JP2023045616A - injection molding method - Google Patents

injection molding method Download PDF

Info

Publication number
JP2023045616A
JP2023045616A JP2021154142A JP2021154142A JP2023045616A JP 2023045616 A JP2023045616 A JP 2023045616A JP 2021154142 A JP2021154142 A JP 2021154142A JP 2021154142 A JP2021154142 A JP 2021154142A JP 2023045616 A JP2023045616 A JP 2023045616A
Authority
JP
Japan
Prior art keywords
temperature
injection
resin
screw
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021154142A
Other languages
Japanese (ja)
Inventor
祐一朗 有馬
Yuichiro Arima
昭男 岡本
Akio Okamoto
裕一郎 福田
Yuichiro Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2021154142A priority Critical patent/JP2023045616A/en
Publication of JP2023045616A publication Critical patent/JP2023045616A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an injection molding method capable of adjusting a metered resin injected and filled into a mold cavity to an appropriate temperature condition.SOLUTION: In an injection molding method for storing a predetermined amount of metered resin in an injection cylinder 11 by adjusting screw speed and back pressure in a metering process, and injecting and filling the metered resin into a mold cavity 23 by adjusting injection speed of a screw 14 in an injection process, temperature measuring means 50 for measuring a filling temperature of the metered resin injected and filled into the mold cavity 23 during the injection process is provided. A filling temperature waveform Z of the metered resin is obtained from measured data of the temperature measuring means 50, and when the filling temperature waveform Z is out of a range of allowable temperatures H and L set for a reference temperature waveform K, temperature correction processing is performed.SELECTED DRAWING: Figure 5

Description

本発明は、計量工程でスクリュ回転数と背圧を調整して、所定量の計量樹脂を射出シリンダ内に貯蔵し、射出工程で前記スクリュの射出速度を調整して、計量樹脂を金型キャビティ内に射出充填する射出成形方法に関するものである。 The present invention adjusts the screw rotation speed and back pressure in the metering process to store a predetermined amount of metered resin in the injection cylinder, and adjusts the injection speed of the screw in the injection process to release the metered resin into the mold cavity. It relates to an injection molding method for injection filling inside.

射出成形は、温度調整された射出シリンダ内に材料供給装置を用いて樹脂材料を供給する。供給された樹脂材料は、螺旋状のフライトを有するスクリュの回転運動によるせん断発熱と、射出シリンダに設けたヒータ等の熱量によって、可塑化し溶融樹脂となってスクリュ先端側に回転輸送され、射出シリンダ内に計量樹脂として貯蔵される。計量樹脂の貯蔵に伴いスクリュは後退動作し、所定の後退位置でスクリュの回転運動を停止してスクリュ位置が保持される(計量工程という)。このスクリュの後退動作に抵抗力を負荷して、貯蔵される成形材料の溶融混錬性を調整する(背圧制御という)。 In injection molding, a material supply device is used to supply a resin material into an injection cylinder whose temperature is controlled. The supplied resin material is plasticized by shear heat generated by the rotating motion of the screw having a helical flight and the amount of heat generated by the heater or the like provided in the injection cylinder. stored as a weighing resin in As the resin to be measured is stored, the screw moves backward, and at a predetermined retracted position, the screw stops rotating and the screw position is held (referred to as a measuring process). A resistive force is applied to the backward movement of the screw to adjust the melt-kneadability of the stored molding material (referred to as back pressure control).

次いで、スクリュを前進動作させて、計量樹脂を金型キャビティ内に射出充填する射出工程と、溶融状態の計量樹脂の冷却固化収縮を補う保圧工程と、溶融状態の計量樹脂を金型キャビティ内で冷却固化させる冷却工程を経て、型開して金型キャビティから射出成形品として取り出す。この一連の成形動作を必要な成形品の個数を得るまで繰り返す。 Next, the screw is moved forward to inject and fill the measured resin into the mold cavity, a holding pressure process compensates for cooling solidification shrinkage of the molten measured resin, and the molten measured resin is injected into the mold cavity. After cooling and solidifying at , the mold is opened and taken out from the mold cavity as an injection molded product. This series of molding operations is repeated until the required number of molded products is obtained.

ここで、射出成形品の品質は、成形動作の起点である計量工程で貯蔵される、計量樹脂の溶融混錬の程度を示す樹脂温度の安定性に依存される。例えば、樹脂温度が変動すると、金型キャビティ内の計量樹脂の流動状態が変動し、その結果、製品ショート、樹脂バリ、製品重量の変動、ウエルドやフローマーク等の外観不良、ボイドや未溶融樹脂の混在、製品変形や製品寸法誤差、面ハリ不良や転写不良等の樹脂温度の変動に起因する成形不良となる。計量樹脂の変動は、計量工程に続く射出工程や保圧工程で補正することは困難である。そのために、古くから計量樹脂の安定に関する提案が多くなされている。 Here, the quality of the injection-molded product depends on the stability of the resin temperature, which indicates the degree of melt-kneading of the weighed resin stored in the weighing process, which is the starting point of the molding operation. For example, if the resin temperature fluctuates, the flow state of the metered resin in the mold cavity will fluctuate, resulting in product shorts, resin burrs, product weight fluctuations, appearance defects such as welds and flow marks, voids and unmelted resin. Molding defects due to resin temperature fluctuations such as mixture, product deformation, product dimensional error, surface tension failure, transfer failure, etc. Fluctuations in metered resin are difficult to compensate for in the injection and hold pressure steps following the metering step. For this reason, many proposals have been made over the years regarding the stability of weighing resins.

例えば、特許文献1に示すような、射出シリンダから金型までの範囲に温度センサを取付け、射出工程中に計量樹脂の温度分布を計測して、射出シリンダのヒータ配置に割付けし、ヒータの温度設定を補正するとしている。さらに、この温度補正に加えて、スクリュの回転数や背圧値を補正するとしている。これにより、計量樹脂の温度の均一化を得ることができるとされている。 For example, as shown in Patent Document 1, a temperature sensor is installed in the range from the injection cylinder to the mold, the temperature distribution of the weighed resin is measured during the injection process, and the heater arrangement of the injection cylinder is assigned to determine the heater temperature I am going to correct the settings. Furthermore, in addition to this temperature correction, the number of revolutions of the screw and the back pressure value are also corrected. It is said that this makes it possible to equalize the temperature of the weighing resin.

特開2000-176983号公報JP-A-2000-176983

ここで、特許文献1に示すように、射出シリンダ内の計量樹脂の温度を均一に調整できたとしても、その後の射出工程において、金型キャビティ内を計量樹脂が流動する際にせん断発熱を受けて、樹脂温度は大きく変わってしまう。このせん断発熱は、せん断速度と材料粘度に関係する。せん断速度は、計量樹脂の流速と計量樹脂が通過する流路面積に関係し、流速の上昇に伴いせん断発熱の程度も大きくなり、流路が狭くなるにつれてせん断発熱も大きくなる。例えば、流路の狭いゲート部を通過する際にせん断発熱量が大きくなり、樹脂温度は上昇する。また、材料粘度は樹脂温度に関係し、樹脂温度の低下に伴い材料粘度が高くなり、せん断発熱量も大きくなる。射出成形の品質は、金型キャビティ内に射出充填された計量樹脂の温度状態に大きく影響を受けるので、特許文献1では射出成形品の品質の安定化が約束されるものではない。 Here, as shown in Patent Document 1, even if the temperature of the metered resin in the injection cylinder can be uniformly adjusted, shear heat is generated when the metered resin flows in the mold cavity in the subsequent injection process. Therefore, the resin temperature changes greatly. This shear heating is related to shear rate and material viscosity. The shear rate is related to the flow rate of the metering resin and the area of the channel through which the metering resin passes. For example, when passing through a narrow gate portion of the flow path, the amount of shear heat generation increases, and the resin temperature rises. In addition, the material viscosity is related to the resin temperature, and as the resin temperature decreases, the material viscosity increases and the amount of shear heat generated also increases. The quality of injection molding is greatly affected by the temperature state of the weighed resin injected and filled into the mold cavity.

