JP2023050035A - ADJUSTMENT METHOD OF PARTICLE SIZE DISTRIBUTION OF SINTERED ORE AND ESTIMATION METHOD OF CHANGE AMOUNT ΔRs* IN REDUCTION RATIO Rs* AT THE START OF FUSION - Google Patents

ADJUSTMENT METHOD OF PARTICLE SIZE DISTRIBUTION OF SINTERED ORE AND ESTIMATION METHOD OF CHANGE AMOUNT ΔRs* IN REDUCTION RATIO Rs* AT THE START OF FUSION Download PDF

Info

Publication number
JP2023050035A
JP2023050035A JP2021160186A JP2021160186A JP2023050035A JP 2023050035 A JP2023050035 A JP 2023050035A JP 2021160186 A JP2021160186 A JP 2021160186A JP 2021160186 A JP2021160186 A JP 2021160186A JP 2023050035 A JP2023050035 A JP 2023050035A
Authority
JP
Japan
Prior art keywords
sintered ore
particle size
size distribution
charging
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021160186A
Other languages
Japanese (ja)
Inventor
尚人 安田
Naoto Yasuda
浩樹 西岡
Hiroki Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021160186A priority Critical patent/JP2023050035A/en
Publication of JP2023050035A publication Critical patent/JP2023050035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide an adjustment method of the particle size distribution of sintered ore in which the reduction material ratio can be decreased.SOLUTION: A method of adjusting the particle size distribution of the charged sintered ore used to form an ore layer involves adjusting the particle size distribution of the charged sintered ore so that a harmonic mean particle size Dp of the charged sintered ore approaches a reference value S. In the method of adjusting the particle size distribution of sintered ore, the reference value S is determined as the harmonic mean particle size Dp at which the reduction rate at the start of fusion Rs* is the maximum value in the Rs*-Dp curve showing the relationship between the reduction rate at the start of fusion Rs* of the sintered ore packed bed for investigation when the pressure loss of the sintered ore packed bed for investigation to determine the reference value S reaches a specific value and the harmonic mean particle size Dp of the sintered ore for investigation used to obtain the reduction rate at the start of fusion Rs*.SELECTED DRAWING: Figure 6c

Description

本発明は、焼結鉱の粒度分布を調整する方法、及び粒度分布の調整前後における焼結鉱に関する融着開始時還元率Rsの変化量ΔRsを推定する方法に関する。 The present invention relates to a method for adjusting the particle size distribution of sintered ore, and a method for estimating the amount of change ΔRs * in the reduction rate Rs * at the start of fusion bonding of sintered ore before and after adjusting the particle size distribution.

高炉には、炉頂部から鉄含有原料としての鉱石原料(焼結鉱、ペレット、塊鉱石など)と、還元材および燃料としてのコークスが交互に装入され、炉下部の羽口から熱風が送風されるとともに、微粉炭などの補助燃料が吹き込まれる。炉頂部から装入された鉱石原料およびコークス(以下、総称して「装入物」ともいう)は、それぞれ交互に積層する鉱石層およびコークス層を形成する。鉱石原料およびコークスは、高炉内での荷下がりにしたがって、徐々に高炉内を炉下部に向かって降下しながら、炉下部から上昇するガスにより加熱され、昇温される。 In the blast furnace, ore raw materials (sintered ore, pellets, lump ore, etc.) as iron-containing raw materials and coke as a reducing agent and fuel are alternately charged from the top of the furnace, and hot air is blown from the tuyeres at the bottom of the furnace. At the same time, auxiliary fuel such as pulverized coal is injected. The ore raw material and coke charged from the top of the furnace (hereinafter also collectively referred to as "charge") form alternately stacked ore layers and coke layers, respectively. The ore raw material and coke are heated by gas rising from the lower part of the blast furnace while gradually descending toward the lower part of the blast furnace as the load is unloaded in the blast furnace.

高炉内で加熱、還元されながら降下する鉱石原料は、炉下部に到達すると軟化、融着を開始し、鉱石融着層を形成する。鉱石融着層では、鉱石原料間の空隙が減少し、ガスの通気性が悪化する。このため、ガスは、鉱石融着層間のコークス層を通過して、炉頂に向かい上昇する。従って、融着帯の形状は、高炉の通気性に与える影響が極めて大きい。なお、融着帯とは、高炉内で鉱石融着層が存在する領域(鉱石融着層間のコークス層を含む)をいう。 When the ore raw material descending while being heated and reduced in the blast furnace reaches the lower part of the furnace, it begins to soften and fuse to form an ore fused layer. In the ore cohesive layer, voids between ore raw materials are reduced, and gas permeability is deteriorated. As a result, the gas passes through the coke layers between the ore coalescing layers and rises toward the furnace top. Therefore, the shape of the cohesive zone has a great effect on the air permeability of the blast furnace. The cohesive zone refers to a region in the blast furnace where ore cohesive layers exist (including coke layers between ore cohesive layers).

鉱石原料の高温性状は、融着帯の形状を決定する重要な要因のひとつである。そこで、従来は、荷重軟化試験により求められる、融着開始時還元率(Rs)や、融着開始温度(Ts)や、滴下開始温度(Td)、あるいはその差(ΔT=Td-Ts)等の指標によって鉱石原料の高温性状を評価してきた(非特許文献1)。 The high-temperature properties of ore raw materials are one of the important factors that determine the shape of the cohesive zone. Therefore, conventionally, the reduction rate at the start of fusion (Rs), the fusion start temperature (Ts), the dropping start temperature (Td), or the difference between them (ΔT=Td−Ts), etc., which are obtained by a load softening test (Non-Patent Document 1).

その他にも、鉱石原料の高温性状を評価する指標(以下、「高温性状評価指標」ともいう)として、S値(焼結鉱を加熱還元して得られる時間-圧損曲線において、圧損が200mmHO以上である部分の面積)が知られている。特許文献1では、焼結鉱を高温性状(S値)により2種類に分け、高温性状の劣る焼結鉱を下部層として装入し、その上部に高温性状の優れた焼結鉱を上部層として装入することで、鉱石層全体の被還元性を改善している。 In addition, as an index for evaluating the high-temperature properties of ore raw materials (hereinafter also referred to as “high-temperature property evaluation index”), the S value (time-pressure loss curve obtained by heating and reducing sintered ore, pressure loss of 200 mmH 2 0) is known. In Patent Document 1, sintered ore is divided into two types according to high temperature properties (S value), sintered ore with poor high temperature properties is charged as a lower layer, and sintered ore with excellent high temperature properties is added to the upper layer. The reducibility of the entire ore layer is improved by charging as

特開2002-309306号公報JP-A-2002-309306

鉄と鋼 第83巻(1997年) 第97~102頁Tetsu to Hagane Vol.83 (1997) pp.97-102 鉄と鋼 第77巻(1991年) 第1561~1568頁Tetsu to Hagane Vol.77 (1991) pp.1561-1568 鉄と鋼 第80巻(1994年) 第431~439頁Tetsu to Hagane Vol.80 (1994) pp.431-439 鉄と鋼 第98巻(2012年) 第431~439頁Tetsu to Hagane Vol.98 (2012) pp.431-439 鉄と鋼 第66巻(1980年) 第1908~1917頁Tetsu to Hagane Vol.66 (1980) pp.1908-1917 鉄と鋼 第100巻(2014年) 第270~276頁Tetsu to Hagane Vol.100 (2014) pp.270-276

本発明は、還元材比を低減することが可能な、焼結鉱の粒度分布の調整方法を提供することを目的とする。また、本発明は、粒度分布の調整前後における焼結鉱に関する融着開始時還元率Rsの変化量ΔRsを推定する方法を提供することを他の目的とする。 An object of the present invention is to provide a method for adjusting the particle size distribution of sintered ore that can reduce the reducing material ratio. Another object of the present invention is to provide a method for estimating the amount of change ΔRs * in the reduction rate Rs * at the start of fusion of sintered ore before and after adjusting the particle size distribution.

上記課題を解決するために、本発明に係る鉱石層の形成に用いる装入用焼結鉱の粒度分布の調整方法は、(1)前記装入用焼結鉱の調和平均粒径Dpが基準値Sに近づくように前記装入用焼結鉱の粒度分布を調整することを含み、前記基準値Sを定めるための検討用焼結鉱からなる検討用焼結鉱充填層の圧力損失が所定値に達したときの前記検討用焼結鉱充填層の融着開始時還元率Rsと、前記融着開始時還元率Rsの取得に用いた前記検討用焼結鉱の調和平均粒径Dpと、の関係を示すRs-Dp曲線において、前記融着開始時還元率Rsが最大値となる調和平均粒径Dpとして、前記基準値Sが定められることを特徴とする。 In order to solve the above problems, the method for adjusting the particle size distribution of the charging sintered ore used for forming the ore layer according to the present invention is as follows: (1) The harmonic average particle diameter Dp of the charging sintered ore including adjusting the particle size distribution of the charging sintered ore so as to approach the value S, and the pressure loss of the investigational sintered ore packed bed made of the investigational sintered ore for determining the reference value S is predetermined. Harmonic average particle size of the sintered ore for investigation used to obtain the reduction rate Rs * at the start of fusion of the sintered ore packed bed for investigation when the value is reached, and the reduction rate Rs * at the start of fusion In the Rs * -Dp curve showing the relationship between Dp and Rs*, the reference value S is determined as the harmonic mean particle size Dp at which the reduction rate Rs * at the start of fusion bonding reaches its maximum value.

(2)前記装入用焼結鉱からなる装入用焼結鉱充填層の初期空隙率εが、粒度分布調整前よりも粒度分布調整後の方が高くなるように、前記装入用焼結鉱の前記粒度分布を調整することを特徴とする(1)に記載の粒度分布の調整方法。 (2) the charging sintered ore so that the initial porosity ε 0 of the charging sintered ore packed bed made of the charging sintered ore is higher after the particle size distribution adjustment than before the particle size distribution adjustment; The method for adjusting the particle size distribution according to (1), characterized in that the particle size distribution of the sintered ore is adjusted.

(3)前記融着開始時還元率Rsの最大値が極大値であることを特徴とする(2)に記載の粒度分布の調整方法。 (3) The method for adjusting the particle size distribution according to (2), wherein the maximum value of the reduction rate Rs * at the start of fusion bonding is a maximum value.

(4)粒度分布調整前の前記装入用焼結鉱の調和平均粒径Dpが前記基準値Sを超えている場合、粒度分布調整後の前記装入用焼結鉱の調和平均粒径Dpが前記基準値S以上となるように、前記装入用焼結鉱の前記粒度分布を調整すること特徴とする(3)に記載の粒度分布の調整方法。 (4) When the harmonic average particle size Dp of the charging sintered ore before adjusting the particle size distribution exceeds the reference value S, the harmonic average particle size Dp of the charging sintered ore after adjusting the particle size distribution The method for adjusting the particle size distribution according to (3), wherein the particle size distribution of the sintered ore for charging is adjusted so that a is equal to or greater than the reference value S.

(5)所定粒径を超える粗粒焼結鉱の割合を減少させて前記装入用焼結鉱の前記粒度分布を調整することを特徴とする、(4)に記載の粒度分布の調整方法。 (5) The method for adjusting the particle size distribution according to (4), characterized in that the particle size distribution of the charged sintered ore is adjusted by reducing the proportion of coarse-grained sintered ore exceeding a predetermined particle size. .

(6)粒度分布調整前の前記装入用焼結鉱の調和平均粒径Dpが前記基準値S未満である場合、粒度分布調整後の前記装入用焼結鉱の調和平均粒径Dpが前記基準値S以下となるように、前記装入用焼結鉱の前記粒度分布を調整すること特徴とする(3)に記載の粒度分布の調整方法。 (6) When the harmonic average particle size Dp of the sintered ore for charging before adjusting the particle size distribution is less than the reference value S, the harmonic average particle size Dp a of the sintered ore for charging after adjusting the particle size distribution The method for adjusting the particle size distribution according to (3), wherein the particle size distribution of the sintered ore for charging is adjusted so that the is equal to or less than the reference value S.

(7)所定粒径未満の細粒焼結鉱の割合を減少させて前記装入用焼結鉱の前記粒度分布を調整することを特徴とする、(6)に記載の粒度分布の調整方法。 (7) The method for adjusting the particle size distribution according to (6), characterized in that the particle size distribution of the charging sintered ore is adjusted by reducing the proportion of fine-grained sintered ore having a particle size less than a predetermined particle size. .

(8)粒度分布調整後の前記装入用焼結鉱の調和平均粒径Dpが下記式(1)を満足するように、前記装入用焼結鉱の前記粒度分布を調整することを特徴とする(3)から(7)の何れか一つに記載の粒度分布の調整方法。

Figure 2023050035000002
上記式(1)において、Sは、基準値[mm]を示し、Dpは、粒度分布を調整した後の前記装入用焼結鉱の調和平均粒径[mm]を示す。 (8) Adjusting the particle size distribution of the sintered ore to be charged so that the harmonic average particle diameter Dpa of the sintered ore to be charged after adjusting the particle size distribution satisfies the following formula (1): The method for adjusting the particle size distribution according to any one of (3) to (7).
Figure 2023050035000002
In the above formula (1), S indicates a reference value [mm], and Dpa indicates a harmonic mean particle size [mm] of the sintered ore for charging after adjusting the particle size distribution.

(9)前記基準値Sが12mmであることを特徴とする(1)から(8)の何れか一つに記載の粒度分布の調整方法。 (9) The method for adjusting the particle size distribution according to any one of (1) to (8), wherein the reference value S is 12 mm.

(10)前記検討用焼結鉱からなる前記検討用焼結鉱充填層の前記融着開始時還元率Rsは、前記装入用焼結鉱が装入される高炉における、(a)前記装入用焼結鉱からなる装入用焼結鉱充填層の充填状態、(b)前記装入用焼結鉱充填層の温度、(c)前記装入用焼結鉱充填層に流れる還元ガスの組成及び流量、並びに(d)前記装入用焼結鉱充填層にかかる荷重、のうちの一つ以上を用いて取得されることを特徴とする、(1)から(9)の何れか一項に記載の粒度分布の調整方法。 (10) The reduction rate Rs * at the start of fusion bonding of the sintered ore packed bed for investigation made of the sintered ore for investigation is determined by (a) the above (b) temperature of the sintered ore packed bed for charging; (c) reduction flowing in the sintered ore packed bed for charging Any one of (1) to (9), characterized in that it is obtained using one or more of gas composition and flow rate, and (d) load applied to the charging sinter packed bed. or the method for adjusting the particle size distribution according to item 1.

(11)(4)に記載の調整方法で粒度分布が調整される前記装入用焼結鉱に関する前記融着開始時還元率Rsの変化量ΔRsを、下記式(2)に基づいて推定することを特徴とする、変化量ΔRsの推定方法。

Figure 2023050035000003
上記式(2)において、ΔRsは、粒度分布の調整前後における前記装入用焼結鉱に関する前記融着開始時還元率Rsの変化量[%]を示し、Cは、前記検討用焼結鉱の前記調和平均粒径Dpが前記基準値S以上の範囲内における、前記検討用焼結鉱の前記調和平均粒径Dpに対する前記検討用焼結鉱の前記融着開始時還元率Rsの変化率[%/mm]を示し、ΔDpは、粒度分布の調整前後における前記装入用焼結鉱の前記調和平均粒径Dpの変化量[mm]を示し、Dは、前記検討用焼結鉱の初期空隙率εに対する前記検討用焼結鉱の前記融着開始時還元率Rsの変化率[%/-]を示し、Δεは、粒度分布の調整前後における前記装入用焼結鉱に関する前記初期空隙率εの変化量[-]を示す。 (11) The amount of change ΔRs * of the reduction rate Rs * at the start of fusion for the charging sinter ore, the particle size distribution of which is adjusted by the adjustment method described in (4), is calculated based on the following formula (2): A method for estimating the amount of change ΔRs * , characterized by estimating.
Figure 2023050035000003
In the above formula (2), ΔRs * indicates the amount of change [%] in the reduction rate Rs * at the start of fusion bonding regarding the charging sintered ore before and after adjusting the particle size distribution, and C1 is the The reduction rate Rs at the start of fusion bonding of the sintered ore for investigation with respect to the harmonic average particle diameter Dp of the sintered ore for investigation in the range where the harmonic average particle diameter Dp of the sintered ore is equal to or greater than the reference value S * indicates the rate of change [% / mm], ΔDp indicates the amount of change [mm] in the harmonic average particle diameter Dp of the sintered ore for charging before and after adjusting the particle size distribution, and D 1 is the study shows the rate of change [%/−] of the reduction rate Rs * at the start of fusion bonding of the sintered ore for investigation with respect to the initial porosity ε 0 of the sintered ore for study, and Δε 0 is the sintered ore before and after adjustment of the particle size distribution. The amount of change [-] in the initial porosity ε0 for the required sintered ore is shown.

(12)前記基準値Sが12であり、前記Cが-1.2であり、前記Dが150である、ことを特徴とする(11)に記載の変化量ΔRsの推定方法。 (12) The method for estimating the amount of change ΔRs * according to (11), wherein the reference value S is 12, the C 1 is −1.2, and the D 1 is 150.

(13)(6)に記載の調整方法で粒度分布が調整される前記装入用焼結鉱に関する前記融着開始時還元率Rsの変化量ΔRsを、下記式(3)に基づいて推定することを特徴とする、変化量ΔRsの推定方法。

Figure 2023050035000004
上記式(3)において、ΔRsは、粒度分布の調整前後における前記装入用焼結鉱に関する前記融着開始時還元率Rsの変化量[%]を示し、Cは、前記検討用焼結鉱の前記調和平均粒径Dpが前記基準値S以下の範囲内における、前記検討用焼結鉱の前記調和平均粒径Dpに対する前記検討用焼結鉱の前記融着開始時還元率Rsの変化率[%/mm]を示し、ΔDpは、粒度分布の調整前後における前記装入用焼結鉱の前記調和平均粒径Dpの変化量[mm]を示し、Dは、前記検討用焼結鉱の初期空隙率εに対する前記検討用焼結鉱の前記融着開始時還元率Rsの変化率[%/-]を示し、Δεは、粒度分布の調整前後における前記装入用焼結鉱に関する前記初期空隙率εの変化量[-]を示す。 (13) The amount of change ΔRs * of the reduction rate Rs * at the start of fusion for the charging sintered ore, the particle size distribution of which is adjusted by the adjustment method described in (6), is calculated based on the following formula (3): A method for estimating the amount of change ΔRs * , characterized by estimating.
Figure 2023050035000004
In the above formula (3), ΔRs * indicates the amount of change [%] in the reduction rate Rs * at the start of fusion bonding regarding the charging sintered ore before and after adjusting the particle size distribution, and C2 is the The reduction rate Rs at the start of fusion bonding of the sintered ore for investigation with respect to the harmonic average particle diameter Dp of the sintered ore for investigation in the range where the harmonic average particle diameter Dp of the sintered ore is equal to or less than the reference value S * indicates the rate of change [% / mm], ΔDp indicates the amount of change [mm] in the harmonic average particle size Dp of the sintered ore for charging before and after adjusting the particle size distribution, and D2 is the above-described study. shows the rate of change [%/−] of the reduction rate Rs * at the start of fusion bonding of the sintered ore for investigation with respect to the initial porosity ε 0 of the sintered ore for study, and Δε 0 is the sintered ore before and after adjustment of the particle size distribution. The amount of change [-] in the initial porosity ε0 for the required sintered ore is shown.

(14)前記基準値Sが12であり、前記Cが1.2であり、前記Dが150である、ことを特徴とする(13)に記載の変化量ΔRsの推定方法。 (14) The method for estimating the amount of change ΔRs * according to (13), wherein the reference value S is 12, the C2 is 1.2, and the D2 is 150.

本発明によれば、還元材比を低減することが可能な、焼結鉱の粒度分布の調整方法を提供することができる。また、本発明によれば、粒度分布の調整前後における焼結鉱に関する融着開始時還元率Rsの変化量ΔRsを推定する方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the adjustment method of the particle size distribution of a sintered ore which can reduce a reducing material ratio can be provided. Further, according to the present invention, it is possible to provide a method for estimating the amount of change ΔRs * in the reduction rate Rs* at the start of fusion of sintered ore before and after adjusting the particle size distribution.

Rs推定モデルの概要を説明する図である。It is a figure explaining the outline|summary of an Rs * estimation model. 焼結鉱充填層の温度変化を示すグラフである。It is a graph which shows the temperature change of a sintered ore packed bed. 焼結鉱充填層にかかる荷重の変化を示すグラフである。It is a graph which shows the change of the load concerning a sintered ore packed bed. 焼結鉱充填層を流れる還元ガスの流量変化を示すグラフである。It is a graph which shows the flow volume change of the reducing gas which flows through a sintered ore packed bed. 焼結鉱充填層を流れる還元ガスの組成変化を示すグラフである。It is a graph which shows the composition change of the reducing gas which flows through a sintered ore packed bed. 焼結鉱充填層を流れる還元ガスの組成変化を示すグラフである。It is a graph which shows the composition change of the reducing gas which flows through a sintered ore packed bed. 焼結鉱充填層に流れる還元ガスの圧力変化を示すグラフである。It is a graph which shows the pressure change of the reducing gas which flows into a sintered ore packed bed. 融着開始時還元率Rsを推定する手順を示すフローチャートである。4 is a flowchart showing a procedure for estimating a reduction rate Rs * at the start of fusion bonding; X線CT画像を用いた解析方法を説明する図である。It is a figure explaining the analysis method using an X-ray CT image. 焼結鉱充填層の温度変化を示すグラフである。It is a graph which shows the temperature change of a sintered ore packed bed. 焼結鉱充填層を流れる還元ガスの組成変化を示すグラフである。It is a graph which shows the composition change of the reducing gas which flows through a sintered ore packed bed. 焼結鉱充填層にかかる荷重の変化を示すグラフである。It is a graph which shows the change of the load concerning a sintered ore packed bed. 融着開始温度Tsと調和平均粒径Dpとの関係を示すグラフである。4 is a graph showing the relationship between the fusion start temperature Ts * and the harmonic mean particle size Dp. 還元率R1200と調和平均粒径Dpとの関係を示すグラフである。4 is a graph showing the relationship between the reduction rate R 1200 and the harmonic mean particle size Dp. 融着開始時還元率Rsと調和平均粒径Dpとの関係を示すグラフである。4 is a graph showing the relationship between the reduction rate Rs * at the start of fusion bonding and the harmonic mean particle size Dp. 焼結+25mm割合と初期空隙率εとの関係、及び焼結+25mm割合と調和平均粒径Dpとの関係を示すグラフである。4 is a graph showing the relationship between the sintering +25 mm ratio and the initial porosity ε0 , and the relationship between the sintering +25 mm ratio and the harmonic mean grain size Dp. 還元材比と還元材比の算出時に使用された焼結鉱に関する融着開始時還元率Rsとの関係を示すグラフである。4 is a graph showing the relationship between the reducing agent ratio and the reduction rate Rs * at the start of fusion bonding with respect to sintered ore used when calculating the reducing agent ratio.

まず、本発明を完成するに至った経緯を説明する。 First, the circumstances leading to the completion of the present invention will be described.

