JP2023043784A - Furan acrylic acid ester polymer, production method therefor, and polymerizable monomer for use in producing said polymer and production method therefor - Google Patents

Furan acrylic acid ester polymer, production method therefor, and polymerizable monomer for use in producing said polymer and production method therefor Download PDF

Info

Publication number
JP2023043784A
JP2023043784A JP2021151584A JP2021151584A JP2023043784A JP 2023043784 A JP2023043784 A JP 2023043784A JP 2021151584 A JP2021151584 A JP 2021151584A JP 2021151584 A JP2021151584 A JP 2021151584A JP 2023043784 A JP2023043784 A JP 2023043784A
Authority
JP
Japan
Prior art keywords
group
polymer
producing
optionally branched
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021151584A
Other languages
Japanese (ja)
Inventor
肇 川波
Hajime Kawanami
康将 竹中
Yasumasa Takenaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
RIKEN Institute of Physical and Chemical Research
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, RIKEN Institute of Physical and Chemical Research filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2021151584A priority Critical patent/JP2023043784A/en
Priority to PCT/JP2022/034630 priority patent/WO2023042894A1/en
Publication of JP2023043784A publication Critical patent/JP2023043784A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • C08F20/68Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F24/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/58Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with silicon, germanium, tin, lead, antimony, bismuth or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Furan Compounds (AREA)
  • Polymerization Catalysts (AREA)

Abstract

To provide a polymer having transparency and high gas-barrier properties which is able to replace existing acrylic resins obtained from petrochemical-derived starting materials, using a biomass-derived starting material.SOLUTION: A furan-ring-containing acrylic acid ester monomer synthesized from a biomass-derived starting material is polymerized by a group transfer polymerization method.SELECTED DRAWING: None

Description

本発明は、フランアクリル酸エステル重合体及びその製造方法、並びに、該重合体の製造に用いる重合性モノマー及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a furanacrylate ester polymer, a method for producing the same, a polymerizable monomer used for producing the polymer, and a method for producing the same.

近年、二酸化炭素排出削減に貢献すべく、脱石油原料からの各種化学品製造に向けた取り組みが盛んである。脱石油原料に向けた取り組みの一つに、石化原料からバイオマス原料への転換がある。ただし、バイオマス原料から得られる化学品は、石化原料から得られる化学品と大きく異なる。従って、従来の石化由来原料からの各種化学品プロセスをそのままバイオマス原料で代替することはできず、結局エネルギーやコストをかけて石化原料と同等の化成品を製造するため、なかなかバイオマス原料由来化学品が、石化原料由来化学品に置き換わることは難しい。 In recent years, in order to contribute to the reduction of carbon dioxide emissions, active efforts have been made to manufacture various chemical products from non-petroleum raw materials. One of the efforts to move away from petroleum raw materials is to switch from petrochemical raw materials to biomass raw materials. However, chemicals obtained from biomass feedstocks are significantly different from those obtained from petrochemical feedstocks. Therefore, it is not possible to directly replace various chemical processes from conventional petrochemical-derived raw materials with biomass raw materials. However, it is difficult to replace chemical products derived from petrochemical raw materials.

バイオマス原料由来化学品の基幹物質として、2004年に米国DOEが各プラットフォームに分類している(非特許文献1)。その中に、炭素数が5のフルフラールと炭素数が6の5-ヒドロキシメチル-2-フルフラールがある。フルフラールは安定な液体として容易に得られることから、古くは溶剤や燃料に用いられ、その他では潤滑油や脱色剤の精製などに使用される。更に除草剤や殺虫剤など、その他ではコハク酸や1,4-ブタンジオールなどへ変換されてプラスチックの原料などにも利用される。5-ヒドロキシメチル-2-フルフラールは、水酸基とアルデヒド基を有し、酸化によってフランジカルボン酸を経てフラン環を有するポリエチレンフラネート(PEF)として、ポリエチレンテレフタレート(PET)代替材料としても注目されている。
PEFは、(PET)と比較してガス透過率が小さいことが知られている(非特許文献2、非特許文献3、第7~11頁)。またガスバリア性を上げるため、PEFをブレンドするだけで、大幅な酸素透過率が減少することが知られている(特許文献1)。
In 2004, the US DOE classified them into various platforms as key substances of biomass raw material-derived chemicals (Non-Patent Document 1). Among them are furfural with 5 carbon atoms and 5-hydroxymethyl-2-furfural with 6 carbon atoms. Since furfural is easily obtained as a stable liquid, it was used as a solvent and fuel in the past, and is also used for the refining of lubricating oils and bleaching agents. In addition, it is used as a herbicide, insecticide, etc., and is also used as a raw material for plastics after being converted into succinic acid, 1,4-butanediol, and the like. 5-Hydroxymethyl-2-furfural has a hydroxyl group and an aldehyde group, and it is also attracting attention as a polyethylene terephthalate (PET) substitute material as polyethylene furanate (PEF) having a furan ring via furandicarboxylic acid by oxidation. .
PEF is known to have a lower gas permeability than (PET) (Non-Patent Document 2, Non-Patent Document 3, pp. 7-11). Further, it is known that the oxygen permeability is greatly reduced only by blending PEF in order to improve the gas barrier properties (Patent Document 1).

一方、メタクリル酸メチルを重合して製造されるポリメタクリル酸メチル(PMMA)が代表的である透明性の高いアクリル樹脂は、その透明性から自動車レンズやコンタクトレンズなどの材料で使われるが、近年、食卓容器、照明版、水槽プレートなどにも多く利用されてきている。メタクリル酸メチルは、例えばイソブテンの酸化によって得られるメタクリル酸をエステル化することで得られる(酸化法)。イソブテンは、汎用的に石油精製時に得られている。 On the other hand, highly transparent acrylic resins, typically polymethyl methacrylate (PMMA) produced by polymerizing methyl methacrylate, are used in materials such as automobile lenses and contact lenses due to their transparency. , tableware, lighting plates, aquarium plates, etc. Methyl methacrylate is obtained, for example, by esterifying methacrylic acid obtained by oxidation of isobutene (oxidation method). Isobutene is commonly obtained during petroleum refining.

他方で、バイオマスから製造されるβ位に置換基を有する不飽和カルボン酸エステルの重合方法として、近年、カルボニル基をシリル化して不飽和結合の重合反応性を高めたグループトランスファー重合法によって、バイオマス由来のクロトン酸エステルや、ケイ皮酸エステルの重合が可能となった(特許文献2、非特許文献4~6)。 On the other hand, as a method for polymerizing unsaturated carboxylic acid esters having a β-substituted group produced from biomass, in recent years, the group transfer polymerization method, in which the carbonyl group is silylated to increase the polymerization reactivity of the unsaturated bond, is used to produce biomass. It has become possible to polymerize the derived crotonic acid ester and cinnamic acid ester (Patent Document 2, Non-Patent Documents 4 to 6).

特表2015-514151号号公報Japanese Patent Application Publication No. 2015-514151 特開2021-70787号公報JP 2021-70787 A

Top Value Added Chemicals fromBiomass, DOE NREL, 2004年 8月Top Value Added Chemicals from Biomass, DOE NREL, August 2004 北海道大学 プレスリリース 「バイオプラスチック原料を大量合成する技術を開発」2019/4/11Hokkaido University press release "Development of technology for mass synthesis of bioplastic raw materials" 2019/4/11 林 千里 2019年度 博士学位論文「ビフリル骨格含有バイオベース材料の開発」群馬大学大学院理工学府 理工学専攻 物質・生命理工学領域 環境調和型材料科学研究室Chisato Hayashi 2019 Doctoral Thesis "Development of Bio-Based Materials Containing Bifuryl Skeleton"Gunma University Graduate School of Science and Engineering Macromolecules 2019,52,4052-4058Macromolecules 2019,52,4052-4058 Macromolecules 2020,53,7759-7766Macromolecules 2020,53,7759-7766 COMMUNICATIONS CHEMISTRY,(2019) 2:109, https://doi.org/10.1038/s42004-019-0215-3COMMUNICATIONS CHEMISTRY, (2019) 2:109, https://doi.org/10.1038/s42004-019-0215-3

近年、突発的に発生したウィルスのまん延防止のため、人と人の間を隔離するために、透明性を有するポリメタクリル酸メチル(PMMA)等のアクリル樹脂が多く使われ、急激に需要が増えている。前述のとおり、メタクリル酸メチルから製造されるPMMAは、石油精製時に得られるイソブタンを原料とするから、脱石油化が困難である。
また、隔離を目的とするためには、ガスバリア性が求められるが、PMMAのガス透過性は中程度のもので、ポリアミドのような高いガスバリア性は無い。
In recent years, transparent acrylic resins such as polymethyl methacrylate (PMMA) have been widely used to prevent the spread of sudden viruses and to isolate people from each other, and the demand has increased rapidly. ing. As described above, PMMA produced from methyl methacrylate is made from isobutane, which is obtained during petroleum refining, as a raw material.
Further, gas barrier properties are required for the purpose of isolation, but PMMA has moderate gas permeability and does not have high gas barrier properties like polyamide.

そこで、フラン環を有するポリマーはガスバリア性を有することが知られていることから(前記非特許文献2,3)、PMMAのガスバリア性を上げるために、PMMAにガスバリア性の高いフラン環を有する別のポリマーをブレンドすることが考えられる。しかし、ブレンドポリマーではPMMAの透明性が損なわれてしまう。 Therefore, since it is known that a polymer having a furan ring has gas barrier properties (Non-Patent Documents 2 and 3), in order to increase the gas barrier properties of PMMA, another polymer having a furan ring with high gas barrier properties is used in PMMA. It is conceivable to blend the polymers of However, blend polymers impair the transparency of PMMA.

また、フラン環を有するアクリル酸エステルモノマーを合成し、これを重合させれば、透明性とガスバリア性を有する新しいアクリル樹脂として重合体を作製できる可能性があるが、アクリレート部位とフラン環との共役効果とフラン環の反応性の高さから、通常のラジカル重合では、アクリレート部位でのみの反応で重合体を作製することはできなかった。 In addition, by synthesizing an acrylic acid ester monomer having a furan ring and polymerizing it, it may be possible to prepare a polymer as a new acrylic resin having transparency and gas barrier properties. Due to the conjugation effect and the high reactivity of the furan ring, it was not possible to prepare a polymer by the reaction only at the acrylate site in the usual radical polymerization.

本発明は、こうした現状を鑑みてなされたものであって、石油化学由来の原料から得られる既存のアクリル樹脂に代替可能な透明性を有し、かつガスバリア性が高い樹脂を、バイオマス由来の原料を用いて提供することを課題とするものである。 The present invention has been made in view of such a situation, and has a transparency and a high gas barrier property that can be substituted for existing acrylic resins obtained from petrochemical-derived raw materials. The problem is to provide using

本発明者らは、上記課題について検討した結果、バイオマス由来の原料からフラン環をβ位に導入したアクリル酸エステル構造を有するモノマーを合成し、これを用いて重合を行うことで、石油化学由来の原料から得られるアクリル樹脂に代替可能で、透明、かつ高ガスバリア性を有する重合体を提供できることを知見し、以下の発明を完成させた。
[1]以下の一般式(I)で表される重合体。
As a result of examining the above problems, the present inventors synthesized a monomer having an acrylic ester structure in which a furan ring is introduced at the β-position from a biomass-derived raw material, and polymerized using this to obtain a petrochemical-derived The present inventors have found that it is possible to provide a transparent polymer having a high gas barrier property that can be substituted for the acrylic resin obtained from the raw material of the above, and have completed the following invention.
[1] A polymer represented by the following general formula (I).

