the cathode side to form a floc 11h.SELECTED DRAWING: Figure 1

Description

本発明は、水処理装置に関する。 The present invention relates to water treatment equipment.

従来から、井戸、河川、又は池などの水源の水を、飲料水や生活用水として利用するために浄化する水浄化方法が開示されている。浄化により水から除去する物質は、例えば、濁りの原因である無機懸濁物あるいは色や臭気の原因である溶存有機物である。溶存有機物に関しては、例えば、インドネシアのカリマンタン島及びスマトラ島に代表される泥炭地域の水源の水には、フミン質という溶存有機物が高濃度で含まれることから色度が高く、生活水用途に用いる場合には洗濯物が着色する等問題となる。フミン質の除去方法としては、凝集剤を用いてフミン質を沈殿させて除去する凝集沈殿法(特許文献1参照)などが知られている。 BACKGROUND ART Conventionally, there have been disclosed water purification methods for purifying water from water sources such as wells, rivers, ponds, etc. for use as drinking water or domestic water. Substances that are removed from water by purification are, for example, inorganic suspended matter that causes turbidity or dissolved organic matter that causes color and odor. Regarding dissolved organic matter, for example, water from peat regions represented by the islands of Kalimantan and Sumatra in Indonesia contains a high concentration of dissolved organic matter called humic substances, so it has a high degree of color and is used as domestic water. In some cases, it causes problems such as coloration of the laundry. As a method for removing humic substances, there is known a coagulation-sedimentation method (see Patent Document 1) in which humic substances are precipitated and removed using a flocculating agent.

特開平10-216738号公報JP-A-10-216738

フミン質が含まれた色度の高い水から、色度の原因であるフミン質を凝集沈殿法で除去しようとする場合、フミン質の分子が小さいことから凝集させることが難しく、沈殿が容易な大きさのフロック(凝集剤及び、懸濁物或いは溶存物による沈殿物)を形成しづらいという課題があった。 When trying to remove humic substances, which cause chromaticity, from highly colored water containing humic substances by the coagulation-sedimentation method, it is difficult to coagulate them because the molecules of humic substances are small, and precipitation is easy. There is a problem that it is difficult to form large flocs (coagulant and sediment due to suspended matter or dissolved matter).

本発明は、上記従来の課題を解決するものであり、従来の凝集沈殿技術において困難であった被処理水からのフミン質の効率的な除去を可能とする水処理装置を提供することを目的とする。 An object of the present invention is to solve the conventional problems described above, and to provide a water treatment apparatus capable of efficiently removing humic substances from water to be treated, which has been difficult with conventional coagulation sedimentation techniques. and

そして、この目的を達成するために、本発明に係る水処理装置は、フミン質を含む被処理水が流入する電解槽と、電解槽内において被処理水に浸漬する第一電極及び第二電極と、第一電極と第二電極との間に電流を印加する電源と、を備え、第一電極及び第二電極の少なくとも一方は、電源から電流を印加することで鉄イオンが溶出する材料で構成され、第一電極及び第二電極は、電源から電流を印加した際に、陽極側においてフミン質と鉄イオンとの反応により形成される第一生成物と、陰極側において水酸化物イオンと鉄イオンとの反応により形成される第二生成物とが凝集してフロックを形成するように配置されている。 In order to achieve this object, the water treatment apparatus according to the present invention comprises an electrolytic cell into which water to be treated containing humic substances flows, and first and second electrodes that are immersed in the water to be treated in the electrolytic cell. and a power source that applies a current between the first electrode and the second electrode, and at least one of the first electrode and the second electrode is made of a material that elutes iron ions by applying a current from the power source. When a current is applied from a power supply, the first electrode and the second electrode are configured to produce a first product formed by the reaction of humic substances and iron ions on the anode side and hydroxide ions on the cathode side. The secondary products formed by reaction with iron ions are arranged to agglomerate to form flocs.

本開示によれば、被処理水からフミン質を効率的に除去することが可能な水処理装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this indication, the water treatment apparatus which can remove a humic substance from to-be-processed water efficiently can be provided.

図1は、本発明に係る実施の形態の水処理装置1の浄化処理時における模式図である。FIG. 1 is a schematic diagram of a water treatment apparatus 1 according to an embodiment of the present invention during purification treatment. 図2は、本発明に係る実施の形態1の電解槽の電気分解における模式図である。FIG. 2 is a schematic diagram of electrolysis in the electrolytic cell of Embodiment 1 according to the present invention. 図3は、本発明に係る実施の形態の水処理装置1の処理後水の色度を示した図である。FIG. 3 is a diagram showing the chromaticity of treated water of the water treatment apparatus 1 of the embodiment according to the present invention. 図4は、本発明に係る実施の形態の水処理装置1の処理後水の色度を示した図である。FIG. 4 is a diagram showing the chromaticity of treated water of the water treatment apparatus 1 according to the embodiment of the present invention.

本発明に係る水処理装置は、フミン質を含む被処理水が流入する電解槽と、電解槽内において被処理水に浸漬する第一電極及び第二電極と、第一電極と第二電極との間に電流を印加する電源と、を備え、第一電極及び第二電極の少なくとも一方は、電源から電流を印加することで鉄イオンが溶出する材料で構成され、第一電極及び第二電極は、電源から電流を印加した際に、陽極側においてフミン質と鉄イオンとの反応により形成される第一生成物と、陰極側において水酸化物イオンと鉄イオンとの反応により形成される第二生成物とが凝集してフロックを形成するように配置されている。こうした構成によれば、水処理装置に電流を印加することにより、第一生成物及び第二生成物を形成させることができ、第一生成物と第二生成物とが凝集することにより、フミン質を取り込んだフロックを形成することができる。したがって、サイズの小さなフミン質をフロックとして沈殿させることができ、被処理水からフミン質を効率的に除去することが可能となる。 A water treatment apparatus according to the present invention comprises an electrolytic cell into which water to be treated containing humic substances flows, a first electrode and a second electrode immersed in the water to be treated in the electrolytic cell, and a first electrode and a second electrode. a power source that applies a current between the first electrode and the second electrode, at least one of the first electrode and the second electrode is made of a material that elutes iron ions by applying a current from the power source, the first electrode and the second electrode is the first product formed by the reaction of humic substances and iron ions on the anode side and the second product formed by the reaction of hydroxide ions and iron ions on the cathode side when a current is applied from a power source. The two products are arranged so that they agglomerate to form flocs. According to such a configuration, by applying an electric current to the water treatment device, the first product and the second product can be formed, and the aggregation of the first product and the second product causes humin A textured floc can be formed. Therefore, humic substances having a small size can be precipitated as flocs, and humic substances can be efficiently removed from the water to be treated.

また、本発明に係る水処理装置では、第一電極と第二電極との間の電極間距離を、0.5mm以上としてもよい。このような構成とすることにより、電極から剥がれ落ちる不働態が電極間に詰まることを低減できる。したがって、不働態が詰まった部分に電流が流れなくなることにより、第一生成物と第二生成物の生成、及びフロックの形成が、阻害される可能性を低減できる。 Moreover, in the water treatment apparatus according to the present invention, the inter-electrode distance between the first electrode and the second electrode may be 0.5 mm or more. With such a configuration, it is possible to reduce the clogging between the electrodes of the passive state peeled off from the electrodes. Therefore, it is possible to reduce the possibility that the generation of the first product and the second product and the formation of flocs will be inhibited by the current not flowing through the passive state-filled portion.

また、本発明に係る水処理装置は、電源により、被処理水に含まれるフミン質の濃度に対して、第一電極及び第二電極の少なくとも一方から溶出する鉄イオンの濃度が2倍以上となるように電流を印加する。このような構成とすることにより、第一生成物の生成及び第二生成物の生成に十分な鉄イオンが溶出する。したがって、第一生成物及び第二生成物の凝集物であるフロックを効率的に形成でき、被処理水21中のフミン質11bを効率よく除去することが可能となる。 Further, in the water treatment apparatus according to the present invention, the concentration of iron ions eluted from at least one of the first electrode and the second electrode is doubled or more with respect to the concentration of humic substances contained in the water to be treated by the power supply. Apply a current such that With such a configuration, sufficient iron ions are eluted to produce the first product and the second product. Therefore, flocs, which are aggregates of the first product and the second product, can be efficiently formed, and the humic substances 11b in the water 21 to be treated can be efficiently removed.

