JP2023042352A - Method for separating cells having different sizes - Google Patents

Method for separating cells having different sizes Download PDF

Info

Publication number
JP2023042352A
JP2023042352A JP2021149604A JP2021149604A JP2023042352A JP 2023042352 A JP2023042352 A JP 2023042352A JP 2021149604 A JP2021149604 A JP 2021149604A JP 2021149604 A JP2021149604 A JP 2021149604A JP 2023042352 A JP2023042352 A JP 2023042352A
Authority
JP
Japan
Prior art keywords
cells
cell
column
size
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021149604A
Other languages
Japanese (ja)
Inventor
高廣 丸山
Takahiro Maruyama
政浩 林
Masahiro Hayashi
桃 栗原
Momo Kurihara
博之 伊藤
Hiroyuki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2021149604A priority Critical patent/JP2023042352A/en
Publication of JP2023042352A publication Critical patent/JP2023042352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide a technique capable of acquiring cells having different sizes at high recovery rate from a mixture of two or more kinds of cells having different sizes in preparation of cells for regenerative medicine application.SOLUTION: A column, into which a particulate carrier insoluble into water having specific particle size distribution is filled, is used, mixed-cell liquid of cells having different sizes is brought in contact with the carrier, after smaller cells having passed through gaps of the carrier are recovered, larger cells not having passed through the carrier gap and been captured are recovered from the carrier by cleaning operation.SELECTED DRAWING: None

Description

本発明は水不溶性の粒子状担体を用いた大きさの異なる細胞の細胞分離方法であり、一定の粒度分布を持つ粒子状担体を充填してなるカラムに大きさの異なる細胞の混合物を通過させ、粒子状担体の間隙を通過した細胞を回収したのち、粒子状担体に捕捉された細胞を洗浄操作により回収することで、前者を大きさの小さい細胞、後者を大きさの大きい細胞としてそれぞれ高効率で取得する方法に関する。 The present invention relates to a method for separating cells of different sizes using water-insoluble particulate carriers, in which a mixture of cells of different sizes is passed through a column filled with particulate carriers having a certain particle size distribution. After recovering the cells that have passed through the gaps of the particulate carriers, the cells captured by the particulate carriers are recovered by a washing operation, thereby converting the former into small-sized cells and the latter into large-sized cells, respectively. Regarding how to get in efficiency.

細胞の機能において、細胞サイズというパラメータは、形状や比重と共に、細胞を特徴づけるもっとも基本的な要因であると言える。細胞はさまざまな大きさのものが存在しており、例えば大腸菌は直径1~2μm、パン酵母などは直径約5μm、ヒト血球系細胞である血小板は2~4μm、赤血球は6~8μm、白血球は10~15μmであるが、白血球のサブタイプであるB細胞、T細胞、NK細胞などは8~9μmと白血球の中では小型である。また巨核球は35~160μm、またCTC(血中循環癌細胞)は10~20μm、培養細胞のスフェロイドは200~300μmの大きさであることが知られている。さらに、細胞の大きさは生物の種類によっても大きく異なることが知られており、例えばマツ花粉は45~55μm、単細胞生物であるゾウリムシは200μm、ヒキガエルの卵は3mm、ニワトリの卵では3cm、ダチョウの卵では15cmの大きさを持つ。 In terms of cell function, the parameter of cell size can be said to be the most fundamental factor that characterizes cells, along with shape and specific gravity. Cells exist in various sizes. For example, E. coli has a diameter of 1-2 μm, baker's yeast has a diameter of about 5 μm, platelets, which are human blood cells, have a diameter of 2-4 μm, red blood cells have a diameter of 6-8 μm, and white blood cells have a diameter of 2-4 μm. It is 10 to 15 μm, but leukocyte subtypes such as B cells, T cells, and NK cells are 8 to 9 μm, which is small among leukocytes. It is also known that megakaryocytes have a size of 35-160 μm, CTCs (circulating cancer cells) have a size of 10-20 μm, and cultured cell spheroids have a size of 200-300 μm. Furthermore, it is known that the cell size varies greatly depending on the type of organism. eggs are 15 cm in size.