そこで本発明は、金型キャビティ内に射出充填された計量樹脂を適切な温度状態に調整することができる、射出成形法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an injection molding method capable of adjusting the temperature of a metered resin injected and filled into a mold cavity to an appropriate temperature state.

本発明の射出成形方法は、
計量工程でスクリュ回転数と背圧を調整して、所定量の計量樹脂を射出シリンダ内に貯蔵し、射出工程で前記スクリュの射出速度を調整して、前記計量樹脂を金型キャビティ内に射出充填する射出成形方法において、
前記射出工程中の前記金型キャビティ内に射出充填される前記計量樹脂の充填温度を計測する温度計測手段を備え、
前記温度計測手段の計測データから前記計量樹脂の充填温度波形を求め、前記充填温度波形が基準温度波形に対して設定された許容温度の範囲外である場合に温度補正処理を行う、ことを特徴とする。
The injection molding method of the present invention is
In the metering process, the screw rotation speed and back pressure are adjusted to store a predetermined amount of measured resin in the injection cylinder, and in the injection process, the injection speed of the screw is adjusted to inject the measured resin into the mold cavity. In the filling injection molding method,
temperature measuring means for measuring the filling temperature of the weighed resin injected and filled into the mold cavity during the injection process;
A filling temperature waveform of the measured resin is obtained from the measurement data of the temperature measuring means, and temperature correction processing is performed when the filling temperature waveform is out of an allowable temperature range set with respect to the reference temperature waveform. and

本発明の射出成形方法において、
前記温度計測手段は、前記金型キャビティのゲートから射出充填される前記計量樹脂の流動方向に沿って、射出成形金型に組み込まれた複数の温度センサである、ことが好ましい。
In the injection molding method of the present invention,
Preferably, the temperature measuring means is a plurality of temperature sensors incorporated in the injection mold along the flow direction of the metered resin that is injected and filled from the gate of the mold cavity.

また、本発明の射出成形方法において、
前記温度計測手段は、前記計量樹脂の射出充填の完了から所定の時間の経過後に、前記金型キャビティを開放して、前記計量樹脂の熱画像を撮影するサーモカメラである、ことが好ましい。
Further, in the injection molding method of the present invention,
It is preferable that the temperature measuring means is a thermo camera that opens the mold cavity and takes a thermal image of the measured resin after a predetermined time has elapsed since injection filling of the measured resin is completed.

さらに、本発明の射出成形方法において、
前記温度補正処理は、前記充填温度波形が前記許容温度の範囲外となる位置を補正位置とし、前記補正位置を前記射出工程中の前記スクリュ位置に変換し、変換後の前記スクリュ位置を補正スクリュ位置とし、前記補正スクリュ位置に基づいて、前記計量工程の前記スクリュ回転数の補正を行う、ことが好ましい。
Furthermore, in the injection molding method of the present invention,
In the temperature correction process, a position where the filling temperature waveform is out of the allowable temperature range is set as a correction position, the correction position is converted to the screw position during the injection process, and the converted screw position is converted to the correction screw position. and correcting the screw rotational speed in the metering step based on the corrected screw position.

また、本発明の射出成形方法において、
前記温度補正処理は、前記充填温度波形が前記許容温度の範囲外となる位置を補正位置とし、前記補正位置を前記射出工程中の前記スクリュ位置に変換し、変換後の前記スクリュ位置を補正スクリュ位置とし、前記補正スクリュ位置に基づいて、前記計量工程の前記背圧の補正を行う、ことが好ましい。
Further, in the injection molding method of the present invention,
In the temperature correction process, a position where the filling temperature waveform is out of the allowable temperature range is set as a correction position, the correction position is converted to the screw position during the injection process, and the converted screw position is converted to the correction screw position. and a correction of said back pressure of said metering step based on said corrected screw position.

本発明によれば、金型キャビティ内に射出充填された計量樹脂を適切な温度状態に調整することができる、射出成形法を提供することができる。 According to the present invention, it is possible to provide an injection molding method capable of adjusting the temperature of the metered resin injected and filled into the mold cavity to an appropriate temperature state.

本発明の実施形態に係る射出成形機の概念図である。1 is a conceptual diagram of an injection molding machine according to an embodiment of the present invention; FIG. 本発明の実施形態に係る温度計測手段の概念図である。FIG. 2 is a conceptual diagram of temperature measuring means according to the embodiment of the present invention; 図1に示す射出成形装置を用いた成形動作を示す図である。1. It is a figure which shows the molding operation using the injection molding apparatus shown in FIG. 金型キャビティ内の計量樹脂の流動状態を示す図である。FIG. 4 is a diagram showing the flow state of the metered resin in the mold cavity; 本発明の実施形態に係る射出成形方法を示す図である。It is a figure which shows the injection molding method which concerns on embodiment of this invention.

以下、本発明を実施するための好適な実施形態について図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組合せの全てが、各請求項に係る発明の解決手段に必須であるとは限らない。また、本実施形態においては、各構成要素の尺度や寸法が誇張されて示されている場合や、一部の構成要素が省略されている場合がある。 Preferred embodiments for carrying out the present invention will be described below with reference to the drawings. In addition, the following embodiments do not limit the invention according to each claim. In addition, not all combinations of features described in the embodiments are essential for the solutions of the inventions according to the respective claims. In addition, in this embodiment, the scale and dimensions of each component may be exaggerated, and some components may be omitted.

[射出成形機]
先ず、本発明の実施形態に係る射出成形機について、図1を用いて説明する。なお、以下の説明では、本発明の実施形態に係る射出成形機として、横型射出成形機をベースとしたが、これに限定されるものではない。図1に示す射出成形機100は、射出装置10と、射出成形金型20と、射出駆動部30と、射出制御部40と、を備える。
[Injection molding machine]
First, an injection molding machine according to an embodiment of the present invention will be described with reference to FIG. In the following description, the injection molding machine according to the embodiment of the present invention is based on a horizontal injection molding machine, but the present invention is not limited to this. An injection molding machine 100 shown in FIG. 1 includes an injection device 10 , an injection mold 20 , an injection drive section 30 and an injection control section 40 .

射出装置10は、円筒状の射出シリンダ11と、射出シリンダ11内に配置されるスクリュ14と、を備える。射出制御部40は、射出駆動部30を操作してスクリュ14の回転動作と前後進動作を調整する。ここで、スクリュ14の動作に関して、射出成形金型10に近い方向を前方F、前方Fへの動作を前進動作、射出成形金型10から離れる方向を後方B、後方Bの動作を後退動作と定義する。また、射出装置10は、図示しない駆動装置等により、射出装置10と射出成形金型20の接続と離間が操作され、射出成形を行う際は接続状態である。 The injection device 10 includes a cylindrical injection cylinder 11 and a screw 14 arranged inside the injection cylinder 11 . The injection control unit 40 operates the injection driving unit 30 to adjust the rotation and forward/backward movement of the screw 14 . Here, regarding the movement of the screw 14, the direction closer to the injection molding die 10 is forward F, the movement forward F is forward movement, the direction away from the injection molding die 10 is backward B, and the movement backward B is backward movement. Define. Further, the injection device 10 is operated to connect and separate the injection device 10 and the injection molding die 20 by a driving device (not shown) or the like, and is in a connected state when injection molding is performed.