また、本発明に係る水処理装置は、第一電極及び第二電極が、いずれも電源から電流を印加することで鉄イオンが溶出する材料で構成され、電流を印加した際に、第一電極と第二電極との間で極性を反転させる。このような構成とすることにより、不働態が蓄積して電流を十分に印加できなくなった電極表面から不働態を剥がし落とすことができる。したがって、不働態の蓄積を抑制でき、不働態により電流が流れなくなり、浄化処理効率が低減することを抑制可能となる。 Further, in the water treatment device according to the present invention, the first electrode and the second electrode are both made of a material from which iron ions are eluted by applying a current from a power supply, and when a current is applied, the first electrode and the second electrode. By adopting such a structure, the passivity can be peeled off from the electrode surface where the passivity accumulates and the current cannot be sufficiently applied. Therefore, it is possible to suppress the accumulation of passivation, thereby suppressing the decrease in purification treatment efficiency due to the current not flowing due to the passivity.

また、本発明に係る水処理装置は、電解処理を行った被処理水からフロックを除去する分離部をさらに備える。このような構成とすることにより、処理後水に残留するフロックをより確実に除去することができる。したがって、被処理水からのフミン質の除去効率を向上することができる。 Moreover, the water treatment apparatus according to the present invention further includes a separation section for removing flocs from the water to be treated that has undergone the electrolytic treatment. With such a configuration, it is possible to more reliably remove flocs remaining in the treated water. Therefore, the removal efficiency of humic substances from the water to be treated can be improved.

以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、実施形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following embodiment is an example that embodies the present invention, and does not limit the technical scope of the present invention. In addition, each drawing described in the embodiment is a schematic drawing, and the ratio of the size and thickness of each component in each drawing does not necessarily reflect the actual dimensional ratio. .

本発明の実施の形態を具体的に説明する前に、従来技術の課題を改めて説明するとともに、実施の形態の概要を説明する。 Before specifically describing the embodiments of the present invention, the problems of the prior art will be described again, and the outline of the embodiments will be described.

上述のように、泥炭地域の原水には、フミン質のような溶存有機物が含まれており、色度が高い場合がある。例えば、インドネシアのスマトラ島では、原水の色度が100TCU~500TCU(TCU:true color units)であり、あたかも紅茶の様な色を呈している。原水に含まれるフミン質は、植物などが微生物による分解を経て生成された生成物である。フミン質は、大きく分けてヒュームス質、フミン酸、及びフルボ酸から構成されており、分子の大きさは、ヒュームス質、フミン酸、及びフルボ酸の順に小さくなる。フミン質において、アルカリ水溶液で沈殿するものをヒュームス質といい、アルカリ水溶液に可溶であるが酸水溶液で沈殿するものをフミン酸といい、アルカリ水溶液にも酸水溶液にも可溶なものをフルボ酸という。フミン質のような元々サイズが極めて小さい溶存物に凝集沈殿法を適用しても、除去対象物を沈殿に十分な大きさのフロックにまで凝集させることは難しく、十分な浄化性能は得られない。そこで本発明者は基礎検討を重ね、フミン質をも凝集させ粗大化させる成分を、鉄電極を用いた電解処理によって生成可能であることを見出した。具体的には、フミン質を含む水中に浸漬した鉄の電極間に直流電流を印加する。これにより、陽極側からは鉄イオンが溶出し、鉄イオンとフミン質とがキレート錯体を形成し、陰極側で生成された水酸化物イオンと鉄イオンとが水酸化鉄を形成する。そして、キレート錯体と水酸化鉄とが互いに凝集し、沈殿に十分な大きさのフロックを形成することを発見した。フロックは、沈殿、或いは、ろ過精度0.1~1μm程度のMF(Microfiltration)膜分離等の固液分離法で容易に除去可能である。本実施形態の水処理装置は、この凝集作用を用いて被処理水からフミン質を除去することが可能な装置である。 As mentioned above, raw water from peat areas contains dissolved organic matter, such as humic substances, and can be highly colored. For example, in Sumatra, Indonesia, raw water has a chromaticity of 100 TCU to 500 TCU (TCU: true color units), and exhibits a color similar to that of black tea. The humic substance contained in raw water is a product produced by decomposition of plants and the like by microorganisms. Humic substances are roughly divided into fume substances, humic acid, and fulvic acid, and the molecular size decreases in the order of fume substances, humic acid, and fulvic acid. Among humic substances, those that precipitate in an alkaline aqueous solution are called fumes, those that are soluble in an alkaline aqueous solution but precipitate in an acid aqueous solution are called humic acids, and those that are soluble in both an alkaline and acid aqueous solution are called fulvic. called acid. Even if the coagulation-sedimentation method is applied to dissolved substances such as humic substances, which are originally extremely small in size, it is difficult to coagulate the substances to be removed into flocs large enough for precipitation, and sufficient purification performance cannot be obtained. . Therefore, the present inventors conducted repeated basic studies and found that a component that aggregates and coarsens humic substances can also be produced by electrolytic treatment using an iron electrode. Specifically, a direct current is applied between iron electrodes immersed in water containing humic substances. As a result, iron ions are eluted from the anode side, iron ions and humic substances form a chelate complex, and hydroxide ions and iron ions generated on the cathode side form iron hydroxide. They found that the chelate complex and iron hydroxide aggregate with each other to form flocs large enough for precipitation. Flocs can be easily removed by precipitation or a solid-liquid separation method such as MF (Microfiltration) membrane separation with a filtration accuracy of about 0.1 to 1 μm. The water treatment apparatus of this embodiment is an apparatus capable of removing humic substances from water to be treated using this aggregation action.

(実施の形態1)
図1を参照して、本実施の形態1に係る水処理装置1について説明する。図1は、本発明に係る実施の形態1の水処理装置1の浄化処理時における模式図である。
(Embodiment 1)
A water treatment apparatus 1 according to Embodiment 1 will be described with reference to FIG. FIG. 1 is a schematic diagram of a water treatment apparatus 1 according to Embodiment 1 of the present invention during purification treatment.

本実施の形態1の水処理装置1は、図1に示すように、フミン質を含み色度の高い被処理水21を浄化して無色透明の生活用水として使用するための装置である。具体的には、水処理装置1は、流入口2と、浄水排出口3と、電解槽4と、電源5と、分離部6と、流入管7と、送水管8と、排出管9と、第一電極10aと、第二電極10bとを有して構成される。 As shown in FIG. 1, the water treatment apparatus 1 of Embodiment 1 is an apparatus for purifying water 21 to be treated, which contains humic substances and has a high degree of chromaticity, for use as colorless and transparent domestic water. Specifically, the water treatment device 1 includes an inlet 2, a purified water outlet 3, an electrolyzer 4, a power source 5, a separation section 6, an inflow pipe 7, a water pipe 8, and a discharge pipe 9. , a first electrode 10a and a second electrode 10b.

流入口2は、フミン質を含む被処理水21であり、水処理装置1の外部から圧送されてきた被処理水21を、装置内に導入するための開口である。流入口2により、井戸、河川、又は池などの水源から、被処理水21が水処理装置1内に導入される。流入口2は、水処理装置1を構成する筐体に設けられており、装置内の流入管7によって電解槽4と連通接続されている。 The inflow port 2 is an opening for introducing the water 21 to be treated, which is pressure-fed from the outside of the water treatment apparatus 1, into the apparatus. Water to be treated 21 is introduced into the water treatment apparatus 1 from a water source such as a well, a river, or a pond through the inlet 2 . The inflow port 2 is provided in a housing that constitutes the water treatment device 1, and is connected to the electrolytic cell 4 through an inflow pipe 7 inside the device.

浄水排出口3は、水処理装置1で処理された被処理水21を処理後水22として装置外部に取り出すための開口である。流量と浄水排出口3は装置を構成する筐体に設けられており、装置内の排出管9と連通接続されている。 The purified water outlet 3 is an opening for taking out the treated water 21 treated by the water treatment device 1 as the treated water 22 to the outside of the device. The flow rate and purified water discharge port 3 are provided in a housing that constitutes the device, and are connected to a discharge pipe 9 inside the device.

電解槽4は、第一電極10aと第二電極10bを内部に固定し、被処理水21を内部に取り込み、電気分解を行うための容器である。電解槽4の内部は、流入管7及び送水管8と連通接続されている。 The electrolytic cell 4 is a container for fixing the first electrode 10a and the second electrode 10b inside, taking in the water 21 to be treated, and performing electrolysis. The inside of the electrolytic bath 4 is connected to an inflow pipe 7 and a water pipe 8 for communication.

電源5は、第一電極10a及び第二電極10bに接続されており、第一電極10aと第二電極10bの間に電流を印加する。また、電源5は第一電極10aと第二電極10bに印加される電流の極性を反転させる転極を行う回路を内蔵している。 A power source 5 is connected to the first electrode 10a and the second electrode 10b and applies a current between the first electrode 10a and the second electrode 10b. The power supply 5 also incorporates a circuit for reversing the polarities of the currents applied to the first electrode 10a and the second electrode 10b.

