JP2023045126A - Heat loss amount calculation system - Google Patents

Heat loss amount calculation system Download PDF

Info

Publication number
JP2023045126A
JP2023045126A JP2021153359A JP2021153359A JP2023045126A JP 2023045126 A JP2023045126 A JP 2023045126A JP 2021153359 A JP2021153359 A JP 2021153359A JP 2021153359 A JP2021153359 A JP 2021153359A JP 2023045126 A JP2023045126 A JP 2023045126A
Authority
JP
Japan
Prior art keywords
thermal bridge
heat loss
building
transmission coefficient
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021153359A
Other languages
Japanese (ja)
Inventor
由香 有富
Yuka Aritomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Housing Corp
Original Assignee
Toyota Housing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Housing Corp filed Critical Toyota Housing Corp
Priority to JP2021153359A priority Critical patent/JP2023045126A/en
Publication of JP2023045126A publication Critical patent/JP2023045126A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

To provide a heat loss amount calculation system capable of easily calculating a heat loss amount in an outer skin part of a unit type building.SOLUTION: In a heat loss amount calculation apparatus, a roof area calculation unit 42 calculates an area of a roof part based on design data of a building, a girder total length calculation unit 44 calculates the total length of all ceiling girders constituting thermal bridge parts in the roof part based on the design data of the building, a thermal bridge pitch calculation unit 45 calculates a thermal bridge pitch indicating a ratio of the area occupied by the ceiling girders in the roof part based on the calculated area of the roof part and the total length of the ceiling girders, a heat transmission coefficient calculation unit 47 calculates a heat transmission coefficient of the roof part based on the thermal bridge pitch calculated by the thermal bridge pitch calculation unit 45 and a correspondence relationship between the thermal bridge pitch and the heat transmission coefficient stored in a heat transmission coefficient database 46, and a heat loss amount calculation unit 48 calculates a heat loss amount in the roof part based on the calculated heat transmission coefficient and the area of the roof part.SELECTED DRAWING: Figure 4

Description

本発明は、ユニット式建物の外皮部における熱損失量を算出する熱損失量算出システムに関するものである。 TECHNICAL FIELD The present invention relates to a heat loss amount calculation system for calculating the amount of heat loss in the outer skin of a unit building.

近年、省エネルギの観点等から、断熱性能に優れた建物が求められており、建物の断熱性能を算出するための断熱性能算出システムが一部で提案されている。例えば、特許文献1には、ユニット式建物の断熱性能として、屋根部や床部(一階床部)、外壁部といった建物外皮部における熱損失量を算出するシステムが開示されている。 2. Description of the Related Art In recent years, from the viewpoint of energy saving, etc., there is a demand for buildings with excellent heat insulation performance, and some heat insulation performance calculation systems for calculating the heat insulation performance of buildings have been proposed. For example, Patent Literature 1 discloses a system for calculating the amount of heat loss in building envelopes such as the roof, floor (first floor), and outer walls as the insulation performance of a unit building.

ここで、ユニット式建物は、周知の通り、複数の建物ユニットが互いに組み合わされることにより構築されている。建物ユニットは、柱、天井大梁及び床大梁が直方体状に連結されてなる枠体を有している。ユニット式建物では、外皮部に配置される建物ユニットの大梁や柱が熱橋部となる。例えば、屋根部においては、天井大梁が熱橋部となり、詳しくは隣り合う建物ユニットにおいて互いに対向する天井大梁が熱橋部となる。そこで、ユニット式建物においては、屋根部の熱損失量を算出するに際し、上記対向する2本の天井大梁を含む熱橋モデルを想定し、その熱橋モデルが屋根部において複数箇所に配置されているものとして算出する方法が考えられる。 Here, as is well known, a unit-type building is constructed by combining a plurality of building units with each other. The building unit has a frame formed by connecting pillars, ceiling girders, and floor girders in a rectangular parallelepiped shape. In a unit-type building, the beams and columns of the building units arranged in the outer skin serve as the thermal bridge. For example, in the roof section, the ceiling girders are the thermal bridges, and more specifically, the ceiling girders facing each other in the adjacent building units are the thermal bridges. Therefore, in a unit building, when calculating the amount of heat loss in the roof, a thermal bridge model including the above-mentioned two ceiling girders is assumed, and the thermal bridge model is placed at multiple locations on the roof. A method of calculating assuming that there is

特開2020-154627号公報JP 2020-154627 A

ところで、ユニット式建物では、隣り合う建物ユニットが互いに離間して設置される場合がある。このような建物では、隣り合う建物ユニットの離間スペースが階段の設置スペースとして利用されたり、物の収納スペースとして利用されたりするようになっている。そして、このような建物では、隣り合う建物ユニットの間隔(ひいては対向する2本の天井大梁の間隔)が小さい部位と、隣り合う建物ユニットの間隔が大きい部位とが存在することになる。また、近年、ユニット式建物のニーズの多様化等に伴い、建物ユニット間の間隔もさまざまなものがあり、建物のバリエーションが増加する傾向にある。 By the way, in a unit-type building, adjacent building units may be installed apart from each other. In such a building, the space between adjacent building units is used as a space for installing stairs or as a storage space for things. In such a building, there will be a portion where the interval between adjacent building units (and thus the interval between the two facing ceiling girders) is small and a portion where the interval between adjacent building units is large. In recent years, along with the diversification of needs for unit-type buildings, there are various spacings between building units, and there is a tendency to increase variations in buildings.

ここで、対向する2本の天井大梁を含む熱橋モデルを用いた上述の熱損失量の算出方法では、熱橋モデルの熱貫流率が2本の天井大梁の間隔によって変わることになる。このため、隣り合う建物ユニットの間隔(ひいては対向する2本の天井大梁の間隔)が小さい部位と大きい部位とが存在するユニット式建物に対して上記の算出方法を適用する場合には、対向する2本の天井大梁の間隔ごとに熱橋モデルを複数用意する必要がある。 Here, in the above-described method of calculating the amount of heat loss using a thermal bridge model including two opposing ceiling girders, the heat transmission coefficient of the thermal bridge model changes depending on the distance between the two ceiling girders. For this reason, when applying the above calculation method to a unit-type building in which there are parts where the distance between adjacent building units (and thus the distance between two ceiling girders facing each other) is small and parts where the distance is large, It is necessary to prepare multiple thermal bridge models for each interval between the two ceiling girders.