Figure 2023043784000001
Figure 2023043784000001

(式中、Rは、置換基を有していてもよいメチル基、エチル基、分岐していてもよいプロピル基、分岐していてもよいブチル基、分岐していてもよいペンチル基、シクロペンチル基、分岐していてもよいヘキシル基、シクロヘキシル基、フェニル基のいずれかを表わし、Rは、水素又は置換基を有していてもよいメチル基、エチル基、分岐していてもよいプロピル基、分岐していてもよいブチル基、分岐していてもよいペンチル基、シクロペンチル基、分岐していてもよいヘキシル基、シクロヘキシル基、フェニル基のいずれかを表わす。)
[2]前記一般式(I)で表される重合体の製造方法であって、
以下の一般式(II)で表されるモノマーを重合させる重合体の製造方法。
(wherein R 1 is an optionally substituted methyl group, an ethyl group, an optionally branched propyl group, an optionally branched butyl group, an optionally branched pentyl group, a cyclopentyl group, an optionally branched hexyl group, a cyclohexyl group, or a phenyl group, and R 2 is hydrogen, an optionally substituted methyl group, an ethyl group, or an optionally branched Any of a propyl group, an optionally branched butyl group, an optionally branched pentyl group, an optionally branched hexyl group, an optionally branched hexyl group, and a phenyl group.)
[2] A method for producing the polymer represented by the general formula (I),
A method for producing a polymer by polymerizing a monomer represented by the following general formula (II).

Figure 2023043784000002
Figure 2023043784000002

(式中、R、Rは、前記のR、Rと同じものを表す。)
[3]前記モノマーを、グループトランスファー重合法により重合させる、前記[2]の重合体の製造方法。
[4]前記モノマーを、バイオマス由来の原料から合成する前記[2]又は[3]の重合体の製造方法。
[5]前記一般式(I)で表される重合体の製造用モノマーであって、前記一般式(II)で表される重合性モノマー。
[6]バイオマス由来の原料から合成する、前記一般式(II)で表される重合性モノマーの製造方法。
[7]前記バイオマス由来の原料として、以下の一般式(III)で表される化合物と、マロン酸又は酢酸とを用いる[6]に記載の重合性モノマーの製造方法。
(In the formula, R 1 and R 2 represent the same as R 1 and R 2 described above.)
[3] The method for producing the polymer of [2] above, wherein the monomer is polymerized by a group transfer polymerization method.
[4] The method for producing a polymer according to [2] or [3], wherein the monomer is synthesized from biomass-derived raw materials.
[5] A monomer for producing the polymer represented by the general formula (I), which is a polymerizable monomer represented by the general formula (II).
[6] A method for producing the polymerizable monomer represented by the general formula (II), which is synthesized from biomass-derived raw materials.
[7] The method for producing a polymerizable monomer according to [6], wherein a compound represented by the following general formula (III) and malonic acid or acetic acid are used as the biomass-derived raw materials.

Figure 2023043784000003
Figure 2023043784000003

(式中、Rは、前記のRと同じものを表す。) (In the formula, R 2 represents the same as R 2 above.)

本発明によれば、既存のアクリル樹脂に代替可能な、透明度が高く、高ガスバリア性の重合体を、100%バイオマス由来の原料を用いて製造することが可能であり、かつ、オレフィン部分の重合度によって、各種物性の調整可能性を広げることができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to produce a polymer with high transparency and high gas barrier properties, which can be substituted for existing acrylic resins, using raw materials derived from 100% biomass, and polymerizes the olefin part. Depending on the degree, the possibility of adjusting various physical properties can be expanded.

本発明の比較例1に係るモノマーのIR測定図IR measurement diagram of the monomer according to Comparative Example 1 of the present invention 本発明の比較例2に係るモノマーのIR測定図IR measurement diagram of the monomer according to Comparative Example 2 of the present invention 本発明の実施例1に係るモノマーのIR測定図IR measurement diagram of the monomer according to Example 1 of the present invention 本発明の実施例2に係るモノマーのIR測定図IR measurement diagram of the monomer according to Example 2 of the present invention 本発明の実施例3に係るモノマーのIR測定図IR measurement diagram of the monomer according to Example 3 of the present invention 本発明の実施例4に係るモノマーのIR測定図IR measurement diagram of the monomer according to Example 4 of the present invention 本発明の実施例5に係るモノマーのIR測定図IR measurement diagram of the monomer according to Example 5 of the present invention 本発明の実施例6に係るモノマーのIR測定図IR measurement diagram of the monomer according to Example 6 of the present invention 本発明の実施例7に係るポリマーのIR測定図IR measurement diagram of the polymer according to Example 7 of the present invention 本発明の実施例8に係るポリマーのIR測定図IR measurement diagram of the polymer according to Example 8 of the present invention 本発明の実施例9に係るポリマーのIR測定図IR measurement diagram of the polymer according to Example 9 of the present invention 本発明の実施例10に係るポリマーのIR測定図IR measurement diagram of the polymer according to Example 10 of the present invention 本発明の実施例12に係るポリマーのIR測定図IR measurement diagram of the polymer according to Example 12 of the present invention

以下、本発明を実施するための形態(以下、「本実施形態」という。)を詳細に説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form (henceforth "this embodiment") for implementing this invention is demonstrated in detail.

[重合性モノマー]
本実施形態に係る重合体(ポリマー)を合成するための重合性モノマーとしては、下記一般式(II)で表されるフラン環を有するアクリル酸エステルを用いることができる。
[Polymerizable Monomer]
As a polymerizable monomer for synthesizing the polymer according to the present embodiment, an acrylic acid ester having a furan ring represented by the following general formula (II) can be used.

Figure 2023043784000004
Figure 2023043784000004

(式中、Rは、置換基を有していてもよいメチル基、エチル基、分岐していてもよいプロピル基、分岐していてもよいブチル基、分岐していてもよいペンチル基、シクロペンチル基、分岐していてもよいヘキシル基、シクロヘキシル基、フェニル基のいずれかを表わし、Rは、水素又は置換基を有していてもよいメチル基、エチル基、分岐していてもよいプロピル基、分岐していてもよいブチル基、分岐していてもよいペンチル基、シクロペンチル基、分岐していてもよいヘキシル基、シクロヘキシル基、フェニル基のいずれかを表わす。) (wherein R 1 is an optionally substituted methyl group, an ethyl group, an optionally branched propyl group, an optionally branched butyl group, an optionally branched pentyl group, a cyclopentyl group, an optionally branched hexyl group, a cyclohexyl group, or a phenyl group, and R 2 is hydrogen, an optionally substituted methyl group, an ethyl group, or an optionally branched Any of a propyl group, an optionally branched butyl group, an optionally branched pentyl group, an optionally branched hexyl group, an optionally branched hexyl group, and a phenyl group.)

前記アクリル酸エステルは、以下の一般式(III)で表される化合物と、マロン酸や酢酸などのカルボン酸との反応により合成することができる。 The acrylic acid ester can be synthesized by reacting a compound represented by the following general formula (III) with a carboxylic acid such as malonic acid or acetic acid.

Figure 2023043784000005
Figure 2023043784000005

(Rは、一般式(I)と同じものを表す。)
一般式(III)で表される化合物としては、フルフラール又は5-ヒドロキシメチル-2-フルフラール等が挙げられる。これらは、グルコース、フルクトースなどの炭素数6の糖類やキシロース、アラビノースなどの炭素数5の糖類を骨格にもつ各種バイオマス原料、例えば、パルプ、セルロース、でんぷん、果糖、ショ糖などの糖類、更に製糖時に得られる廃糖液、また製品としての糖液などから得られるバイオマス由来の基幹材料である。また、マロン酸や酢酸も、果実などから得られるので、本実施形態に係る重合体を製造するためのモノマーである前記アクリル酸エステルは、100%バイオマス由来の原料を用いて合成することができる。
(R 2 represents the same as in general formula (I).)
Examples of compounds represented by general formula (III) include furfural and 5-hydroxymethyl-2-furfural. These include various biomass raw materials having a skeleton of 6-carbon saccharides such as glucose and fructose, and 5-carbon saccharides such as xylose and arabinose; It is a basic material derived from biomass obtained from sometimes obtained waste sugar solution and sugar solution as a product. In addition, since malonic acid and acetic acid are also obtained from fruits and the like, the acrylic acid ester, which is a monomer for producing the polymer according to the present embodiment, can be synthesized using 100% biomass-derived raw materials. .

[重合体] 前記アクリル酸エステルを一般的な重合法であるラジカル重合で重合しようとすると、カルボン酸と不飽和結合との共役に加え、さらに反応性の高いフラン環を有することにより不飽和結合の共役が広がる。したがって、アクリル樹脂の特徴であるオレフィンのC-C二重結合部位での単独重合が困難であった。
そこで、本実施形態においては、クロトン酸エステルやケイ皮酸エステルの重合法として開発されたグループトランスファー重合法(前述の特許文献2、非特許文献4~6参照)を採用し、オレフィンのC-C二重結合部位で単独重合した重合体を製造した。
[Polymer] When the acrylic acid ester is polymerized by radical polymerization, which is a general polymerization method, in addition to the conjugation of the carboxylic acid and the unsaturated bond, the highly reactive furan ring causes the unsaturated bond to The conjugation of is widened. Therefore, homopolymerization at the C—C double bond site of olefin, which is a characteristic of acrylic resins, has been difficult.
Therefore, in the present embodiment, a group transfer polymerization method (see the above-mentioned Patent Document 2 and Non-Patent Documents 4 to 6) developed as a polymerization method for crotonic acid esters and cinnamic acid esters is adopted, and C- A polymer was prepared that was homopolymerized at the C double bond site.

[グループトランスファー重合法(以下「GTP」という。)]
GTPは、アクリル酸エステル系単量体のカルボニル基をシリル化する開始剤、及び有機酸触媒を用いて、不飽和結合の重合反応性を高めることを特徴とする重合法である。
[Group transfer polymerization method (hereinafter referred to as "GTP")]
GTP is a polymerization method characterized by using an initiator for silylating the carbonyl group of an acrylic acid ester-based monomer and an organic acid catalyst to increase the polymerization reactivity of unsaturated bonds.

本実施形態におけるGTPにおいては、反応性の面から、以下の一般式(IV)で表される重合開始剤を用いることが好ましい。 In the GTP of the present embodiment, it is preferable to use a polymerization initiator represented by the following general formula (IV) from the viewpoint of reactivity.