従来、鉱石原料の高温性状を評価する指標(高温性状評価指標)には、融着開始温度Tsや融着開始時還元率Rsなどが用いられてきた。融着開始温度Tsと融着開始時還元率Rsは、それぞれ、鉱石層で生じる圧力損失が所定値を示した際の温度(鉱石層の温度)と還元率(鉱石層の還元率)と定義され、非特許文献1に示す試験条件下において、高温性状試験装置を用いて鉱石原料を還元することで求められる。なお、所定値は、鉱石融着層が形成されたときの圧力損失を表す。 Conventionally, the fusion start temperature Ts, the reduction rate Rs at the start of fusion, and the like have been used as indices for evaluating the high-temperature properties of ore raw materials (high-temperature property evaluation indices). The fusion start temperature Ts and the reduction rate Rs at the start of fusion are defined as the temperature (the temperature of the ore layer) and the reduction rate (the reduction rate of the ore layer) at which the pressure loss occurring in the ore layer reaches a predetermined value, respectively. It is obtained by reducing the ore raw material using a high-temperature property tester under the test conditions shown in Non-Patent Document 1. The predetermined value represents the pressure loss when the ore cohesive layer is formed.

一方、高炉では、(a)鉱石層の充填状態(粒径(調和平均粒径)、空隙率、装入層厚、多種原料の混合装入など)、(b)鉱石層の温度、(c)鉱石層を流れる還元ガスの組成及び流量、並びに(d)鉱石層にかかる荷重が、高炉操業条件によって異なり、これらに含まれる条件(以下、「高温性状関連条件」ともいう)は、鉱石原料の高温性状に影響を及ぼす。このため、鉱石原料の高温性状評価指標には、評価対象の鉱石原料が装入される高炉の高温性状関連条件のうちのひとつ、あるいは複数の影響が反映されることが好ましい。しかしながら、非特許文献1に記載される方法で求められる融着開始温度Tsと融着開始時還元率Rsは、これらの影響が反映されにくい。例えば、非特許文献1では、融着開始時還元率Rsは、10~15mmに整粒した焼結鉱について測定される。 On the other hand, in the blast furnace, (a) filling state of the ore layer (particle size (harmonic mean particle size), porosity, charged layer thickness, mixed charging of various raw materials, etc.), (b) temperature of the ore layer, (c ) The composition and flow rate of the reducing gas flowing through the ore layer and (d) the load applied to the ore layer vary depending on the blast furnace operating conditions, and the conditions included in these (hereinafter also referred to as “high temperature property related conditions”) Affects the high temperature properties of For this reason, it is preferable that the index for evaluating the high-temperature properties of ore raw materials reflects the influence of one or more of the conditions related to the high-temperature properties of the blast furnace into which the ore raw materials to be evaluated are charged. However, the fusion start temperature Ts and the reduction rate Rs at the start of fusion obtained by the method described in Non-Patent Document 1 are difficult to reflect these effects. For example, in Non-Patent Document 1, the reduction rate Rs at the start of fusion bonding is measured for sintered ore grain-sized to 10 to 15 mm.

本発明者等は、この知見に基づいて検討を行った。その結果、新たな高温性状評価指標である鉱石層の融着開始温度(以下、「融着開始温度Ts」ともいう)及び鉱石層の融着開始時還元率(以下、「融着開始時還元率Rs」ともいう)を見出した。融着開始温度Tsは、鉱石層の圧力損失が所定値に達したときの温度(鉱石層の温度)であって、高温性状関連条件を用いて求められる温度である。また、融着開始時還元率Rsは、鉱石層の圧力損失が所定値に達したときの鉱石層の還元率であって、高温性状関連条件を用いて求められる還元率である。 The present inventors conducted studies based on this finding. As a result, the fusion start temperature of the ore layer (hereinafter also referred to as "fusion start temperature Ts * ") and the reduction rate at the start of fusion of the ore layer (hereinafter, "at the start of fusion Also referred to as "reduction rate Rs * ") was found. The fusion start temperature Ts * is the temperature (the temperature of the ore layer) when the pressure loss of the ore layer reaches a predetermined value, and is the temperature obtained using the high-temperature property-related conditions. The reduction rate Rs * at the start of fusion bonding is the reduction rate of the ore layer when the pressure loss of the ore layer reaches a predetermined value, and is the reduction rate obtained using the high-temperature property-related conditions.

なお、融着開始温度Tsおよび融着開始時還元率Rsは、鉱石原料についてではなく、鉱石層について求められる高温性状評価指標である。融着開始温度Tsと融着開始時還元率Rsを求めるために用いられる所定値は、鉱石融着層が形成されたときの圧力損失(またはその勾配)であり、例えば、200×9.8Paや50kPa/mとすることができる。融着開始温度Ts及び融着開始時還元率Rsの詳細は後述する。 Note that the fusion start temperature Ts * and the reduction rate Rs * at the start of fusion are high-temperature property evaluation indices required not for the ore raw material but for the ore layer. The predetermined value used to obtain the fusion start temperature Ts * and the reduction rate Rs * at the start of fusion is the pressure loss (or its gradient) when the ore fusion layer is formed. It can be 0.8 Pa or 50 kPa/m. The details of the fusion start temperature Ts * and the reduction rate Rs * at the start of fusion will be described later.

本発明者等は、融着開始温度Ts及び融着開始時還元率Rsについてさらに検討を進め、上述した(a)鉱石層の充填状態(粒径(調和平均粒径)、空隙率、装入層厚、多種原料の混合装入など)のうちの粒径に着目した。鉱石原料の粒径を小さくすると、還元ガスとの接触面積が増加するため、鉱石原料の還元速度は上昇する。これは融着開始時還元率Rsの上昇に寄与する。一方で、還元ガスとの接触面積が増加すると鉱石層の圧力損失が上昇する。このため、接触面積の増加が進むと、融着開始温度Tsが低下し始める。融着開始温度Tsの低下は、融着開始時還元率Rsを低下させる要因となりうる。すなわち、粒径の変化に対して還元性と通気性はトレードオフの関係で変化する。本発明者等は、この知見に基づき、鉱石原料の一つである焼結鉱について、高温性状の観点から、高炉の操業において適切な粒度分布を明らかにすることを考えた。 The inventors of the present invention further studied the fusion initiation temperature Ts * and the reduction rate Rs * at the initiation of fusion, and found that (a) the filling state of the ore layer (particle diameter (harmonic mean particle diameter), porosity, We paid attention to the particle size of the charging layer thickness, mixed charging of various raw materials, etc.). When the particle size of the ore raw material is reduced, the contact area with the reducing gas increases, so the reduction rate of the ore raw material increases. This contributes to an increase in the reduction rate Rs * at the start of fusion bonding. On the other hand, when the contact area with the reducing gas increases, the pressure loss in the ore layer increases. Therefore, as the contact area increases, the fusion initiation temperature Ts * begins to decrease. A decrease in the fusion initiation temperature Ts * can be a factor in reducing the reduction rate Rs * at the initiation of fusion. In other words, the reducibility and air permeability change in a trade-off relationship with the change in particle size. Based on this knowledge, the present inventors considered clarifying the appropriate particle size distribution of sintered ore, which is one of the ore raw materials, in the operation of a blast furnace from the viewpoint of high-temperature properties.

そこで、本発明者等は、後述する通り、焼結鉱のみにより形成した鉱石層(以下、「焼結鉱充填層」ともいう)を用いて、融着開始時還元率Rsと焼結鉱の調和平均粒径Dpの関係について検討を行った。その結果、焼結鉱の調和平均粒径Dpが後述する基準値Sに近づくように、焼結鉱の粒度分布を調整することで、その焼結鉱を用いて形成した鉱石層の融着開始時還元率Rsが上昇し、還元材比を低減できることを見出し、本発明を完成するに至った。以下、基準値Sを定めるための焼結鉱を「検討用焼結鉱」という場合がある。 Therefore, as described later, the present inventors used an ore layer formed only of sintered ore (hereinafter also referred to as a "sintered ore packed layer") to determine the reduction rate Rs * at the start of fusion and the sintered ore The relationship of the harmonic average particle size Dp of the was examined. As a result, by adjusting the particle size distribution of the sintered ore so that the harmonic average particle diameter Dp of the sintered ore approaches the reference value S described later, the ore layer formed using the sintered ore starts fusion bonding. The inventors have found that the time reduction rate Rs * can be increased and the reducing agent ratio can be reduced, leading to the completion of the present invention. Hereinafter, the sintered ore for determining the reference value S may be referred to as "sintered ore for examination".

なお、本明細書において、鉱石層は、高炉内に形成された粒子充填層のうち、鉱石原料を含む層を指し、鉱石原料は、鉄分を50質量%以上含有する原料を指す。具体的な鉱石原料としては、例えば、焼結鉱、ペレット及び塊鉱石を挙げることができる。また、本明細書において、鉱石融着層は、鉱石原料が軟化及び/又は融着している鉱石層を指し、融着帯とは、高炉内で鉱石融着層が存在する領域(鉱石融着層間のコークス層を含む)を指す。 In this specification, the ore layer refers to a layer containing an ore raw material among the particle packed layers formed in the blast furnace, and the ore raw material refers to a raw material containing 50% by mass or more of iron. Examples of specific ore raw materials include sintered ore, pellets and lump ore. Further, in this specification, the ore cohesive layer refers to an ore layer in which the ore raw material is softened and/or cohesive, and the cohesive zone is a region in the blast furnace where the ore cohesive layer exists (ore melting). including coke layers between deposition layers).

以下、本発明の一実施形態について説明する。 An embodiment of the present invention will be described below.

本実施形態の調整方法は、焼結鉱の粒度分布を調整する方法である。本実施形態の調整方法で粒度分布が調整された焼結鉱は、鉱石層の形成に用いられる。以下、粒度分布が調整され、鉱石層を形成する焼結鉱を「装入用焼結鉱」という場合がある。 The adjustment method of the present embodiment is a method of adjusting the particle size distribution of sintered ore. The sintered ore whose particle size distribution has been adjusted by the adjustment method of the present embodiment is used for forming an ore layer. Hereinafter, the sintered ore having an adjusted particle size distribution and forming an ore layer may be referred to as "charging sintered ore".

なお、鉱石層は、本実施形態の調整方法で粒度分布を調整した装入用焼結鉱のみにより形成されている必要は無く、装入用焼結鉱の他に、焼結鉱以外の鉱石原料や、コークスや、フェロコークスや、副原料などの他の原料を含んで形成されてもよい。 In addition, the ore layer does not need to be formed only of the charging sintered ore whose particle size distribution has been adjusted by the adjustment method of the present embodiment. It may also be formed including raw materials, coke, ferro-coke, and other raw materials such as adjuncts.

本実施形態の調整方法は、以下に示す第1の条件を満足するように装入用焼結鉱の粒度分布を調整する。 The adjustment method of the present embodiment adjusts the particle size distribution of charging sintered ore so as to satisfy the first condition shown below.

第1の条件は、粒度分布の調整対象である装入用焼結鉱(つまり、粒度分布調整前の装入用焼結鉱)の調和平均粒径Dpが、装入用焼結鉱の粒度分布を調整することで基準値Sに近づくという条件である。 The first condition is that the harmonic average particle diameter Dp of the charging sintered ore to be adjusted for the particle size distribution (that is, the charging sintered ore before the particle size distribution adjustment) is the particle size of the charging sintered ore The condition is that the reference value S is approached by adjusting the distribution.

本実施形態において、装入用焼結鉱の調和平均粒径Dpは、下記式(4)で定義される。

Figure 2023050035000005
上記式(4)において、Dpは、調和平均粒径[mm]を示し、nは、篩い分けに用いた篩の数[-]を示し、Wは、粒径範囲iの装入用焼結鉱の質量比率[-]を示し、Dは、粒径範囲iの代表径[mm]を示す。代表径Dは、各篩の篩目の間隔を考慮して決定される値であり、例えば、篩目の間隔の中間粒径を用いることができる。 In the present embodiment, the harmonic mean particle size Dp of the sintered ore for charging is defined by the following formula (4).
Figure 2023050035000005
In the above formula (4), Dp represents the harmonic average particle size [mm], n represents the number of sieves used for sieving [-], and W i represents the quenched powder for charging in the particle size range i. indicates the mass ratio [-] of the ore, and D i indicates the representative diameter [mm] of the particle size range i. The representative diameter D i is a value determined in consideration of the mesh spacing of each sieve, and for example, an intermediate particle size between the meshes can be used.

ここで、調和平均粒径Dpが基準値Sに近づくとは、調和平均粒径Dpと基準値Sの差の絶対値が小さくなることを意味し、この絶対値が小さくなれば、基準値Sを超える調和平均粒径Dpが、粒度分布の調整により基準値S未満になってもよく、基準値S未満である調和平均粒径Dpが、粒度分布の調整により基準値Sを超えてもよい。 Here, the harmonic mean particle diameter Dp approaches the reference value S means that the absolute value of the difference between the harmonic mean particle diameter Dp and the reference value S decreases. may be less than the standard value S by adjusting the particle size distribution, and the harmonic mean particle size Dp that is less than the standard value S may exceed the standard value S by adjusting the particle size distribution. .

本実施形態の調整方法において、粒度分布の調整は、粒径範囲iの装入用焼結鉱の割合(質量比率)を変化させることで行うことができる。例えば、粒度分布の調整対象である装入用焼結鉱の調和平均粒径Dpが基準値Sを超える場合、所定粒径を超える粗粒焼結鉱の割合を減少していくことで、第1の条件を満足する粒度分布の調整を行うことができる。なお、前述した所定粒径は、粒度分布の調整対象である装入用焼結鉱の調和平均粒径Dpを超える粒径であり、一例としては、50mmである。また、例えば、粒度分布の調整対象である装入用焼結鉱の調和平均粒径Dpが基準値S未満である場合、所定粒径未満の細粒焼結鉱の割合を減少していくことで、第1の条件を満足する粒度分布の調整を行うことができる。なお、前述した所定粒径は、調和平均粒径Dp未満の粒径であり、一例としては、5mmである。 In the adjustment method of the present embodiment, the particle size distribution can be adjusted by changing the proportion (mass ratio) of the charged sintered ore having a particle size range i. For example, when the harmonic average particle size Dp of the charging sinter ore whose particle size distribution is to be adjusted exceeds the reference value S, by decreasing the ratio of coarse-grained sinter ore exceeding a predetermined particle size, The particle size distribution can be adjusted to satisfy the condition of 1. The above-described predetermined particle size is a particle size exceeding the harmonic average particle size Dp of the charged sintered ore whose particle size distribution is to be adjusted, and is, for example, 50 mm. Further, for example, when the harmonic average particle size Dp of the sintered ore to be charged, which is the target for adjusting the particle size distribution, is less than the reference value S, the proportion of fine-grained sintered ore smaller than a predetermined particle size is reduced. , the particle size distribution can be adjusted to satisfy the first condition. In addition, the predetermined particle size described above is a particle size smaller than the harmonic average particle size Dp, and is 5 mm as an example.

次に、調和平均粒径Dpを近づける対象である基準値Sについて具体的に説明する。 Next, the reference value S to which the harmonic mean particle size Dp is approximated will be specifically described.

基準値Sは、検討用焼結鉱からなる検討用焼結鉱充填層の圧力損失が所定値に達したときの検討用焼結鉱充填層の還元率Rs(融着開始時還元率Rs)と、その融着開始時還元率Rsの取得に用いた検討用焼結鉱の調和平均粒径Dpとの関係を示す曲線(以下、「Rs-Dp曲線」ともいう)において、融着開始時還元率Rsが最大値となる調和平均粒径Dpである。 The reference value S is the reduction rate Rs * of the investigational sintered ore packed bed when the pressure loss of the investigational sintered ore packed bed made of the investigational sintered ore reaches a predetermined value (reduction rate Rs at the start of fusion bonding * ) and the harmonic average grain size Dp of the sintered ore for study used to obtain the reduction rate Rs * at the start of fusion bonding (hereinafter also referred to as “Rs * -Dp curve”). This is the harmonic mean particle diameter Dp at which the reduction rate Rs * at the start of fusion bonding reaches its maximum value.

基準値Sは、後述する荷重軟化試験の試験条件やRs推定モデルの入力条件によって異なることがあり一義的に定めることはできないが、例えば、12[mm]とすることができる。なお、Rs-Dp曲線は直線として取得されてもよい。 The reference value S may differ depending on the test conditions of the load softening test described later and the input conditions of the Rs * estimation model, and cannot be uniquely defined, but can be set to 12 [mm], for example. Note that the Rs * -Dp curve may be obtained as a straight line.

Rs-Dp曲線の取得には、荷重軟化試験による測定値か、あるいは数学モデルによる計算が用いられる。計算方法としては、例えば、高温性状関連条件である(a)焼結鉱充填層の充填状態、(b)焼結鉱充填層の温度、(c)焼結鉱充填層を流れる還元ガスの組成及び流量、並びに(d)焼結鉱充填層にかかる荷重を入力条件として使用して焼結鉱充填層の融着開始時還元率Rsを算出するモデル(以下、「Rs推定モデル」ともいう)が用いられる。より具体的には、検討用焼結鉱の調和平均粒径Dpのみ異なる複数種類の入力条件をRs推定モデルにそれぞれ入力し、入力条件毎に検討用焼結鉱充填層の融着開始時還元率Rsを算出し、算出された融着開始時還元率Rsと、その融着開始時還元率Rsの算出に用いた検討用焼結鉱の調和平均粒径Dpをグラフにプロットしていくことで取得できる。 To obtain the Rs * -Dp curve, either measurements by load softening tests or calculations by mathematical models are used. As a calculation method, for example, conditions related to high temperature properties (a) filling state of sintered ore packed bed, (b) temperature of sintered ore packed bed, (c) composition of reducing gas flowing through sintered ore packed bed and flow rate, and (d) a model for calculating the reduction rate Rs * at the start of fusion bonding of the sintered ore packed bed using the load applied to the sintered ore packed bed as input conditions (hereinafter, also referred to as "Rs * estimation model" ) is used. More specifically, a plurality of types of input conditions that differ only in the harmonic average particle size Dp of the sintered ore for investigation are input to the Rs * estimation model, and the time at which the sintered ore packed bed for investigation starts fusion bonding for each input condition The reduction rate Rs * is calculated, and the calculated reduction rate Rs * at the start of fusion bonding and the harmonic mean particle size Dp of the sintered ore for investigation used to calculate the reduction rate Rs * at the start of fusion are plotted in a graph. You can get it by going.

高温性状関連条件(a)焼結鉱充填層の充填状態について、装入用焼結鉱と検討用焼結鉱とは、空隙率その他の性状が必ずしも同程度である必要は無く、検討用焼結鉱として一般的な性状を有する焼結鉱を用いてもよい。本発明者等の検討によれば、空隙率その他の性状が異なる焼結鉱であっても、調和平均粒径Dpの変化に対する融着開始時還元率Rsの応答は同様とみなせ、装入用焼結鉱と検討用焼結鉱とで性状を統一しなくても感度解析ができるためである。また、粒度分布の調整前後における装入用焼結鉱に関する融着開始時還元率Rsの変化量ΔRsを求めるための、調和平均粒径Dpに対する融着開始時還元率Rsの変化率C及びC(後述)、並びに、初期空隙率εに対する融着開始時還元率Rsの変化率D及びD(後述)は、装入用焼結鉱と検討用焼結鉱とで性状を統一しなくても、十分な信頼性をもって求められる。 Conditions related to high-temperature properties (a) Regarding the filling state of the sintered ore packed bed, the sintered ore for charging and the sintered ore for investigation do not necessarily have to have the same porosity and other properties. Sintered ore having general properties may be used as the ore. According to the studies of the present inventors, even if the sintered ore has different porosity and other properties, the response of the reduction rate Rs * at the start of fusion bonding to the change in the harmonic average grain size Dp can be considered to be the same. This is because the sensitivity analysis can be performed without unifying the properties of the sintered ore for use and the sintered ore for investigation. In addition, the rate of change of the reduction rate Rs* at the start of fusion with respect to the harmonic mean particle size Dp for obtaining the amount of change ΔRs * in the reduction rate Rs * at the start of fusion for charging sintered ore before and after adjusting the particle size distribution C 1 and C 2 (described later), and change rates D 1 and D 2 (described later) of the reduction rate Rs * at the start of fusion with respect to the initial porosity ε 0 Even if the properties are not unified, it is required with sufficient reliability.

装入用焼結鉱と検討用焼結鉱とは、上記(a)の各条件(空隙率その他の性状)が近くなるものほど好ましく、上記(a)の各条件が同一になるものであることが最も好ましい。言い換えれば、入力条件として用いる上記(a)には、(a)装入用焼結鉱からなる装入用焼結鉱充填層の充填状態を用いることが最も好ましい。装入用焼結鉱と検討用焼結鉱との間において、上記(a)の各条件が近付くほど、Rs推定モデルにより算出される融着開始時還元率Rsには、粒度分布の調整対象である装入用焼結鉱が装入される高炉(以下、「対象高炉」ともいう)の高温性状関連条件の影響がより反映される。従って、粒度分布の調整対象である装入用焼結鉱の対象高炉内における高温性状をより反映した融着開始時還元率Rsを得ることができる。 It is preferable that the sintered ore for charging and the sintered ore for investigation have the same conditions (porosity and other properties) in (a) above, and the conditions in (a) above are the same. is most preferred. In other words, it is most preferable to use (a) the filling state of the sintered ore packed bed for charging made of the sintered ore for charging for the above (a) used as the input condition. Between the charging sintered ore and the investigational sintered ore, the closer each of the above conditions (a) is, the more the reduction rate Rs * at the start of fusion bonding calculated by the Rs * estimation model is. The influence of the conditions related to high-temperature properties of the blast furnace into which the sintered ore to be adjusted is charged (hereinafter also referred to as “target blast furnace”) is more reflected. Therefore, it is possible to obtain the reduction rate Rs * at the start of fusion that more reflects the high-temperature properties of the sintered ore to be charged, the particle size distribution of which is to be adjusted, in the target blast furnace.

以下、Rs推定モデルについて具体的に説明する。 The Rs * estimation model will be specifically described below.

(Rs推定モデルの概要)
Rs推定モデルでは、まず、検討用焼結鉱が高炉に装入された直後の一層分の検討用焼結鉱充填層を、層高方向に並ぶ複数の領域(後述する計算格子で区画された領域(以下、「計算セル」ともいう))に区画する。次に、計算セル毎に、検討用焼結鉱の還元率、検討用焼結鉱充填層の収縮率、及び検討用焼結鉱充填層で生じる圧力損失を推定する。還元率、収縮率及び圧力損失の推定には、(a)検討用焼結鉱充填層の充填状態、(b)検討用焼結鉱充填層の温度、(c)検討用焼結鉱充填層を流れる還元ガスの組成及び流量、並びに(d)検討用焼結鉱充填層にかかる荷重を、入力条件として用いる。
(Rs * Outline of estimation model)
In the Rs * estimation model, first, a single layer of the sintered ore packed bed for investigation immediately after the sintered ore for investigation is charged into the blast furnace is divided into multiple regions arranged in the bed height direction (divided by a computational grid described later). area (hereinafter also referred to as “calculation cell”)). Next, the reduction rate of the sintered ore for examination, the shrinkage rate of the sintered ore packed bed for examination, and the pressure loss caused in the sintered ore packed bed for examination are estimated for each calculation cell. For estimation of reduction rate, shrinkage rate and pressure loss, (a) filling state of sintered ore packed bed for examination, (b) temperature of sintered ore packed bed for examination, (c) sintered ore packed bed for examination The composition and flow rate of the reducing gas flowing through and (d) the load on the investigational sinter packed bed are used as input conditions.