射出シリンダ11は、外周面に複数のヒータ12が所定の間隔で配置され、図示しない温度調節装置によりヒータ12を温度制御して、射出シリンダ11が所定の温度に調整される。また、射出シリンダ11の後方に材料ホッパ13を備え、図示しない材料供給装置等により材料ホッパ13から射出シリンダ11内へ樹脂材料が供給される。 A plurality of heaters 12 are arranged on the outer peripheral surface of the injection cylinder 11 at predetermined intervals, and the temperature of the heaters 12 is controlled by a temperature control device (not shown) to adjust the temperature of the injection cylinder 11 to a predetermined temperature. A material hopper 13 is provided behind the injection cylinder 11, and a resin material is supplied from the material hopper 13 into the injection cylinder 11 by a material supply device or the like (not shown).

スクリュ14は、後方Bから前方Fに向かって螺旋状のフライト15を備える。スクリュ14の回転方向に対して、材料ホッパ13から供給した樹脂材料を前方Fへ回転輸送できるように、フライト15の螺旋状の向きと角度を設定する。なお、図1に示すように、フライト15は一定の間隔で一定の角度で1条の配置としたが、これに限定されることなく、例えば、間隔や角度を可変してもよく、複数条の配列としても良い。あるいは、スクリュ14の一部の範囲のみフライト15を複数条の配列としても良い。 The screw 14 has a helical flight 15 extending from the rear B to the front F. The helical direction and angle of the flight 15 are set so that the resin material supplied from the material hopper 13 can be rotationally transported forward F with respect to the rotational direction of the screw 14 . As shown in FIG. 1, one flight 15 is arranged at a constant interval and at a constant angle, but the arrangement is not limited to this. It can also be an array of Alternatively, a plurality of flights 15 may be arranged only in a partial range of the screw 14 .

また、スクリュ14は、後方Bから前方Fに向かって直径が段階的に大きくなる円柱形状とする。つまり、スクリュ14と射出シリンダ11との隙間の容積が、後方Bから前方Fに向かって段階的に小さくなるように、例えば、輸送ゾーン、圧縮ゾーン、溶融ゾーンというように設定する。これにより、材料ホッパ13から供給された樹脂材料は、スクリュ14とフライト15の回転動作により前方輸送され、容積の縮小により圧縮作用とせん断発熱が樹脂材料に作用し、ヒータ12からの熱量付与の相乗効果により、段階的に溶融し(可塑化という)、スクリュ14の前方Fに向かって溶融樹脂が生成され、スクリュ14の先端部に配置される逆流防止装置16内の流路を通って、スクリュ14の前方F側の貯蔵エリア17に溶融樹脂が貯蔵される(計量樹脂という)。計量樹脂の増加に伴い、スクリュ14は後方B側に後退し、所定の後退位置でスクリュ14の回転動作を停止し、その停止位置を保持する(計量工程という)。このスクリュ14の後退動作に制限をかけて(計量背圧という)、成形材料の溶融混錬性を調整する(背圧制御という)。射出工程は、スクリュ14を前進させて計量樹脂を射出成形金型20に向けて射出充填する。この射出工程では、逆流防止装置16内の流路は閉鎖されている。 The screw 14 has a cylindrical shape whose diameter increases stepwise from the rear B to the front F. That is, the volume of the gap between the screw 14 and the injection cylinder 11 is set so as to gradually decrease from the rear B to the front F, for example, the transport zone, the compression zone, and the melting zone. As a result, the resin material supplied from the material hopper 13 is transported forward by the rotational motion of the screw 14 and the flight 15, and the reduction in volume causes the compression action and shear heat generation to act on the resin material. Due to the synergistic effect, it is melted in stages (called plasticization), and molten resin is generated toward the front F of the screw 14. Molten resin is stored in a storage area 17 on the front side F of the screw 14 (referred to as a weighed resin). As the amount of resin to be measured increases, the screw 14 retreats to the rear B side, stops rotating at a predetermined retreated position, and holds the stopped position (referred to as a metering process). The backward movement of the screw 14 is restricted (referred to as metering back pressure) to adjust the melt-kneadability of the molding material (referred to as back pressure control). In the injection process, the screw 14 is advanced to inject and fill the metered resin toward the injection mold 20 . During this injection process, the flow path in the backflow prevention device 16 is closed.

射出成形金型20は、固定金型21と可動金型22が図示しない型締装置に支持され、型締装置により固定金型21に対して可動金型22は進退自在に動作する。ここで、可動金型22の動作に関して、固定金型21に近づく動作を型閉動作、固定金型21から離れる動作を型開動作と定義する。また、型閉動作で固定金型21と可動金型22が当接した位置を金型タッチ点、金型タッチ点から更に型閉動作方向の動作を型締動作、型締動作の完了位置を型締限、型締限から金型タッチ点までの動作を降圧動作と定義する。金型タッチ点から型締限の範囲内で、金型キャビティ23が形成される。また、固定金型21には、樹脂材料が流動する樹脂流路24と、樹脂流路24の開閉を行うバルブゲート25と、金型キャビティ23に樹脂流路24を接続するゲート26、とを備える。樹脂流路24は、射出シリンダ11と同様に所定の温度に調整される。 In the injection molding die 20, a fixed die 21 and a movable die 22 are supported by a die clamping device (not shown), and the movable die 22 moves forward and backward with respect to the fixed die 21 by the die clamping device. Here, regarding the motion of the movable mold 22, the motion of approaching the fixed mold 21 is defined as the mold closing motion, and the motion of moving away from the fixed mold 21 is defined as the mold opening motion. In addition, the mold touch point is the position where the fixed mold 21 and the movable mold 22 abut during the mold closing operation, the mold clamping operation is the movement in the direction of the mold closing operation from the mold touch point, and the completion position of the mold clamping operation is The mold clamping limit and the operation from the mold clamping limit to the mold touch point are defined as the step-down operation. A mold cavity 23 is formed within the range of the mold clamping limit from the mold touch point. In addition, the fixed mold 21 includes a resin channel 24 through which the resin material flows, a valve gate 25 that opens and closes the resin channel 24 , and a gate 26 that connects the resin channel 24 to the mold cavity 23 . Prepare. The resin flow path 24 is adjusted to a predetermined temperature in the same manner as the injection cylinder 11 .