しかしながら、対向する2本の天井大梁の間隔ごとに熱橋モデルを用意するのは手間であるし、熱損失量の算出に際しても、複数種類の熱橋モデルに基づき熱損失量を算出するとなると、算出の処理が複雑となってしまう。 However, it is troublesome to prepare a thermal bridge model for each interval between the two ceiling girders facing each other. Calculation processing becomes complicated.

なお、かかる問題は、屋根部の熱損失量を算出する場合に限らず、床部(一階床部)や外壁部等、屋根部以外の外皮部における熱損失量を算出する場合にも同様に生じうる問題である。 This problem is not limited to the case of calculating the amount of heat loss in the roof, but is the same when calculating the amount of heat loss in outer skin parts other than the roof, such as the floor (first floor) and outer walls. This is a problem that can arise in

本発明は、上記事情に鑑みてなされたものであり、ユニット式建物の外皮部における熱損失量を容易に算出することができる熱損失量算出システムを提供することを主たる目的とするものである。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its main object is to provide a heat loss amount calculation system that can easily calculate the amount of heat loss in the outer skin of a unit-type building. .

上記課題を解決すべく、第1の発明の熱損失量算出システムは、構造材としての柱及び梁が直方体状に連結された枠体を含む複数の建物ユニットが互いに組み合わされることで構築されるユニット式の建物において、その建物の屋根部、床部及び外壁部のうちのいずれかである外皮部を対象とし、その外皮部における熱損失量を算出する熱損失量算出システムであって、前記建物の設計データに基づき、前記外皮部の面積を算出する外皮面積算出手段と、前記外皮部に含まれる前記構造材のうち隣り合う前記建物ユニットの対向する前記構造材は熱橋部を構成する熱橋構造材であり、前記建物の設計データに基づき、前記外皮部におけるすべての前記熱橋構造材の長さを合計した合計長さを算出する合計長さ算出手段と、前記外皮面積算出手段により算出された前記外皮部の面積と、前記合計長さ算出手段により算出された前記熱橋構造材の合計長さとに基づき、前記外皮部において前記熱橋構造材が占める面積の比率を示す熱橋比率を算出する熱橋比率算出手段と、前記外皮部における前記熱橋比率と熱貫流率との対応関係が予め記憶されている記憶手段と、前記熱橋比率算出手段により算出された前記熱橋比率と、前記記憶手段に記憶されている前記対応関係とに基づき、前記外皮部の熱貫流率を算出する熱貫流率算出手段と、前記熱貫流率算出手段により算出された前記外皮部の熱貫流率と、前記外皮面積算出手段により算出された前記外皮部の面積とに基づき、前記外皮部における熱損失量を算出する熱損失量算出手段と、を備える。 In order to solve the above problems, a heat loss amount calculation system of the first invention is constructed by combining a plurality of building units each including a frame body in which columns and beams as structural materials are connected in a rectangular parallelepiped shape. In a unit-type building, a heat loss amount calculation system for calculating the amount of heat loss in the outer skin part, which is one of the roof, floor, and outer wall parts of the building, Outer skin area calculating means for calculating the area of the outer skin based on the design data of the building; total length calculating means for calculating a total length of all the thermal bridge structural members in the outer skin portion based on the design data of the building; and the outer skin area calculating means. Heat indicating the ratio of the area occupied by the thermal bridge structural material in the outer skin based on the area of the outer skin calculated by the total length calculation means and the total length of the thermal bridge structural material calculated by the total length calculation means thermal bridge ratio calculating means for calculating a bridge ratio; storage means for storing in advance a correspondence relationship between the thermal bridge ratio and the heat transmission coefficient in the outer skin portion; and the heat calculated by the thermal bridge ratio calculating means heat transmission coefficient calculation means for calculating the heat transmission coefficient of the outer skin based on the bridge ratio and the correspondence stored in the storage means; and the heat transmission coefficient of the skin calculated by the heat transmission coefficient calculation means and heat loss amount calculation means for calculating a heat loss amount in the outer skin portion based on the heat transmission coefficient and the area of the outer skin portion calculated by the outer skin area calculation means.

第1の発明によれば、ユニット式建物の設計データに基づき、建物の外皮部(屋根部、床部又は外壁部)の面積が算出されるとともに、外皮部におけるすべての熱橋構造材の長さを合計した合計長さが算出される。そして、それら算出された外皮部の面積と、熱橋構造材の合計長さとに基づき、外皮部において熱橋構造材が占める面積の比率を示す熱橋比率が算出される。記憶手段には、外皮部における熱橋比率と熱貫流率との対応関係が予め記憶されている。そして、上記算出された熱橋比率と、記憶手段に記憶されている上記対応関係とに基づき、外皮部の熱貫流率が算出され、その算出された熱貫流率と上記算出された外皮部の面積とに基づき、外皮部における熱損失量が算出される。 According to the first invention, based on the design data of the unit-type building, the area of the outer skin (roof, floor or outer wall) of the building is calculated, and the length of all thermal bridge structural materials in the outer skin is calculated. total length is calculated. Then, based on the calculated area of the skin portion and the total length of the thermal bridge structural material, a thermal bridge ratio indicating the ratio of the area occupied by the thermal bridge structural material in the skin portion is calculated. The storage means preliminarily stores the correspondence relationship between the thermal bridge ratio and the heat transmission coefficient in the outer skin. Then, based on the calculated thermal bridge ratio and the correspondence stored in the storage means, the heat transmission coefficient of the outer skin is calculated, and the calculated heat transmission coefficient and the calculated heat transmission coefficient of the outer skin are calculated. The amount of heat loss in the outer skin is calculated based on the area.