上述した通り、入力条件として用いられる(a)には、(a)装入用焼結鉱充填層の充填状態を用いることが最も好ましいが、入力条件として用いられる(a)のうちの一部の条件のみが、(a)装入用焼結鉱充填層の充填状態と同一であっても、対象高炉の高温性状関連条件の影響を融着開始時還元率Rsに反映することができる。例えば、入力条件として用いられる(a)のうちの調和平均粒径として、粒度分布の調整対象である装入用焼結鉱の粒度分布から求められる調和平均径を用いたり、入力条件として用いられる(a)のうちの空隙率として、装入用焼結鉱の粒度分布から求められる空隙率を用いたりすることで、対象高炉の高温性状関連条件の影響を融着開始時還元率Rsに反映することができる。 As described above, it is most preferable to use (a) the filling state of the charging sintered ore packed bed for (a) used as the input condition, but some of (a) used as the input condition Even if only the condition of (a) is the same as the filling state of the sintered ore packed bed for charging, the influence of the conditions related to the high-temperature properties of the target blast furnace can be reflected in the reduction rate Rs * at the start of fusion bonding. . For example, as the harmonic mean particle size in (a) used as the input condition, the harmonic mean particle size obtained from the particle size distribution of the charged sinter whose particle size distribution is to be adjusted, or used as the input condition By using the porosity obtained from the particle size distribution of the sintered ore for charging as the porosity in (a), the effect of the conditions related to the high-temperature properties of the target blast furnace can be applied to the reduction rate Rs * at the start of fusion bonding. can be reflected.

そして、これらの入力条件を用いて推定した還元率、収縮率及び圧力損失に基づき、検討用焼結鉱充填層の融着開始時還元率Rsを推定する。具体的な推定方法としては、基準時からの所定時間t(演算周期Δtに推定回数を乗じた時間)が経過したときの各計算セルについて、還元率、収縮率、及び圧力損失を推定するとともに、検討用焼結鉱充填層における圧力損失が所定値に到達するまで、その推定を繰り返す。そして、推定した圧力損失が所定値に達した時の検討用焼結鉱充填層の平均還元率を、融着開始時還元率Rsとして推定する。基準時は、検討用焼結鉱充填層が高炉内に形成されたとき(言い換えれば、焼結鉱が装入された直後)や、還元が始まる温度帯まで検討用焼結鉱充填層が降下したときとすることができる。還元が始まる温度は例えば500℃とすることができる。 Then, the reduction rate Rs * at the start of fusion bonding of the sintered ore packed bed for investigation is estimated based on the reduction rate, shrinkage rate, and pressure loss estimated using these input conditions. As a specific estimation method, the reduction rate, shrinkage rate, and pressure loss are estimated for each calculation cell after a predetermined time t (time obtained by multiplying the calculation cycle Δt by the number of times of estimation) from the reference time. , the estimation is repeated until the pressure loss in the sintered ore packed bed for investigation reaches a predetermined value. Then, the average reduction rate of the sintered ore packed bed for investigation when the estimated pressure loss reaches a predetermined value is estimated as the reduction rate Rs * at the start of fusion bonding. The reference time is when the sintered ore packed bed for investigation is formed in the blast furnace (in other words, immediately after the sintered ore is charged), or when the sintered ore packed bed for investigation is lowered to the temperature zone where reduction starts. When you can. The temperature at which reduction begins can be, for example, 500°C.

(入力条件)
還元率、収縮率及び圧力損失の推定に用いられる入力条件は、還元率、収縮率及び圧力損失を推定するために使用される条件であり、これらの推定式に直接入力される条件と、推定式に入力する条件を得るための条件の両方を含む概念である。
(input condition)
The input conditions used for estimating the reduction rate, contraction rate and pressure loss are the conditions used for estimating the reduction rate, contraction rate and pressure loss. It is a concept that includes both conditions for obtaining conditions to be input into expressions.

図1に具体的な入力条件を示す。まず、図1に示す入力条件のうち、(a)焼結鉱充填層の充填状態について説明する。充填状態は、検討用焼結鉱充填層に含まれる検討用焼結鉱の初期充填状態(つまり、検討用焼結鉱充填層を構成する検討用焼結鉱が高炉に装入された直後の充填状態)を示すものであり、具体的には、検討用焼結鉱の見かけ密度,検討用焼結鉱の調和平均粒径,検討用焼結鉱の形状係数,検討用焼結鉱の化学組成,軟化収縮パラメータ,検討用焼結鉱の体積比率を示す初期配合比(つまり、100%),検討用焼結鉱充填層の初期空隙率、検討用焼結鉱充填層の初期層高が挙げられる。なお、本明細書において軟化収縮パラメータとは、後述する推定式で用いられる、定数η、係数c~c、係数α、係数β、定数γをいう。 FIG. 1 shows specific input conditions. First, among the input conditions shown in FIG. 1, (a) the filling state of the sintered ore packed bed will be described. The filling state is the initial filling state of the investigational sintered ore contained in the investigational sintered ore packed bed (that is, immediately after the investigational sintered ore constituting the investigational sintered ore packed bed is charged into the blast furnace). Specifically, the apparent density of the sintered ore for investigation, the harmonic average particle diameter of the sintered ore for investigation, the shape factor of the sintered ore for investigation, the chemical properties of the sintered ore for investigation Composition, softening shrinkage parameter, initial blending ratio (that is, 100%) indicating the volume ratio of the sintered ore for investigation, initial porosity of the sintered ore packed bed for investigation, and initial layer height of the sintered ore packed bed for investigation mentioned. In this specification, the softening shrinkage parameter refers to a constant η 0 , coefficients c 1 to c 6 , coefficient α, coefficient β, and constant γ used in an estimation formula to be described later.

上記(a)の各条件には、検討用焼結鉱充填層を試験装置に形成して得られる結果や、公知の数学モデルに基づいて求められる検討用焼結鉱充填層の充填状態を用いることができる。例えば、検討用焼結鉱充填層の初期空隙率は、非特許文献2に記載の後述する式(22)を用いることで、粒度分布(粒径等)から取得することができる。 For each of the above conditions (a), the results obtained by forming the sintered ore packed bed for investigation in a test device and the packing state of the sintered ore packed bed for investigation obtained based on a known mathematical model are used. be able to. For example, the initial porosity of the sintered ore packed bed for investigation can be obtained from the particle size distribution (particle size, etc.) by using the below-described formula (22) described in Non-Patent Document 2.

次に、図1に示す入力条件うち、(b)焼結鉱充填層の温度、(c)焼結鉱充填層を流れる還元ガスの組成及び流量、(d)焼結鉱充填層にかかる荷重、並びに(e)還元ガスの圧力について説明する。ここで、焼結鉱充填層の温度とは、還元率,収縮率及び圧力損失を推定する対象の検討用焼結鉱充填層(以下、「推定対象の焼結鉱充填層」ともいう)の温度を示す。還元ガスの組成とは、推定対象の焼結鉱充填層に流れる還元ガスの組成を示す。還元ガスの流量とは、推定対象の焼結鉱充填層に流れる還元ガスの流量を示す。焼結鉱充填層にかかる荷重とは、推定対象の焼結鉱充填層にかかる荷重を示す。還元ガスの圧力とは、推定対象の焼結鉱充填層に流れる還元ガスの圧力を示す。 Next, among the input conditions shown in FIG. 1, (b) the temperature of the sintered ore packed bed, (c) the composition and flow rate of the reducing gas flowing through the sintered ore packed bed, and (d) the load applied to the sintered ore packed bed and (e) the pressure of the reducing gas. Here, the temperature of the sintered ore packed bed is the temperature of the sintered ore packed bed for investigation (hereinafter also referred to as "estimated sintered ore packed bed") for which the reduction rate, shrinkage rate and pressure loss are estimated. Indicates temperature. The composition of the reducing gas indicates the composition of the reducing gas flowing through the sintered ore packed bed to be estimated. The flow rate of the reducing gas indicates the flow rate of the reducing gas flowing through the sintered ore packed bed to be estimated. The load applied to the sintered ore packed bed indicates the load applied to the sintered ore packed bed to be estimated. The pressure of the reducing gas indicates the pressure of the reducing gas flowing through the sintered ore packed bed to be estimated.

これらの入力条件は、焼結鉱充填層が高炉内を降下する過程で変化することのある条件である。このため、検討用焼結鉱充填層が高炉内を降下する過程における、これらの入力条件の変化を表す情報を予め用意しておくことが好ましい。還元率、収縮率及び圧力損失を推定する際は、これらの情報の中から、基準時から所定時間tが経過したとき(以下、単に「所定時間tが経過したとき」ともいう)の値を選択して入力条件として用いる。 These input conditions are conditions that may change while the sinter packed bed descends in the blast furnace. Therefore, it is preferable to prepare in advance information representing changes in these input conditions during the process in which the sintered ore packed bed for investigation descends in the blast furnace. When estimating the reduction rate, shrinkage rate, and pressure loss, the value obtained when a predetermined time t has elapsed from the reference time (hereinafter simply referred to as "when the predetermined time t has elapsed") is selected from these information. Select and use as an input condition.

具体的な情報としては、経過時間に応じた検討用焼結鉱充填層の温度変化を示す昇温パターンや、検討用焼結鉱充填層の温度変化に応じた荷重の変化を示す荷重パターンや、検討用焼結鉱充填層の温度変化に応じたガス流量の変化を示す流量パターンや、検討用焼結鉱充填層の温度変化に応じた還元ガス組成の変化を示す組成パターンや、経過時間に応じた還元ガスの圧力変化を示す圧力パターンが挙げられる。 As specific information, the temperature rise pattern that shows the temperature change of the sintered ore packed bed for investigation according to the elapsed time, the load pattern that shows the change in the load according to the temperature change of the sintered ore packed bed for investigation, etc. , a flow rate pattern showing changes in gas flow rate according to temperature changes in the sintered ore packed bed for investigation, a composition pattern showing changes in reducing gas composition according to temperature changes in the sintered ore packed bed for investigation, and elapsed time A pressure pattern showing the pressure change of the reducing gas according to .

これらの情報には、過去の操業実績から得られた情報や、公知の情報を用いることができる。一例としては、昇温パターンには、図2aに示す昇温パターン、荷重パターンには、図2bに示す荷重パターン、流量パターンには、図2cに示す流量パターン、組成パターンには、図2dや図2eに示す組成パターン、圧力パターンには、図2fに示す圧力パターンを用いることができる。 Information obtained from past operational results and publicly known information can be used for these pieces of information. As an example, the temperature rise pattern is the temperature rise pattern shown in FIG. 2a, the load pattern is the load pattern shown in FIG. 2b, the flow rate pattern is the flow rate pattern shown in FIG. The pressure pattern shown in FIG. 2f can be used for the composition pattern and pressure pattern shown in FIG. 2e.

図1に示す入力条件のうち、上記(b)~(d)には、粒度分布の調整対象である装入用焼結鉱が装入される高炉(対象高炉)とは異なる一般的な高炉の条件が用いられてもよいが、対象高炉の条件が用いられることが好ましい。つまり、本実施形態の調整方法では、入力条件として用いる上記(b)~(d)として、(b)装入用焼結鉱充填層の温度、(c)装入用焼結鉱充填層に流れる還元ガスの組成及び流量、並びに、(d)装入用焼結鉱充填層にかかる荷重、のうちの一つ以上の条件を用いて融着開始時還元率Rsを算出することが好ましい。上記(b)~(d)の少なくとも一つに対象高炉内における装入用焼結鉱充填層の条件が用いられることにより、Rs推定モデルにより算出される融着開始時還元率Rsには、対象高炉の高温性状関連条件の影響が反映される。このため、粒度分布の調整対象である装入用焼結鉱の対象高炉内における高温性状をより正確に評価した融着開始時還元率Rsを得ることができる。 Among the input conditions shown in FIG. 1, the above (b) to (d) are a general blast furnace different from the blast furnace (target blast furnace) into which the sintered ore for charging, which is the target of particle size distribution adjustment, is charged. may be used, but it is preferred that the conditions of the target blast furnace are used. That is, in the adjustment method of the present embodiment, as the above (b) to (d) used as input conditions, (b) the temperature of the sintered ore packed bed for charging, (c) the temperature of the sintered ore packed bed for charging It is preferable to calculate the reduction rate Rs * at the start of fusion using one or more of the composition and flow rate of the flowing reducing gas, and (d) the load applied to the charged sintered ore packed bed. . By using the conditions of the sintered ore packed bed for charging in the target blast furnace for at least one of the above (b) to (d), the reduction rate at the start of fusion Rs * calculated by the Rs * estimation model reflects the effects of conditions related to high-temperature properties of the target blast furnace. Therefore, it is possible to obtain the reduction rate Rs * at the start of fusion that more accurately evaluates the high-temperature properties of the sintered ore to be charged, which is the target of particle size distribution adjustment, in the target blast furnace.

次に、上述した入力条件を用いて、還元率、収縮率及び圧力損失を推定する方法を、図3を用いて説明する。図3は、融着開始時還元率Rsを推定する手順を示すフローチャートである。 Next, a method for estimating the reduction rate, shrinkage rate, and pressure loss using the input conditions described above will be described with reference to FIG. FIG. 3 is a flow chart showing a procedure for estimating the reduction rate Rs * at the start of fusion.

(計算格子の設定)
ステップS101(計算格子設定ステップ)の処理では、高炉内の1層分の検討用焼結鉱充填層を、層高方向に並ぶ任意の数の領域に区画する計算格子を設定する。計算格子により区画される領域(計算セル)は、還元率,収縮率及び圧力損失の推定対象となる領域であり、計算セル毎に入力条件として充填状態が設定され、還元率,収縮率及び圧力損失が出力される。
(Setting of computational grid)
In the process of step S101 (computational grid setting step), a computational grid is set that partitions one layer of the sintered ore packed bed for investigation in the blast furnace into an arbitrary number of regions arranged in the bed height direction. The area (calculation cell) partitioned by the computational grid is the area subject to estimation of the reduction rate, shrinkage rate, and pressure loss. loss is output.

(鉱石の還元挙動)
ステップS102(還元率計算ステップ)の処理では、所定時間tが経過したときの検討用焼結鉱充填層に含まれる検討用焼結鉱の還元率を計算セル毎に求める。
(Ore reduction behavior)
In the processing of step S102 (reduction rate calculation step), the reduction rate of the sintered ore for investigation contained in the sintered ore packed bed for investigation when the predetermined time t has elapsed is obtained for each calculation cell.

所定時間tが経過したときの計算セルにおける還元率は、例えば、非特許文献3に記載の3界面未反応核モデルに基づいて求めることができ、下記式(5)を用いて推定することができる。 The reduction rate in the calculation cell when the predetermined time t has elapsed can be obtained, for example, based on the three-interface unreacted nucleus model described in Non-Patent Document 3, and can be estimated using the following formula (5). can.

Figure 2023050035000006
上記式(5)において、Fは所定時間tが経過したときのi番目(i=1~区画数)の計算セルの検討用焼結鉱の還元率[%]を示し、ρ (s)はs相の被還元酸素の見掛けモル濃度[molO/m]を示し、ρ (t)はt相の被還元酸素の見掛けモル濃度[molO/m]を示し、ρ (h)はh相の被還元酸素の見掛けモル濃度[molO/m]を示し、rは検討用焼結鉱(擬似球体)の中心から表面までの半径[m]を示し、r(s/t)は検討用焼結鉱(擬似球体)の中心からs/t界面までの半径[m]を示す。ここで、s相及びt相の関係としては、h相(ヘマタイト)及びm相(マグネタイト)と、m相(マグネタイト)及びw相(ウスタイト)と、w相(ウスタイト)と全鉄(Fe)相との関係がある。以下、同様である。
Figure 2023050035000006
In the above formula (5), F represents the reduction rate [%] of the sintered ore for investigation in the i-th (i = 1 to the number of divisions) calculation cell after a predetermined time t has elapsed, and ρ o (s) is the apparent molar concentration of s-phase reducible oxygen [molO/m 3 ], ρ o (t) is the apparent molar concentration of t-phase reducible oxygen [molO/m 3 ], and ρ o (h) indicates the apparent molar concentration of h-phase reducible oxygen [molO/m 3 ], r 0 indicates the radius [m] from the center to the surface of the sintered ore (pseudo-sphere) for investigation, r (s/t ) indicates the radius [m] from the center of the study sinter (pseudo-sphere) to the s/t interface. Here, the relationship between the s phase and the t phase is as follows: h phase (hematite) and m phase (magnetite), m phase (magnetite) and w phase (wustite), w phase (wustite) and all iron (Fe) It has to do with phase. The same applies hereinafter.

上記式(5)における、s/t界面までの半径r(s/t)は、下記式(6)により求めることができる。 The radius r (s/t) to the s/t interface in the above formula (5) can be obtained by the following formula (6).

Figure 2023050035000007
上記式(6)において、r(s/t)は検討用焼結鉱(擬似球体)の中心からs/t界面までの半径[m]を示し、k (s/t)はs/t界面の化学反応速度定数[m/s]を示し、ρ (s)はs相の被還元酸素の見掛けモル濃度[molO/m]を示し、ρ (t)はt相の被還元酸素の見掛けモル濃度[molO/m]を示し、K(s/t)はs/t界面の平衡定数を示し、CH2i (s/t)は界面における水素ガス濃度[molH/m]を示し、CH2e (s/t)は界面における平衡水素ガス濃度[molH/m]を示す。
Figure 2023050035000007
In the above formula (6), r (s / t) represents the radius [m] from the center of the sintered ore for study (pseudo-sphere) to the s / t interface, and k c (s / t) is s / t represents the chemical reaction rate constant [m/s] of the interface, ρ o (s) represents the apparent molar concentration of s-phase reducible oxygen [molO/m 3 ], and ρ o (t) represents the t-phase reducible indicates the apparent molar concentration of oxygen [molO/m 3 ], K (s/t) indicates the equilibrium constant of the s/t interface, and CH2i (s/t) indicates the hydrogen gas concentration at the interface [molH 2 /m 3 ] and C H2e (s/t) indicates the equilibrium hydrogen gas concentration [molH 2 /m 3 ] at the interface.

ここで、還元ガスは、焼結鉱充填層を通過する間にその組成が変化することがある。このため、還元ガスの流れの上流側に位置する焼結鉱充填層の領域と、還元ガスの流れの下流側に位置する焼結鉱充填層の領域で、異なる組成の還元ガスが通過することがある。従って、検討用焼結鉱充填層について還元率を推定する場合には、還元ガスの流れの上流側に位置する計算セルで、還元率とともに還元ガスの組成変化を推定し、還元ガスの流れの下流側に位置する計算セルでは、組成変化後の還元ガスの組成を用いて還元率を推定してもよい。 Here, the reducing gas may change its composition while passing through the sintered ore packed bed. Therefore, reducing gases having different compositions pass through the region of the sintered ore packed bed located on the upstream side of the flow of the reducing gas and the region of the sintered ore packed bed located on the downstream side of the flow of the reducing gas. There is Therefore, when estimating the reduction rate of the sintered ore packed bed for investigation, the reduction rate and the change in the composition of the reducing gas are estimated in a calculation cell located upstream of the flow of the reducing gas. In a computational cell located downstream, the reduction rate may be estimated using the composition of the reducing gas after the composition change.

還元ガスの組成変化を考慮して還元率を推定するには、例えば、非特許文献3を用いることができる。還元ガスの組成変化を考慮して還元率を求める好ましい方法としては、一次元の非定常反応速度解析を挙げることができる。一次元の非定常反応速度解析は、例えば、非特許文献4に記載されている。 Non-Patent Document 3, for example, can be used to estimate the reduction rate in consideration of changes in the composition of the reducing gas. A preferred method for determining the reduction rate in consideration of changes in the composition of the reducing gas is one-dimensional unsteady reaction rate analysis. A one-dimensional unsteady kinetic analysis is described, for example, in Non-Patent Document 4.

なお、検討用焼結鉱充填層内における還元ガスの組成変化を推定して検討用焼結鉱充填層の還元率を求める方法は、一次元の非定常反応速度解析に限定されない。他の還元反応速度解析の方法としては、例えば、2次元、3次元の非定常反応速度解析を実施しても良い。また、検討用焼結鉱の還元反応速度を求めて各計算セルの還元率を推定する方法も、3界面未反応核モデルに限定されない。他の還元反応モデルとしては、多段反応帯モデルやグレインモデル等が適用できる。さらにまた、一次元の非定常反応速度解析や3界面未反応核モデルを用いる場合であっても、適用できる化学反応速度式は上述のものに限らず、公知の文献に開示される化学反応速度式を適宜用いればよい。 The method of estimating the composition change of the reducing gas in the sintered ore packed bed for investigation and obtaining the reduction rate of the sintered ore packed bed for investigation is not limited to one-dimensional unsteady reaction rate analysis. As another reduction reaction rate analysis method, for example, two-dimensional or three-dimensional unsteady reaction rate analysis may be performed. Also, the method of obtaining the reduction reaction rate of the sintered ore for investigation and estimating the reduction rate of each calculation cell is not limited to the three-interface unreacted nucleus model. As other reduction reaction models, a multi-stage reaction zone model, a grain model, or the like can be applied. Furthermore, even when using a one-dimensional unsteady reaction rate analysis or a three-interface unreacted nucleus model, applicable chemical reaction rate equations are not limited to those described above. Formulas may be used as appropriate.

(焼結鉱充填層の収縮挙動)
ステップS103(収縮率計算ステップ)の処理では、所定時間tが経過したときの検討用焼結鉱充填層の収縮率を、計算セル毎に求める。所定時間tが経過したときの各計算セルの収縮率は、各計算セルの収縮速度の時間積分として表すことができる。このため、検討用焼結鉱充填層が高炉内に形成されたときから所定時間tが経過したときまでの収縮速度を求めれば、所定時間tが経過したときの各計算セルの収縮率を推定できる。なお、焼結鉱の還元が開始されるまでの温度領域では焼結鉱充填層は収縮しないため、収縮率は、焼結鉱の還元が始まったときから所定時間tが経過したときまでの収縮速度を時間積分して求めてもよい。
(Shrinkage behavior of sintered ore packed bed)
In the processing of step S103 (shrinkage ratio calculation step), the shrinkage ratio of the sintered ore packed bed for investigation when the predetermined time t has elapsed is obtained for each calculation cell. The shrinkage rate of each computational cell after a predetermined time t has elapsed can be expressed as a time integral of the shrinkage rate of each computational cell. Therefore, if the shrinkage rate from when the sintered ore packed bed for investigation is formed in the blast furnace to when the predetermined time t has passed is obtained, the shrinkage rate of each calculation cell when the predetermined time t has passed can be estimated. can. In addition, since the sintered ore packed layer does not shrink in the temperature range until the reduction of the sintered ore starts, the shrinkage rate is The speed may be obtained by time integration.