分離部6は、電解槽4内における電気分解で発生する凝集物であり、フミン質を取り込んだ凝集物を分離除去する。分離部6は、ろ過精度1μmのろ過膜である。分離部6に用いるろ過膜としては、例えばMFろ過膜を用いることができる。分離部6は、送水管8と排出管9に連通接続されている。 The separation unit 6 separates and removes aggregates generated by electrolysis in the electrolytic bath 4 and containing humic substances. The separation unit 6 is a filtration membrane with a filtration accuracy of 1 μm. As the filtration membrane used in the separation unit 6, for example, an MF filtration membrane can be used. The separation unit 6 is connected to the water pipe 8 and the discharge pipe 9 for communication.

流入管7は、流入口2及び電解槽4と連通接続されており、流入口2から取り込まれた被処理水21を電解槽4に届ける。 The inflow pipe 7 is connected to the inflow port 2 and the electrolytic cell 4 and delivers the water to be treated 21 taken in from the inflow port 2 to the electrolytic cell 4 .

送水管8は、電解槽4及び分離部6と連通接続されており、電解槽4で電気分解により処理された被処理水21を分離部6に届ける。 The water pipe 8 is connected to the electrolytic cell 4 and the separation unit 6 and delivers the water 21 to be treated by electrolysis in the electrolytic cell 4 to the separation unit 6 .

排出管9は、分離部6及び浄水排出口3と連通接続されている。排出管9は、分離部6で凝集物が分離除去された被処理水21を浄水排出口3に届ける。 The discharge pipe 9 is communicated with the separation section 6 and the purified water discharge port 3 . The discharge pipe 9 delivers the water to be treated 21 from which the aggregates have been separated and removed in the separation unit 6 to the purified water discharge port 3 .

被処理水21は、流入口2から連続的に取り込まれ、流入管7~電解槽4~送水管8~分離部6~排出管9を流れることにより、浄化処理される。浄化処理された被処理水21は、処理後水22として浄水排出口3から連続的に取り出される。被処理水21が流入口2に取り込まれる流量と、被処理水21が流入管7を流れる流量、被処理水21が電解槽4に流入・流出する流量、被処理水21が送水管8を流れる流量、被処理水21が分離部6に流入・流出する流量、被処理水21が排出管9を流れる流量、処理後水22が浄水排出口3から取り出される流量はそれぞれ同じである。 The water to be treated 21 is continuously taken in from the inflow port 2 and purified by flowing through the inflow pipe 7-the electrolytic bath 4-the water pipe 8-the separator 6-the discharge pipe 9. FIG. Purified water 21 to be treated is continuously taken out as post-treatment water 22 from the purified water discharge port 3 . The flow rate of the water to be treated 21 taken into the inflow port 2, the flow rate of the water to be treated 21 flowing through the inflow pipe 7, the flow rate of the water to be treated 21 flowing into and out of the electrolytic cell 4, the water to be treated 21 flowing through the water pipe 8 The flow rate, the flow rate at which the water 21 to be treated flows into and out of the separation section 6, the flow rate at which the water 21 to be treated flows through the discharge pipe 9, and the flow rate at which the treated water 22 is taken out from the purified water discharge port 3 are all the same.

第一電極10a及び第二電極10bは、いずれも鉄で構成されている。第一電極10aと第二電極10bとは対面で設置されており、電極の間の距離は3mmである。なお、電極間の距離は、0.5mm以上であることが好ましい。これは、後述するフロック11hあるいは電極上に形成される不働態が電極間に詰まる可能性を低減するためである。また、電極間の距離を大きくするにしたがい、後述する反応である、陽極から溶出する鉄イオンと陰極から発生する水酸化物イオンとの反応の発生頻度が低下する可能性、及び、主に陽極付近で生成する第一生成物11fと主に極間で生成する第二生成物11gとがフロック11hを形成する反応の発生頻度が低下する可能性が高まる。つまり、電極間の距離を小さくすることにより、第二生成物11g及びフロック11hの形成効率が向上する。したがって、電極間の距離は、不働態及びフロック11hが詰まらない程度に小さくすることが好ましく、水処理装置1では、電極間の距離を3mmとした。 Both the first electrode 10a and the second electrode 10b are made of iron. The first electrode 10a and the second electrode 10b are installed facing each other, and the distance between the electrodes is 3 mm. In addition, it is preferable that the distance between the electrodes is 0.5 mm or more. This is to reduce the possibility that flocs 11h, which will be described later, or passive states formed on the electrodes clog the gap between the electrodes. In addition, as the distance between the electrodes increases, the frequency of the reaction between the iron ions eluted from the anode and the hydroxide ions generated from the cathode, which is a reaction described later, may decrease. The probability of occurrence of the reaction in which the first product 11f generated in the vicinity and the second product 11g generated mainly between the electrodes to form the flocs 11h decreases is increased. That is, by reducing the distance between the electrodes, the formation efficiency of the second product 11g and the flocs 11h is improved. Therefore, it is preferable that the distance between the electrodes is small enough to prevent clogging of the passive state and the flocs 11h.

第一電極10a及び第二電極10bは、電源5と接続されている。電源5により、第一電極10aと第二電極10bの間に直流電流が印加され、被処理水21の電気分解が行われる。第一電極10a及び第二電極10bは、いずれか片方が陽極側になり、もう一方が陰極側となる。電気分解により、陽極側の電極からは鉄イオン11cが溶出し、陰極側からは水酸化物イオンが発生する。鉄イオン11c及び水酸化物イオン11dは、いずれもフミン質11bを取り込むフロック11hを形成する成分となる。鉄イオン11cの溶出量は、印加する電流量により制御可能であり、電流量の増減に比例して鉄イオン11cの溶出量も増減する。したがって、被処理水21に含まれるフミン質11bの濃度に応じて印加する電流量を設定することで、水質に応じて鉄イオン11cの溶出量を制御でき、被処理水21の浄化処理を行うことができる。 The first electrode 10a and the second electrode 10b are connected to the power supply 5. As shown in FIG. A direct current is applied between the first electrode 10a and the second electrode 10b by the power supply 5, and the water 21 to be treated is electrolyzed. One of the first electrode 10a and the second electrode 10b is on the anode side, and the other is on the cathode side. By electrolysis, iron ions 11c are eluted from the anode side electrode and hydroxide ions are generated from the cathode side. The iron ions 11c and hydroxide ions 11d are both components forming flocs 11h that take in the humic substance 11b. The amount of eluted iron ions 11c can be controlled by the amount of current applied, and the amount of eluted iron ions 11c increases or decreases in proportion to the increase or decrease in the amount of current. Therefore, by setting the amount of electric current to be applied according to the concentration of the humic substances 11b contained in the water 21 to be treated, the elution amount of the iron ions 11c can be controlled according to the water quality, and the water 21 to be treated can be purified. be able to.

また、第一電極10a及び第二電極10bは、電源5に内蔵された回路によって転極される。第一電極10a及び第二電極10bは、両極とも鉄で構成されている。したがって、後述する電気分解反応における陽極及び陰極のどちらの極としても作用することができるため、転極中においても、浄化処理を継続することができる。 Also, the first electrode 10a and the second electrode 10b are reversed by a circuit built in the power source 5. FIG. Both the first electrode 10a and the second electrode 10b are made of iron. Therefore, since it can act as either an anode or a cathode in the later-described electrolysis reaction, the purification process can be continued even during the polarity reversal.

さらに、転極によって、陽極側と陰極側とを反転させることにより、鉄イオン11cを放出する電極を入れ替えることができる。したがって、一方の電極のみが消費されることを抑制できる。 Furthermore, by reversing the anode side and the cathode side by reversing the polarity, the electrodes that emit the iron ions 11c can be replaced. Therefore, consumption of only one electrode can be suppressed.