Figure 2023043784000006
Figure 2023043784000006

(式(IV)中、R、R、R、R、R7、及びRは、同一又は異なって、水素原子、又は、酸素原子を1若しくは2個含んでもよい、炭素数1~20の脂肪族、脂環族若しくは芳香族の有機基を表す。 (In formula (IV), R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and may contain 1 or 2 hydrogen atoms or oxygen atoms, carbon number represents 1 to 20 aliphatic, alicyclic or aromatic organic groups;

上記一般式(IV)で表される重合開始剤の具体例としては、例えば、1-メトキシ-1-(トリエチルシロキシ)1-プロペン、1-メトキシ-1-(トリエチルシロキシ)-2
-メチル-1-プロペン、1-メトキシ-1-(トリアリルシロキシ)-2-メチル-1-プロペン、1-メトキシ-1-(トリシクロヘキシルメチルシロキシ)-2-メチル-1-プロぺン、1-メトキシ-1-(トリフェニルシロキシ)-2-メチル-1-プロぺン、1-ブトキシ-1-(トリベンジルシロキシ)-2-メチル-1-プロペン、1-メトキシ-1-(フェニルジメチルシロキシ)-2-メチル-1-プロペン、1-メトキシ-1-(t-ブチルジメチルシロキシ)-2-メチル-1-プロペン、1-ベンジルオキシ-1-(トリブチルシロキシ)-2-エチル-1-プロペン、1-メトキシ-1-(トリイソプロピルシロキシ)-2-メチル-1-プロペン等が挙げられる。
Specific examples of the polymerization initiator represented by the general formula (IV) include 1-methoxy-1-(triethylsiloxy)-1-propene, 1-methoxy-1-(triethylsiloxy)-2
-methyl-1-propene, 1-methoxy-1-(triallylsiloxy)-2-methyl-1-propene, 1-methoxy-1-(tricyclohexylmethylsiloxy)-2-methyl-1-propene, 1-methoxy-1-(triphenylsiloxy)-2-methyl-1-propene, 1-butoxy-1-(tribenzylsiloxy)-2-methyl-1-propene, 1-methoxy-1-(phenyl dimethylsiloxy)-2-methyl-1-propene, 1-methoxy-1-(t-butyldimethylsiloxy)-2-methyl-1-propene, 1-benzyloxy-1-(tributylsiloxy)-2-ethyl- 1-propene, 1-methoxy-1-(triisopropylsiloxy)-2-methyl-1-propene and the like.

また、本実施形態のGTPにおいて用いる前記有機酸触媒は、有機系の酸触媒であれば、特に限定されず、例えば、ルイス酸触媒、ブレンステッド酸触媒、有機分子触媒の酸触媒が挙げられる。なかでも、下記一般式(V)又は(VI)で表される化合物が好ましい。 The organic acid catalyst used in the GTP of the present embodiment is not particularly limited as long as it is an organic acid catalyst, and examples thereof include Lewis acid catalysts, Bronsted acid catalysts, and organic molecular catalyst acid catalysts. Among them, compounds represented by the following general formula (V) or (VI) are preferable.

Figure 2023043784000007
Figure 2023043784000007

(式(V)中、R9は、置換又は非置換のアリール基を表す。Rf及びRfは、同一又は異なってよいパーフルオロアルキル基を表す。) (In formula (V), R9 represents a substituted or unsubstituted aryl group. Rf1 and Rf2 represent perfluoroalkyl groups which may be the same or different.)

Figure 2023043784000008
Figure 2023043784000008

(式(VI)中、R10は、水素原子、-OR、炭素数1~12の直鎖若しくは分岐アルキル基、シクロアルキル基、又は、シリル基を表す。R10は、水素原子、炭素数1~12の直鎖若しくは分岐アルキル基、シクロアルキル基を表す。Rf及びRfは、同一の又は異なるパーフルオロアルキル基を表す。) (In formula (VI), R 10 represents a hydrogen atom, —OR 9 , a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, or a silyl group. R 10 represents a hydrogen atom, a carbon represents a linear or branched alkyl group or cycloalkyl group of numbers 1 to 12. Rf 3 and Rf 4 represent the same or different perfluoroalkyl groups.)

上記一般式(V)で表される化合物としては、例えば、フェニルビス(トリフリル)メタン、2-ナフチルビス(トリフリル)メタン、1-ナフチルビス(トリフリル)メタン、2,4,6-トリメチルフェニルビス(トリフリル)メタン、4-(トリフルオロメチル)フェニルビス(トリフリル)メタン、3,5-ビス(トリフルオロメチル)フェニルビス(トリフリル)メタン、ペンタフルオロフェニルビス(トリフリル)メタン、{4-(ペンタフルオロフェニル)-2,3,5,6-テトラフルオロフェニル}ビス(トリフリル)メタン等が挙げられ、なかでも、原料入手性が良いという観点からは、ペンタフルオロフェニルビス(トリフリル)メタンが好ましい。 Examples of compounds represented by the general formula (V) include phenylbis(triflyl)methane, 2-naphthylbis(triflyl)methane, 1-naphthylbis(triflyl)methane, 2,4,6-trimethylphenylbis(triflyl)methane, ) methane, 4-(trifluoromethyl)phenylbis(triflyl)methane, 3,5-bis(trifluoromethyl)phenylbis(triflyl)methane, pentafluorophenylbis(triflyl)methane, {4-(pentafluorophenyl )-2,3,5,6-tetrafluorophenyl}bis(triflyl)methane, among others, pentafluorophenylbis(triflyl)methane is preferred from the viewpoint of good raw material availability.

上記一般式(VI)で表される化合物としては、例えば、ビス(トリフルオロメタン)スルホニルイミド、トリメチルシリルビス(トリフルオロメタンスルホニル)イミド、ト
リエチルシリルビス(トリフルオロメタンスルホニル)イミド、トリイソプロピルシリ ルビス(トリフルオロメタンスルホニル)イミド、tert-ブチルジメチルシリルビ
ス(トリフルオロメタンスルホニル)イミド、フェニルジメチルシリルビス(トリフル オロメタンスルホニル)イミド、N-(トリフルオロメタンスルホニル)ノナフルオ ロブタンスルホニルイミド、N-トリメチルシリル-N-(トリフルオロメタンスルホニル)ノナフルオロブタンスルホニルイミド、トリメチルシリルビス(ノナフルオロ
ブタンスルホニル)イミド等が挙げられる。
Examples of the compound represented by the general formula (VI) include bis(trifluoromethane)sulfonylimide, trimethylsilylbis(trifluoromethanesulfonyl)imide, triethylsilylbis(trifluoromethanesulfonyl)imide, triisopropylsilylbis(trifluoromethane) sulfonyl)imide, tert-butyldimethylsilylbis(trifluoromethanesulfonyl)imide, phenyldimethylsilylbis(trifluoromethanesulfonyl)imide, N-(trifluoromethanesulfonyl)nonafluorobutanesulfonylimide, N-trimethylsilyl-N-(trifluoro romethanesulfonyl)nonafluorobutanesulfonylimide, trimethylsilylbis(nonafluorobutanesulfonyl)imide and the like.

また、上記グループトランスファー重合において、重合工程後、反応系内に水、アルコール、又は、酸を添加して、重合反応を停止する工程を有することが好ましい。グループトランスファー重合では、重合中、重合体の主鎖末端では重合開始剤のシリル基を含むケテンシリルアセタール構造又はエノレートアニオン構造となっており、反応系内に水、アルコール、又は、酸を添加して、重合体の片末端のケテンシリルアセタール又エノレートアニオンをカルボン酸又はエステルに変換させることにより、重合反応を停止させることができる。 Moreover, in the above-mentioned group transfer polymerization, it is preferable to have a step of adding water, alcohol, or acid into the reaction system after the polymerization step to terminate the polymerization reaction. In group transfer polymerization, during polymerization, the main chain end of the polymer has a ketene silyl acetal structure or enolate anion structure containing the silyl group of the polymerization initiator, and water, alcohol, or acid is added to the reaction system. As a result, the polymerization reaction can be terminated by converting the ketenesilyl acetal or enolate anion at one end of the polymer to a carboxylic acid or ester.

上記アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール等が挙げられる。
上記酸としては、例えば、塩酸、硫酸、硝酸、リン酸等の無機酸や、酢酸、安息香酸等の有機酸が挙げられる。
Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and the like.
Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid and benzoic acid.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
以下の実施例及び比較例において、各種物性等は以下のようにして測定した。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these.
In the following examples and comparative examples, various physical properties were measured as follows.

<収率>
得られた重合性モノマー及び重合体の収率は、それぞれ、下記の式を用いて算出した。
重合性モノマーの収率(%)=[得られた化合物のモル数/原料化合物(複数の場合は
少ない方)のモル数]×100
重合体の収率(%)=[得られた重合体の質量/原料重合性モノマーの質量]×100
<Yield>
The yields of the obtained polymerizable monomer and polymer were calculated using the following formulas.
Yield (%) of polymerizable monomer = [number of moles of obtained compound/number of moles of raw material compound (smaller number in case of multiple)] × 100
Polymer yield (%) = [mass of obtained polymer/mass of starting polymerizable monomer] x 100

H-NMR、13C-NMR、及びIRの測定>
得られた重合性モノマーは、H-NMR、13C-NMR、及びIRの測定により同定した。
得られた重合体は、いずれも、現状ではメタノール、エタノール、ジクロロメタン、クロロホルム、酢酸エチル、テトラヒドロフラン、トルエン、ジメチルスルホキシド、ジメチルホルムアミド、ヘキサフルオロイソプロパノール、メチルイソブチルケトンなどの汎用的な溶媒への溶解度が低いことから、H-NMR測定、13C-NMR測定では明確なスペクトルが得られなかったので、IRの測定により同定した。
<Measurement of 1 H-NMR, 13 C-NMR, and IR>
The resulting polymerizable monomer was identified by 1 H-NMR, 13 C-NMR and IR measurements.
All of the obtained polymers are currently soluble in common solvents such as methanol, ethanol, dichloromethane, chloroform, ethyl acetate, tetrahydrofuran, toluene, dimethyl sulfoxide, dimethylformamide, hexafluoroisopropanol, and methyl isobutyl ketone. Since it was low, no clear spectrum was obtained by 1 H-NMR measurement and 13 C-NMR measurement, so it was identified by IR measurement.

H-NMR測定条件)
装置:日本電子社製ECX-400
測定溶媒:重クロロホルム、重ジメチルスルホキシドまたは重テトラヒドロフラン
( 1 H-NMR measurement conditions)
Device: ECX-400 manufactured by JEOL Ltd.
Measurement solvent: Deuterated chloroform, deuterated dimethylsulfoxide or deuterated tetrahydrofuran

13C-NMR測定条件)
装置:日本電子社製ECX-400
測定溶媒:重クロロホルム、重ジメチルスルホキシドまたは重テトラヒドロフラン
( 13 C-NMR measurement conditions)
Device: ECX-400 manufactured by JEOL Ltd.
Measurement solvent: Deuterated chloroform, deuterated dimethylsulfoxide or deuterated tetrahydrofuran

(IRの測定条件)
装置: 島津製作所製SPirit
(IR measurement conditions)
Equipment: SPirit manufactured by Shimadzu Corporation

<数平均分子量、重量平均分子量、分散度>
得られた重合体の数平均分子量と重量平均分子量は、下記の測定条件下で、GPC(ゲル浸透クロマトグラフィー)測定により求めた。分散度(Mw/Mn)は、重量平均分子量(Mw)を数平均分子量(Mn)で除することにより求めた。
(GPCの測定条件)
装置:日本分光社製クロマトグラフシステム(DG-2080, PU-2085,
AS-2055 Plus, CO-2065 Plus, RI-2031 Plus)
溶出溶媒:テトラヒドロフラン
標準物質:昭和電工社製標準ポリスチレン(SM-105)
分離カラム:東ソー社製カラムTSKgel SuperHZM-M
<Number average molecular weight, weight average molecular weight, degree of dispersion>
The number-average molecular weight and weight-average molecular weight of the resulting polymer were determined by GPC (gel permeation chromatography) measurement under the following measurement conditions. The dispersity (Mw/Mn) was obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
(GPC measurement conditions)
Apparatus: Chromatograph system manufactured by JASCO Corporation (DG-2080, PU-2085,
AS-2055 Plus, CO-2065 Plus, RI-2031 Plus)
Elution solvent: Tetrahydrofuran Standard material: Showa Denko standard polystyrene (SM-105)
Separation column: Column TSKgel SuperHZM-M manufactured by Tosoh Corporation

<TG-DTA(熱重量・示差熱同時測定)>
得られた重合体のガラス転位点、融点、熱分解温度を、TG-DTA(熱重量・示差熱同時測定)(装置名:島津製作所社製DTG-60)により測定した。
<TG-DTA (simultaneous thermogravimetric and differential thermal measurement)>
The glass transition point, melting point and thermal decomposition temperature of the obtained polymer were measured by TG-DTA (simultaneous thermogravimetry and differential thermal measurement) (device name: DTG-60 manufactured by Shimadzu Corporation).