焼結鉱充填層の収縮挙動は、2つの温度領域(領域I及び領域II)で支配因子が異なる。このため、収縮速度の推定式は、これらの温度領域毎に別々に定めることができる。検討用焼結鉱充填層の温度が領域Iの範囲内である場合、各計算セルの収縮速度の推定式は、後述する式(7)~式(8)で表すことができる。検討用焼結鉱充填層の温度が領域IIの範囲内である場合、各計算セルの収縮速度の推定式は、後述する式(9)~式(13)で表すことができる。領域I及び領域IIを分ける境界温度は、検討用焼結鉱充填層の収縮速度が最大値を示すときの温度であって、境界温度よりも低い温度領域が領域Iとされ、境界温度よりも高い温度領域が領域IIとされる。 The contraction behavior of the sintered ore packed bed has different controlling factors in the two temperature regions (region I and region II). Therefore, the contraction rate estimation formula can be determined separately for each of these temperature regions. When the temperature of the sintered ore packed bed for investigation is within the range of region I, the estimation formula for the shrinkage speed of each calculation cell can be expressed by formulas (7) to (8) described later. When the temperature of the sintered ore packed bed for investigation is within the range of region II, the estimation formula for the shrinkage rate of each calculation cell can be expressed by formulas (9) to (13) described later. The boundary temperature that separates the region I and the region II is the temperature at which the shrinkage rate of the sintered ore packed layer for investigation shows the maximum value, and the temperature region lower than the boundary temperature is defined as region I, and the temperature is lower than the boundary temperature. Region II is defined as a high temperature region.

領域Iでは、各計算セルの収縮速度は、下記式(7)により求めることができる。下記式(7)に示すように、領域Iにおいて、計算セルの収縮速度は焼結鉱充填層にかかる荷重に比例し、見かけの軟化粘度(装入物の収縮抵抗)に反比例する。 In region I, the shrinkage speed of each computational cell can be obtained by the following formula (7). As shown in the following formula (7), in region I, the shrinkage speed of the calculation cell is proportional to the load applied to the sintered ore packed bed and inversely proportional to the apparent softening viscosity (shrinkage resistance of charged material).

Figure 2023050035000008
上記式(7)において、dSr/dtは所定時間tが経過するまでのi番目の計算セルの収縮速度[s-1]を示し、Srは所定時間tが経過したときのi番目の計算セル全体の平均収縮率[-]を示し、Wは、所定時間tが経過したときの検討用焼結鉱充填層にかかる荷重[Pa]を示し、ηは所定時間tが経過したときの検討用焼結鉱充填層に含まれる検討用焼結鉱の見かけの軟化粘度[Pa・s]を示す。
Figure 2023050035000008
In the above formula (7), dSr i /dt indicates the contraction speed [s -1 ] of the i-th calculation cell until the predetermined time t has passed, and Sr i is the i-th cell when the predetermined time t has passed. Indicates the average shrinkage rate [-] of the entire calculation cell, W indicates the load [Pa] applied to the sintered ore packed bed for investigation when the predetermined time t has passed, and η indicates the load when the predetermined time t has passed. The apparent softening viscosity [Pa·s] of the sintered ore for investigation contained in the sintered ore packed bed for investigation is shown.

上記式(7)における、見かけの軟化粘度ηは、下記式(8)により求めることができる。 The apparent softening viscosity η in the above formula (7) can be obtained by the following formula (8).

Figure 2023050035000009
上記式(8)において、ηは所定時間tが経過したときの検討用焼結鉱充填層に含まれる検討用焼結鉱の見かけの軟化粘度[Pa・s]を示し、ηは定数[Pa・s]を示し、cは係数[K]を示し、Tは所定時間tが経過したときの検討用焼結鉱充填層の温度[K]を示す。
Figure 2023050035000009
In the above formula (8), η indicates the apparent softening viscosity [Pa s] of the sintered ore for investigation contained in the sintered ore packed bed for investigation when a predetermined time t has elapsed, and η 0 is a constant [ Pa·s], c1 indicates the coefficient [K], and T indicates the temperature [K] of the sintered ore packed bed for investigation after a predetermined time t has elapsed.

式(8)において、定数η及び係数cは、例えば、荷重軟化試験により求められる見かけの軟化粘度ηを用いて、式(8)に基づき予め求めておくことができる。なお、荷重軟化試験は、高炉内における焼結鉱充填層の昇温還元挙動をシミュレートするものであり、非特許文献1に記載の荷重軟化試験を用いることができる。 In the formula (8), the constant η 0 and the coefficient c 1 can be obtained in advance based on the formula (8) using, for example, the apparent softening viscosity η obtained by the load softening test. The load softening test simulates the temperature-programmed reduction behavior of the sinter packed bed in the blast furnace, and the load softening test described in Non-Patent Document 1 can be used.

領域IIでは、各計算セルの収縮速度は、下記式(9)により求めることができる。下記式(9)に示すように、領域IIにおいて、収縮速度は融液の生成速度に比例する。また、下記式(11)に示すように、係数βは検討用焼結鉱充填層に占める金属鉄の体積割合の増加に伴い、減少する。この点から理解できるように、領域IIでは、融液生成挙動及び生成した金属鉄による骨材効果(焼結鉱の還元によって生成された金属鉄が焼結鉱充填層の収縮を阻害する効果)が、収縮速度を決める主な支配因子である。 In region II, the shrinkage speed of each computational cell can be obtained by the following formula (9). As shown in the following formula (9), in region II, the shrinkage rate is proportional to the melt generation rate. Moreover, as shown in the following formula (11), the coefficient β decreases as the volume ratio of metallic iron in the sintered ore packed bed for investigation increases. As can be understood from this point, in region II, the melt generation behavior and the aggregate effect of the generated metallic iron (the effect of inhibiting the shrinkage of the sintered ore packed bed by the metallic iron generated by the reduction of the sintered ore) is the main controlling factor that determines the shrinkage rate.

Figure 2023050035000010
上記式(9)において、dSr/dtは所定時間tが経過するまでのi番目の計算セルの収縮速度[s-1]を示し、Srは、所定時間tが経過したときのi番目の計算セル全体の平均収縮率[-]を示し、βは係数[-]を示し、MSPはi番目の計算セルの検討用焼結鉱の初期質量[kg]を示し、V0.SPはi番目の計算セルの初期体積[m]を示し、Vliqは、所定時間tが経過するまでのi番目の計算セルにおける検討用焼結鉱1kg当たりの融液の生成量[m/kg]を示す。
Figure 2023050035000010
In the above formula (9), dSr i /dt indicates the contraction speed [s -1 ] of the i-th calculation cell until the predetermined time t has passed, and Sr i is the i-th calculation cell when the predetermined time t has passed. , β indicates the coefficient [-], M SP indicates the initial mass [kg] of the sintered ore for investigation in the i-th calculation cell, and V 0. SP indicates the initial volume [m 3 ] of the i-th calculation cell, and V liq indicates the amount of melt produced per 1 kg of the sintered ore for investigation in the i-th calculation cell until the predetermined time t has elapsed [m 3 /kg].

上記式(9)において、初期体積V0.SPは、各計算セルの収縮前の初期体積である。また、検討用焼結鉱の初期質量MSPは、i番目の計算セルの初期体積V0.SPと、i番目の計算セルの検討用焼結鉱の体積比率(1-ε0i)と見かけ密度から求めることができる。 In the above formula (9), the initial volume V 0 . SP is the initial volume before shrinkage of each computational cell. Also, the initial mass M SP of the sintered ore for investigation is the initial volume V 0.0 of the i-th calculation cell. It can be obtained from SP , the volume ratio (1−ε 0i ) of the sintered ore for investigation in the i-th calculation cell, and the apparent density.

上記式(9)における、融液の生成量Vliqは、下記式(10)により求めることができる。 The melt generation amount V liq in the above formula (9) can be obtained by the following formula (10).

Figure 2023050035000011
上記式(10)において、Vliqは、所定時間tが経過したときのi番目の計算セルにおける検討用焼結鉱1kg当たりの融液の生成量[m/kg]を示し、cは、係数[m/(kg・K)]を示し、cは、係数[m/kg]を示し、cは、係数[m/kg]を示し、Tは、所定時間tが経過したときの検討用焼結鉱充填層の温度[K]を示し、Rは、所定時間tが経過したときのi番目のセルの還元率[-]を示す。
Figure 2023050035000011
In the above formula (10), V liq represents the amount of melt produced per 1 kg of sintered ore for study in the i-th calculation cell after a predetermined time t has elapsed [m 3 / kg], and c 2 is , indicates the coefficient [m 3 /(kg K)], c 3 indicates the coefficient [m 3 /kg], c 4 indicates the coefficient [m 3 /kg], and T indicates the coefficient [m 3 /kg]. Shows the temperature [K] of the sintered ore packed bed for investigation when it has passed, and R i shows the reduction rate [-] of the i-th cell when the predetermined time t has passed.

上記式(10)において、係数c,c及びcは、熱力学平衡計算(例えば、熱力学平衡計算ソフトFactsageによる)によって予め求めておくことができる。具体的には、検討用焼結鉱を用いた際の温度T及び還元率Rを変化させたときの生成量Vliqを用いて、熱力学平衡計算すれば、温度T、還元率R及び生成量Vliqの関係が得られる。この関係と上記式(10)が一致するように、定数c,c,cを決めることができる。 In the above formula (10), the coefficients c 2 , c 3 and c 4 can be obtained in advance by thermodynamic equilibrium calculation (for example, by thermodynamic equilibrium calculation software Factsage). Specifically, if the thermodynamic equilibrium calculation is performed using the amount V liq produced when the temperature T and the reduction rate Ri are changed when the sintered ore for investigation is used, the temperature T and the reduction rate Ri and the amount of production V liq is obtained. Constants c 2 , c 3 , and c 4 can be determined so that this relationship and the above equation (10) match.

上記式(9)における、係数βは、下記式(11)により求めることができる。 The coefficient β in the above formula (9) can be obtained by the following formula (11).

Figure 2023050035000012
上記式(11)において、βは、係数[-]を示し、c及びcは、係数[-]を示し、XFeは、所定時間tが経過したときのi番目の計算セルの金属鉄の体積割合[-]を示す。上記式(11)において、係数c及びcは、高温性状試験(例えば、非特許文献1記載の高温性状試験)を行い、予め求めておくことができる。
Figure 2023050035000012
In the above formula (11), β indicates the coefficient [-], c 5 and c 6 indicate the coefficient [-], X Fe is the metal of the i-th calculation cell after a predetermined time t has passed Indicates the volume fraction of iron [-]. In the above formula (11), the coefficients c5 and c6 can be determined in advance by performing a high temperature property test (for example, the high temperature property test described in Non-Patent Document 1).

上記式(11)における、金属鉄の体積割合XFeは、下記式(12)により求めることができる。 The volume ratio X Fe of metallic iron in the above formula (11) can be obtained by the following formula (12).

Figure 2023050035000013
上記式(12)において、XFeは、所定時間tが経過したときのi番目の計算セルの金属鉄の体積割合[-]を示し、VFeは、所定時間tが経過したときのi番目の計算セルの金属鉄の体積[m]を示し、V0.SPは、i番目の計算セルの初期体積[m]を示し、Srは、所定時間tが経過したときのi番目の計算セルの全体の平均収縮率Sr[-]を示す。
Figure 2023050035000013
In the above formula (12), X Fe represents the volume ratio [-] of metallic iron in the i-th calculation cell after a predetermined time t has passed, and V Fe represents the i-th cell after a predetermined time t has passed. represents the volume of metallic iron [m 3 ] in the computational cell of V 0 . SP indicates the initial volume [m 3 ] of the i-th computational cell, and Sr i indicates the overall average shrinkage rate Sr i [−] of the i-th computational cell after a predetermined time t has elapsed.

上記式(12)における、金属鉄の体積VFeは、下記式(13)により求めることができる。 The volume V Fe of metallic iron in the above formula (12) can be obtained by the following formula (13).

Figure 2023050035000014
上記式(13)において、VFeは、所定時間tが経過したときのi番目の計算セルの金属鉄の体積[m]を示し、MSPは、i番目の計算セルの検討用焼結鉱の初期質量[kg]を示し、ρFeは、金属鉄の密度[kg/m]を示し、Rは、所定時間tが経過したときのi番目の計算セルの検討用焼結鉱の還元率[-]を示し、T.Feは、検討用焼結鉱中の総鉄量の初期割合[重量%]を示す。ここでは、軟化溶融時の検討用焼結鉱充填層における鉄の存在形態がFe及びFeOだけであると仮定し、上記式(13)を規定している。
Figure 2023050035000014
In the above formula (13), V Fe indicates the volume [m 3 ] of metallic iron in the i-th calculation cell after a predetermined time t has elapsed, and M SP is the study sintered volume of the i-th calculation cell. represents the initial mass of the ore [kg], ρ Fe represents the density of metallic iron [kg/m 3 ], and Ri represents the sintered ore for study in the i-th calculation cell after a predetermined time t has elapsed. shows the reduction rate [-] of T. Fe indicates the initial proportion [% by weight] of the total iron content in the sintered ore for investigation. Here, the above formula (13) is defined on the assumption that Fe and FeO are the only forms of iron in the sintered ore packed bed for investigation during softening and melting.

上記式(13)において、総鉄量の初期割合T.Feは予め求めておくことができる。 In the above formula (13), the initial proportion of the total iron content T. Fe can be obtained in advance.

上記式(8)、式(10)、式(11)で用いられるη及びc~cは、検討用焼結鉱の組成や気孔構造等の性状に応じて決定することができる。これらの係数は、検討用焼結鉱の種類が変更されない限り変化せず、検討用焼結鉱の充填状態や還元ガスに係る条件の変更によっては変化しない。 η 0 and c 1 to c 6 used in the above formulas (8), (10) and (11) can be determined according to properties such as the composition and pore structure of the sintered ore to be investigated. These coefficients do not change unless the type of the sintered ore for investigation is changed, and do not change depending on the change in the filling state of the sintered ore for investigation and the conditions related to the reducing gas.

η及びc~cは、例えば、以下の範囲から選択することができる。
η=6.0×10-17~3.0×10
=1.5×10~9.0×10
=5.0×10-8~1.5×10-6
=0.0~1.5×10-4
=-1.0×10-3~-6.0×10-5
=-40~0.0
=0.1~10
η 0 and c 1 to c 6 can be selected from the following ranges, for example.
η 0 =6.0×10 −17 to 3.0×10 3
c 1 =1.5×10 4 to 9.0×10 4
c 2 =5.0×10 −8 to 1.5×10 −6
c 3 =0.0 to 1.5×10 −4
c 4 =-1.0×10 -3 to -6.0×10 -5
c5 = -40 to 0.0
c 6 = 0.1-10

上述したように、各計算セルの収縮率は、上記式(7)や上記式(9)により推定される収縮速度の時間積分として表される。このため、上記式(7)や上記式(9)により推定される収縮速度を時間積分した値が、各計算セルの収縮率となる。 As described above, the shrinkage rate of each computational cell is expressed as the time integral of the shrinkage rate estimated by the above equations (7) and (9). Therefore, the value obtained by time-integrating the contraction speed estimated by the above formula (7) or the above formula (9) becomes the contraction rate of each calculation cell.

(層収縮に伴う圧力損失の上昇挙動)
ステップS104(圧力損失計算ステップ)の処理では、所定時間tが経過したときの検討用焼結鉱充填層における圧力損失を、計算セル毎に求める。ステップS104で求める圧力損失は、各計算セルで生じる圧力損失[Pa]そのものであってもよいが、単位長さあたりの圧力損失[Pa/m]であってもよい。単位長さあたりの圧力損失は、Ergun式としての下記式(14)に基づき求めることができる。
(Increase behavior of pressure loss accompanying layer shrinkage)
In the processing of step S104 (pressure loss calculation step), the pressure loss in the sintered ore packed bed for investigation when the predetermined time t has elapsed is obtained for each calculation cell. The pressure loss obtained in step S104 may be the pressure loss [Pa] generated in each calculation cell itself, or the pressure loss per unit length [Pa/m]. The pressure loss per unit length can be obtained based on the following formula (14) as an Ergun formula.

Figure 2023050035000015
上記式(14)において、ΔP/ΔLは各計算セルで生じる単位長さあたりの圧力損失(圧力損失の勾配)[Pa/m]を示し、εは所定時間tが経過したときのi番目の計算セルの空隙率[-]を示し、dは所定時間tが経過したときのi番目の計算セルに含まれる検討用焼結鉱の調和平均粒径[m]を示し、φはi番目の計算セルに含まれる検討用焼結鉱の形状係数を示し、形状係数φと調和平均粒径dを乗算したφdは所定時間tが経過したときの検討用焼結鉱の有効径[m]を示し、U[m/s]、μ[Pa・s]及びρ[kg/m]のそれぞれは、所定時間tが経過したときの還元ガスの空塔流速、粘度及び密度を示す。
Figure 2023050035000015
In the above formula (14), ΔP/ΔL indicates the pressure loss per unit length (gradient of pressure loss) [Pa/m] generated in each calculation cell, and ε is the i-th Indicates the porosity [-] of the calculation cell, d indicates the harmonic average particle size [m] of the sintered ore for investigation contained in the i-th calculation cell after the predetermined time t has elapsed, and φ indicates the i-th Shows the shape factor of the sintered ore for investigation contained in the calculation cell, and φd obtained by multiplying the shape factor φ by the harmonic average grain size d is the effective diameter [m] of the sintered ore for investigation after a predetermined time t has passed. U [m/s], μ [Pa·s] and ρ [kg/m 3 ] respectively indicate the superficial flow velocity, viscosity and density of the reducing gas after a predetermined time t has elapsed.

上記式(14)において、所定時間tが経過したときの検討用焼結鉱の有効径φdは、後述する式(20)から求めることができる。また、空塔速度Uは、所定時間tが経過したときの還元ガスの流量を、還元ガスが流れる方向に対し垂直な面の計算セルの断面積で除することで求めることができ、例えば、前述した流量パターンを用いることができる。また、還元ガスの粘度μと密度ρは、所定時間tが経過したときの温度と還元ガス組成とにより規定される公知の関数から求めることができ、例えば、前述した昇温パターンと組成パターンを用いることができる。 In the above formula (14), the effective diameter φd of the sintered ore for investigation when the predetermined time t has elapsed can be obtained from the formula (20) described later. Further, the superficial velocity U can be obtained by dividing the flow rate of the reducing gas after a predetermined time t has passed by the cross-sectional area of the calculation cell perpendicular to the direction in which the reducing gas flows. The flow patterns described above can be used. Further, the viscosity μ and the density ρ of the reducing gas can be obtained from a known function defined by the temperature and the composition of the reducing gas after a predetermined time t has elapsed. can be used.

上記式(14)における、空隙率εは、下記式(15)により求めることができる。 The porosity ε in the above formula (14) can be obtained by the following formula (15).

Figure 2023050035000016
上記式(15)において、εは所定時間tが経過したときのi番目の計算セルの空隙率[-]を示し、αは係数[-]を示し、ε0iはi番目の計算セルの初期空隙率[-]を示し、Srは、所定時間tが経過したときのi番目の計算セル全体の平均収縮率[-]を示す。ここで、αSr及びε0iは、式(15)の括弧内の関係が成り立つ。
Figure 2023050035000016
In the above formula (15), ε indicates the porosity [-] of the i-th calculation cell after the predetermined time t has passed, α indicates the coefficient [-], and ε 0i is the initial stage of the i-th calculation cell. Sr i indicates the porosity [-], and Sr i indicates the average shrinkage [-] of the entire i-th computational cell after a predetermined time t has elapsed. Here, αSr i and ε 0i satisfy the relationship in the parenthesis of Equation (15).

式(15)において、係数αは、層収縮時の全体積減少量に対する空隙体積の減少量の比率を示し、検討用焼結鉱の閉気孔量や軟化溶融性に依存する。係数αの求め方は特に限定されないが、X線CT画像の解析方法を用いて求める例を以下に説明する。 In Equation (15), the coefficient α indicates the ratio of the pore volume reduction amount to the total volume reduction amount during layer shrinkage, and depends on the amount of closed pores and the softening and melting properties of the sintered ore for investigation. Although the method of obtaining the coefficient α is not particularly limited, an example of obtaining it using an X-ray CT image analysis method will be described below.

図4にX線CT画像の解析方法の概要を示す。るつぼには検討用焼結鉱が充填されており、還元ガスを流通しながら検討用焼結鉱を還元している。X線CT撮影により得られたるつぼ水平方向の断面画像より、検討用焼結鉱のみが存在している領域を特定する。この領域について、高さ方向に対し等間隔に所定の枚数の画像を抽出し、各画像を用いて、空隙率及び見かけの粒径を求める。具体的には、X線CT撮影により得られた元の画像を2値化し、マスキング処理により、焼結鉱粒子のみを抽出した画像(図4中の(a)に示す画像)及び黒鉛るつぼ内部を白く塗りつぶした画像(図4中の(b)に示す画像)を作成する。両画像について、黒色部の画素数、白色部の画素数及び白色部周囲の画素数をカウントし、式(16)~(19)により、検討用焼結鉱充填層の空隙率及び検討用焼結鉱の見かけの粒径を求める。なお、水平断面画像より求められる粒径は、粒子が球形であると仮定すると実際のπ/4倍となることから、これを補正することができる。 FIG. 4 shows an overview of the method of analyzing an X-ray CT image. The crucible is filled with sintered ore for investigation, and the sintered ore for investigation is reduced while a reducing gas is circulated. A region in which only the sintered ore for investigation exists is specified from a crucible horizontal cross-sectional image obtained by X-ray CT imaging. For this region, a predetermined number of images are extracted at equal intervals in the height direction, and the porosity and apparent grain size are determined using each image. Specifically, the original image obtained by X-ray CT imaging is binarized, and the masking process is performed to extract only the sintered ore particles (image shown in (a) in FIG. 4) and the inside of the graphite crucible. is painted white (image shown in (b) in FIG. 4). For both images, the number of pixels in the black part, the number of pixels in the white part, and the number of pixels around the white part are counted, and the porosity of the sintered ore filling layer for examination and the firing for examination are calculated by formulas (16) to (19). Determine the apparent grain size of the ore. It should be noted that the particle size obtained from the horizontal cross-sectional image is π/4 times the actual size, assuming that the particles are spherical, so this can be corrected.

Figure 2023050035000017
上記式(16)~(19)において、S´Solidは固体領域画素数[pixel]を示し、SVoidは空隙領域画素数[pixel]を示し、L´Solidは固体周囲画素数[pixel]を示し、Sはるつぼ外領域画素数[pixel]を示し、Sはるつぼ内領域画素数[pixel]を示し、Lはるつぼ周囲画素数[pixel]を示し、Dはるつぼ内径[m]を示す。
Figure 2023050035000017
In the above formulas (16) to (19), S'Solid indicates the number of solid area pixels [pixel], S Void indicates the number of void area pixels [pixel], and L' Solid indicates the number of solid surrounding pixels [pixel]. , S A indicates the number of pixels in the crucible outer region [pixel], SB indicates the number of pixels in the crucible inner region [pixel], L0 indicates the number of pixels around the crucible [pixel], and D is the inner diameter of the crucible [m]. indicates

上述した画像解析を収縮率が異なる複数の検討用焼結鉱充填層に対して実施し、各収縮率における検討用焼結鉱充填層の空隙率及び検討用焼結鉱の見かけの粒径を求める(これを以下では、「実測値」と称する)。また、検討用焼結鉱が軟化収縮する前のX線CT画像を用いて、検討用焼結鉱充填層の空隙率及び検討用焼結鉱の見かけの粒径の初期値(これを以下では、「初期値」と称する)を求める。X線CT画像の解析結果に基づいて求めた検討用焼結鉱充填層の空隙率の各実測値について、X線CT画像の解析結果に基づいて求めた検討用焼結鉱充填層の空隙率の初期値を用いて、上記式(15)を満たすαの値を求め、αを収縮率Srの一次式で近似する。 The image analysis described above is performed on multiple sintered ore packed beds with different shrinkage ratios, and the porosity of the sintered ore packed bed for investigation at each shrinkage ratio and the apparent particle size of the sintered ore for investigation are calculated. (hereinafter referred to as "measured value"). In addition, using the X-ray CT image before the sintered ore for investigation softens and shrinks, the initial value of the porosity of the sintered ore packed bed for investigation and the apparent particle size of the sintered ore for investigation (hereinafter referred to as , called “initial value”). For each measured value of the porosity of the sintered ore packed bed for investigation obtained based on the analysis result of the X-ray CT image, the porosity of the sintered ore packed bed for investigation obtained based on the analysis result of the X-ray CT image is used to obtain the value of α that satisfies the above equation (15), and α is approximated by a linear expression of the shrinkage ratio Sr.