ここで、射出成形に用いる樹脂材料として、例えば、自動車内装部品においては、ポリプロピレン(PP)樹脂やポリエチレン(PE)樹脂等の熱可塑性樹脂に、黒や赤や青等の着色剤を添加して部品の色調を調整することが一般的である。また、熱可塑性樹脂に対して柔軟性を与える可塑剤、結晶性樹脂に対して結晶化度を制御する核剤や透明化剤、燃焼を抑制する難燃剤、静電気の帯電を抑制する帯電防止剤、流動性や離型性を改善する滑剤、紫外線による劣化を抑制する対候剤や紫外線劣化防止剤、ガラス繊維や炭素繊維等の強化剤等の各種の添加剤が適宜選択さる。また、ポリプロピレン(PP)樹脂やポリエチレン(PE)樹脂等の汎用樹脂、ポリアミド(PA)樹脂やポリカーボネイト(PC)樹脂等のエンジニアリング樹脂、ポリフェニレンサルファイド(PPS)樹脂やポリエーテルエーテルケトン(PEEK)樹脂等の超エンジニアリング樹脂等の熱可塑性樹脂が適宜選択される。熱可塑性樹脂と添加剤を合わせて樹脂材料という。なお、熱可塑性樹脂の代わりに、例えば、フェノール(PF)樹脂やメラニン(MF)樹脂等の熱硬化性樹脂を用いても良い。 Here, as a resin material used for injection molding, for example, in automobile interior parts, a thermoplastic resin such as polypropylene (PP) resin or polyethylene (PE) resin is added with a coloring agent such as black, red, or blue. It is common to adjust the color tone of the part. In addition, plasticizers that give flexibility to thermoplastic resins, nucleating agents and clarifying agents that control the degree of crystallinity in crystalline resins, flame retardants that suppress combustion, and antistatic agents that suppress static electricity. , lubricants that improve fluidity and releasability, weathering agents and UV deterioration inhibitors that suppress deterioration due to ultraviolet rays, and reinforcing agents such as glass fibers and carbon fibers. In addition, general-purpose resins such as polypropylene (PP) resin and polyethylene (PE) resin, engineering resins such as polyamide (PA) resin and polycarbonate (PC) resin, polyphenylene sulfide (PPS) resin and polyether ether ketone (PEEK) resin, etc. A thermoplastic resin such as a super engineering resin is selected as appropriate. A combination of thermoplastic resin and additives is called a resin material. Thermosetting resins such as phenol (PF) resins and melanin (MF) resins may be used instead of thermoplastic resins.

[温度計測手段]
次に、本発明の実施形態に係る、射出工程で金型キャビティ内に射出充填された計量樹脂の充填温度を計測する温度計測手段について、図2を用いて説明する。
[Temperature measuring means]
Next, temperature measuring means for measuring the filling temperature of the measured resin injected and filled into the mold cavity in the injection process according to the embodiment of the present invention will be described with reference to FIG.

先ず、図2(a)に示すように、温度計測手段50として、金型キャビティ23のゲート26から、射出充填される計量樹脂の流動方向に沿って、複数の温度センサ51を可動金型22に配置する。複数の温度センサ51で計測した温度データは、温度受信部52で射出工程中の計量樹脂の充填温度に編集し、編集データを射出制御部40へ送信する。なお、図2(a)においては、ゲート26から下側の金型キャビティ23に沿って温度センサ51を配置したが、これに限定されることなく、例えば、金型キャビティ23の全範囲に温度センサ51を配置するとしても良い。また、温度センサ51を固定金型21に配置しても良く、金型キャビティ23から一定の距離に離して配置しても良い。 First, as shown in FIG. 2(a), as the temperature measuring means 50, a plurality of temperature sensors 51 are attached to the movable mold 22 from the gate 26 of the mold cavity 23 along the flow direction of the measured resin injected and filled. to be placed. The temperature data measured by the plurality of temperature sensors 51 are edited by the temperature receiving section 52 into the filling temperature of the weighed resin during the injection process, and the edited data is transmitted to the injection control section 40 . Although the temperature sensor 51 is arranged along the mold cavity 23 below the gate 26 in FIG. A sensor 51 may be arranged. Also, the temperature sensor 51 may be arranged on the stationary mold 21 or may be arranged at a certain distance from the mold cavity 23 .

また、図2(b)に示すように、温度計測手段50として、熱画像を撮影するサーモカメラ54を用いる。具体的には、金型キャビティ23内に計量樹脂を射出充填後、任意のタイミングで可動金型22を型開動作して、計量樹脂が完全に冷却固化していない状態の成形品53をサーモカメラ54で撮影する。サーモカメラ54で撮影した熱画像データを、画像受信部55で射出工程中の計量樹脂の充填温度として編集し、編集データを射出制御部40へ送信する。なお、図2(b)に示す手段は、計量樹脂の射出充填後から温度計測するまでに時間が経過していることから、図2(a)に示す手段と比べて精度は劣るもの、充填温度を把握するには好適である。また、図2(b)では、1つのサーモカメラ54で温度計測するとしたが、複数のサーモカメラ54を用いても良い。また、成形品53が固定金型21についた状態で温度計測したが、例えば、ロボット等で成形品53を移送中に温度計測しても良い。 Further, as shown in FIG. 2(b), a thermo camera 54 for capturing a thermal image is used as the temperature measuring means 50. As shown in FIG. Specifically, after the mold cavity 23 is injected and filled with the measured resin, the movable mold 22 is opened at an arbitrary timing, and the molded product 53 in which the measured resin has not completely cooled and solidified is thermostatted. A camera 54 takes a picture. The thermal image data captured by the thermo camera 54 is edited by the image receiving section 55 as the filling temperature of the weighed resin during the injection process, and the edited data is transmitted to the injection control section 40 . In addition, the means shown in FIG. 2(b) is less accurate than the means shown in FIG. It is suitable for grasping the temperature. Also, in FIG. 2B, one thermo camera 54 is used for temperature measurement, but a plurality of thermo cameras 54 may be used. Further, the temperature was measured while the molded product 53 was attached to the stationary mold 21, but the temperature may be measured while the molded product 53 is being transported by a robot or the like.

これらの手段の他に、例えば、CAE流動解析手法のCAE流動解析データから、射出工程中の充填温度を求めたものを用いても良い。この場合、充填温度とスクリュ14との位置関係を容易に表示でき、後述する温度補正処理に利用することができる。また、これらの温度計測手段は、単独で用いても良く、必要に応じて組み合わせて用いても良い。なお、樹脂流路24よりも射出装置10側に温度計測手段を設けた場合は、樹脂流路24やゲート26等を計量樹脂が通過する際に、せん断発熱を受けるので好ましくない。 In addition to these means, for example, the filling temperature during the injection process obtained from CAE flow analysis data of a CAE flow analysis method may be used. In this case, the positional relationship between the filling temperature and the screw 14 can be easily displayed, and can be used for temperature correction processing, which will be described later. Moreover, these temperature measuring means may be used alone, or may be used in combination as necessary. If the temperature measuring means is provided closer to the injection device 10 than the resin flow path 24, shear heat is generated when the metered resin passes through the resin flow path 24 and the gate 26, which is not preferable.

[射出成形動作]
次に、本発明の実施形態に係る射出成形動作について、図3を用いて説明する。図3(a)は、計量工程の射出シリンダ11と射出成形金型20の断面図を示し、図3(b)は、横軸にスクリュ位置S、縦軸に射出速度とした射出工程の射出制御パターンを示す。
[Injection molding operation]
Next, the injection molding operation according to the embodiment of the present invention will be explained using FIG. FIG. 3(a) shows a cross-sectional view of the injection cylinder 11 and the injection mold 20 in the weighing process, and FIG. 3(b) shows the injection process in the injection process with the horizontal axis representing the screw position S and the vertical axis representing the injection speed. Indicates a control pattern.