[モノマーの合成]
(比較例1) E-3-(2-フラニル)アクリル酸(2-フランアクリル酸)の合成
[Synthesis of Monomer]
(Comparative Example 1) Synthesis of E-3-(2-furanyl)acrylic acid (2-furanacrylic acid)

Figure 2023043784000009
Figure 2023043784000009

100mlナスフラスコにフルフラール(9.0mL、109.2mmol)、マロン酸(10.6g、102.0mmol)、ピペリジン2mL、ピリジン(Py.)30mL、ジメチルホルムアミド(DMF)20mLを加えて50℃で16時間攪拌した。その後、100℃でさらに5時間攪拌した。反応時間終了後、常温に戻して溶媒をエバポレーターで除去し水20mL、硫酸を10mL加えて、60℃で16時間攪拌した。その後さらに、80℃で1時間攪拌した。常温に戻し、桐山ろ過で沈殿している固体を集め、水で3回程度洗浄した。回収した薄茶色の粉末状固体を60℃、2時間減圧下で乾燥させて、比較例1に係る化合物1である2-フランアクリル酸を収率83%(11.75g、85.0mmol)で得た。 Furfural (9.0 mL, 109.2 mmol), malonic acid (10.6 g, 102.0 mmol), 2 mL of piperidine, 30 mL of pyridine (Py.), and 20 mL of dimethylformamide (DMF) were added to a 100 mL eggplant flask, and the mixture was stirred at 50°C for 16 minutes. Stirred for hours. After that, the mixture was stirred at 100° C. for another 5 hours. After completion of the reaction time, the temperature was returned to room temperature, the solvent was removed by an evaporator, 20 mL of water and 10 mL of sulfuric acid were added, and the mixture was stirred at 60° C. for 16 hours. After that, the mixture was further stirred at 80° C. for 1 hour. After returning to room temperature, the precipitated solid was collected by Kiriyama filtration and washed with water about three times. The collected light brown powdery solid was dried at 60° C. for 2 hours under reduced pressure to give 2-furanacrylic acid, which is compound 1 according to Comparative Example 1, with a yield of 83% (11.75 g, 85.0 mmol). Obtained.

なお、この粉末状固体が上記の式の1で表される2-フランアクリル酸であることは、以下のH-NMR測定結果、13C-NMR測定結果、及び図1に示すIR測定結果により確認した。
1H-NMR測定結果
1H NMR (400 MHz, CD3OD)
δ 7.61 (d, J = 1.8 Hz, 1H), 7.42 (d, J = 15.6 Hz, 1H), 6.73 (d, J = 3.7 Hz,
1H), 6.53 (q, J = 1.8 Hz, 1H), 6.23 (d, J = 15.6 Hz, 1H)
13C-NMR測定結果
13C NMR
(101 MHz, CD3OD) δ 170.3, 152.2, 146.4, 132.7, 116.6, 116.2, 113.4
It should be noted that the fact that this powdery solid is 2-furanacrylic acid represented by the above formula 1 is based on the following 1 H-NMR measurement results, 13 C-NMR measurement results, and IR measurement results shown in FIG. Confirmed by
1H -NMR measurement results
1H NMR (400MHz, CD3OD )
δ 7.61 (d, J = 1.8 Hz, 1H), 7.42 (d, J = 15.6 Hz, 1H), 6.73 (d, J = 3.7 Hz,
1H), 6.53 (q, J = 1.8Hz, 1H), 6.23 (d, J = 15.6Hz, 1H)
13C -NMR measurement results
13C NMR
(101MHz, CD3OD ) δ 170.3, 152.2, 146.4, 132.7, 116.6, 116.2, 113.4

(比較例2) E-3-(5-メチル-2-フラニル)アクリル酸(5-メチル-2-フランアクリル酸)の合成 (Comparative Example 2) Synthesis of E-3-(5-methyl-2-furanyl)acrylic acid (5-methyl-2-furanacrylic acid)

Figure 2023043784000010
Figure 2023043784000010

50mL試験管に5-メチル-2-フルフラール(11.61g,105.4mmol)、マロン酸(9.58g,92.0mmol)、ピペリジン2mL、ピリジン20mL、DMF20mLを加えて50℃で16時間攪拌した。その後、100℃でさらに5時間攪拌した。反応時間終了後、反応溶液を常温に戻して200mLナスフラスコに移し、溶媒をエバポレーターで除去した。水を20mL加え、硫酸を10mL加えて、60℃で16時間攪拌した。その後さらに、80℃で1時間攪拌した。反応溶液を室温に戻し、桐山ろ過で沈殿している固体を集め、水で3回程度洗浄した。回収した茶色の粉末状固体を60℃、3時間減圧下で乾燥させて、比較例2に係る化合物2である5-メチル-2-フランアクリル酸を、収率94%(13.16g,86.5mmol)で得た。 5-methyl-2-furfural (11.61 g, 105.4 mmol), malonic acid (9.58 g, 92.0 mmol), piperidine 2 mL, pyridine 20 mL and DMF 20 mL were added to a 50 mL test tube and stirred at 50° C. for 16 hours. . After that, the mixture was stirred at 100° C. for another 5 hours. After completion of the reaction time, the reaction solution was returned to room temperature, transferred to a 200 mL round-bottomed flask, and the solvent was removed with an evaporator. 20 mL of water was added, 10 mL of sulfuric acid was added, and the mixture was stirred at 60° C. for 16 hours. After that, the mixture was further stirred at 80° C. for 1 hour. The reaction solution was returned to room temperature, and the precipitated solid was collected by Kiriyama filtration and washed with water about three times. The collected brown powdery solid was dried at 60° C. for 3 hours under reduced pressure to obtain 5-methyl-2-furanacrylic acid, compound 2 according to Comparative Example 2, with a yield of 94% (13.16 g, 86 .5 mmol).

この粉末状固体が上記の式の2で表される5-メチル-2-フランアクリル酸であることは、以下のH-NMR測定結果、13C-NMR測定結果、及び図2に示すIR測定結果により確認した。
1H-NMR測定結果
1H NMR
(400 MHz, CD3OD) δ 7.34 (d, J = 15.6 Hz, 1H), 6.61 (d, J = 3.2 Hz,
1H), 6.15-6.10 (m, 2H), 2.33 (s, 3H)
13C-NMR測定結果
13C NMR
(101 MHz, CD3OD) δ 170.7, 157.1, 150.8, 132.8, 118.0, 114.7, 109.9,
13.6
The fact that this powdery solid is 5-methyl-2-furan acrylic acid represented by formula 2 above is confirmed by the following 1 H-NMR measurement results, 13 C-NMR measurement results, and the IR shown in FIG. This was confirmed by the measurement results.
1H -NMR measurement results
1H NMR
(400 MHz, CD3OD ) δ 7.34 (d, J = 15.6 Hz, 1H), 6.61 (d, J = 3.2 Hz,
1H), 6.15-6.10 (m, 2H), 2.33 (s, 3H)
13C -NMR measurement results
13C NMR
(101 MHz, CD3OD ) δ 170.7, 157.1, 150.8, 132.8, 118.0, 114.7, 109.9,
13.6

(実施例1)メチル-E-3-(2-フラニル)アクリレート(2-フランアクリル酸メチル)の合成 (Example 1) Synthesis of methyl-E-3-(2-furanyl)acrylate (methyl 2-furanacrylate)

Figure 2023043784000011
Figure 2023043784000011

200mLナスフラスコに、比較例1で得られた化合物1(4.14g,30mmol)、及びメタノール60mLを加え、60℃で攪拌した。そこへ硫酸0.5mLを加え、80℃で16時間加熱還流を行った。反応溶液を室温に戻し、エバポレーターでメタノールを除去し、飽和NaHCO水溶液を加え、クロロホルムで抽出を行った。有機層を水、brine(高濃度塩化ナトリウム水溶液)で洗浄し、NaSOを加え、脱水した。エバポレーターでクロロホルムを除去すると、茶色の液体が得られた。1時間、-4℃の冷凍保存後、茶色の固体として実施例1に係る化合物3aである2-フランアクリル酸メチルを収率70%(3.19g,21mmol)で得た。
この固体が上記の式の3aで表される化合物であることは、以下のH-NMR測定結果、13C-NMR測定結果、及び図3に示すIR測定結果により確認した。
1H-NMR測定結果
1H NMR
(400 MHz, CDCl3) δ 7.46-7.40 (m, 2H), 6.59 (d, J = 3.2 Hz, 1H), 6.45
(q, J = 1.8 Hz, 1H), 6.30 (d, J = 16.0 Hz, 1H), 3.76 (s, 3H)
13C-NMR測定結果
13C NMR
(101 MHz, CDCl3) δ 167.4, 150.8, 144.7, 131.2, 115.4, 114.8, 112.2,
51.6
Compound 1 (4.14 g, 30 mmol) obtained in Comparative Example 1 and 60 mL of methanol were added to a 200 mL eggplant flask and stirred at 60°C. 0.5 mL of sulfuric acid was added thereto, and the mixture was heated under reflux at 80° C. for 16 hours. The reaction solution was returned to room temperature, methanol was removed by an evaporator, a saturated NaHCO3 aqueous solution was added, and extraction was performed with chloroform. The organic layer was washed with water and brine (high-concentration sodium chloride aqueous solution), and dehydrated by adding Na 2 SO 4 . After removing chloroform with an evaporator, a brown liquid was obtained. After frozen storage at -4°C for 1 hour, methyl 2-furanacrylate, compound 3a of Example 1, was obtained as a brown solid with a yield of 70% (3.19 g, 21 mmol).
It was confirmed by the following 1 H-NMR measurement results, 13 C-NMR measurement results, and IR measurement results shown in FIG.
1H -NMR measurement results
1H NMR
(400 MHz, CDCl3 ) δ 7.46-7.40 (m, 2H), 6.59 (d, J = 3.2 Hz, 1H), 6.45
(q, J = 1.8Hz, 1H), 6.30 (d, J = 16.0Hz, 1H), 3.76 (s, 3H)
13C -NMR measurement results
13C NMR
(101 MHz, CDCl3 ) δ 167.4, 150.8, 144.7, 131.2, 115.4, 114.8, 112.2,
51.6