このような熱損失量の算出の流れでは、隣り合う建物ユニットの対向する各構造材(各熱橋構造材)をそれぞれ1つの熱橋部とみなして外皮部の熱損失量が算出される。そのため、対向する2本の構造材を含む熱橋モデルを用いて熱損失量を算出する場合と異なり、対向する構造材の間隔ごとに熱橋モデルをわざわざ用意する必要がない。また、熱橋モデルとしては1つのパターンのみ(つまり1本の熱橋構造材のパターンのみ)となっているため、熱損失量の算出の処理もそれほど煩雑となることがなく、結果として、熱損失量を容易に算出することが可能となる。 In such a heat loss amount calculation flow, the heat loss amount of the skin portion is calculated by regarding each structural member (each thermal bridge structural member) facing each other of the adjacent building units as one thermal bridge portion. Therefore, unlike the case of calculating the amount of heat loss using a thermal bridge model including two opposing structural members, there is no need to bother to prepare a thermal bridge model for each interval between opposing structural members. In addition, since the thermal bridge model has only one pattern (that is, only one thermal bridge structural material pattern), the process of calculating the amount of heat loss is not so complicated. It becomes possible to easily calculate the amount of loss.

第2の発明の熱損失量算出システムは、第1の発明において、前記建物には、隣り合う前記建物ユニットの間隔が小さい小間隔部と、隣り合う前記建物ユニットの間隔が大きい大間隔部とが含まれている。 A heat loss calculation system according to a second invention is characterized in that, in the first invention, the building includes a small interval portion in which the interval between the adjacent building units is small and a large interval portion in which the interval between the adjacent building units is large. It is included.

第2の発明によれば、ユニット式建物に、隣り合う建物ユニットの間隔が小さい部分と大きい部分とが存在している。すなわち、隣り合う建物ユニットの対向する熱橋構造材の間隔が小さい部分と大きい部分とが存在している。このような建物にあっても、上述したように、熱橋モデルとしては1パターンのみで熱損失量の算出を行えるため、熱損失量の算出を容易に行うことができる。 According to the second aspect of the invention, the unit-type building has a portion where the interval between adjacent building units is small and a portion where the interval is large. That is, there are portions where the distance between the opposing thermal bridge structural members of adjacent building units is small and portions where the distance is large. Even in such a building, as described above, the amount of heat loss can be calculated with only one pattern as the thermal bridge model, so the amount of heat loss can be easily calculated.

ユニット式建物を示す平面図。The top view which shows a unit-type building. 建物ユニットを示す斜視図。The perspective view which shows a building unit. 熱損失量算出装置の概略構成を示す図。The figure which shows schematic structure of a heat-loss amount calculation apparatus. 熱損失量算出処理の流れを示す機能ブロック図。The functional block diagram which shows the flow of a heat-loss amount calculation process. 熱橋ピッチを説明するための図。The figure for demonstrating a thermal bridge pitch.

以下に、本発明を具体化した一実施の形態について図面を参照しつつ説明する。本実施形態では、予め設計したユニット式建物を対象として、そのユニット式建物の屋根部における熱損失量を算出する熱損失量算出装置について具体化している。以下では、熱損失量算出装置の説明に先立ち、まず、ユニット式建物の構成について図1及び図2に基づき説明する。なお、図1はユニット式建物を示す平面図であり、図2は建物ユニットを示す斜視図である。 An embodiment embodying the present invention will be described below with reference to the drawings. In this embodiment, a unit-type building designed in advance is targeted, and a heat loss amount calculation device for calculating the amount of heat loss in the roof of the unit-type building is embodied. Before describing the heat loss amount calculation device, the configuration of the unit building will be described below with reference to FIGS. 1 and 2. FIG. 1 is a plan view showing a unit type building, and FIG. 2 is a perspective view showing a building unit.

ユニット式建物10(以下、略して建物10という)は、直方体状をなす複数の建物ユニット20が互いに組み合わされることにより構築されている。図2に示すように、建物ユニット20は、その四隅に配設される4本の柱21と、各柱21の上端部及び下端部をそれぞれ連結する各4本の天井大梁22及び床大梁23とを備えている。それら柱21、天井大梁22及び床大梁23により直方体状の枠体24が形成されている。柱21は四角筒状の角形鋼よりなる。また、天井大梁22及び床大梁23は断面コ字状の溝形鋼よりなり、その開口部を水平方向の内側に向けて配置されている。なお、柱21、天井大梁22及び床大梁23がそれぞれ構造材に相当する。 A unit-type building 10 (hereinafter simply referred to as a building 10) is constructed by combining a plurality of rectangular parallelepiped building units 20 with each other. As shown in FIG. 2, the building unit 20 includes four pillars 21 arranged at its four corners, and four ceiling girders 22 and four floor girders 23 connecting the upper end and lower end of each pillar 21, respectively. and A rectangular parallelepiped frame body 24 is formed by the pillars 21 , the ceiling girders 22 and the floor girders 23 . The pillar 21 is made of rectangular steel in the shape of a square cylinder. Also, the ceiling girders 22 and the floor girders 23 are made of channel steel with a U-shaped cross section, and are arranged with their openings directed inward in the horizontal direction. The pillars 21, the ceiling girders 22, and the floor girders 23 each correspond to structural members.

建物ユニット20の長辺部の相対する天井大梁22の間には、所定間隔で複数の天井小梁25が架け渡されている。また、建物ユニット20の長辺部の相対する床大梁23の間には、所定間隔で複数の床小梁26が架け渡されている。例えば、天井小梁25はリップ溝形鋼よりなり、床小梁26は角形鋼よりなる。天井小梁25によって天井面材27が支持され、床小梁26によって床面材28が支持されている。 A plurality of ceiling girders 25 are bridged at predetermined intervals between the opposing ceiling girders 22 on the long sides of the building unit 20 . A plurality of small floor beams 26 are bridged at predetermined intervals between the facing floor girders 23 on the long sides of the building unit 20 . For example, the ceiling girders 25 are made of lip channel steel and the floor girders 26 are made of square steel. A ceiling panel member 27 is supported by the ceiling girders 25 , and a floor panel member 28 is supported by the floor girders 26 .