先ず、図3(a)に示すように、射出シリンダ11の加熱温度、スクリュ14の回転数、背圧、計量完了位置KE等の計量条件が設定された計量制御パターンに基づいて、射出制御部40は射出駆動部30を操作して計量工程が開始される。スクリュ14の位置が計量完了位置KEに達すると、貯蔵エリア17に所定量の計量樹脂が貯蔵され計量工程を終える。計量工程においては、バルブゲート25は閉鎖状態である。また、計量完了位置KEは、引き続き行われる射出工程の射出開始位置SSとなる(KE=SS)。 First, as shown in FIG. 3(a), the injection control unit is operated based on a weighing control pattern in which weighing conditions such as the heating temperature of the injection cylinder 11, the number of revolutions of the screw 14, the back pressure, and the weighing completion position KE are set. 40 operates the injection drive unit 30 to start the weighing process. When the position of the screw 14 reaches the weighing completion position KE, a predetermined amount of weighed resin is stored in the storage area 17, and the weighing process ends. During the weighing process, the valve gate 25 is closed. Also, the metering completion position KE becomes the injection start position SS of the subsequent injection process (KE=SS).

射出工程は、図3(b)に示すように、樹脂材料の特性や金型キャビティ23の形状等によって設定された多段の射出速度の射出制御パターンに基づいて、射出制御部40は射出駆動部30を操作して射出工程を開始する。スクリュ11は、射出開始位置SSから射出保圧切替え位置VPに向かって前進動作し、金型キャビティ23内に計量樹脂が射出充填される。スクリュ位置Sが射出保圧切替え位置VPに到達後は、計量樹脂の冷却固化収縮量を補う保圧工程に移行し、その後、冷却工程を経て射出成形金型20を型開して成形品53を金型キャビティ23から取り出す。射出工程および保圧工程中は、バルブゲート25は開放状態である。なお、図3(b)においては、射出速度の射出制御パターンとしたが、これに限定されることなく、例えば、射出圧力の射出制御パターンとしても良い。この場合は、射出圧力の設定と連動して射出速度が変化する。 In the injection process, as shown in FIG. 3(b), the injection control unit 40 controls the injection drive unit based on an injection control pattern with multiple injection speeds set according to the characteristics of the resin material, the shape of the mold cavity 23, and the like. 30 is operated to start the injection process. The screw 11 advances from the injection start position SS toward the injection holding pressure switching position VP, and the mold cavity 23 is injected and filled with the measured resin. After the screw position S reaches the injection/holding pressure switching position VP, the process shifts to a holding pressure process to compensate for the cooling solidification shrinkage amount of the weighed resin. is removed from the mold cavity 23. During the injection process and pressure holding process, the valve gate 25 is open. In addition, in FIG. 3B, the injection speed injection control pattern is used, but the injection control pattern is not limited to this, and for example, the injection pressure injection control pattern may be used. In this case, the injection speed changes in conjunction with the setting of the injection pressure.

ここで、射出工程において、計量樹脂は樹脂流路24から金型キャビティ23の範囲で計量樹脂が流動する際に、せん断発熱の影響を大きく受ける。このせん断発熱はせん断速度と材料粘度に関係し、せん断速度が大きいほど、材料粘度が高いほど、せん断発熱は大きくなり、計量樹脂は発熱され温度上昇する。 Here, in the injection process, the measured resin is greatly affected by shear heat generation when the measured resin flows in the range from the resin flow path 24 to the mold cavity 23 . This shear heat generation is related to the shear rate and the material viscosity, and the higher the shear rate and the higher the material viscosity, the greater the shear heat generation.

せん断速度は、計量樹脂の流速と計量樹脂が通過する流路面積に関係し、流速の上昇に伴いせん断発熱は大きくなり、また、流路面積の縮小に伴いせん断発熱は大きくなる。例えば、流路面積が最も小さいバルブゲート25あるいはゲート26を計量樹脂が通過する際に、せん断発熱が大きくなり、その結果、通過後の計量樹脂の温度が大きく上昇する。さらに、射出制御パターンの射出速度によっても、せん断発熱は大きく変わってくる。例えば、図3(b)に示すように、高速射出設定の領域Bではせん断発熱が最も大きく、次いで中速射出設定の領域Aのせん断発熱が大きく、低速射出設定の領域Cのせん断発熱が最も小さくなる。その結果、1ショットの射出充填の範囲内でも、射出速度の変化に伴うせん断発熱の大小により、計量樹脂の温度は大きく変動する。 The shear rate is related to the flow rate of the metering resin and the area of the flow path through which the metering resin passes. For example, when the resin to be measured passes through the valve gate 25 or gate 26, which has the smallest flow path area, shear heat generation increases, and as a result, the temperature of the resin to be measured after passage rises significantly. Furthermore, the shear heat generation varies greatly depending on the injection speed of the injection control pattern. For example, as shown in FIG. 3(b), shear heat generation is the largest in region B where high speed injection is set, followed by region A where medium speed injection is set and shear heat generation is the largest in region C where low speed injection is set. become smaller. As a result, even within the range of injection filling for one shot, the temperature of the metered resin greatly fluctuates depending on the magnitude of shear heat generation accompanying changes in the injection speed.

また、材料粘度は樹脂温度に関係し、樹脂温度の低下に伴い材料粘度は上昇し、せん断発熱も大きくなる。例えば、領域Cでは、領域Aおよび領域Bと比べて、射出充填の開始からの時間経過が長く、また、明らかに計量樹脂の温度よりは低い温度に調整された射出成形金型と触れて、金型キャビティ20内を流動中に、計量樹脂は冷やされ温度が低下する。そうなると、材料粘度が上昇してせん断発熱が大きくなるので、計量樹脂は温度上昇する。しかしながら、低速射出設定によりせん断発熱は低く抑えられ、結局は、実際の金型キャビティ23内に射出充填された計量樹脂の温度分布を測定することが正しいとの結論に至る。つまり、射出成形品の品質管理は、射出シリンダ11内に貯蔵される計量樹脂の温度管理よりも、金型キャビティ23内に射出充填された計量樹脂の温度管理することが正しいとなる。 Further, the material viscosity is related to the resin temperature. As the resin temperature decreases, the material viscosity increases and the shear heat generation also increases. For example, in region C, the time elapsed from the start of injection filling is longer than in regions A and B, and the injection mold is adjusted to a temperature clearly lower than the temperature of the metering resin. As it flows through the mold cavity 20, the metered resin is cooled to reduce its temperature. When this happens, the viscosity of the material increases and the heat generated by shear increases, so the temperature of the weighed resin rises. However, the low speed injection setting keeps the shear heating low, and eventually we come to the conclusion that it is correct to measure the temperature distribution of the metered resin injected and filled into the actual mold cavity 23 . In other words, for quality control of injection molded products, temperature control of the measured resin injected into the mold cavity 23 is more correct than temperature control of the measured resin stored in the injection cylinder 11 .

[射出成形方法]
次に、本発明の実施形態に係る射出成形方法について、図4と図5を用いて説明する。図4は、射出工程中の金型キャビティ23内の計量樹脂の射出充填状態を示す。また、図5は、射出工程中の充填温度に基づいて計量樹脂を温度補正処理する手順について示す。ここでは、図3(a)に示す計量工程を終え、図3(b)に示す射出制御パターンに基づいて射出工程を開始したところから説明を行う。
[Injection molding method]
Next, an injection molding method according to an embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 shows the injection filling condition of the metered resin in the mold cavity 23 during the injection process. Also, FIG. 5 shows a procedure for temperature correction processing of the weighed resin based on the filling temperature during the injection process. Here, the description will be made from the point where the injection process is started based on the injection control pattern shown in FIG. 3B after the weighing process shown in FIG. 3A is completed.