上述した方法では、αを収縮率の関数としているが、簡易的な解析では、検討用焼結鉱の銘柄に応じた固定値としてもよい。係数αは、例えば、以下の範囲から選択できる。
α=0~1
In the method described above, α is a function of the shrinkage ratio, but in a simple analysis, it may be a fixed value according to the brand of sintered ore for investigation. The coefficient α can be selected from, for example, the following range.
α = 0 to 1

同様に、X線CT画像の解析結果に基づいて求めた見かけの粒径の各実測値について、収縮率Srの関数として近似することが好ましい。収縮率Srの関数として近似した見かけの粒径は、上記式(14)における検討用焼結鉱の有効径φdとして用いることができる。上記式(14)における有効径φdは、下記式(20)で示すことができる。なお、簡易的な解析では、層収縮に伴う見かけの粒径変化は考慮しなくともよい。つまり、簡易的な解析では、上記式(14)における検討用焼結鉱の有効径φdを、検討用焼結鉱の初期有効径(φd)と見做してもよい。 Similarly, it is preferable to approximate each measured value of the apparent particle size obtained based on the analysis result of the X-ray CT image as a function of the shrinkage ratio Sr. The apparent grain diameter approximated as a function of the shrinkage ratio Sr can be used as the effective diameter φd of the sintered ore for investigation in the above formula (14). The effective diameter φd in the above formula (14) can be expressed by the following formula (20). In a simple analysis, it is not necessary to take into consideration the change in apparent grain size due to layer shrinkage. That is, in a simple analysis, the effective diameter φd of the sintered ore for investigation in the above formula (14) may be regarded as the initial effective diameter (φd) 0 of the sintered ore for investigation.

Figure 2023050035000018
上記式(20)において、(φd)は所定時間tが経過したときの検討用焼結鉱の有効径[m]を示し、(φd)は検討用焼結鉱の初期有効径[m]を示し、Srは、所定時間tが経過したときのi番目の計算セル全体の平均収縮率[-]を示し、γは定数[-]を示す。上記式(20)における(φd)は、検討用焼結鉱の形状係数φに、検討用焼結鉱の初期調和平均粒径d[m]を乗じることで求めることができる。
Figure 2023050035000018
In the above formula (20), (φd) indicates the effective diameter [m] of the sintered ore for investigation after a predetermined time t has elapsed, and (φd) 0 is the initial effective diameter [m] of the sintered ore for investigation. , Sr i indicates the average shrinkage rate [-] of the entire i-th computational cell after a predetermined time t has elapsed, and γ indicates a constant [-]. (φd) 0 in the above formula (20) can be obtained by multiplying the shape factor φ of the sintered ore for investigation by the initial harmonic mean particle size d 0 [m] of the sintered ore for investigation.

上記式(20)では、X線CT画像の解析結果に基づいて求めた検討用焼結鉱充填層の見かけの粒径の各実測値について、上記式(20)を満たす定数γの値を予め求めておくことができる。定数γの値を予め求めておく場合には、上記式(20)における有効径(φd)と平均収縮率Srとして、それぞれ、X線CT画像の解析結果に基づいて求めた検討用焼結鉱充填層の見かけの粒径の実測値と、その実測値を得た時の収縮率を用いることができ、上記式(20)における初期有効径(φd)としては、見かけの粒径の初期値を用いることができる。 In the above formula (20), the value of the constant γ that satisfies the above formula (20) is set in advance for each actual measurement value of the apparent grain size of the sintered ore packed bed for investigation obtained based on the analysis result of the X-ray CT image. you can ask for it. When the value of the constant γ is obtained in advance, the effective diameter (φd) and the average shrinkage ratio Sri in the above formula (20) are each determined based on the analysis results of the X-ray CT image. It is possible to use the actual measured value of the apparent grain size of the ore packed bed and the shrinkage ratio when the measured value is obtained. Initial values can be used.

なお、圧力損失を求める方法は、上記Ergun式(14)を用いる方法に限定されない。例えば、非特許文献5に開示されるErgun式中の慣性項の係数を収縮率の関数として補正する方法や、非特許文献6に開示されるオリフィスモデルに基づく推定式のような、他の充填層の圧力損失推定式も適用できる。また、各計算セルで生じる圧力損失(Pa)は、上記式(14)に基づいて求められる単位長さあたりの圧力損失(Pa/m)に、その計算セルの層高方向における長さを乗じることで得ることができる。 Note that the method for obtaining the pressure loss is not limited to the method using the above Ergun equation (14). For example, the method of correcting the coefficients of the inertia term in the Ergun equation as a function of the shrinkage ratio disclosed in Non-Patent Document 5, or other filling equations such as the orifice model-based estimation equation disclosed in Non-Patent Document 6. A layer pressure drop estimation formula can also be applied. In addition, the pressure loss (Pa) generated in each calculation cell is obtained by multiplying the pressure loss per unit length (Pa/m) obtained based on the above formula (14) by the length of the calculation cell in the layer height direction. can be obtained by

(高温性状の推定)
ステップS105の処理では、ステップS104で求めた圧力損失が所定値に達したか否か判別する。圧力損失の所定値は、鉱石融着層が形成されたときの圧力損失、あるいは圧力損失の勾配であり、例えば、200×9.8Paや50kPa/mとすることができる。ステップS105における判別は、検討用焼結鉱充填層全体の圧力損失か、あるいは検討用焼結鉱充填層の圧力損失の勾配の平均値が所定値に達したか否かで行う。圧力損失が所定値に達した場合には、後述するステップS106の処理を行う。圧力損失が所定値に達していない場合には、ステップS102の処理に戻り、ステップS102~S104の処理を繰り返す。繰り返されるステップS102~S104の処理では、さらに演算周期Δtが経過したときの各計算セルについて、還元率・収縮率・圧力損失を推定する。
(Estimation of high temperature properties)
In the process of step S105, it is determined whether or not the pressure loss obtained in step S104 has reached a predetermined value. The predetermined value of the pressure loss is the pressure loss when the ore cohesive layer is formed, or the gradient of the pressure loss, and can be, for example, 200×9.8 Pa or 50 kPa/m. The determination in step S105 is made based on whether or not the pressure loss of the entire sintered ore packed bed for examination or the average value of the gradient of the pressure loss of the sintered ore packed bed for examination has reached a predetermined value. When the pressure loss reaches the predetermined value, the process of step S106, which will be described later, is performed. If the pressure loss has not reached the predetermined value, the process returns to step S102, and the processes of steps S102 to S104 are repeated. In the repeated processing of steps S102 to S104, the reduction rate, shrinkage rate, and pressure loss are estimated for each calculation cell when the calculation cycle Δt has elapsed.

ステップS106(高温性状推定ステップ)では、融着開始時還元率Rsを求める。 In step S106 (high-temperature property estimation step), a reduction rate Rs * at the start of fusion bonding is obtained.

Rsは、焼結鉱充填層(鉱石層)で生じる圧力損失が所定値まで上昇したときの検討用焼結鉱充填層(鉱石層)の還元率を示す。ゆえに、ステップS104の処理で求めた圧力損失が所定値を示した時の各計算セルの還元率(つまり、ステップS102で求めた還元率)の平均値が融着開始時還元率Rsとして求められる。なお、融着開始温度Tsは、焼結鉱充填層の圧力損失が所定値まで上昇したときの焼結鉱充填層の到達温度であるため、ステップS104の処理で求めた圧力損失が所定値を示した時の焼結鉱充填層の各計算セルの温度(入力条件)の平均値が融着開始温度Tsとして求められる。 Rs * indicates the reduction rate of the sintered ore packed bed (ore layer) for investigation when the pressure loss occurring in the sintered ore packed bed (ore layer) rises to a predetermined value. Therefore, the average value of the reduction rate of each calculation cell when the pressure loss obtained in the process of step S104 indicates a predetermined value (that is, the reduction rate obtained in step S102) is obtained as the reduction rate Rs * at the start of fusion bonding. be done. Note that the fusion start temperature Ts * is the temperature reached by the sintered ore packed bed when the pressure loss of the sintered ore packed bed rises to a predetermined value. The average value of the temperature (input condition) of each calculation cell of the sintered ore packed bed when showing is obtained as the fusion start temperature Ts * .

上述したRs推定モデルにより、検討用焼結鉱充填層の融着開始時還元率Rsを求めることができる。なお、調和平均粒径Dpは、上記検討用焼結鉱の初期粒径dに対応する。 Using the Rs * estimation model described above, the reduction rate Rs * at the start of fusion bonding of the sintered ore packed bed for investigation can be obtained. The harmonic average grain size Dp corresponds to the initial grain size d0 of the sintered ore for investigation.

Rs-Dp曲線は、上述した通り、Rs推定モデルに対し、調和平均粒径Dpのみ異なる複数種類の入力条件を入力して入力条件毎に検討用焼結鉱充填層の融着開始時還元率Rsを算出し、算出された融着開始時還元率Rsと、その融着開始時還元率Rsの算出に用いた調和平均粒径Dpをグラフにプロットしていくことで求めることができる。 As described above, the Rs * -Dp curve is obtained by inputting a plurality of types of input conditions that differ only in the harmonic average particle size Dp to the Rs * estimation model, and for each input condition at the start of fusion bonding of the sintered ore packed bed for investigation. The reduction rate Rs * is calculated, and the calculated reduction rate Rs * at the start of fusion bonding and the harmonic average particle size Dp used for calculating the reduction rate Rs * at the start of fusion are plotted on a graph. be able to.

Rs-Dp曲線において、融着開始時還元率Rsは調和平均粒径Dpの一次式または二次式に近似されることができる。Rs-Dp曲線は、後に詳述する通り、例えば図6cの通り取得される。図6cは、初期空隙率εが0.38又は0.40である2種類のRs-Dp曲線を示しており、初期空隙率ε=0.40を基準として下記式(21)により表すことができる。 In the Rs * -Dp curve, the reduction rate Rs * at the start of fusion can be approximated by a linear or quadratic expression of the harmonic mean particle diameter Dp. The Rs * -Dp curve is obtained as detailed below, eg as in FIG. 6c. FIG . 6c shows two types of Rs * -Dp curves with an initial porosity ε 0 of 0.38 or 0.40. can be represented.

Figure 2023050035000019
上記式(21)において、Rsは検討用焼結鉱充填層の融着開始時還元率[%]を示し、Dpは検討用焼結鉱の初期調和平均粒径[mm]を示し、εは検討用焼結鉱充填層の初期空隙率[-]を示す。
Figure 2023050035000019
In the above formula (21), Rs * indicates the reduction rate [%] at the start of fusion bonding of the sintered ore packed bed for investigation, Dp indicates the initial harmonic average particle size [mm] of the sintered ore for investigation, and ε 0 indicates the initial porosity [-] of the sintered ore packed bed for investigation.

Rs-Dp曲線を取得する調和平均粒径Dpの範囲、すなわち、融着開始時還元率Rsを算出又は測定する調和平均粒径Dpの範囲は、粒度分布の調整対象である装入用焼結鉱の調和平均粒径Dpを含む範囲であればよく、実操業で採用し得る範囲等に基づき、必要な範囲で適宜設定することができる。調和平均粒径Dpの範囲によっては、図6cに例示するように、ある調和平均粒径Dpにおいて融着開始時還元率Rsが極大値を示すRs-Dp曲線が取得される場合もあるが、これに限定されず、単純増加又は単調減少のRs-Dp曲線が取得されてもよい。 The range of the harmonic average particle diameter Dp for obtaining the Rs * -Dp curve, that is, the range of the harmonic average particle diameter Dp for calculating or measuring the reduction rate Rs * at the start of fusion bonding, is the charging powder whose particle size distribution is to be adjusted. Any range that includes the harmonic average particle size Dp of the sintered ore can be used, and can be appropriately set within a necessary range based on the range that can be used in actual operation. Depending on the range of the harmonic average particle size Dp, as illustrated in FIG. 6c, an Rs * -Dp curve showing the maximum value of the reduction rate Rs * at the start of fusion bonding at a certain harmonic average particle size Dp may be obtained. However, it is not limited to this, and a simple increasing or monotonically decreasing Rs * -Dp curve may be obtained.

上述した通り、装入用焼結鉱と検討用焼結鉱との間において、空隙率その他の性状が異なっていたとしても、調和平均粒径Dpの変化に対する融着開始時還元率Rsの応答は同様とみなせる。このため、Rs-Dp曲線を用いることにより、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsの変化量ΔRs(粒度分布調整後の装入用焼結鉱に関する融着開始時還元率Rsと粒度分布調整前の装入用焼結鉱に関する融着開始時還元率Rsの差)を推定することができる。なお、本明細書において、焼結鉱に関する融着開始時還元率Rsとは、その焼結鉱からなる焼結鉱充填層の融着開始時還元率Rsを指す。 As described above, even if the porosity and other properties are different between the charging sintered ore and the investigational sintered ore, the reduction rate Rs * at the start of fusion with respect to the change in the harmonic average particle size Dp Responses can be considered similar. Therefore, by using the Rs * -Dp curve, the amount of change ΔRs * in the reduction rate Rs * at the start of fusion for charging sinter ore whose particle size distribution is adjusted It is possible to estimate the difference between the reduction rate Rs * at the start of fusion for the ore and the reduction rate Rs * at the start of fusion for charging sinter ore before particle size distribution adjustment. In this specification, the reduction rate Rs * at the start of fusion of sintered ore refers to the reduction rate Rs * at the start of fusion of a sintered ore packed bed made of the sintered ore.

本実施形態の調整方法において、基準値Sは、Rs-Dp曲線における融着開始時還元率Rsが最大値となる調和平均粒径Dpである。最大値は、取得したRs-Dp曲線における融着開始時還元率Rsの最大の値であればよく、必ずしも極大値である必要はない。粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsをさらに上昇できる観点からは、最大値は、極大値であることが好ましい。 In the adjustment method of the present embodiment, the reference value S is the harmonic average particle size Dp at which the reduction rate Rs * at the start of fusion bonding in the Rs * -Dp curve is the maximum value. The maximum value may be the maximum value of the reduction rate Rs * at the start of fusion in the acquired Rs * -Dp curve, and does not necessarily have to be the maximum value. From the viewpoint of further increasing the reduction rate Rs * at the start of fusion for charging sinter ore whose particle size distribution is to be adjusted, the maximum value is preferably a maximum value.

ここで、装入用焼結鉱と検討用焼結鉱との間において、調和平均粒径Dpの変化に対する融着開始時還元率Rsの応答は同様とみなせ、粒度分布の調整対象である装入用焼結鉱の調和平均粒径Dpを近づける対象は、Rs-Dp曲線における融着開始時還元率Rsが最大値となる調和平均粒径Dp(つまり、基準値S)である。このため、粒度分布の調整対象である装入用焼結鉱の調和平均粒径Dpを基準値Sに近づけるほど、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsを上昇することができる。鉱石層に含まれる装入用焼結鉱の配合割合に変化が無ければ、装入用焼結鉱に関する融着開始時還元率Rsが上昇するほど、装入用焼結鉱を用いて形成した鉱石層の融着開始時還元率Rsは上昇する。従って、第1の条件を満足するように装入用焼結鉱の粒度分布を調整する本実施形態によれば、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsを上昇することができる。その結果、その焼結鉱を用いて形成する鉱石層の融着開始時還元率Rsを上昇することができる。 Here, the response of the reduction rate Rs * at the start of fusion bonding to the change in the harmonic average grain size Dp between the charging sintered ore and the investigational sintered ore is considered to be the same, and the particle size distribution is to be adjusted. The target for approximating the harmonic average particle size Dp of the sintered ore for charging is the harmonic average particle size Dp (that is, the reference value S) at which the reduction rate Rs * at the start of fusion in the Rs * -Dp curve becomes the maximum value. . For this reason, the closer the harmonic average particle diameter Dp of the charged sintered ore whose particle size distribution is adjusted to the reference value S, the reduction rate at the start of fusion bonding for the charged sintered ore whose particle size distribution is adjusted. Rs * can be increased. If there is no change in the blending ratio of the charging sintered ore contained in the ore layer, the charging sintered ore is used as the reduction rate Rs * at the start of fusion bonding of the charging sintered ore increases. The reduction rate Rs * at the start of fusion of the ore layer that has been formed increases. Therefore, according to the present embodiment for adjusting the particle size distribution of the charging sintered ore so as to satisfy the first condition, the reduction rate at the start of fusion for the charging sintered ore whose particle size distribution is to be adjusted Rs * can be increased. As a result, the reduction rate Rs * at the start of fusion bonding of the ore layer formed using the sintered ore can be increased.

なお、鉱石層の融着開始時還元率Rsは、鉱石層を形成する鉱石原料の種類毎に、充填層(1種類の鉱石原料からなる鉱石層)の融着開始時還元率Rsを求め、求めた充填層の融着開始時還元率Rsを、その充填層を形成する鉱石原料の鉱石層中の配合比率[質量%]に応じて加重平均することにより求めることができる。ここで、鉱石層を形成する鉱石原料の種類毎に、充填層の融着開始時還元率Rsを求めるには、上述したRs推定モデルを用いることができる。具体的には、入力条件として用いる上記(a)の各条件として、充填層の充填状態と同一又は近似する条件を用いることで、各充填層の融着開始時還元率Rsを求めることができる。 Note that the reduction rate Rs* at the start of fusion of the ore layer is obtained by calculating the reduction rate Rs * at the start of fusion of the packed bed (ore layer made of one type of ore raw material) for each type of ore raw material forming the ore layer. The obtained reduction rate Rs * at the start of fusion bonding of the packed bed can be obtained by taking a weighted average according to the blending ratio [% by mass] of the ore raw material forming the packed bed in the ore layer. Here, the Rs * estimation model described above can be used to obtain the reduction rate Rs * at the start of fusion bonding of the packed bed for each type of ore raw material forming the ore layer. Specifically, by using conditions that are the same as or similar to the packed state of the packed bed as the conditions (a) used as input conditions, the reduction rate Rs * at the start of fusion bonding of each packed bed can be obtained. can.

また、融着開始時還元率Rsは、上述した通り、鉱石融着層が形成されたときの還元率を表すため、融着開始時還元率Rsが上昇することは、鉱石原料が軟化(及び融着)して鉱石融着層を形成したときの還元率が上昇することを意味する。すなわち、鉱石融着層が形成されるまでの間接還元(発熱反応)による還元率が上昇し、炉下部における直接還元(吸熱反応)による還元率が低下することを意味する。このため、鉱石層の融着開始時還元率Rsが上昇すれば、炉下部における吸熱量が低下(吸熱反応量が低下)し、溶銑の滴下が促進される。その結果、融着帯の領域が縮小し、炉内ガス(還元ガス)が鉱石融着層の間を通り抜けやすくなる。従って、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsを上昇できる本実施形態の調整方法によれば、その焼結鉱を用いて形成する鉱石層の融着開始時還元率Rsが上昇するため、炉内の還元効率及び通気性を改善することができ、還元材比を低減することができる。加えて、コークス比を低減させたり、出銑比を増加させたりすることもできる。 As described above, the reduction rate Rs * at the start of fusion bonding represents the reduction rate when the ore fusion layer is formed. It means that the reduction rate is increased when (and fusion) to form an ore fusion layer. That is, it means that the reduction rate by indirect reduction (exothermic reaction) until the ore cohesive layer is formed increases, and the reduction rate by direct reduction (endothermic reaction) in the lower part of the furnace decreases. Therefore, if the reduction rate Rs * at the start of fusion bonding of the ore layer increases, the amount of heat absorbed in the lower part of the furnace decreases (the amount of endothermic reaction decreases), and the dripping of hot metal is promoted. As a result, the area of the cohesive zone is reduced, and the in-furnace gas (reducing gas) can easily pass through the ore cohesive layer. Therefore, according to the adjustment method of the present embodiment, which can increase the reduction rate Rs * at the start of fusion for charging sintered ore whose particle size distribution is to be adjusted, the ore layer formed using the sintered ore melts. Since the reduction rate Rs * at the start of deposition increases, the reduction efficiency and air permeability in the furnace can be improved, and the reducing agent ratio can be reduced. In addition, the coke ratio can be reduced and the tapping ratio can be increased.

以上説明した本実施形態の調整方法は、第1の条件を満足するように装入用焼結鉱の粒度分布を調整すればよく、その他の条件については特に限定されるものでない。 In the adjustment method of this embodiment described above, the particle size distribution of the charging sintered ore may be adjusted so as to satisfy the first condition, and other conditions are not particularly limited.

本実施形態の調整方法では、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsをさらに上昇できる観点から、第1の条件に加えて、以下に示す第2の条件を満足するように粒度分布を調整することが好ましい。 In the adjustment method of the present embodiment, from the viewpoint of further increasing the reduction rate Rs * at the start of fusion bonding of the sintered ore to be charged, the particle size distribution of which is to be adjusted, in addition to the first condition, the following second condition It is preferable to adjust the particle size distribution so as to satisfy the following conditions.

第2の条件は、粒度分布の調整対象である装入用焼結鉱により装入用焼結鉱充填層を形成したときに比べて、装入用焼結鉱充填層の初期空隙率εが、粒度分布を調整することにより上昇するという条件である。言い換えれば、第2の条件は、粒度分布調整前の装入用焼結鉱よりも、粒度分布調整後の装入用焼結鉱により装入用焼結鉱充填層を形成したときの方が、装入用焼結鉱充填層の初期空隙率εが高くなるという条件である。なお、初期空隙率εは、焼結鉱充填層の形成直後の空隙率(装入用焼結鉱が高炉に装入された直後の焼結鉱充填層の空隙率)を指す。 The second condition is that the initial porosity ∈ 0 is increased by adjusting the particle size distribution. In other words, the second condition is that when the charging sintered ore packed layer is formed with the charging sintered ore after the particle size distribution is adjusted, the charging sintered ore is better than the charging sintered ore before the particle size distribution is adjusted. , the initial porosity ε0 of the sintered ore packed bed for charging is high. The initial porosity ε0 indicates the porosity immediately after the sintered ore packed bed is formed (the porosity of the sintered ore packed bed immediately after charging the sintered ore for charging into the blast furnace).