図1に示すように、建物10は二階建てとされ、一階部分及び二階部分にそれぞれ横並びに設けられた複数の建物ユニット20を備える。二階部分(換言すると最上階部)の上方には、外皮部としての屋根部13が設けられている。屋根部13は、陸屋根として構成されている。屋根部13は、二階部分の各建物ユニット20の天井大梁22と、それら天井大梁22により下方から支持された屋根材(図示略)と、建物ユニット20の4本の天井大梁22により囲まれた内側領域に配設された断熱材とを含んで構成されている。 As shown in FIG. 1, the building 10 is a two-story building, and includes a plurality of building units 20 arranged side by side on the first and second floors, respectively. Above the second floor (in other words, the top floor), a roof portion 13 is provided as a skin portion. The roof part 13 is configured as a flat roof. The roof part 13 is surrounded by the ceiling girders 22 of each building unit 20 on the second floor, the roof materials (not shown) supported from below by the ceiling girders 22, and the four ceiling girders 22 of the building units 20. and a heat insulating material disposed in the inner region.

建物10の二階部分における各建物ユニット20の天井大梁22には、隣り合う建物ユニット20の互いに対向する天井大梁22Aが含まれている。屋根部13においては、これらの天井大梁22Aが熱橋部を構成している。したがって、天井大梁22Aが熱橋構造材に相当する。なお、図1では、各天井大梁22Aにドットハッチを付して示している。 The ceiling girders 22 of each building unit 20 on the second floor of the building 10 include ceiling girders 22A of adjacent building units 20 facing each other. In the roof section 13, these ceiling girders 22A constitute a thermal bridge section. Therefore, the ceiling girders 22A correspond to thermal bridge structural members. In addition, in FIG. 1, each ceiling girder 22A is indicated by dot hatching.

建物10の二階部分には、横並びで隣り合う建物ユニット20の間隔が小さくされた小間隔部14と、上記間隔が大きくされた大間隔部15とが存在している。この場合、大間隔部15を介して隣り合う建物ユニット20の対向する天井大梁22Aの間の間隔L1は、小間隔部14を介して隣り合う建物ユニット20の対向する天井大梁22Aの間の間隔L2よりも大きくなっている。 In the second floor portion of the building 10, there are a small interval portion 14 in which the interval between the building units 20 adjacent to each other in a horizontal line is reduced, and a large interval portion 15 in which the interval is increased. In this case, the space L1 between the opposing ceiling girders 22A of the building units 20 adjacent to each other with the large space 15 interposed therebetween is the space between the ceiling girders 22A of the building units 20 adjacent to each other with the small space 14 interposed therebetween. It is larger than L2.

次に、屋根部13における熱損失量を算出する熱損失量算出装置30について図3に基づき説明する。図3は、熱損失量算出装置30の概略構成を示す図である。 Next, the heat loss amount calculation device 30 for calculating the heat loss amount in the roof portion 13 will be described with reference to FIG. FIG. 3 is a diagram showing a schematic configuration of the heat loss amount calculation device 30. As shown in FIG.

図3に示すように、熱損失量算出装置30は、パーソナルコンピュータにより構成され、建物を設計するCADプログラムを有している。熱損失量算出装置30は、例えば建物メーカに設けられ、同メーカの設計者により使用される。熱損失量算出装置30は、制御部31と、操作部32と、表示部33と、記憶部34とを備えている。 As shown in FIG. 3, the heat loss calculation device 30 is configured by a personal computer and has a CAD program for designing a building. The heat loss calculation device 30 is provided, for example, in a building manufacturer and used by the designer of the same manufacturer. The heat loss calculation device 30 includes a control section 31 , an operation section 32 , a display section 33 and a storage section 34 .

制御部31は、屋根部13における熱損失量を算出する熱損失量算出処理を実施するものである。操作部32は、その算出処理に際し必要な各種操作を行うもので、キーボードやマウス等を有して構成されている。表示部33は、熱損失量算出処理の結果等、各種情報を表示するもので、ディスプレイからなる。また、記憶部34には、熱損失量算出処理に必要な各種情報が記憶されている。 The control unit 31 performs heat loss amount calculation processing for calculating the amount of heat loss in the roof part 13 . The operation unit 32 performs various operations necessary for the calculation process, and includes a keyboard, a mouse, and the like. The display unit 33 displays various information such as the result of the heat loss calculation process, and is composed of a display. In addition, the storage unit 34 stores various types of information necessary for the heat loss calculation process.

続いて、熱損失量算出装置30により行われる熱損失量算出処理の流れについて図4に基づき説明する。図4は、熱損失量算出処理の流れを示す機能ブロック図である。なお、図4中の各ブロック41~45,47~49は制御部31により実現されている。また、以下では、上述した建物10を対象に熱損失量算出処理を行うことを想定しており、熱損失量算出装置30の記憶部34には、建物10の設計データ(CADデータ)があらかじめ記憶されているものとする。 Next, a flow of heat loss amount calculation processing performed by the heat loss amount calculation device 30 will be described based on FIG. 4 . FIG. 4 is a functional block diagram showing the flow of heat loss calculation processing. Note that blocks 41 to 45 and 47 to 49 in FIG. In the following, it is assumed that the heat loss amount calculation process is performed on the building 10 described above, and the design data (CAD data) of the building 10 is stored in advance in the storage unit 34 of the heat loss amount calculation device 30. shall be memorized.

図4に示すように、設計データ取得部41は、記憶部34より建物10の設計データを読み出して取得する。この場合、設計データ取得部41により取得される建物10の設計データには、屋根部13の設計データが含まれている。 As shown in FIG. 4 , the design data acquisition unit 41 reads and acquires the design data of the building 10 from the storage unit 34 . In this case, the design data of the building 10 acquired by the design data acquisition unit 41 includes the design data of the roof section 13 .