先ず、図4(a)に示すように、スクリュ14の前進動作により、貯蔵エリア17の計量樹脂は、樹脂流路24、開放されたバルブゲート25、ゲート26を通過して、金型キャビティ23内に射出充填される。スクリュ14の前進動作に伴い、金型キャビティ23内は計量樹脂で充満されていく。次に、図4(b)に示すように、スクリュ15が射出保圧切替え位置VPに到達すると射出工程を終え、保圧工程に切り替わり、スクリュ14を所定の圧力で押圧して保圧充填を行う。この射出工程の完了の時点では、金型キャビティ23内は計量樹脂で充満状態となり、成形品53の元を得る。射出工程および保圧工程中は、バルブゲート25は開放状態である。この射出工程中に、図2に示す温度計測手段を用いて、金型キャビティ23内に射出充填される計量樹脂の充填温度を計測する。また、金型キャビティ23内の計量樹脂は、ゲート26から充填され(射出充填位置G)、最終の射出充填位置Mに向かって流動する。 First, as shown in FIG. 4( a ), due to the forward movement of the screw 14 , the metered resin in the storage area 17 passes through the resin flow path 24 , the opened valve gate 25 and the gate 26 to the mold cavity 23 . Injection filled inside. As the screw 14 moves forward, the inside of the mold cavity 23 is filled with the resin to be measured. Next, as shown in FIG. 4(b), when the screw 15 reaches the injection/holding pressure switching position VP, the injection process is completed, and the pressure holding process is switched to press the screw 14 with a predetermined pressure to carry out holding pressure filling. conduct. At the time of completion of this injection process, the inside of the mold cavity 23 is filled with the metered resin, and the base of the molded product 53 is obtained. During the injection process and pressure holding process, the valve gate 25 is open. During this injection process, the temperature measuring means shown in FIG. 2 is used to measure the filling temperature of the metered resin injected and filled into the mold cavity 23 . Also, the metered resin in the mold cavity 23 is filled from the gate 26 (injection fill position G) and flows toward the final injection fill position M.

次に、射出制御部40で充填温度の計測データから、図5(a)に示すように、横軸に成形品53の射出充填位置、縦軸に充填温度とした充填温度波形Z(図中の破線)を求める。これに、良品成形を得ることができる基準温度波形K(図中の実線)と、上下限の許容温度(H、L)を重ね書き表示する。この基準温度波形Kおよび許容温度(H、L)は、例えば、過去の射出成形の量産実績から求めて射出制御部40に設定する。または、CAE流動解析の演算結果から求めても良い。なお、図5(a)において、許容温度(H、L)を上下限の2点の設定としたが、これに限定されることなく、例えば、充填温度波形Zの状態から設定点数を増やしても良い。あるいは、計量工程の計量制御パターンに応じて設定点数を選択するとしても良い。 Next, from the measurement data of the filling temperature by the injection control unit 40, as shown in FIG. dashed line). The reference temperature waveform K (solid line in the figure) that can obtain good product molding and the upper and lower limit allowable temperatures (H, L) are superimposed on this. The reference temperature waveform K and the allowable temperature (H, L) are set in the injection control unit 40, for example, based on past injection molding mass production results. Alternatively, it may be obtained from the calculation result of CAE flow analysis. In FIG. 5(a), the permissible temperature (H, L) is set to two points, upper and lower limits, but is not limited to this. Also good. Alternatively, the number of set points may be selected according to the weighing control pattern of the weighing process.

充填温度波形Zが、基準温度波形に対して設定した良品成形を得るための許容温度(H、L)の範囲内である場合は、良品成形の安定生産が保証されるとして、補正を行うことなく射出成形の運転を継続する。充填温度波形Zが、許容温度(H、L)の範囲外である場合は、良品成形の安定生産が困難として、以下に示す温度補正処理を行う。 If the filling temperature waveform Z is within the range of allowable temperatures (H, L) for obtaining good product molding set with respect to the reference temperature waveform, it is assumed that stable production of good product molding is guaranteed, and correction is performed. continue the injection molding operation. If the filling temperature waveform Z is out of the allowable temperature range (H, L), it is considered difficult to stably produce non-defective products, and the following temperature correction processing is performed.

先ず、充填温度波形Zと許容値(H、L)が交差する射出充填位置を、補正位置(S1~S3)とする。次に、補正位置(S1~S3)を射出工程中のスクリュ14の位置に変換する。この変換は、例えば、CAE流動解析を用いても良いが、実際の射出工程を分割して再現させたショートショット充填法を用いることが好ましい。ショートショット充填法とは、図3(a)に示す計量完了位置KEから、図4(b)に示す射出保圧切替え位置VPまでの範囲で、図4(a)に示すように、射出工程のスクリュ14を途中で停止させて、ショートショットの状態の成形品53を得る手段である。このスクリュ14の途中停止位置を細かく分割することで、射出工程中のスクリュ14の位置と、金型キャビティ23内の計量樹脂の流動状態を正確に把握することができる。そのために、射出成形の現場において広く使われている手段である。なお、射出工程中のスクリュ14の位置は、計量工程中のスクリュ14の位置でもある。 First, injection filling positions where the filling temperature waveform Z and the allowable values (H, L) intersect are defined as correction positions (S1 to S3). Next, the corrected positions (S1-S3) are converted to positions of the screws 14 during the injection process. For this conversion, for example, CAE flow analysis may be used, but it is preferable to use a short shot filling method that reproduces the actual injection process by dividing it. In the short shot filling method, the injection process is performed in the range from the weighing completion position KE shown in FIG. 3(a) to the injection holding pressure switching position VP shown in FIG. is a means for obtaining a molded product 53 in a short shot state by stopping the screw 14 in the middle. By finely dividing the intermediate stop position of the screw 14, the position of the screw 14 during the injection process and the flow state of the measured resin in the mold cavity 23 can be accurately grasped. Therefore, it is a means widely used in the field of injection molding. The position of the screw 14 during the injection process is also the position of the screw 14 during the metering process.

次に、図5(b)に示すように、変換後の補正位置(S1~S3)を補正スクリュ位置(HS1~HS3)として、横軸を計量工程中のスクリュ14の位置とした計量制御パターンを示すグラフに重ね書き表示させ、温度補正処理の補正パターンを設定する。ここで、温度補正処理の調整項目として、計量工程中のスクリュ回転数と背圧とした。これは、射出工程で射出成形品の品質の良否を予測し、直ちに計量工程で適正に補正処理を行い、次ショットから良品の安定生産を得る狙いで、即効性と確実性の観点から選択した。なお、ヒータ12を調整して射出シリンダ11の温度を調整する手段は、温度調整に時間を要し即効性が期待できないことと、貯蔵エリア17の狭い範囲の計量樹脂の温度を細かく調整することが極めて困難なことから、好ましくはない。 Next, as shown in FIG. 5B, a weighing control pattern in which the corrected screw positions (HS1 to HS3) are the corrected positions (S1 to S3) after conversion, and the horizontal axis is the position of the screw 14 during the weighing process. is superimposed on the graph showing , and the correction pattern for the temperature correction process is set. Here, the number of screw revolutions and the back pressure during the weighing process were used as adjustment items for the temperature correction process. This was selected from the viewpoint of immediate effect and certainty, with the aim of ensuring stable production of good products from the next shot by predicting the quality of the injection-molded product in the injection process and immediately performing appropriate correction processing in the weighing process. . It should be noted that the means for adjusting the temperature of the injection cylinder 11 by adjusting the heater 12 requires time to adjust the temperature, and immediate effect cannot be expected, and the temperature of the weighed resin in the narrow range of the storage area 17 needs to be finely adjusted. is extremely difficult, it is not preferred.