ここで、初期空隙率εが高いとは、高炉や高炉を模した実験装置(例えば、非特許文献1に示す高温性状試験装置)に実際に形成した装入用焼結鉱充填層の初期空隙率εが高くなることのみを意味するものでなく、装入用焼結鉱の粒度分布から予測される装入用焼結鉱充填層の初期空隙率εが高くなることを含む概念である。装入用焼結鉱の粒度分布から装入用焼結鉱充填層の初期空隙率εを予測する方法は、特に限定されるものではないが、例えば、非特許文献2に記載される下記式(22)に基づいて予測する方法を用いることができる。 Here, the high initial porosity ε 0 means that the initial stage of the sintered ore packed bed for charging actually formed in a blast furnace or an experimental apparatus simulating a blast furnace (for example, the high-temperature property test apparatus shown in Non-Patent Document 1) A concept that does not only mean that the porosity ε 0 is increased, but also includes that the initial porosity ε 0 of the sintered ore packed bed for charging predicted from the particle size distribution of the sintered ore for charging is increased. is. The method for predicting the initial porosity ε 0 of the sintered ore packed bed for charging from the particle size distribution of the sintered ore for charging is not particularly limited, but for example, the following described in Non-Patent Document 2: A method of prediction based on equation (22) can be used.

Figure 2023050035000020
上記式(22)において、εは装入用焼結鉱充填層の初期空隙率ε[-]を示し、βは、比例定数を示し[-]、mは、装入用焼結鉱充填層に含まれる異なる粒径の粒子の種類の数[-]を示し、Sは、接触粒子kの体積基準の混合分率Sakを考慮した指数[-]を示し、ε(j,k)は、部分的な空間率[-]を示す。mは例えば、装入用焼結鉱の粒度分布を複数の粒径範囲に区切ったときの粒径範囲の個数である。
Figure 2023050035000020
In the above formula (22), ε j indicates the initial porosity ε 0 [-] of the sintered ore packed bed for charging, β j indicates a proportional constant [-], and m is the sinter for charging. represents the number [-] of types of particles with different particle diameters contained in the ore packed bed, S k represents the index [-] considering the volume-based mixture fraction S ak of contact particles k, and ε(j , k) denotes the partial space ratio [-]. m is, for example, the number of particle size ranges when the particle size distribution of the sintered ore for charging is divided into a plurality of particle size ranges.

本実施形態の調整方法において、第1の条件及び第2の条件を満足するように粒度分布を調整するには、例えば、第1の条件及び第2の条件を満足する粒度分布を設計し、設計したその粒度分布に、粒度分布の調整対象である装入用焼結鉱の粒度分布を一致させる方法を用いることができる。 In the adjustment method of the present embodiment, in order to adjust the particle size distribution so as to satisfy the first condition and the second condition, for example, a particle size distribution that satisfies the first condition and the second condition is designed, A method can be used in which the particle size distribution of the sintered ore to be charged, whose particle size distribution is to be adjusted, matches the designed particle size distribution.

第1の条件及び第2の条件を満足する粒度分布の設計には、例えば、上記式(22)を用いることができる。具体的には、まず、粒度分布の調整対象である装入用焼結鉱により装入用焼結鉱充填層を形成したときの初期空隙率ε(以下、「調整前初期空隙率ε」ともいう)を上記式(22)に基づいて求める。次に、粒度分布の調整対象である装入用焼結鉱の調和平均粒径Dpが基準値Sに近づくような粒度分布を仮設計し、仮設計した粒度分布の装入用焼結鉱により装入用焼結鉱充填層を形成したときの初期空隙率ε(以下、「仮設計初期空隙率ε」ともいう)を、上記式(22)に基づいて求める。最後に、仮設計した粒度分布の中から、調整前初期空隙率εよりも仮設計初期空隙率εが高くなる粒度分布を特定し、特定した粒度分布(仮設計の粒度分布)を、第1の条件及び第2の条件を満足する粒度分布として決定(設計)する。 Formula (22) above, for example, can be used to design a particle size distribution that satisfies the first and second conditions. Specifically, first, the initial porosity ε 0 when the sintered ore packed bed for charging is formed from the sintered ore for charging whose particle size distribution is to be adjusted (hereinafter referred to as “initial porosity ε 0 before adjustment ”) is obtained based on the above equation (22). Next, provisionally design a particle size distribution such that the harmonic average particle diameter Dp of the charging sintered ore to be adjusted for the particle size distribution approaches the reference value S, and use the charging sintered ore with the provisionally designed particle size distribution The initial porosity ε 0 (hereinafter also referred to as “temporary design initial porosity ε 0 ”) when the sintered ore packed bed for charging is formed is obtained based on the above equation (22). Finally, from among the provisionally designed particle size distributions, a particle size distribution in which the provisional design initial porosity ε 0 is higher than the pre-adjustment initial porosity ε 0 is specified, and the specified particle size distribution (provisional design particle size distribution) is A particle size distribution that satisfies the first condition and the second condition is determined (designed).

なお、上述した粒度分布の設計では、粒度分布の仮設計を行っているが、仮設計は必ずしも行われなくても良い。装入用焼結鉱充填層の初期空隙率εは、所定粒径(例えば、50mm)を超える粗粒焼結鉱の割合を減少させたり、所定粒径(例えば、5mm)未満の細粒焼結鉱の割合を減少させたりすることで上昇させることができる。このような初期空隙率εを上昇できる手段を予め特定しておき、その手段を用いて、装入用焼結鉱の調和平均粒径Dpが基準値Sに近づく粒度分布の設計を行えば、設計される粒度分布は、調和平均粒径Dpが基準値Sに近づくとともに、初期空隙率εが上昇する。つまり、粒度分布の仮設計を行うことなく、第1の条件及び第2の条件を満足する粒度分布を設計できる。 In addition, in the design of the particle size distribution described above, the provisional design of the particle size distribution is performed, but the provisional design does not necessarily have to be performed. The initial porosity ε 0 of the sintered ore packed bed for charging is used to reduce the proportion of coarse-grained sintered ore exceeding a predetermined particle size (e.g., 50 mm), It can be increased by decreasing the ratio of sintered ore. If a means for increasing such an initial porosity ε 0 is specified in advance, and the means is used to design a particle size distribution in which the harmonic mean particle size Dp of the charged sintered ore approaches the reference value S , in the designed particle size distribution, as the harmonic mean particle size Dp approaches the reference value S, the initial porosity ε 0 increases. In other words, a particle size distribution that satisfies the first condition and the second condition can be designed without provisionally designing the particle size distribution.

第1の条件及び第2の条件を満足するように装入用焼結鉱の粒度分布を調整する方法は、上述した方法に限定されるものではなく、粒度分布の設計を行うことなく装入用焼結鉱の粒度分布を調整してもよい。例えば、初期空隙率εを上昇できる手段を用いて、装入用焼結鉱の調和平均粒径Dpが基準値Sに近づく粒度分布の調整を行えば、その粒度分布の調整は、第1の条件及び第2の条件を満足する。 The method of adjusting the particle size distribution of the charging sintered ore so as to satisfy the first condition and the second condition is not limited to the above-described method, and charging without designing the particle size distribution The particle size distribution of the sintered ore for use may be adjusted. For example, if the particle size distribution is adjusted so that the harmonic average particle size Dp of the charged sintered ore approaches the reference value S using a means capable of increasing the initial porosity ε 0 , the adjustment of the particle size distribution is performed in the first and the second condition are satisfied.

装入用焼結鉱充填層の融着開始時還元率Rsは、装入用焼結鉱充填層の初期空隙率εが高くなるほど上昇する。このため、第1の条件及び第2の条件を満足するように装入用焼結鉱の粒度分布を調整する本実施形態によれば、第1の条件のみを満足するように粒度分布を調整する場合と比較して、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsをさらに上昇することができる。 The reduction rate Rs * at the start of fusion bonding of the sintered ore packed bed for charging increases as the initial porosity ε0 of the sintered ore packed bed for charging increases. Therefore, according to the present embodiment in which the particle size distribution of the charging sintered ore is adjusted so as to satisfy the first condition and the second condition, the particle size distribution is adjusted so as to satisfy only the first condition. The reduction rate Rs * at the start of fusion bonding for the charged sinter ore whose particle size distribution is to be adjusted can be further increased compared to the case where the particle size distribution is adjusted.

また、本実施形態の調整方法において、Rs-Dp曲線における融着開始時還元率Rsが極大値となる調和平均粒径Dpを基準値Sとする場合、第1の条件及び第2の条件に加えて、以下に示す第3の条件又は第4の条件を満足するように粒度分布を調整することが好ましい。 In addition, in the adjustment method of the present embodiment, when the harmonic mean particle diameter Dp at which the reduction rate Rs * at the start of fusion bonding in the Rs * -Dp curve is the maximum value is set as the reference value S, the first condition and the second condition are used. In addition to the conditions, it is preferable to adjust the particle size distribution so as to satisfy the third condition or the fourth condition shown below.

第3の条件は、粒度分布の調整対象である装入用焼結鉱の調和平均粒径Dpが基準値Sを超えている場合に、粒度分布を調整した後の装入用焼結鉱の調和平均粒径Dpを基準値S以上にするという条件である。また、第4の条件は、粒度分布の調整対象である装入用焼結鉱の調和平均粒径Dpが基準値S未満である場合に、粒度分布を調整した後の装入用焼結鉱の調和平均粒径Dpを基準値S以下にするという条件である。 The third condition is that when the harmonic average particle size Dp of the charging sinter ore whose particle size distribution is to be adjusted exceeds the reference value S, the charging sinter ore after adjusting the particle size distribution The condition is that the harmonic mean particle size Dpa is set to the reference value S or more. In addition, the fourth condition is that when the harmonic average particle size Dp of the charging sinter ore whose particle size distribution is to be adjusted is less than the reference value S, the charging sinter ore after adjusting the particle size distribution The condition is that the harmonic average particle diameter Dpa of the particles is set to the reference value S or less.

本実施形態の調整方法において、第1の条件及び第2の条件に加えて、第3の条件や第4の条件を満足するように粒度分布を調整する場合、後述する式(2)や式(3)に基づいて、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsの変化量ΔRs(粒度分布調整後の装入用焼結鉱に関する融着開始時還元率Rsと粒度分布調整前の装入用焼結鉱に関する融着開始時還元率Rsの差)を推定することができる。 In the adjustment method of the present embodiment, when adjusting the particle size distribution so as to satisfy the third and fourth conditions in addition to the first and second conditions, the following formula (2) and formula Based on (3), the amount of change ΔRs * in the reduction rate Rs * at the start of fusion for charging sinter whose particle size distribution is adjusted It is possible to estimate the difference between the time reduction rate Rs * and the reduction rate Rs * at the start of fusion for the charging sintered ore before adjusting the particle size distribution.

第1の条件及び第2の条件に加えて、第3の条件を満足するように粒度分布を調整する場合、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsの変化量ΔRs(粒度分布の調整前後における変化量ΔRs)は、下記式(2)により推定できる。 In addition to the first and second conditions, when the particle size distribution is adjusted to satisfy the third condition, the reduction rate Rs The amount of change ΔRs * of * (the amount of change ΔRs * before and after adjustment of the particle size distribution) can be estimated by the following formula (2).

Figure 2023050035000021
上記式(2)において、ΔRsは、粒度分布の調整前後における装入用焼結鉱に関する融着開始時還元率Rsの変化量[%]を示し、Cは、検討用焼結鉱の調和平均粒径Dpが基準値S以上の範囲内における、検討用焼結鉱の調和平均粒径Dpに対する検討用焼結鉱の融着開始時還元率Rsの変化率[%/mm]を示し、ΔDpは、粒度分布の調整前後における装入用焼結鉱の調和平均粒径Dpの変化量[mm]を示し、Dは、検討用焼結鉱の初期空隙率εに対する検討用焼結鉱の融着開始時還元率Rsの変化率[%/-]を示し、Δεは、粒度分布の調整前後における装入用焼結鉱に関する初期空隙率εの変化量[-]を示す。なお、本明細書において、焼結鉱に関する初期空隙率εとは、その焼結鉱からなる焼結鉱充填層の初期空隙率εを指す。
Figure 2023050035000021
In the above formula (2), ΔRs * indicates the amount of change [%] in the reduction rate Rs * at the start of fusion bonding for the charging sintered ore before and after adjusting the particle size distribution, and C1 is the study sintered ore. The rate of change in the reduction rate Rs * at the start of fusion bonding of the sintered ore under study with respect to the harmonic average particle size Dp of the sintered ore under investigation [%/mm] , where ΔDp indicates the amount of change [mm] in the harmonic average particle diameter Dp of the sintered ore for charging before and after adjusting the particle size distribution, and D1 is the initial porosity ε of the sintered ore for investigation. represents the rate of change [%/−] of the reduction rate Rs * at the start of fusion bonding of the sintered ore for use, and Δε 0 is the amount of change in the initial porosity ε 0 of the sintered ore charged before and after adjusting the particle size distribution [ -] is shown. In addition, in this specification, the initial porosity ε 0 of the sintered ore refers to the initial porosity ε 0 of the sintered ore packed bed made of the sintered ore.

上記式(2)における変化率Cは、調和平均粒径Dpが基準値S以上の範囲における融着開始時還元率Rsの変化量を、調和平均粒径Dpの変化量で除すことで求められる値であり、Rs-Dp曲線の傾きのうち、調和平均粒径Dpが基準値S以上の範囲における傾きに対応する。このため、変化率Cには、Rs-Dp曲線の傾き(調和平均粒径Dpが基準値S以上の範囲の傾き)を用いることができる。なお、調和平均粒径Dpが基準値S以上の範囲において、Rs-Dp曲線の傾きが変化する場合、変化率Cには、傾きの平均値を用いてもよい。 The change rate C1 in the above formula (2) is obtained by dividing the amount of change in the reduction rate Rs * at the start of fusion bonding in the range where the harmonic average particle size Dp is equal to or greater than the reference value S by the amount of change in the harmonic average particle size Dp. and corresponds to the slope of the Rs * -Dp curve in the range where the harmonic mean particle diameter Dp is equal to or greater than the reference value S. Therefore, the slope of the Rs * -Dp curve (the slope in the range where the harmonic mean particle size Dp is equal to or greater than the reference value S) can be used as the rate of change C1 . If the slope of the Rs * -Dp curve changes in the range where the harmonic mean particle size Dp is equal to or greater than the reference value S, the average value of the slope may be used as the rate of change C1 .

ここで、変化率Cには、一つのRs-Dp曲線の傾きを用いてもよいが、異なる初期空隙率εを用いて取得した2つ以上のRs-Dp曲線の傾きの平均値を用いることが好ましく、粒度分布調整前後における装入用焼結鉱に関する異なる2つの初期空隙率εを用いて取得した2つのRs-Dp曲線の傾きの平均値を用いることがより好ましい。Rs推定モデルに入力する初期空隙率εが異なる場合、取得されるRs-Dp曲線の傾きは互いに異なることがある。このため、変化率Cとして、異なる初期空隙率εを入力して取得した2つ以上のRs-Dp曲線の傾きの平均値を用いることで、変化量ΔRsをより正確に予測できる。 Here, the slope of one Rs * -Dp curve may be used for the change rate C1 , but the average of the slopes of two or more Rs * -Dp curves obtained using different initial porosities ε0 is preferably used, and it is more preferable to use the average value of the slopes of the two Rs * -Dp curves obtained using two different initial porosities ε 0 for the sintered ore for charging before and after adjusting the particle size distribution. . If the initial porosity ε 0 input to the Rs * estimation model is different, the slopes of the obtained Rs * -Dp curves may be different from each other. Therefore, by using the average value of the slopes of two or more Rs * -Dp curves obtained by inputting different initial porosities ε0 as the rate of change C1 , the amount of change ΔRs * can be predicted more accurately. .

上記式(2)における変化率Dは、融着開始時還元率Rsの変化量を初期空隙率εの変化量で除すことで求められる値であり、例えば、異なる初期空隙率εを用いて取得した2つのRs-Dp曲線を用いて求めることができる。なお、2つのRs-Dp曲線には、粒度分布調整前後における装入用焼結鉱に関する異なる2つの初期空隙率εを用いて取得した2つのRs-Dp曲線を用いることが好ましい。具体的には、2つのRs-Dp曲線の取得に用いたそれぞれの初期空隙率εの差(以下、「初期空隙率ε差」ともいう)と、2つのRs-Dp曲線における融着開始時還元率Rsの差(以下、「Rs差」ともいう)を求め、求めたRs差を初期空隙率ε差で除すことで求めることができる。ここで、Rs差は、任意の調和平均粒径Dpに対応するRsの差であり、2つ以上の調和粒径Dpに対応する2つ以上のRsの差の平均値が用いられても良い。 The rate of change D1 in the above formula (2) is a value obtained by dividing the amount of change in the reduction rate Rs * at the start of fusion bonding by the amount of change in the initial porosity ε0 . It can be determined using two Rs * -Dp curves obtained using 0 . For the two Rs * -Dp curves, it is preferable to use two Rs * -Dp curves obtained using two different initial porosities ε 0 for the charging sintered ore before and after adjusting the particle size distribution. Specifically, the difference in the initial porosity ε 0 used to obtain the two Rs * -Dp curves (hereinafter also referred to as the “initial porosity ε 0 difference”), and the two Rs * -Dp curves It can be obtained by obtaining the difference in reduction rate Rs * at the start of fusion bonding (hereinafter also referred to as "Rs * difference") and dividing the obtained Rs * difference by the initial porosity ε0 difference. Here, the Rs * difference is the difference in Rs * corresponding to any harmonic average particle diameter Dp, and the average value of the differences in two or more Rs * corresponding to two or more harmonic particle diameters Dp is used. can be

なお、上記式(2)における変化率Dは、上述したように複数のRs-Dp曲線から求めても良いが、Rs-ε曲線の傾きとしてもよい。ここで、Rs-ε曲線は、初期空隙率εのみ異なる複数種類の入力条件を上述したRs推定モデルにそれぞれ入力していき、算出される融着開始時還元率Rsと、その融着開始時還元率Rsの算出に用いた初期空隙率εをグラフにプロットしていくことで取得される曲線である。なお、Rs-ε曲線の傾きが変化する場合、変化率Dには、傾きの平均値が用いられてもよい。また、変化率Dには、一つのRs-ε曲線の傾きを用いてもよく、異なる調和平均粒径Dpを入力して取得した2つ以上のRs-ε曲線の傾きの平均値を用いてもよい。 Note that the rate of change D1 in the above formula (2) may be obtained from a plurality of Rs * -Dp curves as described above, or may be the slope of the Rs * -ε0 curve. Here, the Rs * -ε0 curve is obtained by inputting a plurality of types of input conditions that differ only in the initial porosity ε0 into the Rs * estimation model described above, and calculating the reduction rate Rs * at the start of fusion bonding, This curve is obtained by plotting the initial porosity ε 0 used to calculate the reduction rate Rs * at the start of fusion bonding. Note that when the slope of the Rs * -ε0 curve changes, the average value of the slope may be used as the rate of change D1 . In addition, the slope of one Rs * -ε0 curve may be used for the rate of change D1 , or the slopes of two or more Rs * -ε0 curves obtained by inputting different harmonic average particle diameters Dp. An average value may be used.

上記式(2)における変化率C及び変化率Dは、Rs推定モデルの入力条件や基準値Sによって異なることがあり一義的に定めることはできないが、例えば、基準値Sが12mm、Cを-1.2、Dを150にすることができる。 The rate of change C 1 and the rate of change D 1 in the above formula (2) may differ depending on the input conditions of the Rs * estimation model and the reference value S, and cannot be uniquely determined. C 1 can be -1.2 and D 1 can be 150.

一方、第1の条件及び第2の条件に加えて、第4の条件を満足するように粒度分布を調整する場合、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsの変化量ΔRs(粒度分布の調整前後における変化量ΔRs)は、下記式(3)により求めることができる。 On the other hand, when the particle size distribution is adjusted so as to satisfy the fourth condition in addition to the first and second conditions, the reduction at the start of fusion for the charging sinter ore whose particle size distribution is to be adjusted The amount of change ΔRs * in the ratio Rs * (the amount of change ΔRs * before and after the adjustment of the particle size distribution) can be obtained by the following formula (3).

Figure 2023050035000022
上記式(3)において、ΔRsは、粒度分布の調整前後における装入用焼結鉱に関する融着開始時還元率Rsの変化量[%]を示し、Cは、検討用焼結鉱の調和平均粒径Dpが基準値S以下の範囲内における、検討用焼結鉱の調和平均粒径Dpに対する検討用焼結鉱の融着開始時還元率Rsの変化率[%/mm]を示し、ΔDpは、粒度分布の調整前後における装入用焼結鉱の調和平均粒径Dpの変化量[mm]を示し、Dは、検討用焼結鉱の初期空隙率εに対する検討用焼結鉱の融着開始時還元率Rsの変化率[%/-]を示し、Δεは、粒度分布の調整前後における装入用焼結鉱に関する初期空隙率εの変化量[-]を示す。
Figure 2023050035000022
In the above formula (3), ΔRs * indicates the amount of change [%] in the reduction rate Rs * at the start of fusion for charging sintered ore before and after adjustment of the particle size distribution, and C2 is the study sintered ore. The rate of change in the reduction rate Rs * at the start of fusion bonding of the sintered ore under study with respect to the harmonic average particle size Dp of the sintered ore under study [%/mm] , where ΔDp is the amount of change [mm] in the harmonic average particle size Dp of the charging sinter ore before and after adjusting the particle size distribution, and D2 is the initial porosity ε of the sinter ore for investigation. represents the rate of change [%/−] of the reduction rate Rs * at the start of fusion bonding of the sintered ore for use, and Δε 0 is the amount of change in the initial porosity ε 0 of the sintered ore charged before and after adjusting the particle size distribution [ -] is shown.

上記式(3)における変化率Cは、調和平均粒径Dpが基準値S以下の範囲内における融着開始時還元率Rsの変化量を、調和平均粒径Dpの変化量で除すことで求められる値であり、Rs-Dp曲線の傾きのうち、調和平均粒径Dpが基準値S以下の範囲内における傾きに対応する。このため、変化率Cには、Rs-Dp曲線の傾き(調和平均粒径Dpが基準値S以下の範囲内の傾き)を用いることができる。なお、調和平均粒径Dpが基準値S以下の範囲内において、Rs-Dp曲線の傾きが変化する場合、変化率Cには、傾きの平均値を用いてもよい。 The rate of change C2 in the above formula (3) is obtained by dividing the amount of change in the reduction rate Rs * at the start of fusion within the range where the harmonic mean particle size Dp is equal to or less than the reference value S by the amount of change in the harmonic mean particle size Dp. and corresponds to the slope of the Rs * -Dp curve in which the harmonic mean particle diameter Dp is within the range of the reference value S or less. Therefore, the slope of the Rs * -Dp curve (the slope within the range where the harmonic mean particle diameter Dp is equal to or lower than the reference value S) can be used as the rate of change C2 . If the slope of the Rs * -Dp curve changes within the range where the harmonic mean particle size Dp is equal to or less than the reference value S, the average value of the slope may be used as the rate of change C2 .