屋根面積算出部42は、設計データ取得部41により取得された建物10の設計データ、詳しくは屋根部13の設計データに基づき、屋根部13の面積Sを算出する。なお、屋根面積算出部42が外皮面積算出手段に相当する。 The roof area calculator 42 calculates the area S of the roof portion 13 based on the design data of the building 10 acquired by the design data acquisition portion 41 , more specifically, the design data of the roof portion 13 . Note that the roof area calculator 42 corresponds to the skin area calculator.

大梁長さ算出部43は、設計データ取得部41により取得された屋根部13の設計データに基づき、屋根部13において熱橋部を構成するすべての天井大梁22Aの長さを算出する。 The girder length calculator 43 calculates the lengths of all the ceiling girder 22A forming the thermal bridge in the roof 13 based on the design data of the roof 13 acquired by the design data acquirer 41 .

大梁合計長さ算出部44は、大梁長さ算出部43により算出されたすべての天井大梁22Aの長さを合計することにより、それら天井大梁22Aの合計長さLtを算出する。なお、大梁長さ算出部43と大梁合計長さ算出部44とにより、合計長さ算出手段が構成されている。 The girders total length calculation unit 44 calculates the total length Lt of the ceiling girders 22A by totaling the lengths of all the ceiling girders 22A calculated by the girders length calculation unit 43 . The girders length calculator 43 and the girders total length calculator 44 constitute total length calculation means.

熱橋ピッチ算出部45は、屋根面積算出部42により算出された屋根部13の面積Sと、大梁合計長さ算出部44により算出された天井大梁22Aの合計長さLtとに基づき、屋根部13において天井大梁22Aが占める面積の比率を示す熱橋ピッチP(熱橋比率に相当)を算出する。熱橋ピッチPは、換言すると、屋根部13において熱橋部が占める面積の比率を示す。なお、熱橋ピッチ算出部45が熱橋比率算出手段に相当する。 Based on the area S of the roof portion 13 calculated by the roof area calculation portion 42 and the total length Lt of the ceiling girder 22A calculated by the girder total length calculation portion 44, the thermal bridge pitch calculation portion 45 calculates the roof portion 13, the thermal bridge pitch P (corresponding to the thermal bridge ratio) indicating the ratio of the area occupied by the ceiling girders 22A is calculated. The thermal bridge pitch P, in other words, indicates the ratio of the area occupied by the thermal bridge portion in the roof portion 13 . The thermal bridge pitch calculator 45 corresponds to thermal bridge ratio calculator.

熱橋ピッチ算出部45では、屋根部13の面積Sを天井大梁22Aの合計長さLtで割ることにより熱橋ピッチPを算出する(P=S/Lt)。この場合、熱橋ピッチPとは、図5に示すように、互いに等しい長さLaからなり、かつ合計長さが天井大梁22Aの合計長さLtと同じとなるn本の天井大梁Hを想定し、かつ、1辺の長さが天井大梁Hの長さLaと同じであり、かつ面積が屋根部13の面積Sと同じである四角形状の屋根部Yを想定した場合に、その屋根部Yにn本の天井大梁Hを上記1辺と直交する方向に等間隔(等ピッチ)で並べた際の天井大梁Hのピッチに相当する。 The thermal bridge pitch calculator 45 calculates the thermal bridge pitch P by dividing the area S of the roof portion 13 by the total length Lt of the ceiling girders 22A (P=S/Lt). In this case, as shown in FIG. 5, the thermal bridge pitch P is assumed to be n ceiling girders H having mutually equal lengths La and a total length equal to the total length Lt of the ceiling girders 22A. Assuming a quadrangular roof portion Y whose one side length is the same as the length La of the ceiling girder H and whose area is the same as the area S of the roof portion 13, the roof portion It corresponds to the pitch of the ceiling girders H when n ceiling girders H are arranged in the direction orthogonal to the one side above at equal intervals (equal pitch).

屋根部13の熱橋ピッチPは、屋根部13の熱貫流率Uと相関関係を有する。屋根部13の熱橋ピッチPが小さいと、屋根部13において天井大梁22A(換言すると熱橋部)が占める割合が大きくなるため、屋根部13を介して屋内外の間で熱が伝わり易くなる。そのため、この場合、屋根部13の熱貫流率Uは大きくなる。一方、屋根部13の熱橋ピッチPが大きいと、屋根部13において天井大梁22Aが占める割合が小さくなるため、屋根部13を介して屋内外の間で熱が伝わりにくくなる。そのため、この場合、屋根部13の熱貫流率Uは小さくなる。なお、屋根部13の熱貫流率Uは、屋根部13における熱損失量Qを屋根部13の面積Sで割った値に相当する。 The thermal bridge pitch P of the roof portion 13 has a correlation with the heat transmission coefficient U of the roof portion 13 . When the thermal bridge pitch P of the roof portion 13 is small, the proportion of the roof girders 22A (in other words, thermal bridge portions) in the roof portion 13 is large, so that heat is easily conducted between indoors and outdoors through the roof portion 13. . Therefore, in this case, the heat transmission coefficient U of the roof portion 13 increases. On the other hand, if the thermal bridge pitch P of the roof portion 13 is large, the proportion of the ceiling girders 22A in the roof portion 13 is small, so that heat is less likely to be conducted between the indoor and outdoor spaces through the roof portion 13 . Therefore, in this case, the heat transmission coefficient U of the roof portion 13 becomes small. The heat transmission coefficient U of the roof portion 13 corresponds to a value obtained by dividing the heat loss amount Q in the roof portion 13 by the area S of the roof portion 13 .