先ず、スクリュ回転数を用いた温度補正処理について説明する。計量開始位置KSから補正スクリュ位置HS1の範囲は、充填温度波形Zが許容値(H、L)の範囲内にあるので、予め設定した計量制御パターンのスクリュ回転数N0とする。補正スクリュ位置HS1からHS2の範囲は、充填樹脂温度波形Zが上限の許容値Hを超えているので、計量樹脂の温度を下げるために、スクリュ回転数N1を下げる(N1<N0)。これにより、スクリュ14の回転動作によるせん断発熱が減少し、その結果、低い温度の計量樹脂が貯蔵される。補正スクリュ位置HS2からHS3の範囲は、充填温度波形Zが許容値(H、L)の範囲内にあるので、予め設定した計量制御パターンのスクリュ回転数N0とする。補正スクリュ位置HS3から計量完了位置KEの範囲は、充填樹脂温度波形Zが下限の許容値Lより低下しているので、計量樹脂の温度を上げるために、スクリュ回転数N2を上げる(N2>N0)。これにより、スクリュ14の回転動作によるせん断発熱が増大し、その結果、高い温度の計量樹脂が貯蔵される。これらの温度補正処理を計量工程の中で行うことで、金型キャビティ23内に射出充填する計量樹脂の温度の適正化を図ることができる。 First, temperature correction processing using the screw rotation speed will be described. In the range from the metering start position KS to the corrected screw position HS1, the filling temperature waveform Z is within the range of allowable values (H, L), so the screw rotation speed N0 of the preset metering control pattern is used. In the range from the corrected screw positions HS1 to HS2, the filled resin temperature waveform Z exceeds the upper limit allowable value H, so the screw rotation speed N1 is lowered (N1<N0) in order to lower the temperature of the metered resin. This reduces the shear heating due to the rotating action of the screw 14, resulting in a lower temperature metered resin stock. In the range from the corrected screw positions HS2 to HS3, the filling temperature waveform Z is within the range of allowable values (H, L), so the screw rotation speed N0 of the metering control pattern set in advance is used. In the range from the correction screw position HS3 to the metering completion position KE, the filled resin temperature waveform Z is lower than the lower limit allowable value L. Therefore, in order to raise the temperature of the metered resin, the screw rotation speed N2 is increased (N2>N0 ). This increases shear heating due to the rotational movement of the screw 14, resulting in storage of high temperature metered resin. By performing these temperature correction processes in the weighing process, the temperature of the weighed resin injected and filled into the mold cavity 23 can be optimized.

次に、背圧を用いた温度補正処理について説明する。この場合も、スクリュ回転数と同様に、充填温度波形Zと基準波形Kの許容値(H、L)と補正スクリュ位置(HS1~HS3)に基づいて、許容値(H、L)の範囲内では補正を行わずに予め設定した計量制御パターンの背圧BP0とする。許容値Hよりも高い場合は、せん断発熱を減少させて低い温度の計量樹脂とするために、計量背圧BP1を下げる(BP1<BP0)。許容値Lよりも低い場合は、せん断発熱を増大させて高い温度の計量樹脂とするために、計量背圧BP2を高くする(BP2>BP0)。背圧を用いた温度補正処理も計量工程の中で行い、金型キャビティ23内に射出充填する計量樹脂の温度の適正化を図ることができる。 Next, temperature correction processing using back pressure will be described. In this case also, similarly to the screw rotation speed, based on the allowable values (H, L) of the filling temperature waveform Z and the reference waveform K, and the corrected screw positions (HS1 to HS3), Then, the back pressure BP0 of the metering control pattern set in advance without correction is assumed. If it is higher than the allowable value H, the metering back pressure BP1 is reduced (BP1<BP0) in order to reduce shear heating resulting in a lower temperature metered resin. If it is lower than the allowable value L, the metering back pressure BP2 is increased (BP2>BP0) in order to increase the shear heating and result in a higher temperature metered resin. A temperature correction process using back pressure is also performed in the measuring process, and the temperature of the measured resin injected and filled into the mold cavity 23 can be optimized.

ここで、スクリュ回転数と背圧を組合せて温度補正処理を行うとしても良い。例えば、高い温度の計量樹脂を得るために、スクリュ14の回転数を過度に上げた場合、完全に溶融していない樹脂材料(未溶融樹脂という)が計量樹脂に混ざって、異物混入等の成形不良となることがある。この場合は、スクリュ14の回転数を下げて、未溶融樹脂の発生を抑制し、せん断発熱の不足分は背圧を高くすることで補うとする。また、高いせん断発熱を得ようとして、過度に高い背圧を設定した場合、計量樹脂の貯蔵スピードが遅くなり、計量工程の時間が長くなって生産性が大きく低下することがある。この場合は、背圧を少し下げて、スクリュ14の回転数を上げて、せん断発熱を補いつつ計量工程の時間短縮を図るものとする。 Here, temperature correction processing may be performed by combining the screw rotation speed and the back pressure. For example, if the number of rotations of the screw 14 is excessively increased in order to obtain a high-temperature metered resin, resin material that is not completely melted (referred to as unmelted resin) is mixed with the metered resin, resulting in molding problems such as foreign matter contamination. It may become defective. In this case, the rotational speed of the screw 14 is reduced to suppress the generation of unmelted resin, and the shortage of shear heat generation is compensated by increasing the back pressure. Also, if an excessively high back pressure is set in an attempt to obtain high shear heat generation, the storage speed of the weighed resin slows down, and the weighing process takes a long time, resulting in a significant drop in productivity. In this case, the back pressure is slightly lowered and the number of revolutions of the screw 14 is increased to compensate for shear heat generation and shorten the time required for the weighing process.

[効果]
このように、射出工程中の計量樹脂の充填温度に基づいて、計量工程の計量制御パターンを補正することで、金型キャビティ内に射出充填した計量樹脂を適正な状態に調整できる。その結果、高品質な射出成形品の安定生産を確保することができる。また、射出工程に続く計量工程で補正処理を、次ショットの射出成形は補正処理した状態で行うことができる。これにより、不良品の連続生産を回避でき、高い生産効率の射出成形を提供することができる。
[effect]
Thus, by correcting the metering control pattern in the metering process based on the filling temperature of the metered resin during the injection process, the metered resin injected and filled into the mold cavity can be adjusted to an appropriate state. As a result, stable production of high-quality injection molded products can be ensured. Further, the correction process can be performed in the weighing process following the injection process, and the injection molding of the next shot can be performed in a state in which the correction process has been performed. As a result, continuous production of defective products can be avoided, and injection molding with high production efficiency can be provided.

以上、本発明の好適な実施形態について説明したが、本発明の技術範囲は、上述した実施形態に記載された範囲には限定されない。上記の実施形態には多様な変更または改良を加えることが可能である。 Although the preferred embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the ranges described in the above-described embodiments. Various modifications or improvements can be added to the above embodiments.