加えて、転極により、電極付近での化学反応が促進される。つまり、転極によって、浄化処理の反応の発生頻度を向上させることができる。例えば、転極によって陽極から陰極となった極付近では、転極前に溶出した鉄イオン11cと、転極後に発生した水酸化物イオン11dとの両方が比較的高濃度で存在している。そのため、転極により第二生成物11gが生成しやすくなる。さらに、生成した第二生成物11gと、転極前に生成した第一生成物11fとが反応することにより、フロック11hが生成する。また、転極によって陰極から陽極となった極付近では、転極前に発生した水酸化物イオン11dと、転極後に溶出した鉄イオン11cとの両方が比較的高濃度で存在している。そのため、転極により第二生成物11gが生成しやすくなる。さらに、転極前には鉄イオン11cの濃度が比較的低いために反応していなかったフミン質11bが、溶出してきた鉄イオン11cと反応し、第一生成物11fが生成しやすくなる。そして、第一生成物11fと第二生成物11gとが反応し、フロック11hが生成しやすくなる。したがって、転極を行うことにより、第二生成物11g及びフロック11hの形成反応の発生頻度を上昇させることができる。なお、不働態の除去を行うための転極は、例えば1週間に一度行うのに対し、化学反応を促進するために行う転極は、30分に一回程度行うようにしてもよい。 In addition, the reversal of polarity promotes chemical reactions in the vicinity of the electrodes. In other words, the reversal of the poles can improve the frequency of occurrence of the reaction in the purification process. For example, both the iron ions 11c eluted before the pole reversal and the hydroxide ions 11d generated after the pole reversal are present at relatively high concentrations near the pole that has changed from the anode to the cathode due to the pole reversal. Therefore, the second product 11g is likely to be generated by the polarity reversal. Furthermore, flocs 11h are produced by reacting the produced second product 11g with the first product 11f produced before the polarity reversal. Moreover, both the hydroxide ions 11d generated before the pole reversal and the iron ions 11c eluted after the pole reversal are present at relatively high concentrations near the pole where the cathode has become the anode due to the pole reversal. Therefore, the second product 11g is likely to be generated by the polarity reversal. Furthermore, the humic substance 11b, which had not reacted before the polarity reversal due to the relatively low concentration of the iron ions 11c, reacts with the eluted iron ions 11c, facilitating the formation of the first product 11f. Then, the first product 11f and the second product 11g react with each other to easily generate flocs 11h. Therefore, by performing the polarity reversal, it is possible to increase the occurrence frequency of the formation reaction of the second product 11g and the floc 11h. While the polarity reversal for removing the passive state is performed, for example, once a week, the polarity reversal for promoting the chemical reaction may be performed about once every 30 minutes.

ここで、図2を参照して、電解槽4における電気分解について詳細に説明する。図2は本発明に係る実施の形態1の電解槽4の電気分解における模式図である。 Now, with reference to FIG. 2, electrolysis in the electrolytic cell 4 will be described in detail. FIG. 2 is a schematic diagram of electrolysis in the electrolytic cell 4 of Embodiment 1 according to the present invention.

電解槽4の内部に配置された第一電極10aは、鉄で構成されている。式(1)に示すように、被処理水21が電解槽4に流入後、電源5により陽極である第一電極10aと陰極である第二電極10bの間に電流が印加され、陽極側からは電気分解によりFe2+が溶出する。 The first electrode 10a arranged inside the electrolytic cell 4 is made of iron. As shown in formula (1), after the water 21 to be treated flows into the electrolytic cell 4, a current is applied by the power source 5 between the first electrode 10a as the anode and the second electrode 10b as the cathode, and from the anode side Fe 2+ is eluted by electrolysis.

Fe→Fe2++2e・・・式(1)
溶出したFe2+は、その殆どが速やかにFe3+(鉄イオン11c)に酸化される。鉄イオン11cの濃度制御方法について説明する。電源5により、第一電極10aと第二電極10bとの間に印加する電流値をx[A]とすると、式(1)とファラデーの電気分解の法則により、1秒あたりに生成するFe2+ののモル量はx/(96485×2)[mol]であり、Fe2+の重量は55.85×x/(96485×2×10)[mg]である。被処理水21が電解槽4に取り込まれる流量をy[L/s]とすると、被処理水21に取り込まれたFe2+の濃度は、55.85×x/(96485×2×y×10)[mg/L]、すなわち、2.89×(x/y)×10-7 [mg/L]である。Fe2+の濃度は、Fe3+である鉄イオン11cの濃度と同じであるため、被処理水21に溶出する鉄イオン11cの濃度は、2.89×(x/y)×10-7 [mg/L]で制御可能である。
Fe→Fe 2+ +2e Formula (1)
Most of the eluted Fe 2+ is rapidly oxidized to Fe 3+ (iron ions 11c). A method for controlling the concentration of iron ions 11c will be described. When the current value applied between the first electrode 10a and the second electrode 10b by the power supply 5 is x [A], Fe 2+ generated per second according to the formula (1) and Faraday's law of electrolysis The molar amount of is x/(96485×2) [mol] and the weight of Fe 2+ is 55.85×x/(96485×2×10 3 ) [mg]. Let y [L/s] be the flow rate at which the water 21 to be treated is taken into the electrolytic cell 4, the concentration of Fe 2+ taken into the water 21 to be treated is 55.85×x/(96485×2×y×10 3 ) [mg/L], ie 2.89×(x/y)×10 −7 [mg/L]. Since the concentration of Fe 2+ is the same as the concentration of iron ions 11c that are Fe 3+ , the concentration of iron ions 11c eluted in the water 21 to be treated is 2.89×(x/y)×10 −7 [mg /L].

鉄イオン11cは、フミン質11bと結合し、第一生成物11fとなる。フミン質11bは、被処理水21に含まれ、その大きさは10nm~100nm程度である。したがって、ろ過精度0.1~1μm程度のMF膜等では除去することが難しい。しかし、鉄イオン11cとフミン質11bとが結合することにより、大きさ10nm~100nm程度と小さいものの、様々な粒子と凝集しやすいキレート錯体である第一生成物11fとなる。第一生成物11fは、キレート錯体であるため、後述する第二生成物11gと吸着しやすい。 Iron ion 11c combines with humin 11b to form first product 11f. The humic substance 11b is contained in the water to be treated 21, and its size is about 10 nm to 100 nm. Therefore, it is difficult to remove them with an MF membrane or the like having a filtration accuracy of about 0.1 to 1 μm. However, when the iron ions 11c and the humic substance 11b are combined, the first product 11f, which is a small chelate complex with a size of about 10 nm to 100 nm, is easily aggregated with various particles. Since the first product 11f is a chelate complex, it easily adsorbs the second product 11g, which will be described later.

一方、陰極では、式(2)に示すように、水分子11aが電気分解され、水素11e及び水酸化物イオン11dが生成する。 On the other hand, at the cathode, the water molecules 11a are electrolyzed to produce hydrogen 11e and hydroxide ions 11d, as shown in formula (2).

2HO+2e→H+2OH・・・式(2)
式(3)に示すように、生成した水酸化物イオン11dは、鉄イオン11cと結合し、大きさ100nm~1μm程度の水酸化鉄粒子である第二生成物11gとなる。
2H 2 O+2e →H 2 +2OH Formula (2)
As shown in formula (3), the generated hydroxide ions 11d combine with the iron ions 11c to form the second product 11g, which is iron hydroxide particles with a size of about 100 nm to 1 μm.

Fe3++3OH→Fe(OH)・・・式(3)
第一生成物11fと第二生成物11gとは、互いに吸着して凝集する性質を有しており、第一生成物11fと第二生成物11gとが凝集することにより、粗大なフロック11hが形成される。フロック11hは電解槽4の内部や送水管8の内部で成長する。このフミン質11bを含んだ粗大なフロックは、最終的にサイズが数μm以上に達することから、後段の分離部6でのMF膜ろ過(ろ過精度0.1~1μm程度)によって容易に分離できる。フロック11hが分離除去された水は、排出管9及び浄水排出口3から処理後水22として得られ、生活用水として供給される。
Fe 3+ +3OH →Fe(OH) 3 Formula (3)
The first product 11f and the second product 11g have the property of mutually adsorbing and aggregating, and the agglomeration of the first product 11f and the second product 11g causes coarse flocs 11h to be formed. It is formed. The flocs 11h grow inside the electrolytic bath 4 and inside the water pipe 8 . Since the coarse flocs containing the humic substances 11b eventually reach a size of several μm or more, they can be easily separated by MF membrane filtration (filtration accuracy of about 0.1 to 1 μm) in the subsequent separation unit 6. . The water from which the flocs 11h have been separated and removed is obtained as post-treatment water 22 from the discharge pipe 9 and the purified water discharge port 3, and is supplied as domestic water.