(実施例2) エチル-E-3-(2-フラニル)アクリレート(2-フランアクリル酸エチル)の合成 (Example 2) Synthesis of ethyl-E-3-(2-furanyl)acrylate (ethyl 2-furanacrylate)

Figure 2023043784000012
Figure 2023043784000012

300mLナスフラスコに、比較例1で得られた化合物1(7.50g,54mmol)、及びエタノール120mLを加え、60℃で攪拌した。そこへ硫酸1.0mLを加え、95℃で15時間加熱還流を行った。反応溶液を室温に戻し、エバポレーターでエタノールを除去し、飽和NaHCO水溶液を加え、クロロホルムで抽出を行った。有機層を水、brineで洗浄し、NaSOを加え、脱水した。エバポレーターでクロロホルムを除去すると、茶色の液体が得られた。生成物をシリカゲルカラムクロマトグラフィーで精製することで黄色の液体として実施例2に係る化合物3bである2-フランアクリル酸エチルを収率58%(5.17g,37.4mmol)で得た。 Compound 1 (7.50 g, 54 mmol) obtained in Comparative Example 1 and 120 mL of ethanol were added to a 300 mL eggplant flask and stirred at 60°C. 1.0 mL of sulfuric acid was added thereto, and the mixture was heated under reflux at 95° C. for 15 hours. The reaction solution was returned to room temperature, ethanol was removed with an evaporator, saturated NaHCO 3 aqueous solution was added, and extraction was performed with chloroform. The organic layer was washed with water, brine, added with Na 2 SO 4 and dried. After removing chloroform with an evaporator, a brown liquid was obtained. By purifying the product by silica gel column chromatography, ethyl 2-furanacrylate, compound 3b of Example 2, was obtained as a yellow liquid with a yield of 58% (5.17 g, 37.4 mmol).

この液体が上記の式の3bで表される化合物であることは、以下のH-NMR測定結果、13C-NMR測定結果、及び図4に示すIR測定結果により確認した。
1H-NMR測定結果
1H NMR
(400MHz, CDCl3) δ 7.48-7.41 (m, 2H), 6.60 (d, J = 3.4 Hz, 1H), 6.46
(q, J = 1.6 Hz, 1H), 6.31 (d, J = 15.4 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 1.32
(t, J = 7.1 Hz, 3H)
13C-NMR測定結果
13C NMR
(101MHz, CDCl3) δ 167.0, 150.9, 144.6, 130.9, 115.9, 114.6, 112.2,
60.4, 14.3
It was confirmed from the following 1 H-NMR measurement results, 13 C-NMR measurement results, and IR measurement results shown in FIG. 4 that this liquid was the compound represented by Formula 3b above.
1H -NMR measurement results
1H NMR
(400MHz, CDCl3 ) δ 7.48-7.41 (m, 2H), 6.60 (d, J = 3.4 Hz, 1H), 6.46
(q, J = 1.6Hz, 1H), 6.31 (d, J = 15.4Hz, 1H), 4.24 (q, J = 7.2Hz, 2H), 1.32
(t, J = 7.1Hz, 3H)
13C -NMR measurement results
13C NMR
(101MHz, CDCl3 ) δ 167.0, 150.9, 144.6, 130.9, 115.9, 114.6, 112.2,
60.4, 14.3

(実施例3) イソプロピル-E-3-(2-フラニル)アクリレート(2-フランアクリル酸イソプロピル)の合成 Example 3 Synthesis of isopropyl-E-3-(2-furanyl)acrylate (isopropyl 2-furanacrylate)

Figure 2023043784000013
Figure 2023043784000013

200mLナスフラスコに、比較例1で得られた化合物1(4.14g,30mmol)、及びイソプロパノール60mLを加え、60℃で攪拌した。そこへ硫酸0.5mLを加え、100℃で17時間加熱還流を行った。反応溶液を室温に戻し、エバポレーターでイソプロパノールを除去し、飽和NaHCO水溶液を加え、クロロホルムで抽出を行った。有機層を水、brineで洗浄し、NaSOを加え、脱水した。エバポレーターでクロロホルムを除去すると、茶色の液体として実施例3に係る化合物3cである2-フランアクリル酸イソプロピルを収率46%(2.50g,13.8mmol)で得た。 Compound 1 (4.14 g, 30 mmol) obtained in Comparative Example 1 and 60 mL of isopropanol were added to a 200 mL eggplant flask and stirred at 60°C. 0.5 mL of sulfuric acid was added thereto, and the mixture was heated under reflux at 100° C. for 17 hours. The reaction solution was returned to room temperature, isopropanol was removed with an evaporator, saturated NaHCO 3 aqueous solution was added, and extraction was performed with chloroform. The organic layer was washed with water, brine, added with Na 2 SO 4 and dried. When chloroform was removed with an evaporator, isopropyl 2-furanacrylate, compound 3c of Example 3, was obtained as a brown liquid with a yield of 46% (2.50 g, 13.8 mmol).

この液体が上記の式の3cで表される化合物であることは、以下のH-NMR測定結果、13C-NMR測定結果、及び図5に示すIR測定結果により確認した。
1H-NMR測定結果
1H NMR
(400 MHz, CDCl3) δ 7.45-7.37 (m, 2H), 6.58 (d, J = 3.2 Hz, 1H), 6.44
(q, J = 1.7 Hz, 1H), 6.28 (d, J = 16.0 Hz, 1H), 5.10 (t, J = 6.2 Hz, 1H), 1.28
(d, J = 6.4 Hz, 6H)
13C-NMR測定結果
13C NMR
(101 MHz, CDCl3) δ 166.5, 151.0, 144.6, 130.7, 116.5, 114.4, 112.2,
67.7, 21.9
It was confirmed by the following 1 H-NMR measurement results, 13 C-NMR measurement results, and IR measurement results shown in FIG. 5 that this liquid is the compound represented by Formula 3c above.
1H -NMR measurement results
1H NMR
(400 MHz, CDCl3 ) δ 7.45-7.37 (m, 2H), 6.58 (d, J = 3.2 Hz, 1H), 6.44
(q, J = 1.7Hz, 1H), 6.28 (d, J = 16.0Hz, 1H), 5.10 (t, J = 6.2Hz, 1H), 1.28
(d, J = 6.4Hz, 6H)
13C -NMR measurement results
13C NMR
(101 MHz, CDCl3 ) δ 166.5, 151.0, 144.6, 130.7, 116.5, 114.4, 112.2,
67.7, 21.9

(実施例4) メチル-E-3-(5-メチル-2-フラニル)アクリレート(5-メチル-2-フランアクリル酸メチル)の合成 (Example 4) Synthesis of methyl-E-3-(5-methyl-2-furanyl)acrylate (methyl 5-methyl-2-furanacrylate)

Figure 2023043784000014
Figure 2023043784000014

200mLナスフラスコに、比較例2で得られた化合物2(5-メチル-2-フランアクリル酸)(4.56g,30mmol)、及びメタノール60mLを加え、60℃で攪拌した。そこへ硫酸0.5mLを加え、80℃で16時間加熱還流を行った。反応溶液を室温に戻し、エバポレーターでメタノールを除去し、飽和NaHCO水溶液を加え、クロロホルムで抽出を行った。有機層を水、brineで洗浄し、NaSOで脱水した。エバポレーターでクロロホルムを除去すると、オレンジ色の液体の粗生成物が得られた。粗生成物をシリカゲルクロマトグラフィーで精製すると黄色の固体となった。結果的に黄色の粉末状固体として実施例4に係る化合物4aである5-メチル-2-フランアクリル酸メチルを収率86%(4.26g,25.7mmol)で得た。 Compound 2 (5-methyl-2-furanacrylic acid) (4.56 g, 30 mmol) obtained in Comparative Example 2 and 60 mL of methanol were added to a 200 mL eggplant flask and stirred at 60°C. 0.5 mL of sulfuric acid was added thereto, and the mixture was heated under reflux at 80° C. for 16 hours. The reaction solution was returned to room temperature, methanol was removed by an evaporator, a saturated NaHCO3 aqueous solution was added, and extraction was performed with chloroform. The organic layer was washed with water, brine and dried over Na2SO4 . Removal of chloroform with an evaporator gave an orange liquid crude product. The crude product was purified by silica gel chromatography to give a yellow solid. As a result, methyl 5-methyl-2-furanacrylate, compound 4a of Example 4, was obtained as a yellow powdery solid with a yield of 86% (4.26 g, 25.7 mmol).

この固体が上記の式の4aで表される化合物であることは、以下のH-NMR測定結果、13C-NMR測定結果、及び図6に示すIR測定結果により確認した。
1H-NMR測定結果
1H NMR
(400 MHz, CDCl3) δ 7.26 (d, J = 15.6 Hz, 1H), 6.40 (d, J = 3.2 Hz,
1H), 6.12 (d, J = 15.6 Hz, 1H), 5.97-5.96 (m, 1H), 3.67 (s, 3H), 2.24 (s, 3H)
13C-NMR測定結果
13C NMR
(101 MHz, CDCl3) δ 167.8, 155.5, 149.4, 131.3, 116.5, 113.5, 108.8,
51.5, 13.8
It was confirmed by the following 1 H-NMR measurement results, 13 C-NMR measurement results, and IR measurement results shown in FIG. 6 that this solid was the compound represented by formula 4a above.
1H -NMR measurement results
1H NMR
(400 MHz, CDCl 3 ) δ 7.26 (d, J = 15.6 Hz, 1H), 6.40 (d, J = 3.2 Hz,
1H), 6.12 (d, J = 15.6 Hz, 1H), 5.97-5.96 (m, 1H), 3.67 (s, 3H), 2.24 (s, 3H)
13C -NMR measurement results
13C NMR
(101 MHz, CDCl3 ) δ 167.8, 155.5, 149.4, 131.3, 116.5, 113.5, 108.8,
51.5, 13.8

(実施例5) エチル-E-3-(5-メチル-2-フラニル)アクリレート(5-メチル-2-フランアクリル酸エチル)の合成 (Example 5) Synthesis of ethyl-E-3-(5-methyl-2-furanyl)acrylate (ethyl 5-methyl-2-furanacrylate)

Figure 2023043784000015
Figure 2023043784000015

200mLナスフラスコに、比較例2で得られた化合物2である5-メチル-2-フランアクリル酸(4.57g,30mmol)、及びエタノール60mLを加え、60℃で攪拌した。そこへ硫酸0.5mLを加え、95℃で15時間加熱還流を行った。反応溶液を室温に戻し、エバポレーターでエタノールを除去し、飽和NaHCO水溶液を加え、クロロホルムで抽出を行った。有機層を水、brineで洗浄し、NaSOで脱水した。エバポレーターでクロロホルムを除去すると、オレンジ色の液体の粗生成物が得られた。粗生成物をシリカゲルクロマトグラフィーで精製すると黄色の液体で生成物が得られた。冷凍庫(-4℃)で保管していると固体となり、その後、室温でしばらく放置すると液体に戻った。結果的に黄色の液体として実施例5に係る化合物4bである5-メチル-2-フランアクリル酸エチルを収率74%(4.00g,22.2mmol)で得た。 5-Methyl-2-furanacrylic acid (4.57 g, 30 mmol), which is Compound 2 obtained in Comparative Example 2, and 60 mL of ethanol were added to a 200 mL eggplant flask and stirred at 60°C. 0.5 mL of sulfuric acid was added thereto, and the mixture was heated under reflux at 95° C. for 15 hours. The reaction solution was returned to room temperature, ethanol was removed with an evaporator, saturated NaHCO 3 aqueous solution was added, and extraction was performed with chloroform. The organic layer was washed with water, brine and dried over Na2SO4 . Removal of chloroform with an evaporator gave an orange liquid crude product. The crude product was purified by silica gel chromatography to give the product as a yellow liquid. It became solid when stored in a freezer (-4°C), and then returned to liquid after being left at room temperature for a while. As a result, ethyl 5-methyl-2-furanacrylate, compound 4b of Example 5, was obtained as a yellow liquid with a yield of 74% (4.00 g, 22.2 mmol).