100 射出成形機
10 射出装置
11 射出シリンダ
12 ヒータ
13 材料ホッパ
14 スクリュ
15 フライト
16 逆流防止装置
17 貯蔵エリア
F 前方
B 後方
20 射出成形金型
21 固定金型
22 可動金型
23 金型キャビティ
24 樹脂流路
25 バルブゲート
26 ゲート
30 射出駆動部
40 射出制御部
50 温度計測手段
51 温度センサ
52 温度受信部
53 成形品
54 サーモカメラ
55 画像受信部
KE 計量完了位置
KS 計量開始位置
SS 射出開始位置
VP 射出保圧切替え位置
A、B、C 領域
G、M 射出充填位置
Z 充填温度波形
K 基準温度波形
H、L 許容温度
S1~S3 補正位置
HS1~HS3 補正スクリュ位置
N0~N2 スクリュ回転数
BP0~BP2 背圧
REFERENCE SIGNS LIST 100 injection molding machine 10 injection device 11 injection cylinder 12 heater 13 material hopper 14 screw 15 flight 16 backflow prevention device 17 storage area F front B rear 20 injection mold 21 fixed mold 22 movable mold 23 mold cavity 24 resin flow path 25 valve gate 26 gate 30 injection drive section 40 injection control section 50 temperature measurement means 51 temperature sensor 52 temperature reception section 53 molded product 54 thermo camera 55 image reception section KE measurement completion position KS measurement start position SS injection start position VP injection maintenance Pressure switching position A, B, C Region G, M Injection filling position Z Filling temperature waveform K Reference temperature waveform H, L Allowable temperature S1 to S3 Correction position HS1 to HS3 Correction screw position N0 to N2 Screw rotation speed BP0 to BP2 Back pressure

Claims (5)

計量工程でスクリュ回転数と背圧を調整して、所定量の計量樹脂を射出シリンダ内に貯蔵し、射出工程で前記スクリュの射出速度を調整して、前記計量樹脂を金型キャビティ内に射出充填する射出成形方法において、
前記射出工程中の前記金型キャビティ内に射出充填される前記計量樹脂の充填温度を計測する温度計測手段を備え、
前記温度計測手段の計測データから前記計量樹脂の充填温度波形を求め、前記充填温度波形が基準温度波形に対して設定された許容温度の範囲外である場合に温度補正処理を行う、ことを特徴とする射出成形方法。
In the metering process, the screw rotation speed and back pressure are adjusted to store a predetermined amount of measured resin in the injection cylinder, and in the injection process, the injection speed of the screw is adjusted to inject the measured resin into the mold cavity. In the filling injection molding method,
temperature measuring means for measuring the filling temperature of the weighed resin injected and filled into the mold cavity during the injection process;
A filling temperature waveform of the measured resin is obtained from the measurement data of the temperature measuring means, and temperature correction processing is performed when the filling temperature waveform is out of an allowable temperature range set with respect to the reference temperature waveform. and injection molding method.
前記温度計測手段は、前記金型キャビティのゲートから射出充填される前記計量樹脂の流動方向に沿って、射出成形金型に組み込まれた複数の温度センサである、請求項1記載の射出成形方法。 2. The injection molding method according to claim 1, wherein said temperature measuring means is a plurality of temperature sensors incorporated in said injection mold along the flow direction of said metered resin injected and filled from said mold cavity gate. . 前記温度計測手段は、前記計量樹脂の射出充填の完了から所定の時間の経過後に、前記金型キャビティを開放して、前記計量樹脂の熱画像を撮影するサーモカメラである、請求項1記載の射出成形方法。 2. The temperature measuring means according to claim 1, wherein said temperature measuring means is a thermo camera that opens said mold cavity and takes a thermal image of said resin to be measured after a predetermined time has passed since the completion of injection filling of said resin to be measured. injection molding method. 前記温度補正処理は、前記充填温度波形が前記許容温度の範囲外となる位置を補正位置とし、前記補正位置を前記射出工程中の前記スクリュ位置に変換し、変換後の前記スクリュ位置を補正スクリュ位置とし、前記補正スクリュ位置に基づいて、前記計量工程の前記スクリュ回転数の補正を行う、請求項1から3のいずれか1項に記載の射出成形方法。 In the temperature correction process, a position where the filling temperature waveform is out of the allowable temperature range is set as a correction position, the correction position is converted to the screw position during the injection process, and the converted screw position is converted to the correction screw position. 4. The injection molding method according to any one of claims 1 to 3, wherein said screw rotational speed in said measuring step is corrected based on said corrected screw position. 前記温度補正処理は、前記充填温度波形が前記許容温度の範囲外となる位置を補正位置とし、前記補正位置を前記射出工程中の前記スクリュ位置に変換し、変換後の前記スクリュ位置を補正スクリュ位置とし、前記補正スクリュ位置に基づいて、前記計量工程の前記背圧の補正を行う、請求項1から3のいずれか1項に記載の射出成形方法。 In the temperature correction process, a position where the filling temperature waveform is out of the allowable temperature range is set as a correction position, the correction position is converted to the screw position during the injection process, and the converted screw position is converted to the correction screw position. 4. The injection molding method according to any one of claims 1 to 3, wherein the back pressure in the metering step is corrected based on the corrected screw position.
JP2021154142A 2021-09-22 2021-09-22 injection molding method Pending JP2023045616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021154142A JP2023045616A (en) 2021-09-22 2021-09-22 injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021154142A JP2023045616A (en) 2021-09-22 2021-09-22 injection molding method

Publications (1)

Publication Number Publication Date
JP2023045616A true JP2023045616A (en) 2023-04-03

Family

ID=85776516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021154142A Pending JP2023045616A (en) 2021-09-22 2021-09-22 injection molding method

Country Status (1)

Country Link
JP (1) JP2023045616A (en)

Similar Documents

Publication Publication Date Title
US9821498B2 (en) Injection molding method and injection molding device
JP5824143B2 (en) Equipment for injection molding at low constant pressure
JP7159403B2 (en) Sorting equipment for injection molded products and injection molding system
JP4824081B2 (en) Injection molding machine
JP5913062B2 (en) Injection molding machine, injection molding system, and raw material metering device
CN101528440A (en) Injection molding system, computer program, method of injection molding, and injection molding machine
TWI549802B (en) Injection molding machine
JP6177712B2 (en) Injection molding machine
JP5552780B2 (en) Injection molding apparatus and injection molding method
US5776407A (en) Injection molding apparatus and method for shutting gate and compressing mold material
JP2023045616A (en) injection molding method
JP4889574B2 (en) Control method of injection molding machine
JPH081735A (en) Injection molding method
JP5788353B2 (en) Injection molding machine
JP5704392B2 (en) Resin change and color change method of injection molding machine
CN113001919B (en) Injection molding machine, control method thereof, and recording medium storing control program
JP2019171629A (en) Mold system
US20210069956A1 (en) Injection molding machine
CN104175508B (en) The set supporting device of injection (mo(u)lding) machine and injection (mo(u)lding) machine
KR101160561B1 (en) A control method for injection molding machine
JP2023059073A (en) injection molding method
JP2023063824A (en) Weighing control method for injection molding
JP6910825B2 (en) Injection molding machine and evaluation system
JP2023057264A (en) injection molding method
Schiffers et al. Adaptive process control for stabilizing the production process in injection moulding machines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240328