変化率Cには、一つのRs-Dp曲線の傾きを用いてもよいが、変化量ΔRsをより正確に予測できる観点からは、異なる初期空隙率εを用いて取得した2つ以上のRs-Dp曲線の傾きの平均値を用いることが好ましく、粒度分布調整前後における装入用焼結鉱に関する異なる2つの初期空隙率εを用いて取得した2つのRs-Dp曲線の傾きの平均値を用いることがより好ましい。 The slope of one Rs * -Dp curve may be used for the rate of change C2 , but from the viewpoint of being able to predict the amount of change ΔRs * more accurately, two values obtained using different initial porosities ε0 It is preferable to use the average value of the slopes of the above Rs * -Dp curves, and two Rs * -Dp curves obtained using two different initial porosities ε 0 for the sintered ore for charging before and after adjusting the particle size distribution. It is more preferable to use the average value of the slope of

上記式(3)における変化率Dは、上記式(2)における変化率Dと同義であり、その求め方も変化率Dと同じである。このため、変化率Dの説明は省略する。 The rate of change D2 in the above formula (3) is synonymous with the rate of change D1 in the above formula (2), and the method of obtaining it is also the same as the rate of change D1 . Therefore, description of the rate of change D2 is omitted.

上記式(3)における変化率C及び変化率Dは、Rs推定モデルの入力条件や基準値Sによって異なることがあり一義的に定めることはできないが、例えば、基準値Sが12mm、Cを1.2、Dを150にすることができる。 The rate of change C 2 and the rate of change D 2 in the above formula (3) may differ depending on the input conditions of the Rs * estimation model and the reference value S, and cannot be uniquely determined. C2 can be 1.2 and D2 can be 150.

以上説明した通り、式(2)及び(3)を用いて変化量ΔRsを考慮する実施形態では、第3の条件や第4の条件を満足する必要がある。しかしながら、式(2)及び(3)を用いて変化量ΔRsを考慮しなければ、第3の条件や第4の条件を必ずしも満足する必要は無く、基準値Sを超える調和平均粒径Dpが、粒度分布の調整により基準値S未満となったり、基準値S未満の調和平均粒径Dpが、粒度分布の調整により基準値Sを超えたりしてもよい。なお、基準値Sを超える調和平均粒径Dpが粒度分布の調整により基準値S未満となったり、基準値S未満の調和平均粒径Dpが粒度分布の調整により基準値Sを超えたりする場合には、例えば、先述した式(21)の二次式を用いることにより、変化量ΔRsを考慮することが可能である。 As described above, in the embodiment in which the amount of change ΔRs * is considered using equations (2) and (3), it is necessary to satisfy the third and fourth conditions. However, if the amount of change ΔRs * is not considered using formulas (2) and (3), it is not necessary to satisfy the third condition and the fourth condition, and the harmonic average particle diameter Dp exceeding the reference value S However, the particle size distribution may be adjusted to be less than the reference value S, or the harmonic mean particle diameter Dp less than the reference value S may exceed the reference value S by the particle size distribution adjustment. In addition, when the harmonic average particle diameter Dp exceeding the reference value S becomes less than the reference value S due to the adjustment of the particle size distribution, or the harmonic average particle diameter Dp less than the reference value S exceeds the reference value S due to the adjustment of the particle size distribution can consider the amount of change ΔRs * by using, for example, the quadratic expression of the above-described equation (21).

また、本実施形態の調整方法において、Rs-Dp曲線における融着開始時還元率Rsが極大値となる調和平均粒径Dpを基準値Sとする場合、第1の条件を満足することに加え、粒度分布を調整した後の装入用焼結鉱の調和平均粒径Dpが下記式(1)を満たすという条件(第5の条件)を満足するように粒度分布を調整することが好ましい。 In addition, in the adjustment method of the present embodiment, when the harmonic mean particle diameter Dp at which the reduction rate Rs * at the start of fusion on the Rs * -Dp curve is the maximum value is set as the reference value S, the first condition must be satisfied. In addition, the particle size distribution is adjusted so that the condition (fifth condition) that the harmonic average particle size Dpa of the sintered ore for charging after adjusting the particle size distribution satisfies the following formula (1) is preferred.

Figure 2023050035000023
上記式(1)において、Sは、基準値[mm]を示し、Dpは、粒度分布を調整した後の装入用焼結鉱の調和平均粒径[mm]を示す。
Figure 2023050035000023
In the above formula (1), S represents the reference value [mm], and Dpa represents the harmonic mean particle size [mm] of the charging sinter ore after adjusting the particle size distribution.

上述したRs-Dp曲線において、融着開始時還元率Rsが極大値となる調和平均粒径Dpに対して±2[mm]の範囲内は、当該範囲外である場合と比較して、融着開始時還元率Rsがより高い値を示しやすい。このため、Rs-Dp曲線における融着開始時還元率Rsが極大値となる調和平均粒径Dpを基準値Sとする場合において、粒度分布を調整した後の装入用焼結鉱の調和平均粒径Dpが上記式(1)を満たす場合には、粒度分布の調整対象である装入用焼結鉱に関する融着開始時還元率Rsをさらに上昇することができ、還元材比がさらに低減されやすい。 In the Rs * -Dp curve described above, the range of ±2 [mm] with respect to the harmonic average particle size Dp at which the reduction rate Rs * at the start of fusion bonding is the maximum value is compared to the case outside the range. , the reduction rate Rs * at the start of fusion tends to exhibit a higher value. For this reason, when the harmonic mean particle size Dp at which the reduction rate Rs * at the start of fusion bonding in the Rs * -Dp curve is the maximum value is set as the reference value S, the sintered ore for charging after adjusting the particle size distribution When the harmonic average particle diameter Dpa satisfies the above formula (1), the reduction rate Rs * at the start of fusion bonding for the sintered ore to be charged, the particle size distribution of which is to be adjusted, can be further increased. The ratio is likely to be further reduced.

次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Next, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited only to these examples.

評価1(融着開始時還元率Rsに対する調和平均粒径Dpと初期空隙率εの影響)
以下に示す解析条件で、Rs推定モデルによる解析を行い、融着開始時還元率Rsに対する調和平均粒径Dpと初期空隙率εの影響を評価した。
Evaluation 1 (Influence of Harmonic Average Particle Size Dp and Initial Porosity ε0 on Reduction Rate Rs * at Start of Fusion)
Analysis was performed using the Rs * estimation model under the following analysis conditions, and the effects of the harmonic mean particle size Dp and the initial porosity ε0 on the reduction rate Rs * at the start of fusion bonding were evaluated.

本解析では、検討用焼結鉱充填層の見かけ密度を3485kg/mに設定した。検討用焼結鉱充填層は、全て同じ粒径の検討用焼結鉱で形成されているものとし、検討用焼結鉱の粒径(調和平均粒径Dp)は、10、12、14、16、18、20、22、24又は26mmに設定した。検討用焼結鉱充填層の初期空隙率は、後述する評価2の粒度分布(ベース条件I及びベース条件II)を考慮して0.38又は0.40に設定した。昇温、荷重パターン、および還元ガス組成には、図5aに示す昇温パターン、図5bに示す組成パターン(CO/(CO+CO))、図5cに示す荷重パターンを使用した。還元ガスの流量には、過去の操業実績から得たボッシュガス流量を設定し、還元ガスの流速には、そのボッシュガス流量を得た高炉の炉腹断面積でボッシュガス流量を除した値(0.82Nm/s)を設定した。炉内圧力は2.7atm(0.27MPa)一定を仮定した。形状係数は、非特許文献2に基づき、検討用焼結鉱の粒径(調和平均粒径)から求めた。軟化収縮パラメータ(η,c~c,α)は、上述した範囲から選択して設定した。層高は、300mmに設定した。 In this analysis, the apparent density of the sintered ore packed bed for investigation was set to 3485 kg/m 3 . The sintered ore packed layers for investigation are all formed of sintered ore for investigation with the same particle size, and the particle size (harmonic average particle size Dp) of the sintered ore for investigation is 10, 12, 14, Set to 16, 18, 20, 22, 24 or 26 mm. The initial porosity of the sintered ore packed bed for investigation was set to 0.38 or 0.40 in consideration of the particle size distribution (base condition I and base condition II) of evaluation 2 described later. For the temperature rise, load pattern, and reducing gas composition, the temperature rise pattern shown in FIG. 5a, the composition pattern (CO/(CO+CO 2 )) shown in FIG. 5b, and the load pattern shown in FIG. 5c were used. For the flow rate of the reducing gas, set the bosh gas flow rate obtained from past operation results, and for the flow rate of the reducing gas, the value obtained by dividing the bosh gas flow rate by the cross-sectional area of the blast furnace from which the bosh gas flow rate was obtained ( 0.82 Nm/s) was set. The furnace pressure was assumed to be constant at 2.7 atm (0.27 MPa). The shape factor was obtained from the grain size (harmonic mean grain size) of the sintered ore for investigation based on Non-Patent Document 2. The softening shrinkage parameters (η 0 , c 1 to c 6 , α) were selected and set from the ranges described above. The layer height was set to 300 mm.

1層分の検討用焼結鉱充填層を層高方向に並ぶ複数の計算セルに区画した。計算セルは、層高方向に1mmとした。演算周期Δtを5秒とし、検討用焼結鉱充填層全体の圧力損失の勾配が50kPa/mに達するまで、上述した方法で還元率、収縮率及び圧力損失の推定を繰り返した。圧力損失が50kPa/mに達したときの各計算セルの還元率(焼結鉱の還元率)を加算平均し、融着開始時還元率Rsを得た。なお、本解析では、圧力損失の勾配が50kPa/mに達したときの各計算セルの温度についても求め、これらの温度を加算平均して融着開始温度Tsとして取得した。また、検討用焼結鉱充填層の温度が1200℃になったときの各計算セルの還元率(検討用焼結鉱の還元率)についても求め、これらの還元率を加算平均して還元率R1200として取得した。 One layer of the sintered ore packed bed for investigation was partitioned into a plurality of calculation cells arranged in the bed height direction. The calculation cell was 1 mm in the layer height direction. The calculation period Δt was set to 5 seconds, and the estimation of the reduction rate, shrinkage rate, and pressure loss was repeated by the above-described method until the pressure loss gradient of the entire sintered ore packed bed for investigation reached 50 kPa/m. The reduction rate (reduction rate of sintered ore) of each calculation cell when the pressure loss reached 50 kPa/m was averaged to obtain the reduction rate Rs * at the start of fusion bonding. In this analysis, the temperature of each calculation cell was obtained when the gradient of the pressure loss reached 50 kPa/m, and these temperatures were averaged to obtain the fusion start temperature Ts * . In addition, the reduction rate of each calculation cell when the temperature of the sintered ore packed bed for investigation reaches 1200 ° C. (reduction rate of the sintered ore for investigation) is also obtained, and these reduction rates are averaged to obtain the reduction rate. Acquired as R1200 .

解析結果を、図6a~図6cに示す。 The analysis results are shown in FIGS. 6a-6c.

図6aは、融着開始温度Tsと調和平均粒径Dpとの関係を示すグラフであり、初期空隙率εが0.38又は0.40である2種類の曲線を示している。図6aに示すように、検討用焼結鉱の調和平均粒径Dpが22~26mmの範囲では、調和平均粒径Dpの低下に伴う圧力損失の上昇と、還元の促進による層収縮の抑制が相殺し、融着開始温度Tsはほとんど増減しなかった。一方、調和平均粒径Dpが22mmよりも低下すると、圧力損失上昇の影響が大きくなり、融着開始温度Tsは低下した。また、初期空隙率εが0.02低下すると、Tsは8~15℃低下した。 FIG. 6a is a graph showing the relationship between the fusion initiation temperature Ts * and the harmonic average grain size Dp, showing two curves with an initial porosity ε0 of 0.38 or 0.40. As shown in FIG. 6a, when the harmonic average particle size Dp of the sintered ore for investigation is in the range of 22 to 26 mm, the pressure loss increases as the harmonic average particle size Dp decreases and layer shrinkage is suppressed by promoting reduction. This was offset, and the fusion initiation temperature Ts * hardly increased or decreased. On the other hand, when the harmonic average particle diameter Dp was lower than 22 mm, the influence of pressure drop increase increased, and the fusion initiation temperature Ts * decreased. Also, when the initial porosity ε 0 decreased by 0.02, Ts * decreased by 8 to 15°C.

図6bは、還元率R1200と調和平均粒径Dpとの関係を示すグラフであり、初期空隙率εが0.38又は0.40である2種類の曲線を示している。図6bに示すように、還元率R1200は、調和平均粒径Dpの低下に伴い、ほぼ直線的に上昇した。一方、初期空隙率εが0.02低下しても、還元率R1200はほとんど変化しなかった。 FIG. 6b is a graph showing the relationship between the reduction rate R 1200 and the harmonic mean particle size Dp, showing two curves with an initial porosity ε 0 of 0.38 or 0.40. As shown in FIG. 6b, the reduction rate R 1200 increased almost linearly with decreasing harmonic mean particle size Dp. On the other hand, even if the initial porosity ε0 decreased by 0.02, the reduction ratio R1200 hardly changed.

図6cは、融着開始時還元率Rsと調和平均粒径Dpとの関係を示すグラフであり、初期空隙率εが0.38又は0.40である2種類の曲線(Rs-Dp曲線)を示している。図6cに示すように、調和平均粒径Dpが12~26mmの範囲では、調和平均粒径Dpの低下に伴い融着開始時還元率Rsは上昇したが、調和平均粒径Dpが12mmで最大値をとり、10mmでやや低下に転じた。この結果から、調和平均粒径Dpが12mmより大きい焼結鉱では、調和平均粒径Dpの低下による還元促進の影響が大きく、調和平均粒径Dpが12mmよりも小さい焼結鉱では、調和平均粒径Dpの低下による圧力損失上昇の影響が大きいことが明らかとなった。すなわち、調和平均粒径Dpが12mmに近づくように装入用焼結鉱の粒度分布を調整すれば、融着開始時還元率Rsが上昇できることが明らかとなった。 FIG. 6c is a graph showing the relationship between the reduction rate Rs * at the start of fusion bonding and the harmonic average particle diameter Dp , and shows two types of curves (Rs * - Dp curve). As shown in FIG. 6c, when the harmonic average particle size Dp is in the range of 12 to 26 mm, the reduction rate Rs * at the start of fusion increases as the harmonic average particle size Dp decreases. It took the maximum value and turned to decrease slightly at 10 mm. From this result, in the sintered ore with a harmonic average particle size Dp larger than 12 mm, the effect of reduction promotion due to the decrease in the harmonic average particle size Dp is large, and in the sintered ore with a harmonic average particle size Dp smaller than 12 mm, the harmonic average It has been clarified that the decrease in the particle size Dp has a large effect on the increase in pressure loss. That is, it was found that the reduction rate Rs * at the start of fusion bonding can be increased by adjusting the particle size distribution of the sintered ore to be charged so that the harmonic average particle size Dp approaches 12 mm.

また、図6cに示すように、初期空隙率εが0.02低下すると、融着開始時還元率Rsは1.5~4.2%低下した。この結果から、初期空隙率εが上昇するように装入用焼結鉱の粒度分布を調整すれば、融着開始時還元率Rsを上昇できることが明らかとなった。 Further, as shown in FIG. 6c, when the initial porosity ε0 decreased by 0.02, the reduction rate Rs * at the start of fusion decreased by 1.5 to 4.2%. From this result, it was clarified that the reduction rate Rs * at the start of fusion bonding can be increased by adjusting the particle size distribution of the charged sintered ore so as to increase the initial porosity ε 0 .

また、図6cに示すRs-Dp曲線から、融着開始時還元率Rsの変化量ΔRsは、調和平均粒径Dpの変化量ΔDpと初期空隙率εの変化量Δεを用いて、下記式(23)及び下記式(24)で表せることが明らかとなった。なお、下記式(23)における変化量ΔRsは、調和平均粒径Dpが12mmを超える装入用焼結鉱の粒度分布を、粒度分布調整後の調和平均粒径Dpaが12mm以上となるように調整したときの変化量を示し、下記式(24)における変化量ΔRsは、調和平均粒径Dpが12mm未満の装入用焼結鉱の粒度分布を、粒度分布調整後の調和平均粒径Dpaが12mm以下となるように調整したときの変化量を示す。 Further, from the Rs * -Dp curve shown in FIG. 6c, the amount of change ΔRs * in the reduction rate Rs * at the start of fusion bonding is calculated using the amount of change ΔDp in the harmonic mean particle diameter Dp and the amount of change Δε0 in the initial porosity ε0. As a result, it has become clear that the following formulas (23) and (24) can be used. The amount of change ΔRs * in the following formula (23) is adjusted so that the particle size distribution of the charging sintered ore having a harmonic average particle size Dp exceeding 12 mm is adjusted so that the harmonic average particle size Dpa after adjusting the particle size distribution is 12 mm or more. The amount of change ΔRs * in the following formula (24) is the particle size distribution of the charging sintered ore having a harmonic average particle size Dp of less than 12 mm, and the harmonic average particle size after adjusting the particle size distribution. The amount of change when the diameter Dpa is adjusted to 12 mm or less is shown.

Figure 2023050035000024
上記式(23)及び上記式(24)において、ΔRsは、粒度分布の調整前後における装入用焼結鉱に関する融着開始時還元率Rsの変化量[%]を示し、ΔDpは、粒度分布の調整前後における装入用焼結鉱の調和平均粒径Dpの変化量[mm]を示し、Δεは、粒度分布の調整前後における装入用焼結鉱に関する初期空隙率εの変化量[-]を示す。
Figure 2023050035000024
In the above formula (23) and the above formula (24), ΔRs * indicates the amount of change [%] in the reduction rate Rs * at the start of fusion bonding regarding the charging sintered ore before and after adjusting the particle size distribution, and ΔDp is Shows the amount of change [mm] in the harmonic average particle size Dp of the charging sintered ore before and after adjusting the particle size distribution, and Δε 0 is the initial porosity ε 0 of the charging sintered ore before and after adjusting the particle size distribution. Indicates the amount of change [-].

なお、上記式(23)において、変化量ΔDpに乗じた係数-1.2[%/mm]は、調和平均粒径Dpが12mm以上の範囲における、2種類のRs-Dp曲線の傾きの平均値である。また、上記式(24)において、変化量ΔDpに乗じた係数+1.2[%/mm]は、調和平均粒径Dpが12mm以下の範囲における、2種類のRs-Dp曲線の傾きの平均値である。また、上記式(23)及び(24)において、変化量Δεに乗じた係数150[%/-]は、2つのRs-Dp曲線のRs差(1.5~4.2%)の平均値を、2種類のRs-Dp曲線の取得に用いた初期空隙率ε差(0.02)で除すことで求めた値である。 In the above formula (23), the coefficient −1.2 [%/mm] multiplied by the amount of change ΔDp is the slope of the two types of Rs * -Dp curves in the range where the harmonic average particle diameter Dp is 12 mm or more. Average value. In the above formula (24), the coefficient +1.2 [%/mm] multiplied by the change amount ΔDp is the average of the slopes of the two types of Rs * -Dp curves in the range where the harmonic average particle size Dp is 12 mm or less. value. In addition, in the above formulas (23) and (24), the coefficient 150 [%/-] multiplied by the amount of change Δε 0 is the Rs * difference (1.5 to 4.2%) between the two Rs * -Dp curves. is a value obtained by dividing the average value of by the initial porosity ε 0 difference (0.02) used to obtain two types of Rs * -Dp curves.

評価2(粒度分布の調整による融着開始時還元率Rsの変化)
下記表1に示すベース条件I及びベース条件IIの粒度分布をもつ装入用焼結鉱のそれぞれについて、装入用焼結鉱充填層を形成したときの初期空隙率εを上記式(22)から求めるとともに、調和平均粒径Dpを上記式(4)から求めた。
Evaluation 2 (change in reduction rate Rs * at the start of fusion bonding due to adjustment of particle size distribution)
For each of the sintered ore for charging having the particle size distribution of the base condition I and the base condition II shown in Table 1 below, the initial porosity ε 0 when the sintered ore packed bed for charging is formed is calculated by the above formula (22 ), and the harmonic average particle diameter Dp was determined from the above formula (4).

Figure 2023050035000025
Figure 2023050035000025

ベース条件Iの装入用焼結鉱については、調和平均粒径Dpが12mmよりも大きいことから、粗粒を排除することで、調和平均粒径Dpが12mmに近づくとともに初期空隙率εが上昇することが期待できた。そこで、粗粒を排除したベース条件Iの装入用焼結鉱(表1に示す粗粒排除)について、上記式(22)及び(4)に基づき、焼結鉱充填層を形成したときの初期空隙率εを求めるとともに調和平均粒径Dpを求めた。表1に示すように、粒径が40mmを超える粗粒を排除するとともに、粒径が25mm超40mm以下の粗粒をおおよそ半減することで、調和平均粒径Dpは1.28mm低下し、初期空隙率εは0.0045上昇した。また、調和平均粒径Dpの変化量ΔDp(-1.28mm)と初期空隙率εの変化量Δε(0.0045)を上記式(23)に代入したところ、融着開始時還元率Rsが2.20%上昇することが推定できた。 Regarding the sintered ore for charging under the base condition I, since the harmonic average particle diameter Dp is larger than 12 mm, by excluding coarse particles, the harmonic average particle diameter Dp approaches 12 mm and the initial porosity ε 0 expected to rise. Therefore, regarding the sintered ore for charging under the base condition I in which coarse particles are excluded (excluding coarse particles shown in Table 1), based on the above formulas (22) and (4), when the sintered ore packed layer is formed The initial porosity ε 0 was determined, and the harmonic mean particle size Dp was determined. As shown in Table 1, by eliminating coarse particles with a particle size of more than 40 mm and roughly halving coarse particles with a particle size of more than 25 mm to 40 mm or less, the harmonic average particle size Dp is reduced by 1.28 mm, and the initial The porosity ε0 increased by 0.0045. Substituting the variation Δε 0 (0.0045) in the initial porosity ε 0 and the variation Δε 0 (0.0045) in the harmonic mean particle diameter Dp into the above equation (23) yields A 2.20% increase in Rs * could be estimated.

ベース条件IIの装入用焼結鉱については、調和平均粒径Dpが12mmを下回っていることから、細粒を排除することで、調和平均粒径Dpが12mmに近づくとともに初期空隙率εが上昇することが期待できた。そこで、細粒を排除したベース条件IIの装入用焼結鉱(表1に示す細粒排除)について、上記式(22)及び(4)に基づき、装入用焼結鉱充填層を形成したときの初期空隙率εを求めるとともに調和平均粒径Dpを求めた。表1に示すように、粒径が5mm以下の細粒を排除することにより、調和平均粒径Dpは0.84mm上昇し、初期空隙率εは0.0043上昇した。また、調和平均粒径Dpの変化量ΔDp(0.84mm)と初期空隙率εの変化量Δε(0.0043)を上記式(24)に代入したところ、融着開始時還元率Rsが1.65%上昇することが推定できた。 Regarding the sintered ore for charging under the base condition II, since the harmonic average particle diameter Dp is less than 12 mm, by excluding fine grains, the harmonic average particle diameter Dp approaches 12 mm and the initial porosity ε 0 was expected to rise. Therefore, for the sintered ore for charging under the base condition II (excluding fines shown in Table 1) in which fine grains are excluded, a sintered ore packed bed for charging is formed based on the above formulas (22) and (4). The initial porosity ε 0 was determined and the harmonic mean particle diameter Dp was determined. As shown in Table 1, removing fine grains with a grain size of 5 mm or less increased the harmonic mean grain size Dp by 0.84 mm and the initial porosity ε 0 by 0.0043. Substituting the amount of change ΔDp (0.84 mm) in the harmonic mean particle size Dp and the amount of change Δε 0 (0.0043) in the initial porosity ε 0 into the above equation (24) yields the reduction rate at the start of fusion bonding Rs * could be estimated to increase by 1.65%.