この液体が上記の式の4bで表される化合物であることは、以下のH-NMR測定結果、13C-NMR測定結果、及び図7に示すIR測定結果により確認した。
1H-NMR測定結果
1H NMR
(400 MHz, CDCl3) δ 7.35 (d, J = 15.6 Hz, 1H), 6.50 (d, J = 3.2 Hz,
1H), 6.23 (d, J = 15.6 Hz, 1H), 6.07-6.06 (m, 1H), 4.23 (q, J = 7.0 Hz, 2H),
2.34 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H)
13C-NMR測定結果
13C NMR
(101 MHz, CDCl3) δ 167.3, 155.3, 149.5, 131.0, 116.3, 114.0, 108.7,
60.2, 14.3, 13.8
It was confirmed by the following 1 H-NMR measurement results, 13 C-NMR measurement results, and IR measurement results shown in FIG. 7 that this liquid is the compound represented by the above formula 4b.
1H -NMR measurement results
1H NMR
(400 MHz, CDCl 3 ) δ 7.35 (d, J = 15.6 Hz, 1H), 6.50 (d, J = 3.2 Hz,
1H), 6.23 (d, J = 15.6Hz, 1H), 6.07-6.06 (m, 1H), 4.23 (q, J = 7.0Hz, 2H),
2.34 (s, 3H), 1.31 (t, J = 7.1Hz, 3H)
13C -NMR measurement results
13C NMR
(101 MHz, CDCl3 ) δ 167.3, 155.3, 149.5, 131.0, 116.3, 114.0, 108.7,
60.2, 14.3, 13.8

(実施例6) イソプロピル-E-3-(5-メチル-2-フラニル)アクリレート(5-メチル-2-フランアクリル酸イソプロピル)の合成 Example 6 Synthesis of isopropyl-E-3-(5-methyl-2-furanyl)acrylate (isopropyl 5-methyl-2-furanacrylate)

Figure 2023043784000016
Figure 2023043784000016

200mLナスフラスコに、比較例2で得られた化合物2である5-メチル-2-フランアクリル酸(4.56g,30mmol)、及びイソプロパノール60mLを加え、60℃で攪拌した。そこへ硫酸0.5mLを加え、100℃で16時間加熱還流を行った。反応溶液を室温に戻し、エバポレーターでイソプロパノールを除去し、飽和NaHCO水溶液を加え、クロロホルムで抽出を行った。有機層を水、brineで洗浄し、NaSOで脱水した。エバポレーターでクロロホルムを除去すると、オレンジ色の液体の粗生成物が得られた。粗生成物をシリカゲルクロマトグラフィーで精製すると黄色の液体で生成物が得られた。冷凍庫(-4℃)で保管しても固体にはならなかった。結果的に黄色の液体として実施例6に係る化合物4cである5-メチル-2-フランアクリル酸イソプロピルを収率64%(3.70g,19.1mmol)で得た。 5-Methyl-2-furanacrylic acid (4.56 g, 30 mmol), which is Compound 2 obtained in Comparative Example 2, and 60 mL of isopropanol were added to a 200 mL eggplant flask and stirred at 60°C. 0.5 mL of sulfuric acid was added thereto, and the mixture was heated under reflux at 100° C. for 16 hours. The reaction solution was returned to room temperature, isopropanol was removed with an evaporator, saturated NaHCO 3 aqueous solution was added, and extraction was performed with chloroform. The organic layer was washed with water, brine and dried over Na2SO4 . Removal of chloroform with an evaporator gave an orange liquid crude product. The crude product was purified by silica gel chromatography to give the product as a yellow liquid. It did not become solid even when stored in a freezer (-4°C). As a result, isopropyl 5-methyl-2-furanacrylate, compound 4c of Example 6, was obtained as a yellow liquid with a yield of 64% (3.70 g, 19.1 mmol).

この液体が上記の式の4cで表される化合物であることは、以下のH-NMR測定結果、13C-NMR測定結果、及び図8に示すIR測定結果により確認した。
1H-NMR測定結果
1H-NMR (400 MHz, CDCl3) δ 7.26
(d, J = 15.6 Hz, 1H), 6.41 (d, J = 3.2 Hz, 1H), 6.14 (d, J = 15.6 Hz, 1H), 5.99
(q, J = 1.4 Hz, 1H), 5.03 (h, J = 6.2 Hz, 1H), 2.26 (s, 3H), 1.21 (d, J = 6.4
Hz, 6H)
13C-NMR測定結果
13C NMR
(101 MHz, CDCl3) δ 166.8, 155.2, 149.6, 130.8, 116.1, 114.6, 108.7,
67.4, 21.9, 13.8
It was confirmed from the following 1 H-NMR measurement results, 13 C-NMR measurement results, and IR measurement results shown in FIG. 8 that this liquid was the compound represented by formula 4c above.
1H -NMR measurement results
1H-NMR (400 MHz, CDCl3 ) δ 7.26
(d, J = 15.6Hz, 1H), 6.41 (d, J = 3.2Hz, 1H), 6.14 (d, J = 15.6Hz, 1H), 5.99
(q, J = 1.4 Hz, 1H), 5.03 (h, J = 6.2 Hz, 1H), 2.26 (s, 3H), 1.21 (d, J = 6.4
Hz, 6H)
13C -NMR measurement results
13C NMR
(101 MHz, CDCl3 ) δ 166.8, 155.2, 149.6, 130.8, 116.1, 114.6, 108.7,
67.4, 21.9, 13.8

[ポリマーの合成]
(比較例3) 2-フランアクリル酸のGTP (グループトランスファー重合)
[Synthesis of polymer]
(Comparative Example 3) GTP of 2-furanacrylic acid (group transfer polymerization)

Figure 2023043784000017
Figure 2023043784000017

グローブボックス内で30mLシュレンク管に、比較例1で得られた化合物1である2-フランアクリル酸(0.25g、1.81mmol)、開始剤としてのジメチルケテンメチルトリメチルシリルアセタール(MTS)(5.2mg,0.03mmol)、及びジクロロメタン5.5mLを加えた。そこへ、有機酸触媒として、N-(トリメチルシリル)ビス(トリフルオロメタンスルホニル)イミド(Tf2NTMS)(10.6mg,0.03mmol)をジクロロメタン0.5mLに溶かした溶液を加え、-35℃で6日間撹拌した後、メタノールを10mL加えた。エバポレーターにより溶媒を除去すると、黄色の液体が得られ、出発物1が回収された。したがって、上記のポリマー4が形成される重合反応は進行していなかった。 2-furanacrylic acid (0.25 g, 1.81 mmol), which is compound 1 obtained in Comparative Example 1, and dimethylketenemethyltrimethylsilyl acetal (MTS) as an initiator (5. 2 mg, 0.03 mmol) and 5.5 mL of dichloromethane were added. A solution prepared by dissolving N-(trimethylsilyl)bis(trifluoromethanesulfonyl)imide (Tf2NTMS) (10.6 mg, 0.03 mmol) in 0.5 mL of dichloromethane as an organic acid catalyst was added thereto, and the mixture was kept at −35° C. for 6 days. After stirring, 10 mL of methanol was added. Removal of the solvent by evaporator gave a yellow liquid, starting material 1 was recovered. Therefore, the polymerization reaction for forming polymer 4 described above did not proceed.

(実施例7) 2-フランアクリル酸メチルのGTP) (Example 7) GTP of methyl 2-furanacrylate)

Figure 2023043784000018
Figure 2023043784000018

グローブボックス内で30mLシュレンク管に、実施例1で得られた化合物3aである2-フランアクリル酸メチル(0.99g,6.5mmol)、MTS(22.7mg,0.13mmol)、及びジクロロメタン3mLを加えた。そこへTfNTMS(46.0mg,0.13mmol)をジクロロメタン1mLに溶かした溶液を加えた。反応溶液を-40℃で7日間撹拌し、メタノールを5mL加えて反応を停止させた。エバポレーターで溶媒を除去することで茶色い液体である粗生成物を得た。CHClに溶かすと白濁し、メタノールを加えることで析出してくる白~薄茶色の固体を桐山ろ過で集めた。集めた固体を乾燥させ、薄茶色の粉末状固体73.9mgを回収した。 Methyl 2-furanacrylate (0.99 g, 6.5 mmol), which is compound 3a obtained in Example 1, MTS (22.7 mg, 0.13 mmol), and 3 mL of dichloromethane are placed in a 30 mL Schlenk tube in a glove box. was added. A solution of Tf 2 NTMS (46.0 mg, 0.13 mmol) dissolved in 1 mL of dichloromethane was added thereto. The reaction solution was stirred at −40° C. for 7 days and 5 mL of methanol was added to quench the reaction. A brown liquid crude product was obtained by removing the solvent with an evaporator. When dissolved in CH 2 Cl 2 , it became cloudy, and when methanol was added, a white to pale brown solid precipitated out, which was collected by Kiriyama filtration. The collected solid was dried to recover 73.9 mg of a pale brown powdery solid.

図9に示すIRの測定結果から、得られた粉末状固体が、上記の式の5aで表される化合物であることを確認した。 From the IR measurement results shown in FIG. 9, it was confirmed that the obtained powdery solid was the compound represented by the above formula 5a.

また、TG-DTAの結果、明確なモノマーに由来する融点は観測されずモノマーを含まないポリマーであることが分かり、更にガラス転位点、融点は検出できず、熱分解温度が338℃であるポリマーであることが分かった。
(実施例8) 2-フランアクリル酸エチルのGTP
In addition, as a result of TG-DTA, a clear melting point derived from a monomer was not observed, and it was found to be a polymer containing no monomer. It turned out to be
(Example 8) GTP of ethyl 2-furanacrylate

Figure 2023043784000019
Figure 2023043784000019

グローブボックス内で30mLシュレンク管に、実施例2で得られた化合物3bである2-フランアクリル酸エチル(1.08g,6.5mmol)、MTS(22.7mg,0.13mmol)、及びジクロロメタン3mLを加えた。そこへTfNTMS(46.0mg,0.13mmol)をジクロロメタン1mLに溶かした溶液を加えた。反応溶液を-40℃で7日間撹拌し、メタノールを加えて反応を停止させた。析出してきた粉末状の固体を桐山ろ過で回収し、メタノールで数回洗浄した。その後、よく乾燥させることで目的のポリマー5bを収率34%(0.37g)で得た。 Ethyl 2-furanacrylate (1.08 g, 6.5 mmol), which is compound 3b obtained in Example 2, MTS (22.7 mg, 0.13 mmol), and 3 mL of dichloromethane are placed in a 30 mL Schlenk tube in a glove box. was added. A solution of Tf 2 NTMS (46.0 mg, 0.13 mmol) dissolved in 1 mL of dichloromethane was added thereto. The reaction solution was stirred at −40° C. for 7 days, and methanol was added to quench the reaction. The precipitated powdery solid was collected by Kiriyama filtration and washed several times with methanol. Then, it was thoroughly dried to obtain the desired polymer 5b with a yield of 34% (0.37 g).