改めて、水処理装置1における被処理水21の浄化処理について説明する。フミン質11bを含む被処理水21は、流入口2によって水処理装置1内に導入され、電解槽4に流入する。被処理水21は、電解槽4内の第一電極10a及び第二電極10bにより電気分解される。電気分解により、陽極では式(1)の反応が起こり、鉄イオン11cが溶出する。被処理水21中のフミン質11bは、鉄イオン11cと反応し、第一生成物11fが生じる。また、式(3)に示すように、電気分解の際に式(2)の反応により生成する水酸化物イオン11dと、鉄イオン11cとが反応することにより、第二生成物11gが生じる。キレート錯体である第一生成物11fは、第二生成物11gと互いに吸着して凝集することにより、フロック11hを形成する。つまり、被処理水21中のフミン質11bが、フロック11h中に取り込まれる。フロック11hを含む水は、送水管8により、分離部6へと送水される。分離部6は、MF膜を有し、ろ過を行うことにより、フロック11hを分離する。フロック11hが分離された水は、排出管9により浄水排出口3へと送水され、浄水排出口3から処理後水22として排出される。処理後水22は、色度が低減された生活用水として用いることができる。 The purification process of the water to be treated 21 in the water treatment apparatus 1 will be explained again. Water to be treated 21 containing humic substances 11 b is introduced into the water treatment apparatus 1 through the inlet 2 and flows into the electrolytic cell 4 . The water 21 to be treated is electrolyzed by the first electrode 10 a and the second electrode 10 b in the electrolytic bath 4 . Due to electrolysis, the reaction of formula (1) occurs at the anode, and the iron ions 11c are eluted. The humic substances 11b in the water 21 to be treated react with the iron ions 11c to produce the first product 11f. Further, as shown in the formula (3), the hydroxide ions 11d generated by the reaction of the formula (2) during electrolysis react with the iron ions 11c to produce the second product 11g. The first product 11f, which is a chelate complex, and the second product 11g adsorb to each other and aggregate to form flocs 11h. That is, the humic substances 11b in the water 21 to be treated are taken into the flocs 11h. The water containing the flocs 11 h is sent to the separation section 6 through the water pipe 8 . The separation unit 6 has an MF membrane and separates the flocs 11h by filtering. The water from which the flocs 11h have been separated is sent to the purified water discharge port 3 through the discharge pipe 9, and discharged as the treated water 22 from the purified water discharge port 3. FIG. The post-treatment water 22 can be used as domestic water with reduced chromaticity.

ここで図3を参照して、水処理装置1によるフミン質の浄化試験の実験結果を示す。図3は、本発明に係る実施の形態の水処理装置1の処理後水22の色度を示した図である。比較のために、実験で用いた被処理水の色度と、一般的な凝集沈殿法として、PSI(Poly Silicate Iron)で凝集した後にMF膜でろ過した実験結果についても併記した。 Here, with reference to FIG. 3, experimental results of a humic substance purification test by the water treatment device 1 are shown. FIG. 3 is a diagram showing the chromaticity of the treated water 22 of the water treatment apparatus 1 of the embodiment according to the present invention. For comparison, the chromaticity of the water to be treated used in the experiment and the experimental results of coagulating with PSI (Poly Silicate Iron) and then filtering with an MF membrane as a general coagulation-sedimentation method are also shown.

被処理水21の色度300TCUは、主にフミン質11bによるものであり、一般的な凝集沈殿法での浄化後の色度255TCUと比較して、水処理装置1で浄化後の水である処理後水22の色度は、20TCUに低下しており、フミン質11bがよく除去されている。 The chromaticity of 300 TCU of the water to be treated 21 is mainly due to humic substances 11b, and compared with the chromaticity of 255 TCU after purification by a general coagulation-sedimentation method, the water after purification by the water treatment device 1. The chromaticity of the post-treatment water 22 is reduced to 20 TCU, and the humic substances 11b are well removed.

なお、ここまで述べた電気分解を長時間(例えば、5日間)行った場合、陰極である第二電極10bの表面には徐々に水酸化鉄等の不働態が形成され、極板間に印加される電流が低下するなどの不具合の原因となる。この不働態は、電極の極性を入れ替えることにより剥がし落とすことができるため、第一電極10aと電極板の極板間に印加される電圧の極性は、定期的(例えば、1週間に1回)に電源に内蔵された回路により反転制御されることが望ましい。転極後、電流を印加したまま不働態が剥がれ落ちるまで待機した後、再度転極を行い元の極性に戻しても良い。また、水処理装置1では、第一電極10aだけでなく、第二電極10bも鉄で構成しているため、転極後には第一電極10aが陰極、第二電極10bが陽極として作用する。したがって、不働態を剥がし落としながらそのまま連続的に式(1)~式(3)で示した処理と同等の処理を行うことが可能となる。また、剥がれ落ちる不働態のサイズは概ね0.5mmであるため、極板間は少なくとも0.5mm以上離すことで、電極の間に剥がれ落ちた不働態が詰まり、詰まった部分に電流が流れず、式(1)~式(3)で示した電気分解を行うことができなくなる可能性を低減できる。さらには、不働態の剥がれ落ちを促進するために、極板は電解槽内の水流の方向に並行に配置されることが望ましい。また、第一電極10a或いは第二電極10bから溶出させる鉄イオン11cの濃度は、被処理水21中のフミン質11bとキレート錯体を形成し、また十分な量の水酸化鉄を得るために、フミン質11bの濃度の2倍以上とすることが望ましい。 In addition, when the electrolysis described so far is performed for a long time (for example, 5 days), a passive state such as iron hydroxide is gradually formed on the surface of the second electrode 10b, which is the cathode, and is applied between the electrode plates. This may cause problems such as a decrease in the current applied. Since this passivation can be stripped off by switching the polarity of the electrodes, the polarity of the voltage applied between the first electrode 10a and the electrode plate is changed periodically (for example, once a week). It is desirable that the inversion is controlled by a circuit incorporated in the power supply. After the polarity reversal, after waiting until the passivation is peeled off while the current is applied, the polarity may be reversed to return to the original polarity. In the water treatment device 1, not only the first electrode 10a but also the second electrode 10b are made of iron. Therefore, after the polarity reversal, the first electrode 10a acts as a cathode and the second electrode 10b acts as an anode. Therefore, it is possible to continuously perform the same treatment as the treatment represented by formulas (1) to (3) while stripping off the passive state. In addition, since the size of the passive state that peels off is approximately 0.5 mm, by separating the electrode plates by at least 0.5 mm or more, the passive state that has fallen off between the electrodes clogs the space, and current does not flow in the clogged portion. , it is possible to reduce the possibility that the electrolysis shown in the formulas (1) to (3) cannot be performed. Furthermore, it is desirable that the plates are arranged parallel to the direction of water flow in the electrolytic cell in order to facilitate the stripping of the passivation. In addition, the concentration of the iron ions 11c eluted from the first electrode 10a or the second electrode 10b is set to form a chelate complex with the humic substances 11b in the water 21 to be treated and to obtain a sufficient amount of iron hydroxide. It is desirable to make it twice or more the density|concentration of the humic substance 11b.

ここで図4を参照して、鉄イオンの溶出濃度とフミン質の除去効率の関係について詳細に説明する。図4は、本発明に係る実施の形態1の水処理装置1でフミン質11bの濃度100mg/Lの被処理水21中のフミン質を除去し、処理後水22の色度を測定した結果である。鉄の溶出濃度を10mg/L~300mg/Lで変化させた場合、フミン質の濃度100mg/Lの2倍以上となる鉄イオン濃度200mg/L以上でフミン質濃度の指標である色度2.5TCUと十分下がった処理後水22を得ることができる。 Here, with reference to FIG. 4, the relationship between the elution concentration of iron ions and the removal efficiency of humic substances will be described in detail. FIG. 4 shows the result of removing humic substances from water 21 to be treated with a concentration of 100 mg/L of humic substances 11b in the water treatment apparatus 1 according to Embodiment 1 of the present invention, and measuring the chromaticity of the treated water 22. is. When the elution concentration of iron is changed from 10 mg/L to 300 mg/L, the chromaticity, which is an indicator of the concentration of humic substances, at an iron ion concentration of 200 mg/L or more, which is more than twice the concentration of humic substances of 100 mg/L. 5 TCU and sufficiently lowered post-treatment water 22 can be obtained.

鉄の溶出濃度が低い場合(図4での10mg/L~150mg/L)、生じた鉄イオン11cは、第二生成物11gの生成によって消費されてしまい、第一生成物11fにフミン質11bが取り込まれづらくなる。或いは、第一生成物11f及び第二生成物11gは生成するものの、少量であるため、フロック11hの形成反応が生じづらくなる。そのため、フミン質11b或いは第一生成物11f或いは第二生成物11gにより、被処理水21の色度が上昇する。一方、鉄の溶出濃度をフミン質11bの濃度の2倍以上とした場合(図4での200mg/L~300mg/L)には、鉄イオン11cは、第二生成物11gだけでなく、第一生成物11fの生成にも十分に供される。したがって、水中に第一生成物11f及び第二生成物11gが十分に存在し、フロック11hの形成反応が発生しやすくなる。したがって、被処理水21の色度を低減することができる。 When the elution concentration of iron is low (10 mg/L to 150 mg/L in FIG. 4), the generated iron ions 11c are consumed by the formation of the second product 11g, and the first product 11f becomes the humic substance 11b. becomes difficult to capture. Alternatively, although the first product 11f and the second product 11g are produced, they are in small amounts, so that the formation reaction of the flocs 11h is difficult to occur. Therefore, the chromaticity of the water to be treated 21 is increased by the humic substance 11b or the first product 11f or the second product 11g. On the other hand, when the elution concentration of iron is more than twice the concentration of humic substances 11b (200 mg/L to 300 mg/L in FIG. 4), iron ions 11c are not only the second product 11g, but also the second product 11g. It is also fully available for the production of one product 11f. Therefore, the first product 11f and the second product 11g are sufficiently present in the water, and the formation reaction of the flocs 11h easily occurs. Therefore, the chromaticity of the water to be treated 21 can be reduced.