評価3(還元材比に対する融着開始時還元率Rsの影響)
5000m級の大型高炉を対象として、還元材比に対する融着開始時還元率Rsの影響を評価した。なお、還元材比(以下、「RAR」ともいう)は、銑鉄1tを生産するために必要な還元材量[kg/pt]を指す。
Evaluation 3 (Influence of reduction rate Rs * at the start of fusion on reducing agent ratio)
For a 5000 m 3 class large blast furnace, the effect of the reduction rate Rs * at the start of fusion on the reducing agent ratio was evaluated. The reducing agent ratio (hereinafter also referred to as “RAR”) refers to the amount of reducing agent [kg/pt] required to produce 1 ton of pig iron.

表1に示すベース条件Iに類似する粒度分布(調和平均粒径Dpが12mmを超える粒度分布)の装入用焼結鉱を用意した。この装入用焼結鉱を用いて鉱石層を形成し、所定期間、対象高炉の操業を行った。なお、鉱石層には、鉱石原料として、装入用焼結鉱のほかペレットおよび塊鉱石が含まれていた。所定期間経過後、粒径が25mmを超える装入用焼結鉱の割合(以下、「焼結+25mm割合」ともいう)を変化することで、対象高炉で使用する装入用焼結鉱の粒度分布を調整した。粒度分布調整前の装入用焼結鉱にかえて、粒度分布を調整した装入用焼結鉱(粒度分布調整前と同量)を用いて鉱石層を形成し、さらに所定期間、対象高炉の操業を行った。この操作を複数回繰り返し行い、各所定期間において、対象高炉のRARを求めた。 A charging sintered ore having a particle size distribution similar to the base condition I shown in Table 1 (particle size distribution with a harmonic average particle size Dp exceeding 12 mm) was prepared. An ore layer was formed using this sintered ore for charging, and the target blast furnace was operated for a predetermined period. The ore layer contained sintered ore for charging as well as pellets and lump ore as ore raw materials. After a predetermined period of time, by changing the ratio of charging sintered ore with a particle size exceeding 25 mm (hereinafter also referred to as “sintering + 25 mm ratio”), the particle size of charging sintered ore used in the target blast furnace adjusted the distribution. Instead of charging sintered ore before particle size distribution adjustment, charge sintered ore with particle size distribution adjusted (the same amount as before particle size distribution adjustment) is used to form an ore layer, and the target blast furnace is kept for a predetermined period. operated. This operation was repeated multiple times, and the RAR of the target blast furnace was determined for each predetermined period.

対象高炉で使用した装入用焼結鉱(焼結+25mm割合の異なる焼結鉱)それぞれについて、装入用焼結鉱充填層を形成したときの初期空隙率εを上記式(22)から求めるとともに、調和平均粒径Dpを上記式(4)から求めた。図7aに、焼結+25mm割合と初期空隙率εの関係、及び焼結+25mm割合と調和平均粒径Dpとの関係を示す。図7aに示すように、焼結+25mm割合が低下するほど、調和平均粒径Dpが低下し、初期空隙率εが上昇した。この結果から、調和平均粒径Dpが12mmを超えている場合には、焼結+25mm割合を減少することで、調和平均粒径Dpが12mmに近づくとともに、初期空隙率εが上昇することが理解できた。 For each charging sinter used in the target blast furnace (sintering + sintered ore with a different ratio of 25 mm), the initial porosity ε 0 when the charging sinter packed bed is formed is calculated from the above formula (22). At the same time, the harmonic average particle size Dp was obtained from the above formula (4). FIG. 7a shows the relationship between the sintered +25 mm fraction and the initial porosity ε 0 and the relationship between the sintered +25 mm fraction and the harmonic mean grain size Dp. As shown in Fig. 7a, the lower the sintering +25 mm fraction, the lower the harmonic mean grain size Dp and the higher the initial porosity ε 0 . From this result, when the harmonic average particle diameter Dp exceeds 12 mm, by decreasing the sintering +25 mm ratio, the harmonic average particle diameter Dp approaches 12 mm and the initial porosity ε 0 increases. I understand.

また、対象高炉のRARと、そのRAR算出時に使用された鉱石原料で形成された鉱石層の融着開始時還元率Rsとの関係を図7bに示す。図7bに示すように、鉱石層の融着開始時還元率Rsの上昇に伴い、RARは低下する傾向を示した。 FIG. 7b shows the relationship between the RAR of the target blast furnace and the reduction rate Rs * at the start of fusion bonding of the ore layer formed from the ore raw material used when calculating the RAR. As shown in FIG. 7b, the RAR tended to decrease as the reduction rate Rs * at the start of fusion of the ore layer increased.

なお、鉱石層の融着開始時還元率Rsは、鉱石層を形成する鉱石原料の種類毎に、充填層(1種類の鉱石原料からなる鉱石層)の融着開始時還元率Rsを求め、求めた充填層の融着開始時還元率Rsを、その充填層を形成する鉱石原料の鉱石層中の配合比率[質量%]に応じて加重平均することにより求めた。また、充填層(1種類の鉱石原料からなる鉱石層)の融着開始時還元率Rsは、上述したRs推定モデルに基づいて求め、上記(a)の各条件には、各充填層(1種類の鉱石原料からなる鉱石層)の充填状態と同一又は近似する条件を用い、上記(b)~(d)の各条件には、鉱石層を形成した高炉と同一又は近似する条件を用いた。 Note that the reduction rate Rs* at the start of fusion of the ore layer is obtained by calculating the reduction rate Rs * at the start of fusion of the packed bed (ore layer made of one type of ore raw material) for each type of ore raw material forming the ore layer. The obtained reduction rate Rs * at the start of fusion bonding of the packed bed was obtained by taking a weighted average according to the blending ratio [% by mass] of the ore raw material forming the packed bed in the ore layer. In addition, the reduction rate Rs * at the start of fusion of the packed bed (ore layer made of one type of ore raw material) is obtained based on the Rs * estimation model described above, and each packed bed Using conditions that are the same as or similar to the filling state of (the ore layer made of one type of ore raw material), and for each of the above conditions (b) to (d), conditions that are the same as or similar to those of the blast furnace in which the ore layer was formed. Using.

以上説明した評価1~3の結果から、装入用焼結鉱充填層の初期空隙率εが上昇するとともに、装入用焼結鉱の調和平均粒径Dpが基準値S(12mm)に近づくように、装入用焼結鉱の粒度分布を調整することで、粒度分布の調整対象の装入用焼結鉱に関する融着開始時還元率Rsを上昇できることが推定される。また、鉱石層の融着開始時還元率Rsが上昇することで、RARを低減できることが理解される。
From the results of evaluations 1 to 3 described above, the initial porosity ε 0 of the sintered ore packed bed for charging increases, and the harmonic average particle diameter Dp of the sintered ore for charging reaches the reference value S (12 mm). By adjusting the particle size distribution of the sintered ore to be charged so that it approaches, it is presumed that the reduction rate Rs * at the start of fusion bonding for the sintered ore to be charged, whose particle size distribution is to be adjusted, can be increased. Also, it is understood that the RAR can be reduced by increasing the reduction rate Rs * at the start of fusion bonding of the ore layer.

Claims (14)

鉱石層の形成に用いる装入用焼結鉱の粒度分布の調整方法であって、
前記装入用焼結鉱の調和平均粒径Dpが基準値Sに近づくように前記装入用焼結鉱の粒度分布を調整することを含み、
前記基準値Sを定めるための検討用焼結鉱からなる検討用焼結鉱充填層の圧力損失が所定値に達したときの前記検討用焼結鉱充填層の融着開始時還元率Rsと、前記融着開始時還元率Rsの取得に用いた前記検討用焼結鉱の調和平均粒径Dpと、の関係を示すRs-Dp曲線において、前記融着開始時還元率Rsが最大値となる調和平均粒径Dpとして、前記基準値Sが定められることを特徴とする、焼結鉱の粒度分布の調整方法。
A method for adjusting the particle size distribution of charging sintered ore used for forming an ore layer,
Adjusting the particle size distribution of the charging sintered ore so that the harmonic average particle diameter Dp of the charging sintered ore approaches the reference value S,
Reduction rate at the start of fusion bonding of the investigational sintered ore packed bed when the pressure loss of the investigational sintered ore packed bed made of the investigational sintered ore for determining the reference value S reaches a predetermined value Rs * and the harmonic average particle size Dp of the sintered ore for study used to obtain the reduction rate Rs* at the start of fusion bonding. A method for adjusting the particle size distribution of sintered ore, wherein the reference value S is determined as the harmonic average particle size Dp at which is the maximum value.
前記装入用焼結鉱からなる装入用焼結鉱充填層の初期空隙率εが、粒度分布調整前よりも粒度分布調整後の方が高くなるように、前記装入用焼結鉱の前記粒度分布を調整することを特徴とする、請求項1に記載の焼結鉱の粒度分布の調整方法。 The initial porosity ε 0 of the sintered ore packed layer for charging made of the sintered ore for charging is higher after adjusting the particle size distribution than before adjusting the sintered ore for charging. The method for adjusting the particle size distribution of sintered ore according to claim 1, wherein the particle size distribution of is adjusted. 前記融着開始時還元率Rsの最大値が極大値であることを特徴とする請求項2に記載の焼結鉱の粒度分布の調整方法。 3. The method for adjusting the particle size distribution of sintered ore according to claim 2, wherein the maximum value of the reduction rate Rs * at the start of fusion bonding is a maximum value. 粒度分布調整前の前記装入用焼結鉱の調和平均粒径Dpが前記基準値Sを超えている場合、粒度分布調整後の前記装入用焼結鉱の調和平均粒径Dpが前記基準値S以上となるように、前記装入用焼結鉱の前記粒度分布を調整すること特徴とする請求項3に記載の焼結鉱の粒度分布の調整方法。 When the harmonic average particle size Dp of the sintered ore for charging before adjusting the particle size distribution exceeds the reference value S, the harmonic average particle size Dp a of the sintered ore for charging after adjusting the particle size distribution is the above The method for adjusting the particle size distribution of sintered ore according to claim 3, wherein the particle size distribution of the sintered ore for charging is adjusted so as to be equal to or greater than a reference value S. 所定粒径を超える粗粒焼結鉱の割合を減少させて前記装入用焼結鉱の前記粒度分布を調整することを特徴とする、請求項4に記載の焼結鉱の粒度分布の調整方法。 Adjustment of the particle size distribution of the sintered ore according to claim 4, wherein the particle size distribution of the charged sintered ore is adjusted by reducing the proportion of coarse-grained sintered ore exceeding a predetermined particle size. Method. 粒度分布調整前の前記装入用焼結鉱の調和平均粒径Dpが前記基準値S未満である場合、粒度分布調整後の前記装入用焼結鉱の調和平均粒径Dpが前記基準値S以下となるように、前記装入用焼結鉱の前記粒度分布を調整すること特徴とする請求項3に記載の焼結鉱の粒度分布の調整方法。 When the harmonic average particle size Dp of the sintered ore for charging before adjusting the particle size distribution is less than the reference value S, the harmonic average particle size Dpa of the sintered ore for charging after adjusting the particle size distribution is equal to the reference 4. The method for adjusting the particle size distribution of sintered ore according to claim 3, wherein the particle size distribution of the charged sintered ore is adjusted so as to be equal to or less than the value S. 所定粒径未満の細粒焼結鉱の割合を減少させて前記装入用焼結鉱の前記粒度分布を調整することを特徴とする、請求項6に記載の焼結鉱の粒度分布の調整方法。 Adjustment of the particle size distribution of the sintered ore according to claim 6, wherein the particle size distribution of the charged sintered ore is adjusted by reducing the proportion of fine-grained sintered ore having a particle size less than a predetermined particle size. Method. 粒度分布調整後の前記装入用焼結鉱の調和平均粒径Dpが下記式(1)を満足するように、前記装入用焼結鉱の前記粒度分布を調整することを特徴とする請求項3から7の何れか一項に記載の焼結鉱の粒度分布の調整方法。
Figure 2023050035000026
上記式(1)において、Sは、基準値[mm]を示し、Dpは、粒度分布を調整した後の前記装入用焼結鉱の調和平均粒径[mm]を示す。
The particle size distribution of the sintered ore to be charged is adjusted so that the harmonic average particle size Dpa of the sintered ore to be charged after adjusting the particle size distribution satisfies the following formula (1): The method for adjusting the particle size distribution of the sintered ore according to any one of claims 3 to 7.
Figure 2023050035000026
In the above formula (1), S indicates a reference value [mm], and Dpa indicates a harmonic mean particle size [mm] of the sintered ore for charging after adjusting the particle size distribution.
前記基準値Sが12mmであることを特徴とする請求項1から8の何れか一項に記載の焼結鉱の粒度分布の調整方法。 The method for adjusting the particle size distribution of sintered ore according to any one of claims 1 to 8, wherein the reference value S is 12 mm. 前記検討用焼結鉱からなる前記検討用焼結鉱充填層の前記融着開始時還元率Rsは、前記装入用焼結鉱が装入される高炉における、(a)前記装入用焼結鉱からなる装入用焼結鉱充填層の充填状態、(b)前記装入用焼結鉱充填層の温度、(c)前記装入用焼結鉱充填層に流れる還元ガスの組成及び流量、並びに(d)前記装入用焼結鉱充填層にかかる荷重、のうちの一つ以上を用いて取得されることを特徴とする、請求項1から9の何れか一項に記載の焼結鉱の粒度分布の調整方法。 The reduction rate Rs * at the start of fusion of the sintered ore packed bed for investigation made of the sintered ore for investigation is determined by (a) the charging (b) the temperature of the sintered ore packed bed for charging; and (c) the composition of the reducing gas flowing in the sintered ore packed bed for charging. and flow rate, and (d) the load applied to the charging sinter packed bed, obtained using one or more of A method for adjusting the particle size distribution of sintered ore. 請求項4に記載の調整方法で粒度分布が調整される前記装入用焼結鉱に関する前記融着開始時還元率Rsの変化量ΔRsを、下記式(2)に基づいて推定することを特徴とする、変化量ΔRsの推定方法。
Figure 2023050035000027
上記式(2)において、ΔRsは、粒度分布の調整前後における前記装入用焼結鉱に関する前記融着開始時還元率Rsの変化量[%]を示し、Cは、前記検討用焼結鉱の前記調和平均粒径Dpが前記基準値S以上の範囲内における、前記検討用焼結鉱の前記調和平均粒径Dpに対する前記検討用焼結鉱の前記融着開始時還元率Rsの変化率[%/mm]を示し、ΔDpは、粒度分布の調整前後における前記装入用焼結鉱の前記調和平均粒径Dpの変化量[mm]を示し、Dは、前記検討用焼結鉱の初期空隙率εに対する前記検討用焼結鉱の前記融着開始時還元率Rsの変化率[%/-]を示し、Δεは、粒度分布の調整前後における前記装入用焼結鉱に関する前記初期空隙率εの変化量[-]を示す。
Estimating the amount of change ΔRs * of the reduction rate Rs * at the start of fusion for the charged sinter whose particle size distribution is adjusted by the adjustment method according to claim 4, based on the following formula (2): A method for estimating the amount of change ΔRs * , characterized by:
Figure 2023050035000027
In the above formula (2), ΔRs * indicates the amount of change [%] in the reduction rate Rs * at the start of fusion bonding regarding the charging sintered ore before and after adjusting the particle size distribution, and C1 is the The reduction rate Rs at the start of fusion bonding of the sintered ore for investigation with respect to the harmonic average particle diameter Dp of the sintered ore for investigation in the range where the harmonic average particle diameter Dp of the sintered ore is equal to or greater than the reference value S * indicates the rate of change [% / mm], ΔDp indicates the amount of change [mm] in the harmonic average particle diameter Dp of the sintered ore for charging before and after adjusting the particle size distribution, and D 1 is the study shows the rate of change [%/−] of the reduction rate Rs * at the start of fusion bonding of the sintered ore for investigation with respect to the initial porosity ε 0 of the sintered ore for study, and Δε 0 is the sintered ore before and after adjustment of the particle size distribution. The amount of change [-] in the initial porosity ε0 for the required sintered ore is shown.
前記基準値Sが12であり、
前記Cが-1.2であり、
前記Dが150である、
ことを特徴とする請求項11に記載の変化量ΔRsの推定方法。
The reference value S is 12,
said C 1 is -1.2;
wherein said D1 is 150;
The method for estimating the amount of change ΔRs * according to claim 11, characterized in that:
請求項6に記載の調整方法で粒度分布が調整される前記装入用焼結鉱に関する前記融着開始時還元率Rsの変化量ΔRsを、下記式(3)に基づいて推定することを特徴とする、変化量ΔRsの推定方法。
Figure 2023050035000028
上記式(3)において、ΔRsは、粒度分布の調整前後における前記装入用焼結鉱に関する前記融着開始時還元率Rsの変化量[%]を示し、Cは、前記検討用焼結鉱の前記調和平均粒径Dpが前記基準値S以下の範囲内における、前記検討用焼結鉱の前記調和平均粒径Dpに対する前記検討用焼結鉱の前記融着開始時還元率Rsの変化率[%/mm]を示し、ΔDpは、粒度分布の調整前後における前記装入用焼結鉱の前記調和平均粒径Dpの変化量[mm]を示し、Dは、前記検討用焼結鉱の初期空隙率εに対する前記検討用焼結鉱の前記融着開始時還元率Rsの変化率[%/-]を示し、Δεは、粒度分布の調整前後における前記装入用焼結鉱に関する前記初期空隙率εの変化量[-]を示す。
Estimating the amount of change ΔRs * of the reduction rate Rs * at the start of fusion for the charging sinter ore, the particle size distribution of which is adjusted by the adjustment method according to claim 6, based on the following formula (3): A method for estimating the amount of change ΔRs * , characterized by:
Figure 2023050035000028
In the above formula (3), ΔRs * indicates the amount of change [%] in the reduction rate Rs * at the start of fusion bonding regarding the charging sintered ore before and after adjusting the particle size distribution, and C2 is the The reduction rate Rs at the start of fusion bonding of the sintered ore for investigation with respect to the harmonic average particle diameter Dp of the sintered ore for investigation in the range where the harmonic average particle diameter Dp of the sintered ore is equal to or less than the reference value S * indicates the rate of change [% / mm], ΔDp indicates the amount of change [mm] in the harmonic average particle size Dp of the sintered ore for charging before and after adjusting the particle size distribution, and D2 is the above-described study. shows the rate of change [%/−] of the reduction rate Rs * at the start of fusion bonding of the sintered ore for investigation with respect to the initial porosity ε 0 of the sintered ore for study, and Δε 0 is the sintered ore before and after adjustment of the particle size distribution. The amount of change [-] in the initial porosity ε0 for the required sintered ore is shown.
前記基準値Sが12であり、
前記Cが1.2であり、
前記Dが150である、
ことを特徴とする請求項13に記載の変化量ΔRsの推定方法。
The reference value S is 12,
said C2 is 1.2;
wherein said D2 is 150;
The method for estimating the amount of change ΔRs * according to claim 13, characterized in that:
JP2021160186A 2021-09-29 2021-09-29 ADJUSTMENT METHOD OF PARTICLE SIZE DISTRIBUTION OF SINTERED ORE AND ESTIMATION METHOD OF CHANGE AMOUNT ΔRs* IN REDUCTION RATIO Rs* AT THE START OF FUSION Pending JP2023050035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021160186A JP2023050035A (en) 2021-09-29 2021-09-29 ADJUSTMENT METHOD OF PARTICLE SIZE DISTRIBUTION OF SINTERED ORE AND ESTIMATION METHOD OF CHANGE AMOUNT ΔRs* IN REDUCTION RATIO Rs* AT THE START OF FUSION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021160186A JP2023050035A (en) 2021-09-29 2021-09-29 ADJUSTMENT METHOD OF PARTICLE SIZE DISTRIBUTION OF SINTERED ORE AND ESTIMATION METHOD OF CHANGE AMOUNT ΔRs* IN REDUCTION RATIO Rs* AT THE START OF FUSION

Publications (1)

Publication Number Publication Date
JP2023050035A true JP2023050035A (en) 2023-04-10

Family

ID=85801923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021160186A Pending JP2023050035A (en) 2021-09-29 2021-09-29 ADJUSTMENT METHOD OF PARTICLE SIZE DISTRIBUTION OF SINTERED ORE AND ESTIMATION METHOD OF CHANGE AMOUNT ΔRs* IN REDUCTION RATIO Rs* AT THE START OF FUSION

Country Status (1)

Country Link
JP (1) JP2023050035A (en)

Similar Documents

Publication Publication Date Title
Fu et al. CFD modeling of multiphase reacting flow in blast furnace shaft with layered burden
Loo et al. Effect of iron ores and sintering conditions on flame front properties
Kinaci et al. A CFD-DEM model for the simulation of direct reduction of iron-ore in fluidized beds
KR101300941B1 (en) Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending
JP3033466B2 (en) Blast furnace operation method
Kurosawa et al. DEM-CFD model considering softening behavior of ore particles in cohesive zone and gas flow analysis at low coke rate in blast furnace
JP7122209B2 (en) Simulation device, simulation method, and program
Yamaoka et al. Development of a 3-D sinter process mathematical simulation model
Zhou et al. Experimental study and X-ray microtomography based CFD simulation for the characterization of pressure drop in sinter bed
Schneiderbauer et al. Computational Fluid Dynamics Simulation of Iron Ore Reduction in Industrial‐Scale Fluidized Beds
JP2017128794A (en) Method for inputting raw material to blast furnace
JP6809523B2 (en) Coke powder rate estimation method and blast furnace operation method
JP2023050035A (en) ADJUSTMENT METHOD OF PARTICLE SIZE DISTRIBUTION OF SINTERED ORE AND ESTIMATION METHOD OF CHANGE AMOUNT ΔRs* IN REDUCTION RATIO Rs* AT THE START OF FUSION
JP7063159B2 (en) Quality control method for coke for blast furnace
Mitra et al. Pressure-drop modelling in the softening and melting test for ferrous burden
Zhang et al. Effect of operating parameters on gas-solid exergy transfer performance in sinter annular cooler
Kamble et al. Effect of raceway shape and size on gas and fines flow behavior in a packed bed
JP4971662B2 (en) Blast furnace operation method
Si et al. DEM study of the porosity distribution of sinter and coke layers in the throat region of a blast furnace
JP2023050037A (en) High temperature property estimation method, computer program and blast furnace operation method
JP2022019640A (en) Estimation method for powdering amount of coke, estimation method for powdering amount and particle diameter of coke, estimation method for permeability in blast furnace, and operation method for blast furnace
JP7180467B2 (en) Reactor for simulating blast furnace cohesive zone
Mitra et al. Understanding cohesive zone behaviour of blast furnace based on computed tomography flow modelling in a fused bed of ferrous and coke particles
JP6350101B2 (en) Charge determination method for carbon highly reactive charge and blast furnace operation method using the same
JP2023050036A (en) Operation method of blast furnace and blend design method of ore raw material for blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240520