屋根部13における熱橋ピッチPと熱貫流率Uとの対応関係は予め建物メーカにより予め求められており、その求められた対応関係が熱貫流率データベース46に記憶されている。具体的には、建物メーカで製造する屋根部13において想定される熱橋ピッチPごとに、その熱橋ピッチPと対応する熱貫流率Uが予め求められており、それら熱橋ピッチPごとの熱貫流率Uが上記対応関係として熱貫流率データベース46に記憶されている。なお、熱貫流率データベース46は記憶部34により構築され、記憶手段に相当する。 The correspondence relationship between the thermal bridge pitch P and the heat transmission coefficient U in the roof section 13 is obtained in advance by the building manufacturer, and the obtained correspondence relationship is stored in the heat transmission coefficient database 46 . Specifically, for each thermal bridge pitch P assumed in the roof section 13 manufactured by the building manufacturer, the heat transmission coefficient U corresponding to the thermal bridge pitch P is obtained in advance, and the heat transmission coefficient U corresponding to the thermal bridge pitch P is obtained in advance. The heat transmission coefficient U is stored in the heat transmission coefficient database 46 as the correspondence relationship. The heat transmission rate database 46 is constructed by the storage unit 34 and corresponds to storage means.

熱貫流率算出部47は、熱橋ピッチ算出部45により算出された熱橋ピッチPと、熱貫流率データベース46に記憶された上記対応関係とに基づき、屋根部13の熱貫流率Uを算出する。具体的には、熱貫流率算出部47では、熱橋ピッチ算出部45により算出された熱橋ピッチPに対応する熱貫流率Uを熱貫流率データベース46の上記対応関係を参照して算出(抽出)する。なお、熱貫流率算出部47が熱貫流率算出手段に相当する。 The heat transmission coefficient calculation unit 47 calculates the heat transmission coefficient U of the roof part 13 based on the thermal bridge pitch P calculated by the thermal bridge pitch calculation unit 45 and the correspondence relationship stored in the heat transmission coefficient database 46. do. Specifically, the heat transmission coefficient calculation unit 47 calculates the heat transmission coefficient U corresponding to the thermal bridge pitch P calculated by the thermal bridge pitch calculation unit 45 by referring to the correspondence relationship in the heat transmission coefficient database 46 ( Extract. Note that the heat transmission coefficient calculation unit 47 corresponds to heat transmission coefficient calculation means.

熱損失量算出部48は、熱貫流率算出部47により算出された屋根部13の熱貫流率Uと、屋根面積算出部42により算出された屋根部13の面積Sとに基づいて、屋根部13における熱損失量Qを算出する。具体的には、熱損失量算出部48では、屋根部13の熱貫流率Uと屋根部13の面積Sとを乗算することにより、屋根部13の熱損失量Qを算出する。なお、熱損失量算出部48が熱損失量算出手段に相当する。 Based on the heat transmission coefficient U of the roof portion 13 calculated by the heat transmission coefficient calculation portion 47 and the area S of the roof portion 13 calculated by the roof area calculation portion 42, the heat loss amount calculation portion 48 calculates the roof portion A heat loss amount Q at 13 is calculated. Specifically, the heat loss amount calculator 48 calculates the heat loss amount Q of the roof portion 13 by multiplying the heat transmission coefficient U of the roof portion 13 by the area S of the roof portion 13 . Note that the heat loss amount calculation unit 48 corresponds to heat loss amount calculation means.

出力部49は、熱損失量算出部48により算出された屋根部13の熱損失量Qを表示部33に出力する。これにより、表示部33に屋根部13の熱損失量Qが表示される。なお、出力部49が、屋根部13の熱損失量Qを表示部33に出力することに代えて、又は加えて、プリンタ等、表示部33以外の出力先に屋根部13の熱損失量Qを出力するようにしてもよい。 The output unit 49 outputs the heat loss amount Q of the roof portion 13 calculated by the heat loss amount calculation unit 48 to the display unit 33 . Thereby, the heat loss amount Q of the roof portion 13 is displayed on the display portion 33 . In place of or in addition to the output section 49 outputting the heat loss amount Q of the roof section 13 to the display section 33, the heat loss amount Q of the roof section 13 may be output to an output destination other than the display section 33, such as a printer. may be output.

以上、詳述した本実施形態の構成によれば、以下の優れた効果が得られる。 According to the configuration of the present embodiment described in detail above, the following excellent effects are obtained.

ユニット式建物10の設計データに基づき、建物10の屋根部13の面積が算出されるとともに、屋根部13におけるすべての天井大梁22Aの長さを合計した合計長さLtが算出される。そして、それら算出された屋根部13の面積Sと、天井大梁22Aの合計長さLtとに基づき、屋根部13において天井大梁22Aが占める面積の比率を示す熱橋ピッチPが算出される。熱貫流率データベース46には、屋根部13における熱橋ピッチPと熱貫流率Uとの対応関係が予め記憶されている。そして、上記算出された熱橋ピッチPと、熱貫流率データベース46に記憶されている上記対応関係とに基づき、屋根部13の熱貫流率Uが算出され、その算出された熱貫流率Uと上記算出された屋根部13の面積Sとに基づき、屋根部13における熱損失量Qが算出される。 Based on the design data of the unit-type building 10, the area of the roof portion 13 of the building 10 is calculated, and the total length Lt, which is the sum of the lengths of all the ceiling girders 22A in the roof portion 13, is calculated. Then, based on the calculated area S of the roof portion 13 and the total length Lt of the ceiling girders 22A, the thermal bridge pitch P indicating the ratio of the area occupied by the ceiling girders 22A in the roof portion 13 is calculated. The heat transmission rate database 46 stores in advance the correspondence relationship between the thermal bridge pitch P and the heat transmission rate U in the roof portion 13 . Then, based on the calculated thermal bridge pitch P and the correspondence relationship stored in the heat transmission coefficient database 46, the heat transmission coefficient U of the roof portion 13 is calculated. Based on the calculated area S of the roof portion 13, the amount of heat loss Q in the roof portion 13 is calculated.