一方で、鉄の溶出濃度を過剰に大きくすると、過剰な水酸化鉄を生成することになるため、フミン質11bが取り込まれるよりも過剰に鉄イオン11cを溶出させるのは好ましくない。 On the other hand, if the elution concentration of iron is excessively increased, excessive iron hydroxide will be generated, so it is not preferable to elute iron ions 11c in excess of the amount of humic substance 11b taken in.

したがって、第一電極10a或いは第二電極10bから溶出させる鉄イオン11cの濃度は、被処理水21中のフミン質11bとキレート錯体を形成し、また十分な量の水酸化鉄を得られる量とすればよく、水処理装置1では、フミン質11bの濃度の2倍以上となるように電流を印加した。なお、ここでフミン質11bの濃度の2倍と設定した第一電極10a或いは第二電極10bから溶出させる鉄イオン11cの濃度は、フミン質11bと反応する鉄イオン11c及び水酸化物イオン11dと反応する鉄イオン11cを含む濃度である。 Therefore, the concentration of the iron ions 11c eluted from the first electrode 10a or the second electrode 10b should be such that it forms a chelate complex with the humic substances 11b in the water 21 to be treated and a sufficient amount of iron hydroxide is obtained. In the water treatment device 1, the current was applied so that the concentration of the humic substances 11b was at least twice that of the humic substances 11b. Note that the concentration of the iron ions 11c eluted from the first electrode 10a or the second electrode 10b, which is set to be twice the concentration of the humic substance 11b, is the same as the iron ions 11c and the hydroxide ions 11d that react with the humic substance 11b. This is the concentration containing the reacting iron ions 11c.

以上のように、水処理装置1では、上述した電解槽4により、浄化処理を行うことでフミン質を除去し、被処理水21の浄化を行うことができる。 As described above, in the water treatment apparatus 1 , the water to be treated 21 can be purified by removing humic substances by performing purification treatment in the above-described electrolytic bath 4 .

以上、本実施の形態1に係る水処理装置1によれば、以下の効果を享受することができる。 As described above, according to the water treatment device 1 according to Embodiment 1, the following effects can be obtained.

(1)水処理装置1は、フミン質11bを含む被処理水21が流入する電解槽4と、電解槽4内において被処理水21に浸漬する第一電極10a及び第二電極10bと、第一電極10aと第二電極10bとの間に電流を印加する電源5と、を備え、第一電極10a及び第二電極10bの少なくとも一方は、電源5から電流を印加することで鉄イオンが溶出する材料で構成され、第一電極10a及び第二電極10bは、電源5から電流を印加した際に、陽極側においてフミン質11bと鉄イオン11cとの反応により形成される第一生成物11fと、陰極側において水酸化物イオン11dと鉄イオン11cとの反応により形成される第二生成物11gとが凝集してフロック11hを形成するように配置されている。こうした構成によれば、水処理装置1に電流を印加することにより、第一生成物11f及び第二生成物11gを形成させることができ、第一生成物11fと第二生成物11gとが凝集することにより、フミン質11bを取り込んだフロック11hを形成することができる。したがって、サイズの小さなフミン質11bをフロック11hとして沈殿させることができ、被処理水21からフミン質11bを効率的に除去することが可能となる。 (1) The water treatment apparatus 1 includes an electrolytic bath 4 into which water to be treated 21 containing humic substances 11b flows, a first electrode 10a and a second electrode 10b immersed in the water to be treated 21 in the A power supply 5 that applies a current between the one electrode 10a and the second electrode 10b, and at least one of the first electrode 10a and the second electrode 10b is applied with a current from the power supply 5, whereby iron ions are eluted. The first electrode 10a and the second electrode 10b are formed by the reaction between the humic substances 11b and the iron ions 11c on the anode side when a current is applied from the power supply 5, and the first product 11f and the , the second product 11g formed by the reaction between the hydroxide ions 11d and the iron ions 11c on the cathode side aggregates to form flocs 11h. According to such a configuration, by applying an electric current to the water treatment device 1, the first product 11f and the second product 11g can be formed, and the first product 11f and the second product 11g aggregate. By doing so, flocs 11h incorporating humic substances 11b can be formed. Therefore, the humic substances 11b having a small size can be precipitated as flocs 11h, and the humic substances 11b can be efficiently removed from the water 21 to be treated.

(2)水処理装置1は、第一電極10aと第二電極10bとの間の電極間距離を、0.5mm以上となるように構成された。このような構成とすることにより、電極から剥がれ落ちる不働態が電極間に詰まることを低減できる。したがって、不働態が詰まった部分に電流が流れなくなることにより、第一生成物11fと第二生成物11gの生成、及びフロック11hの形成が、阻害される可能性を低減できる。 (2) The water treatment device 1 is configured such that the inter-electrode distance between the first electrode 10a and the second electrode 10b is 0.5 mm or more. With such a configuration, it is possible to reduce the clogging between the electrodes of the passive state peeled off from the electrodes. Therefore, it is possible to reduce the possibility that the generation of the first product 11f and the second product 11g and the formation of the flocs 11h will be inhibited by the current not flowing through the passivated portion.

(3)水処理装置1は、電源5により、被処理水21に含まれるフミン質11bの濃度に対して、第一電極10a及び第二電極10bの少なくとも一方から溶出する鉄イオン11cの濃度が2倍以上となるように電流を印加された。このような構成とすることで、第一生成物11fの生成及び第二生成物11gの生成に十分な鉄イオン11cが溶出する。したがって、第一生成物11f及び第二生成物11gの凝集物であるフロック11hを効率的に形成でき、被処理水21中のフミン質11bを効率よく除去することが可能となる。 (3) The water treatment apparatus 1 uses the power source 5 to increase the concentration of the iron ions 11c eluted from at least one of the first electrode 10a and the second electrode 10b with respect to the concentration of the humic substances 11b contained in the water to be treated 21. Current was applied to more than double. With such a configuration, sufficient iron ions 11c are eluted to generate the first product 11f and the second product 11g. Therefore, flocs 11h, which are aggregates of the first product 11f and the second product 11g, can be efficiently formed, and the humic substances 11b in the water 21 to be treated can be efficiently removed.

(4)水処理装置1は、第一電極10a及び第二電極10bが、いずれも電源5から電流を印加することで鉄イオン11cが溶出する材料で構成され、電流を印加した際に、第一電極10aと第二電極10bとの間で極性を反転させる。このような構成とすることで、不働態が蓄積して電流を十分に印加できなくなった電極表面から不働態を剥がし落とすことができる。したがって、不働態の蓄積を抑制でき、不働態により電流が流れなくなり、浄化処理効率が低減することを抑制可能となる。また、転極によって、陽極側と陰極側とを反転させることにより、鉄イオン11cを放出する電極を入れ替えることができる。したがって、一方の電極のみが減っていくことを抑制できる。 (4) In the water treatment device 1, the first electrode 10a and the second electrode 10b are both made of a material from which iron ions 11c are eluted by applying a current from the power supply 5, and when a current is applied, the first electrode 10a and the second electrode 10b The polarity is reversed between the one electrode 10a and the second electrode 10b. With such a configuration, the passivity can be peeled off from the electrode surface where the passivity accumulates and the current cannot be sufficiently applied. Therefore, it is possible to suppress the accumulation of passivation, thereby suppressing the decrease in purification treatment efficiency due to the current not flowing due to the passivity. Further, by reversing the anode side and the cathode side by reversing the polarity, the electrodes that emit the iron ions 11c can be replaced. Therefore, it is possible to suppress the decrease of only one electrode.