H-NMR測定、13C-NMR測定結果からは、明確なスペクトルが得られなかったので、ポリマーの同定はIR測定により行い、図10に示すIR測定結果から、上記の式の5bで表される化合物であることを確認した。 Since no clear spectrum was obtained from the 1 H-NMR measurement and 13 C-NMR measurement results, the polymer was identified by IR measurement, and from the IR measurement results shown in FIG. It was confirmed that the compound was

また、反応途中の1日経過、5日経過、6日経過時にサンプリングし、GPCにより、数平均分子量(Mn)、重量平均分子量(Mw)、及び分散度(Mw/Mn)を測定した。得られたそれぞれの結果を表1に示す。これにより、本実施例ポリマーには、反応時間5日以降は、分子量の劇的な増加は見られなかったが、分子量分布が若干改善されることが判明した。 In addition, samples were taken at 1 day, 5 days, and 6 days after the reaction, and the number average molecular weight (Mn), weight average molecular weight (Mw), and dispersity (Mw/Mn) were measured by GPC. Table 1 shows the respective results obtained. As a result, it was found that the molecular weight distribution of the polymer of this example was slightly improved, although a dramatic increase in molecular weight was not observed after the reaction time of 5 days.

Figure 2023043784000020
Figure 2023043784000020

さらに、TG-DTAの結果、明確なモノマーに由来する融点は特に観測されず、モノマーを含まないポリマーであることが確認され、更にガラス転位温度、融点は観測されず、345℃に熱分解温度が観測された。 Furthermore, as a result of TG-DTA, no particular melting point derived from a clear monomer was observed, and it was confirmed that the polymer did not contain a monomer. was observed.

(実施例9) 2-フランアクリル酸イソプロピルのGTP (Example 9) GTP of isopropyl 2-furanacrylate

Figure 2023043784000021
Figure 2023043784000021

グローブボックス内で30mLシュレンク管に、実施例3で得られた化合物3cである2-フランアクリル酸イソプロピル(1.10g,6.1mmol)、MTS(20.9mg,0.12mmol)、及びジクロロメタン3mLを加えた。そこへTfNTMS(42.4mg,0.12mmol)をジクロロメタン1mLに溶かした溶液を加えた。反応溶液を-40℃で7日間撹拌し、メタノールを加えて反応を停止させた。エバポレーターで溶媒を除去することで粘着性のある白い液体の粗生成物を得た。できるだけ少量のCHClに溶かし、徐々にメタノールを加えることで析出してくる白い粉末状の細かい固体を桐山ろ過で回収した。その後、よく乾燥させることで目的のポリマー5cを収率9%(0.10g)で得た。 In a glove box, a 30 mL Schlenk tube was charged with isopropyl 2-furanacrylate (1.10 g, 6.1 mmol), which is compound 3c obtained in Example 3, MTS (20.9 mg, 0.12 mmol), and 3 mL of dichloromethane. was added. A solution prepared by dissolving Tf 2 NTMS (42.4 mg, 0.12 mmol) in 1 mL of dichloromethane was added thereto. The reaction solution was stirred at −40° C. for 7 days, and methanol was added to quench the reaction. The solvent was removed by an evaporator to obtain a sticky white liquid crude product. The solution was dissolved in as little CH 2 Cl 2 as possible, and methanol was gradually added to precipitate a white powdery fine solid, which was collected by Kiriyama filtration. After that, it was thoroughly dried to obtain the target polymer 5c with a yield of 9% (0.10 g).

H-NMR測定結果はシャープなスペクトルは得られなかったが、モノマーを含んでいないポリマーのスペクトルを示していた。そこで、ポリマーの同定はIR測定により行い、図11に示すIR測定結果から、上記の式の5cで表される化合物であることを確認した。 Although the 1 H-NMR measurement result did not give a sharp spectrum, it showed the spectrum of a polymer containing no monomer. Accordingly, the polymer was identified by IR measurement, and from the IR measurement results shown in FIG. 11, it was confirmed to be the compound represented by the above formula 5c.

また、TG-DTAの結果、明確なガラス転位点、融点は観測されず、341℃に熱分解温度が観測された。
以上の結果から、重合が進行して目的のポリマーが得られたと推察される。
As a result of TG-DTA, a clear glass transition point and melting point were not observed, and a thermal decomposition temperature was observed at 341°C.
From the above results, it is presumed that the polymerization progressed and the target polymer was obtained.

(実施例10) 5-メチル-2-フランアクリル酸メチルのGTP (Example 10) GTP of methyl 5-methyl-2-furanacrylate

Figure 2023043784000022
Figure 2023043784000022

グローブボックス内で30mLシュレンク管に、実施例4で得られた化合物4aである5-メチル-2-フランアクリル酸メチル(1.0802g,6.5mmol)、MTS(22.7mg,0.13mmol)、及びジクロロメタン3mLを加えた。そこへTfNTMS(46.0mg,0.13mmol)をジクロロメタン1mLに溶かした溶液を加えた。反応溶液を-40℃で7日間撹拌し、メタノールを加えて反応を停止させた。エバポレーターで溶媒を除去すると、黄~茶色のパリパリした固体の粗生成物を得た。少量のジクロロメタンに溶かし、メタノール:水混合溶液を加え、茶色の粘着性液体を沈殿させた。上清を取り除き、沈殿のみを回収した。回収した沈殿を乾燥させると、茶色のパリパリした固体の目的のポリマー6aを0.79g(収率72%)得た。 Methyl 5-methyl-2-furanacrylate (1.0802 g, 6.5 mmol), which is compound 4a obtained in Example 4, and MTS (22.7 mg, 0.13 mmol) were added to a 30 mL Schlenk tube in a glove box. , and 3 mL of dichloromethane were added. A solution of Tf 2 NTMS (46.0 mg, 0.13 mmol) dissolved in 1 mL of dichloromethane was added thereto. The reaction solution was stirred at −40° C. for 7 days, and methanol was added to quench the reaction. Removal of the solvent by evaporator gave the crude product as a yellow-brown crispy solid. It was dissolved in a small amount of dichloromethane, and a mixture of methanol and water was added to precipitate a brown sticky liquid. The supernatant was removed and only the precipitate was recovered. The collected precipitate was dried to give 0.79 g (72% yield) of the desired polymer 6a as a brown crisp solid.

H-NMR測定、13C-NMR測定では、溶媒への溶解度が低いため、明確なシグナルを得ることができなかったので、ポリマーの同定は、IR測定で行い、図12に示すIR測定結果から、上記の式の6aで表される化合物であることを確認した。 In 1 H-NMR measurement and 13 C-NMR measurement, it was not possible to obtain a clear signal due to the low solubility in the solvent, so identification of the polymer was performed by IR measurement, and the IR measurement results shown in FIG. From the results, it was confirmed that the compound was represented by 6a in the above formula.

また、反応時間4日、5日、6日、7日終了時にそれぞれサンプリングして、GPCにより、数平均分子量(Mn)、重量平均分子量(Mw)、及び分散度(Mw/Mn)を測定した。得られたそれぞれの結果を表2に示す。これより、日数に応じて分子量が徐々に上がっていくことが分かった。 In addition, samples were taken at the end of the reaction time of 4 days, 5 days, 6 days, and 7 days, and the number average molecular weight (Mn), weight average molecular weight (Mw), and dispersity (Mw/Mn) were measured by GPC. . Table 2 shows the respective results obtained. From this, it was found that the molecular weight gradually increased according to the number of days.

Figure 2023043784000023
Figure 2023043784000023

また、TG-DTAの結果、モノマーの融点に相当するシグナルが見られなかったので、モノマーを含まないポリマーであることが分かり、さらに明確なガラス転位点、融点が見られず、354度に熱分解温度が観測された。 In addition, as a result of TG-DTA, no signal corresponding to the melting point of the monomer was found, so it was found to be a polymer containing no monomer. A decomposition temperature was observed.

(実施例11) 5-メチル-2-フランアクリル酸エチルのGTP (Example 11) GTP of ethyl 5-methyl-2-furanacrylate

Figure 2023043784000024
Figure 2023043784000024

グローブボックス内で30mLシュレンク管に、実施例5で得られた化合物4bである5-メチル-2-フランアクリル酸エチル(1.17g,6.5mmol)、MTS(22.7mg,0.13mmol)、及びジクロロメタン3mLを加えた。そこへTfNTMS(46.0mg,0.13mmol)をジクロロメタン1mLに溶かした溶液を加えた。反応溶液を-40℃で7日間撹拌し、メタノールを加えて反応を停止させた。エバポレーターで溶媒を除去すると、茶~オレンジ色の粘着性固体(粗生成物:1.12g)を得た。 Ethyl 5-methyl-2-furanacrylate (1.17 g, 6.5 mmol), which is compound 4b obtained in Example 5, and MTS (22.7 mg, 0.13 mmol) were placed in a 30 mL Schlenk tube in a glove box. , and 3 mL of dichloromethane were added. A solution of Tf 2 NTMS (46.0 mg, 0.13 mmol) dissolved in 1 mL of dichloromethane was added thereto. The reaction solution was stirred at −40° C. for 7 days, and methanol was added to quench the reaction. Removal of the solvent with an evaporator gave a brown-orange sticky solid (crude product: 1.12 g).

粗生成物をCHClと水/メタノール混合溶液から精製したもの、及びMeOHで洗浄したもののH-NMR測定をしたところ、明確なピークは得られなかったが、モノマーとポリマーの混合物を示すスペクトルが得られた。 1 H-NMR measurement of the crude product purified from CH 2 Cl 2 and water/methanol mixed solution and washed with MeOH did not give a clear peak, but a mixture of monomer and polymer was identified. The spectrum shown was obtained.

また、反応時間4日、5日、6日、7日終了時にそれぞれサンプリングして、GPCにより、数平均分子量(Mn)、重量平均分子量(Mw)、及び分散度(Mw/Mn)を測定した。得られたそれぞれの結果を表3に示す。これによって、反応日数を伸ばすことで、分子量が1万近く増大することが分かった。 In addition, samples were taken at the end of the reaction time of 4 days, 5 days, 6 days, and 7 days, and the number average molecular weight (Mn), weight average molecular weight (Mw), and dispersity (Mw/Mn) were measured by GPC. . Table 3 shows the respective results obtained. From this, it was found that the molecular weight increases by nearly 10,000 by extending the reaction days.