このような熱損失量の算出の流れでは、隣り合う建物ユニット20の対向する各天井大梁22Aをそれぞれ1つの熱橋部とみなして屋根部13の熱損失量が算出される。そのため、対向する2本の天井大梁22Aを含む熱橋モデルを用いて熱損失量を算出する場合と異なり、対向する天井大梁22Aの間隔ごとに熱橋モデルをわざわざ用意する必要がない。また、熱橋モデルとしては1つのパターンのみ(つまり1本の天井大梁22Aのパターンのみ)となっているため、熱損失量の算出の処理もそれほど煩雑となることがなく、結果として、熱損失量を容易に算出することが可能となる。 In such a heat loss amount calculation flow, the heat loss amount of the roof portion 13 is calculated by regarding each of the facing ceiling girders 22A of the adjacent building units 20 as one thermal bridge portion. Therefore, unlike the case of calculating the amount of heat loss using a thermal bridge model including two opposing ceiling girders 22A, there is no need to bother to prepare a thermal bridge model for each space between the opposing ceiling girders 22A. In addition, since the thermal bridge model has only one pattern (that is, only the pattern of one ceiling girder 22A), the process of calculating the heat loss amount is not so complicated, and as a result, the heat loss The amount can be easily calculated.

ユニット式建物10に、隣り合う建物ユニット20の間隔が小さい小間隔部14と、上記間隔が大きい大間隔部15とが含まれている。すなわち、隣り合う建物ユニット20の対向する天井大梁22Aの間隔が小さい部分と大きい部分とが含まれている。このような建物10にあっても、上述したように、熱橋モデルとしては1パターンのみで熱損失量の算出を行えるため、熱損失量の算出を容易に行うことができる。 A unit-type building 10 includes a small interval portion 14 in which the interval between adjacent building units 20 is small, and a large interval portion 15 in which the interval is large. In other words, it includes portions where the gap between the facing ceiling girders 22A of the adjacent building units 20 is small and portions where the gap is large. Even in such a building 10, as described above, the amount of heat loss can be calculated using only one pattern as the thermal bridge model, so the amount of heat loss can be easily calculated.

本発明は上記実施形態に限らず、例えば次のように実施されてもよい。 The present invention is not limited to the above embodiments, and may be implemented as follows, for example.

・上記実施形態では、建物10の屋根部13における熱損失量を算出する場合に本発明を適用したが、建物10の一階部分の床部(外皮部に相当)における熱損失量を算出する場合に本発明を適用してもよい。この場合、一階床部に含まれる床大梁23のうち隣り合う建物ユニット20の対向する床大梁23(以下、床大梁23Aという)が、一階床部において熱橋部を構成する。そのため、床大梁23Aが熱橋構造材に相当する。 In the above embodiment, the present invention is applied when calculating the heat loss amount in the roof part 13 of the building 10, but the heat loss amount in the floor part (corresponding to the outer skin part) of the first floor part of the building 10 is calculated. The present invention may be applied in some cases. In this case, of the floor girders 23 included in the first floor, the facing floor girders 23 of the adjacent building units 20 (hereinafter referred to as floor girders 23A) form a thermal bridge section in the first floor. Therefore, the floor girders 23A correspond to thermal bridge structural members.

この場合、上記実施形態における「屋根部13」を「一階床部」に置き換え、「天井大梁22A」を「床大梁23A」に置き換えることで、上記実施形態と同様の手順で、一階床部における熱損失量を算出することができる。
・建物10の外壁部(外皮部に相当)における熱損失量を算出する場合に本発明を適用してもよい。この場合、外壁部に含まれる柱21、天井大梁22及び床大梁23のうち、隣り合う建物ユニット20において互いに対向する柱21(以下、柱21Bという)と、上下に隣り合う建物ユニット20において互いに対向する天井大梁22(以下、天井大梁22Bという)及び床大梁23(以下、床大梁23Bという)とが、外壁部において熱橋部を構成する。そのため、柱21A,天井大梁22B及び床大梁23Bが熱橋構造材に相当する。
In this case, by replacing the "roof section 13" in the above embodiment with the "first floor section" and replacing the "ceiling girders 22A" with the "floor girders 23A", the first floor floor The amount of heat loss in the section can be calculated.
- The present invention may be applied when calculating the amount of heat loss in the outer wall portion (corresponding to the skin portion) of the building 10 . In this case, among the pillars 21, the ceiling girders 22, and the floor girders 23 included in the outer wall, the pillars 21 (hereinafter referred to as pillars 21B) facing each other in the adjacent building units 20 and the pillars 21B facing each other in the vertically adjacent building units 20 The opposing ceiling girders 22 (hereinafter referred to as ceiling girders 22B) and floor girders 23 (hereinafter referred to as floor girders 23B) form a thermal bridge in the outer wall. Therefore, the pillars 21A, the ceiling girders 22B and the floor girders 23B correspond to thermal bridge structural members.

この場合、上記実施形態における「屋根部13」を「外壁部」に置き換え、「天井大梁22A」を「柱21B,天井大梁22B及び床大梁23B」に置き換えることで、上記実施形態と同様の手順で、外壁部における熱損失量を算出することができる。 In this case, by replacing the “roof portion 13” in the above embodiment with the “outer wall portion” and replacing the “ceiling girders 22A” with “columns 21B, ceiling girders 22B and floor girders 23B”, the same procedure as in the above embodiment. , the amount of heat loss in the outer wall can be calculated.

10…建物、13…外皮部としての屋根部、20…建物ユニット、22…構造材としての天井大梁、22A…熱橋構造材としての天井大梁、30…熱損失量算出システムとしての熱損失量算出装置、31…制御部、42…外皮面積算出手段としての屋根面積算出部、45…熱橋比率算出手段としての熱橋ピッチ算出部、46…記憶手段としての熱貫流率データベース、47…熱貫流率算出手段としての熱貫流率算出部、48…熱損失量算出手段としての熱損失量算出部。 10 Building 13 Roof as skin 20 Building unit 22 Ceiling girders as structural materials 22A Ceiling girders as thermal bridge structural materials 30 Heat loss amount as heat loss amount calculation system Calculation device 31 Control unit 42 Roof area calculation unit as skin area calculation means 45 Thermal bridge pitch calculation unit as thermal bridge ratio calculation means 46 Heat transmission coefficient database as storage means 47 Heat A heat transmission coefficient calculation unit as a transmission coefficient calculation means, 48 . . . a heat loss amount calculation unit as a heat loss amount calculation means.