また、両極とも鉄イオン11cを溶出する材料で構成されていることから、例えば転極によって陽極から陰極となった極付近では、転極前に溶出した鉄イオン11cと、転極後に発生した水酸化物イオン11dとの両方が比較的高濃度で存在している。また、転極によって陰極から陽極となった極付近では、転極前に発生した水酸化物イオン11dと、転極後に溶出した鉄イオン11cとの両方が比較的高濃度で存在している。したがって、転極を行うことにより、第二生成物11g及びフロック11hの形成反応の発生頻度を上昇させることができる。 In addition, since both electrodes are made of a material that elutes iron ions 11c, for example, in the vicinity of the pole that has changed from the anode to the cathode due to pole reversal, the iron ions 11c eluted before pole reversal and the water generated after pole reversal Both oxide ions 11d are present in relatively high concentrations. Moreover, both the hydroxide ions 11d generated before the pole reversal and the iron ions 11c eluted after the pole reversal are present at relatively high concentrations near the pole where the cathode has become the anode due to the pole reversal. Therefore, by performing the polarity reversal, it is possible to increase the occurrence frequency of the formation reaction of the second product 11g and the floc 11h.

(5)水処理装置1は、電解処理を行った被処理水21からフロック11hを除去する分離部6をさらに備える。このような構成とすることにより、処理後水22に残留するフロック11hをより確実に除去することができる。したがって、被処理水21からのフミン質の除去効率を向上することができる。 (5) The water treatment apparatus 1 further includes a separation unit 6 that removes the flocs 11h from the water 21 to be treated that has undergone the electrolytic treatment. With such a configuration, the flocs 11h remaining in the post-treatment water 22 can be removed more reliably. Therefore, the removal efficiency of humic substances from the water 21 to be treated can be improved.

以上、本発明に関して実施の形態をもとに説明した。これらの実施の形態は例示であり、それらの各構成要素あるいは各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されているところである。 The present invention has been described above based on the embodiments. Those skilled in the art will understand that these embodiments are merely examples, and that various modifications can be made to combinations of each component or each treatment process, and such modifications are also within the scope of the present invention. I am where I am.

本実施の形態1に係る水処理装置1において、例えば、電解槽4や送水管8の内部に攪拌機或いはバブリング等の攪拌機構を設けていても良い。これにより、陽極から溶出する鉄イオンと陰極から発生する水酸化物イオンとの反応の発生頻度、及び、主に陽極付近で生成する第一生成物11fと主に極間で生成する第二生成物11gとがフロック11hを形成する反応の発生頻度が向上する。したがって、フロック11hの形成及び成長をより早く安定に実現することができ、被処理水21の浄化処理を速やかに行うことが可能となる。 In the water treatment apparatus 1 according to Embodiment 1, for example, a stirring mechanism such as a stirrer or bubbling may be provided inside the electrolytic bath 4 or the water pipe 8 . As a result, the frequency of the reaction between the iron ions eluted from the anode and the hydroxide ions generated from the cathode, and the first product 11f mainly generated near the anode and the second product 11f mainly generated between the electrodes The occurrence frequency of the reaction that forms the floc 11h with the substance 11g is improved. Therefore, the flocs 11h can be formed and grown more quickly and stably, and the water 21 to be treated can be quickly purified.

また、本実施の形態1に係る水処理装置1では、分離部6ではMF膜ろ過を行うように構成したが、これに限られない。例えば、分離部6では、MF膜ろ過以外にも、粒状のろ材を用いたろ過を用いることができる。粒状のろ材としては、例えば、砂、アンスラサイト、ガーネット、セラミックス、活性炭、オキシ水酸化鉄、マンガン砂など、水中で沈降し、圧力で変形しにくい硬度をもつものであればよく、これらの材料を上下方向に積層したものを用いてもよい。 Moreover, in the water treatment apparatus 1 according to Embodiment 1, the separation unit 6 is configured to perform MF membrane filtration, but the present invention is not limited to this. For example, in the separation unit 6, filtration using granular filter media can be used in addition to MF membrane filtration. Granular filter media include, for example, sand, anthracite, garnet, ceramics, activated carbon, iron oxyhydroxide, manganese sand, etc., as long as they settle in water and have a hardness that makes them difficult to deform under pressure. may be used by stacking in the vertical direction.

また、本実施の形態1に係る水処理装置1において、電解槽4での電気分解処理後に、高分子凝集剤や無機系凝集剤を追加で注入してもよい。このようにすることで、フロック11hの成長をより早く安定に実現することができる。 Moreover, in the water treatment apparatus 1 according to Embodiment 1, after the electrolysis treatment in the electrolytic bath 4, a polymer flocculant or an inorganic flocculant may be additionally injected. By doing so, the growth of the flocs 11h can be realized more quickly and stably.

また、本実施の形態1に係る水処理装置1では、分離部6ではMF膜ろ過を行うように構成したが、これに限られない。例えば、分離部6は、フロック11hを沈殿させる沈殿池としても良い。これにより、電解処理後の被処理水21が沈殿池に流入後、フロック11hが沈殿池の底部に沈殿するまで待機した後に上澄み液を取り出すことで、フミン質11bの濃度の十分低い処理後水22を得ることができる。沈殿池とする場合において、フロックを沈殿させる時間をより確実に制御するためには、送水管8にバルブを設けて分離部6への電解処理後の被処理水21の連続的な流入を阻止することで、沈殿池内の全てのフロック11hが沈殿するために必要な沈殿時間を確保することができる。また、電解槽4が沈殿池の機能を兼ねていても良い。 Moreover, in the water treatment apparatus 1 according to Embodiment 1, the separation unit 6 is configured to perform MF membrane filtration, but the present invention is not limited to this. For example, the separation section 6 may be a sedimentation tank for sedimenting the flocs 11h. As a result, after the water to be treated 21 after electrolysis flows into the sedimentation tank, the supernatant liquid is taken out after waiting until the flocs 11h settle at the bottom of the sedimentation tank, so that the treated water with a sufficiently low concentration of the humic substances 11b can be obtained. 22 can be obtained. In the case of a sedimentation tank, in order to more reliably control the floc sedimentation time, a valve is provided in the water pipe 8 to prevent continuous inflow of the water to be treated 21 after electrolytic treatment into the separation unit 6. By doing so, the sedimentation time necessary for all the flocs 11h in the sedimentation tank to sediment can be ensured. Further, the electrolytic bath 4 may also function as a sedimentation tank.

また、本実施の形態1に係る水処理装置1では、第一電極10a及び第二電極10bの素材として、鉄を用いたが、これに限られない。例えば、電極の素材は鉄であることが望ましいが、鉄以外にも、フミン質11bをキレートし、水酸化物化してキレート錯体と凝集するイオンを溶出する素材として、より安価なアルミを用いることもできる。 Moreover, in the water treatment device 1 according to Embodiment 1, iron is used as the material of the first electrode 10a and the second electrode 10b, but the material is not limited to this. For example, the material of the electrode is preferably iron, but aluminum, which is cheaper than iron, can be used as a material that chelates the humic substance 11b, hydroxides it, and elutes the ions that aggregate with the chelate complex. can also

また、本実施の形態1に係る水処理装置1では、第一電極10a及び第二電極10bの素材として、両極ともに鉄を用いたが、これに限られない。例えば、陽極のみに鉄を用いるようにしてもよい。 Moreover, in the water treatment device 1 according to Embodiment 1, iron is used for both electrodes as the material for the first electrode 10a and the second electrode 10b, but the material is not limited to this. For example, iron may be used only for the anode.

また、本実施の形態1に係る水処理装置1では、転極を制御する回路を電源5内に内蔵したが、これに限らない。転極の制御は、電極と電源5を接続する回路を手動で繋ぎ替えることで行っても良い。 Moreover, in the water treatment device 1 according to Embodiment 1, the circuit for controlling the polarity reversal is built in the power supply 5, but the present invention is not limited to this. The polarity reversal may be controlled by manually switching the circuit connecting the electrodes and the power supply 5 .