Figure 2023043784000025
Figure 2023043784000025

(実施例12) 5-メチル-2-フランアクリル酸イソプロピルのGTP Example 12 GTP of Isopropyl 5-methyl-2-furanacrylate

Figure 2023043784000026
Figure 2023043784000026

グローブボックス内で30mLシュレンク管に、実施例6で得られた化合物4cである5-メチル-2-フランアクリル酸イソプロピル(1.26g,6.5mmol)、MTS(22.7mg,0.13mmol)、及びジクロロメタン3mLを加えた。そこへTfNTMS(46.0mg,0.13mmol)をジクロロメタン1mLに溶かした溶液を加えた。反応溶液を-40℃で7日間撹拌し、メタノールを加えて反応を停止させた。白濁とともに薄い黄色の粉末状固体が析出してきたので桐山ろ過で固体を集めた。その後、固体をよく乾燥させると目的のポリマー6cが収率48%(0.61g)で得られた。 5-Methyl-2-furanacrylate isopropyl (1.26 g, 6.5 mmol), which is compound 4c obtained in Example 6, and MTS (22.7 mg, 0.13 mmol) were placed in a 30 mL Schlenk tube in a glove box. , and 3 mL of dichloromethane were added. A solution of Tf 2 NTMS (46.0 mg, 0.13 mmol) dissolved in 1 mL of dichloromethane was added thereto. The reaction solution was stirred at −40° C. for 7 days, and methanol was added to quench the reaction. A pale yellow powdery solid precipitated along with cloudiness, so the solid was collected by Kiriyama filtration. After that, the solid was thoroughly dried to obtain the target polymer 6c with a yield of 48% (0.61 g).

H-NMR測定、13C-NMR測定では、明確なピークが観察されなかったので、ポリマーの同定をIRの測定で行ったところ、ポリマーのスペクトルが確認され、図13に示すIR測定結果から、上記の式の6cで表される化合物であることを確認した。 Since no clear peak was observed in 1 H-NMR measurement and 13 C-NMR measurement, the polymer was identified by IR measurement, and the spectrum of the polymer was confirmed. , was confirmed to be the compound represented by 6c in the above formula.

また、反応時間3日、4日、7日終了時にそれぞれサンプリングして、GPCにより、数平均分子量(Mn)、重量平均分子量(Mw)、及び分散度(Mw/Mn)を測定した。得られたそれぞれの結果を表4及び図22に示す。反応日数を延長することで分子量が伸びることが期待されたが、平均分子量は逆に減少してしまった。 Also, samples were taken at the end of the reaction time of 3 days, 4 days, and 7 days, and the number average molecular weight (Mn), weight average molecular weight (Mw), and dispersity (Mw/Mn) were measured by GPC. The obtained results are shown in Table 4 and FIG. It was expected that the molecular weight would increase by extending the reaction days, but the average molecular weight decreased instead.

Figure 2023043784000027
Figure 2023043784000027

さらに、TG-DTAの結果、明確なモノマーに由来する融点は観測されずモノマーを含まないポリマーであることが分かり、更にガラス転位点、融点は検出出来ず、熱分解温度が344℃であるポリマーであることが分かった。 Furthermore, as a result of TG-DTA, a clear melting point derived from a monomer was not observed, and it was found to be a polymer containing no monomer. It turned out to be

本発明によれば、既存のアクリル樹脂に代替可能な、透明度が高く、ガスバリア性が高い新規樹脂を提供することができる。
また、前記新規樹脂は、100%バイオマス由来の原料を用いて製造することができるので、二酸化炭素排出を削減することができる。
さらに、フラン環を有する難重合性モノマーにGTPを適用することにより、新たな物性の調整可能性を広げることができる。
According to the present invention, it is possible to provide a novel resin with high transparency and high gas barrier properties that can be substituted for existing acrylic resins.
In addition, since the novel resin can be produced using raw materials derived from 100% biomass, carbon dioxide emissions can be reduced.
Furthermore, by applying GTP to a difficult-to-polymerize monomer having a furan ring, it is possible to expand the possibility of adjusting new physical properties.

Claims (7)

以下の一般式(I)で表される重合体。
Figure 2023043784000028
(式中、Rは、置換基を有していてもよいメチル基、エチル基、分岐していてもよいプロピル基、分岐していてもよいブチル基、分岐していてもよいペンチル基、シクロペンチル基、分岐していてもよいヘキシル基、シクロヘキシル基、フェニル基のいずれかを表わし、Rは、水素又は置換基を有していてもよいメチル基、エチル基、分岐していてもよいプロピル基、分岐していてもよいブチル基、分岐していてもよいペンチル基、シクロペンチル基、分岐していてもよいヘキシル基、シクロヘキシル基、フェニル基のいずれかを表わす。)
A polymer represented by the following general formula (I).
Figure 2023043784000028
(wherein R 1 is an optionally substituted methyl group, an ethyl group, an optionally branched propyl group, an optionally branched butyl group, an optionally branched pentyl group, a cyclopentyl group, an optionally branched hexyl group, a cyclohexyl group, or a phenyl group, and R 2 is hydrogen, an optionally substituted methyl group, an ethyl group, or an optionally branched Any of a propyl group, an optionally branched butyl group, an optionally branched pentyl group, an optionally branched hexyl group, an optionally branched hexyl group, and a phenyl group.)
前記一般式(I)で表される重合体の製造方法であって、
以下の一般式(II)で表されるモノマーを重合させる重合体の製造方法。
Figure 2023043784000029
(式中、R、Rは、前記のR、Rと同じものを表す。)
A method for producing the polymer represented by the general formula (I),
A method for producing a polymer by polymerizing a monomer represented by the following general formula (II).
Figure 2023043784000029
(In the formula, R 1 and R 2 represent the same as R 1 and R 2 described above.)
前記モノマーを、グループトランスファー重合法により重合させる、請求項2に記載の重合体の製造方法。 3. The method for producing a polymer according to claim 2, wherein the monomer is polymerized by a group transfer polymerization method. 前記モノマーを、バイオマス由来の原料から合成する請求項2又3に記載の重合体の製造方法。 4. The method for producing a polymer according to claim 2, wherein the monomer is synthesized from biomass-derived raw materials. 前記一般式(I)で表される重合体の製造用モノマーであって、前記一般式(II)で表される重合性モノマー。 A polymerizable monomer represented by the general formula (II), which is a monomer for producing the polymer represented by the general formula (I). バイオマス由来の原料から合成する、前記一般式(II)で表される重合性モノマーの製造方法。 A method for producing the polymerizable monomer represented by the general formula (II), which is synthesized from biomass-derived raw materials. 前記バイオマス由来の原料として、以下の一般式(III)で表される化合物と、マロン酸又は酢酸とを用いる請求項6に記載の重合性モノマーの製造方法。
Figure 2023043784000030
(式中、Rは、前記のRと同じものを表す。)
7. The method for producing a polymerizable monomer according to claim 6, wherein a compound represented by the following general formula (III) and malonic acid or acetic acid are used as the biomass-derived raw materials.
Figure 2023043784000030
(In the formula, R 2 represents the same as R 2 above.)
JP2021151584A 2021-09-16 2021-09-16 Furan acrylic acid ester polymer, production method therefor, and polymerizable monomer for use in producing said polymer and production method therefor Pending JP2023043784A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021151584A JP2023043784A (en) 2021-09-16 2021-09-16 Furan acrylic acid ester polymer, production method therefor, and polymerizable monomer for use in producing said polymer and production method therefor
PCT/JP2022/034630 WO2023042894A1 (en) 2021-09-16 2022-09-15 Furanacrylic acid ester polymer, production method therefor, and polymerizable monomer for use in producing said polymer and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021151584A JP2023043784A (en) 2021-09-16 2021-09-16 Furan acrylic acid ester polymer, production method therefor, and polymerizable monomer for use in producing said polymer and production method therefor

Publications (1)

Publication Number Publication Date
JP2023043784A true JP2023043784A (en) 2023-03-29

Family

ID=85602945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021151584A Pending JP2023043784A (en) 2021-09-16 2021-09-16 Furan acrylic acid ester polymer, production method therefor, and polymerizable monomer for use in producing said polymer and production method therefor

Country Status (2)

Country Link
JP (1) JP2023043784A (en)
WO (1) WO2023042894A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156263A (en) * 1984-12-28 1986-07-15 Ricoh Co Ltd Liquid developer for electrostatic photography
CN101531648B (en) * 2009-04-08 2011-04-13 江苏食品职业技术学院 A method for preparing alkyl furanacrylate with solvent-free one-pot method
JP6342699B2 (en) * 2013-04-30 2018-06-13 国立研究開発法人理化学研究所 α, β-Unsaturated carboxylic acid ester polymer having a substituent at β-position and process for producing copolymer
CN107602372B (en) * 2017-08-31 2020-08-25 中国科学技术大学 Process for producing fatty acid
US11643490B2 (en) * 2018-06-11 2023-05-09 Nippon Shokubai Co., Ltd. Method for producing vinyl-ether-group-containing (meth)acrylic acid ester polymer, vinyl-ether-group-containing (meth)acrylic acid ester polymer, and polymer composition
JP7390201B2 (en) * 2020-01-31 2023-12-01 株式会社日本触媒 Method for manufacturing acrylic polymer

Also Published As

Publication number Publication date
WO2023042894A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US9725548B2 (en) Polylactic acid (PLA) with low moisture vapor transmission rates by grafting through of hydrophobic polymers directly to PLA backbone
US9228050B2 (en) Versatile, facile and scalable route to polylactic acid-backbone graft and bottlebrush copolymers
KR101326916B1 (en) High molecular-weight aliphatic polycarbonate copolymer and preparation method thereof
CN110483748B (en) Bipyridyl bisphenol-aluminum catalyst for preparing unsaturated polyester and preparation method thereof
US4889948A (en) Acrylate ester ether derivatives
CN1953963B (en) Process for producing cyclic N-hydroxyimide compound
US20170101488A1 (en) Apopinene as a Biorenewable Monomer for Ring-Opening Metathesis Polymerization
Sugiyama et al. Free radical ring-opening polymerization of 1, 1-bis [(1-adamantyloxy) carbonyl]-2-vinylcyclopropane
KR20160018697A (en) Synthesis of dicarbamates from reduction products of 2-hydroxymethyl-5-furufural (hmf) and derivates thereof
WO2023042894A1 (en) Furanacrylic acid ester polymer, production method therefor, and polymerizable monomer for use in producing said polymer and production method therefor
US9879103B2 (en) Initiation of controlled radical polymerization from lactide monomer
CN110540529A (en) Dihydric alcohol-based carbonate polymerizable monomer and polymer thereof
JP2008056894A (en) Hyperbranched polymer and production method thereof, as well as monomer for synthesizing hyperbranched polymer and precursor thereof
US4931568A (en) Process for the preparation of thiophene ethers
JPS63215720A (en) Production of functional group-terminated lactone polymer
JP2007131683A (en) Acrylic acid ester-based polymer having excellent thermal characteristic and optical characteristic and monomer for the same
JP6726521B2 (en) Substituted polyacetylene having optically active group and method for producing the same
JP2022550826A (en) Vinyl ether and its production method
JP2009185125A (en) Hyperbranched polymer, method for producing the same, monomer for synthesizing hyperbranched polymer, and precursor thereof
JP5256498B2 (en) Polymer ligand, aluminum complex and method for producing polylactide
KR101631148B1 (en) Soluble polymer supported 2-imidazolidinone chiral auxiliary and method for manufacturing the same
JP2009263605A (en) Molecular capsule and its producing method
Itsuno et al. Asymmetric aldol polymerization of bis (triethylsilyl enol ether) and dialdehyde
JP2002088121A (en) Optically active (n-methylbenzylmaleimide) and method of producing the same
WO2023091017A1 (en) Malonate and furan based surfactants