Claims (2)

構造材としての柱及び梁が直方体状に連結された枠体を含む複数の建物ユニットが互いに組み合わされることで構築されるユニット式の建物において、その建物の屋根部、床部及び外壁部のうちのいずれかである外皮部を対象とし、その外皮部における熱損失量を算出する熱損失量算出システムであって、
前記建物の設計データに基づき、前記外皮部の面積を算出する外皮面積算出手段と、
前記外皮部に含まれる前記構造材のうち隣り合う前記建物ユニットの対向する前記構造材は熱橋部を構成する熱橋構造材であり、前記建物の設計データに基づき、前記外皮部におけるすべての前記熱橋構造材の長さを合計した合計長さを算出する合計長さ算出手段と、
前記外皮面積算出手段により算出された前記外皮部の面積と、前記合計長さ算出手段により算出された前記熱橋構造材の合計長さとに基づき、前記外皮部において前記熱橋構造材が占める面積の比率を示す熱橋比率を算出する熱橋比率算出手段と、
前記外皮部における前記熱橋比率と熱貫流率との対応関係が予め記憶されている記憶手段と、
前記熱橋比率算出手段により算出された前記熱橋比率と、前記記憶手段に記憶されている前記対応関係とに基づき、前記外皮部の熱貫流率を算出する熱貫流率算出手段と、
前記熱貫流率算出手段により算出された前記外皮部の熱貫流率と、前記外皮面積算出手段により算出された前記外皮部の面積とに基づき、前記外皮部における熱損失量を算出する熱損失量算出手段と、
を備える、熱損失量算出システム。
In a unit-type building constructed by combining a plurality of building units including a frame body in which columns and beams as structural materials are connected in a rectangular parallelepiped shape, among the roof, floor and outer wall of the building A heat loss amount calculation system for calculating the amount of heat loss in the outer skin part, which is one of
skin area calculation means for calculating the area of the skin portion based on the design data of the building;
Of the structural members included in the outer skin portion, the structural members facing each other in the adjacent building units are thermal bridge structural members constituting a thermal bridge portion, and based on the design data of the building, all the structural members in the outer skin portion total length calculation means for calculating the total length of the lengths of the thermal bridge structural members;
The area occupied by the thermal bridge structure material in the skin part based on the area of the skin portion calculated by the skin area calculation means and the total length of the thermal bridge structure material calculated by the total length calculation means. a thermal bridge ratio calculating means for calculating a thermal bridge ratio indicating the ratio of
storage means in which a correspondence relationship between the thermal bridge ratio and the heat transmission coefficient in the outer skin portion is stored in advance;
heat transmission coefficient calculation means for calculating the heat transmission coefficient of the outer skin based on the thermal bridge ratio calculated by the thermal bridge ratio calculation means and the correspondence stored in the storage means;
A heat loss amount for calculating a heat loss amount in the outer skin portion based on the heat transmission coefficient of the outer skin portion calculated by the heat transmission coefficient calculation means and the area of the outer skin portion calculated by the outer skin area calculation means. calculating means;
A heat loss calculation system.
前記建物には、隣り合う前記建物ユニットの間隔が小さい小間隔部と、隣り合う前記建物ユニットの間隔が大きい大間隔部とが含まれている、請求項1に記載の熱損失量算出システム。





















2. The heat loss amount calculation system according to claim 1, wherein said building includes a small interval portion in which an interval between said adjacent building units is small and a large interval portion in which an interval between said adjacent building units is large.





















JP2021153359A 2021-09-21 2021-09-21 Heat loss amount calculation system Pending JP2023045126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021153359A JP2023045126A (en) 2021-09-21 2021-09-21 Heat loss amount calculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021153359A JP2023045126A (en) 2021-09-21 2021-09-21 Heat loss amount calculation system

Publications (1)

Publication Number Publication Date
JP2023045126A true JP2023045126A (en) 2023-04-03

Family

ID=85777012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021153359A Pending JP2023045126A (en) 2021-09-21 2021-09-21 Heat loss amount calculation system

Country Status (1)

Country Link
JP (1) JP2023045126A (en)

Similar Documents

Publication Publication Date Title
AU2020200358B2 (en) Method and system of using standardized structural components
US9424375B2 (en) Method and system of using standardized structural components
US9424374B2 (en) Integrated construction portal
Sorace et al. The damped cable system for seismic protection of frame structures—Part II: Design and application
Pecce et al. Assessment of the in-plane deformability of RC floors with traditional and innovative lightening elements in RC framed and wall structures
de Carvalho et al. Moment gradient factor for steel I-beams with sinusoidal web openings
Pan et al. Novel discrete diaphragm system of concrete high-rise modular buildings
JP2023045126A (en) Heat loss amount calculation system
Bedair Serviceability and ultimate limit states of channels under compression and bi-axial bending
JP2021105877A (en) Frame data determination device, frame data determination method, and frame data determination program
Baran et al. Structural Engineering by way of BIM
JP2008297897A (en) Bearing wall layout method for use in structural calculation of building using computer
JP2016162236A (en) Ceiling design support system and ceiling engine frame
Al-sabaeei et al. State of art on seismic comparison of different types (V, diagonal and X) of bracings on different shapes of buildings (L, H, T and rectangular) with response spectrum method
Nieri et al. Kuwait international airport terminal 2: Detailed design and fabrication of a large-span composite shell
JP5347557B2 (en) Column beam frame
JP7107781B2 (en) Design support system
Zhou et al. Phoenix centre design and construction of a complex spatial structure based on 3D digital technology
AU2014237047B2 (en) Integrated construction portal
CN209799120U (en) Floor structure with discontinuous through beam column support arranged in span
Clift et al. Design of curtain walls for wind load
JP5160109B2 (en) Arrangement method of shaft assembly
Szafran et al. Computer FVM-FEM analysis of the large span grid shell roof
Rajana et al. A wavelet‐based approach for describing the mechanical behaviour of cellular beams
Leonard Design and Stress Analysis of Quad-Dominated Planar Structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240830