また、本実施の形態1に係る水処理装置1では、被処理水21が流入口2に取り込まれる流量と、被処理水21が流入管7を流れる流量、被処理水21が電解槽4に流入及び流出する流量、被処理水21が送水管8を流れる流量、被処理水21が分離槽6に流入及び流出する流量、被処理水21が排出管9を流れる流量、及び処理後水22が浄水排出口3から取り出される流量はそれぞれ同じである、つまり、被処理水21は、水処理装置1内の各構成要素内をそれぞれ一定流量で流通しているとしたが、これに限られない。例えば、電解槽4に被処理水21を一定量貯留し、貯留した被処理水21の電気分解を行い、送水管8に送水するようにしてもよい。これにより、フロック11hの一部が電解槽4内に沈殿するため、分離部6に送出されるフロック11hの量が減少する。したがって、分離部6のメンテンナンス頻度(例えば、MF膜の交換頻度)を低減することができる。 Further, in the water treatment apparatus 1 according to Embodiment 1, the flow rate of the water to be treated 21 taken into the inflow port 2, the flow rate of the water to be treated 21 flowing through the inflow pipe 7, and the water to be treated 21 entering the electrolytic cell 4 Flow rate of inflow and outflow, flow rate of water to be treated 21 flowing through water pipe 8, flow rate of water to be treated 21 flowing into and out of separation tank 6, flow rate of water to be treated 21 flowing through discharge pipe 9, and treated water 22 is taken out from the purified water discharge port 3 at the same flow rate, that is, the water to be treated 21 flows through each component in the water treatment apparatus 1 at a constant flow rate. do not have. For example, a certain amount of water to be treated 21 may be stored in the electrolytic cell 4 , the stored water to be treated 21 may be electrolyzed, and the electrolyzed water may be sent to the water pipe 8 . As a result, part of the flocs 11h are precipitated in the electrolytic bath 4, so that the amount of the flocs 11h delivered to the separation section 6 is reduced. Therefore, the maintenance frequency of the separation unit 6 (for example, the frequency of replacement of the MF membrane) can be reduced.

本発明に係る水処理装置は、フミン質を含んだ水源の水からフミンを除去し、色度を低減した生活用水を得る上で有用である。 INDUSTRIAL APPLICABILITY The water treatment apparatus according to the present invention is useful for removing humins from water containing humic substances and obtaining domestic water with reduced chromaticity.

1 水処理装置
2 流入口
3 浄水排出口
4 電解槽
5 電源
6 分離部
7 流入管
8 送水管
9 排出管
10a 第一電極
10b 第二電極
11a 水分子
11b フミン質
11c 鉄イオン
11d 水酸化物イオン
11e 水素
11f 第一生成物
11g 第二生成物
11h フロック
21 被処理水
22 処理後水
1 Water Treatment Device 2 Inlet 3 Clean Water Outlet 4 Electrolyzer 5 Power Source 6 Separation Unit 7 Inflow Pipe 8 Water Pipe 9 Discharge Pipe 10a First Electrode 10b Second Electrode 11a Water Molecule 11b Humic Substance 11c Iron Ion 11d Hydroxide Ion 11e hydrogen 11f first product 11g second product 11h floc 21 water to be treated 22 water after treatment

Claims (5)

フミン質を含む被処理水が流入する電解槽と、
前記電解槽内において前記被処理水に浸漬する第一電極及び第二電極と、
前記第一電極と前記第二電極との間に電流を印加する電源と、を備え、
前記第一電極及び前記第二電極の少なくとも一方は、前記電源から電流を印加することで鉄イオンが溶出する材料で構成され、
前記第一電極及び前記第二電極は、前記電源から電流を印加した際に、陽極側において前記フミン質と前記鉄イオンとの反応により形成される第一生成物と、陰極側において水酸化物イオンと前記鉄イオンとの反応により形成される第二生成物とが凝集してフロックを形成するように配置されていることを特徴とする水処理装置。
an electrolytic cell into which water to be treated containing humic substances flows;
a first electrode and a second electrode that are immersed in the water to be treated in the electrolytic bath;
a power supply that applies a current between the first electrode and the second electrode,
At least one of the first electrode and the second electrode is made of a material from which iron ions are eluted by applying a current from the power supply,
When a current is applied from the power source, the first electrode and the second electrode are connected to the first product formed by the reaction between the humic substance and the iron ion on the anode side, and the hydroxide on the cathode side. A water treatment apparatus characterized in that the ions and the second product formed by the reaction with the iron ions are arranged to agglomerate to form flocs.
前記第一電極と前記第二電極との間の電極間距離は、0.5mm以上であることを特徴とする請求項1に記載の水処理装置。 2. The water treatment apparatus according to claim 1, wherein the inter-electrode distance between said first electrode and said second electrode is 0.5 mm or more. 前記電源は、前記被処理水に含まれる前記フミン質の濃度に対して、前記第一電極及び前記第二電極の少なくとも一方から溶出する前記鉄イオンの濃度が2倍以上となるように電流を印加することを特徴とする請求項1または2に記載の水処理装置。 The power supply applies current so that the concentration of the iron ions eluted from at least one of the first electrode and the second electrode is at least twice the concentration of the humic substances contained in the water to be treated. 3. The water treatment device according to claim 1 or 2, wherein a voltage is applied. 前記第一電極及び前記第二電極は、いずれも前記電源から電流を印加することで鉄イオンが溶出する材料で構成され、電流を印加した際に、前記第一電極と前記第二電極との間で極性を反転させることを特徴とする請求項1~3のいずれか一項に記載の水処理装置。 Both the first electrode and the second electrode are made of a material from which iron ions are eluted by applying a current from the power supply, and when the current is applied, the first electrode and the second electrode are separated. The water treatment device according to any one of claims 1 to 3, wherein the polarity is reversed between them. 前記被処理水から前記フロックを除去する分離部をさらに備えることを特徴とする請求項1~4のいずれか一項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 4, further comprising a separation unit that removes the flocs from the water to be treated.
JP2021160413A 2021-09-30 2021-09-30 Water treatment apparatus Pending JP2023050354A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021160413A JP2023050354A (en) 2021-09-30 2021-09-30 Water treatment apparatus
PCT/JP2022/028980 WO2023053701A1 (en) 2021-09-30 2022-07-27 Water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021160413A JP2023050354A (en) 2021-09-30 2021-09-30 Water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2023050354A true JP2023050354A (en) 2023-04-11

Family

ID=85782282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021160413A Pending JP2023050354A (en) 2021-09-30 2021-09-30 Water treatment apparatus

Country Status (2)

Country Link
JP (1) JP2023050354A (en)
WO (1) WO2023053701A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817883A (en) * 1981-07-23 1983-02-02 Ebara Infilco Co Ltd Treating method of water containing chromaticity component
JPS59375A (en) * 1982-06-25 1984-01-05 Hitachi Plant Eng & Constr Co Ltd Treatment of water containing difficultly biodegradative substance
JPH09299957A (en) * 1996-05-16 1997-11-25 Matsushita Electric Ind Co Ltd Water cleaning device
JP5106723B2 (en) * 2001-05-28 2012-12-26 義公 渡辺 Organic wastewater treatment apparatus and treatment method
EP1680364A4 (en) * 2003-09-15 2009-08-05 Univ Delaware Removal of microorganisms and disinfection byproduct precursors using elemental iron or aluminum
US20060000784A1 (en) * 2004-06-30 2006-01-05 Khudenko Boris M Water treatment
JP2013198830A (en) * 2012-03-23 2013-10-03 Panasonic Corp Recovering and removing method and recovering and removing apparatus for object to be removed in wastewater

Also Published As

Publication number Publication date
WO2023053701A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
EP2050723A1 (en) Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water
CN111410345A (en) Method and system for treating comprehensive wastewater generated by anodic oxidation process
JP5498477B2 (en) Active metal salt flocculant and method for producing the same
JPWO2009119300A1 (en) Pretreatment method for separation by reverse osmosis membrane of treated water
KR101221565B1 (en) Electrolytic treatment of waste water
CN111807596B (en) Process method for treating precipitated white carbon black wastewater
US8518235B2 (en) All-electric coagulant generation system
CN214990901U (en) Process system for treating precipitated white carbon black wastewater
CN101708927B (en) Method for deeply processing waste water from paper making
WO2023053701A1 (en) Water treatment device
CN106242194A (en) A kind of pcb board printing ink wastewater purification process technique
CN105174567A (en) Heavy metal wastewater treatment and recovery system and method
CN102060417B (en) Process and device for treating waste water in CLT acid production
CN212403790U (en) System for treating comprehensive wastewater generated by anodic oxidation process
KR20190044119A (en) Apparatus and process for electrocoagulation
CN210855619U (en) Contain salt organic waste water electrocatalytic oxidation coupling preprocessing device
JP2012196657A (en) Treatment method of wastewater containing phenols
KR101005470B1 (en) Phosphorus removal equipment of biological treatment effluent by dynamic electrolysis fe filter
CN109574328A (en) A kind ofization nickel waste water processing system and its processing method
CN110981076A (en) Immersed ultrafiltration process for treating common sewage in automobile factory
CN218811061U (en) Aluminum oxidation wastewater treatment process equipment
KR100341208B1 (en) Apparatus and method for removing pollutants in outflow water of abandoned mine by surface electrochemical reaction
CN209815865U (en) Water treatment system for removing humic acid in drinking water
JP2014046235A (en) Fresh water generating method
CN104891721A (en) Method for advanced treatment of coking wastewater

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221021