細胞サイズや密度の違いを利用した細胞分離方法としては、エルトリエーション法(非特許文献1)、マイクロ流体デバイスを用いた方法(非特許文献2、3)、誘電泳動の原理を利用した方法(非特許文献4)が知られている。しかしながらこれらの方法では、分離対象として処理できる細胞数が少ない、あるいは細胞に大きなダメージがかかるため、分離した細胞の回収量が低いなどの問題点があった。 Cell separation methods using differences in cell size and density include the elutriation method (Non-Patent Document 1), methods using microfluidic devices (Non-Patent Documents 2 and 3), and methods using the principle of dielectrophoresis ( Non-Patent Document 4) is known. However, these methods have problems such as a small number of cells that can be treated as separation targets or a low recovery amount of the separated cells because the cells are severely damaged.

一般的な細胞の識別・分離を行う手段として、細胞表面に存在するマーカー分子を利用する方法が知られており、FACS(Fluorescence-Activated Cell Sorting)やMACS(Magnetic-adtivated cell sorting)などにおいて広く用いられている。しかしながらこれらの手法では、蛍光分子あるいは磁気微粒子によって標識された抗体で、マーカー分子を発現する細胞を標識することが、細胞の性質や機能に何らかの影響を与えることが懸念されていた。しかるに、現状では、大量の細胞から細胞サイズなどのパラメータを利用して、ラベルフリーで回収率良く細胞を分離する手法の開発が望まれていた。 As a general means for identifying and separating cells, a method using marker molecules present on the cell surface is known, and is widely used in FACS (Fluorescence-Activated Cell Sorting) and MACS (Magnetic-activated Cell Sorting). used. However, in these methods, there was concern that labeling cells expressing marker molecules with antibodies labeled with fluorescent molecules or magnetic particles would have some effect on the properties and functions of cells. However, at present, there is a demand for the development of a label-free method for separating cells from a large amount of cells with a high yield using parameters such as cell size.

Grosse,J等,Prep Biochem Biotechnol.2012,42(3):217-233.Grosse, J et al., Prep Biochem Biotechnol. 2012, 42(3):217-233. Davis,JA等,Proc Natl Acad Sci USA.2006,103(40):14779-14784.Davis, JA et al., Proc Natl Acad Sci USA. 2006, 103(40): 14779-14784. Takagi,J等,Lab Chip.2005,5(7):778-784.Takagi, J et al., Lab Chip. 2005, 5(7):778-784. Flanagan, LA等,Stem Cells.2008,26(3):656-665.Flanagan, LA et al., Stem Cells. 2008, 26(3):656-665.

本発明の課題は、再生医療用途の細胞の調製において、大量の細胞から大きさの異なる目的の細胞を短時間で分離精製し、高効率で取得可能な技術を提供することである。具体的には、特定の粒度分布を持つ粒子状担体を充填してなるカラムを用い、細胞集団を接触させ、粒子状担体の間隙を通過した細胞を回収したのち、カラムより取り出した粒子状担体間に捕捉された細胞をピペッティングなどの操作で剥離回収することにより、前者を大きさの小さな細胞、後者を大きさが大きな細胞として分取し、両者を高い回収率で分離精製する技術を提供することである。 An object of the present invention is to provide a technique for separating and purifying target cells of different sizes from a large amount of cells in a short period of time and obtaining them with high efficiency in the preparation of cells for regenerative medicine. Specifically, a column packed with particulate carriers having a specific particle size distribution is used to bring the cell population into contact, collect the cells that have passed through the interstices of the particulate carriers, and then remove the particulate carriers from the column. By detaching and recovering the cells trapped in between by pipetting and other operations, the former are collected as small-sized cells and the latter as large-sized cells, and both are separated and purified at a high recovery rate. to provide.

本発明者らは前記の課題を解決すべく鋭意検討した結果、分級により調製した、粒径が150μm以上250μm未満、頻度ピーク粒径が200μm付近である粒子状担体を充填してなるカラムに、大きさの異なる細胞混合物を通過させ、まず粒子状担体の間隙を通過した細胞群を回収し、次に、粒子状担体をカラムより取り出し、粒子状担体間に捕捉された細胞群をピペッティングなどの物理的衝撃によって剥離して回収することで、前者を大きさが10μm未満の小さな細胞を含む細胞液、後者を大きさが25μm以上の大きさの大きい細胞を含む細胞液として取得できることを見出した。また、この粒径が湿潤状態で150μm以上250μm未満、頻度ピーク粒径が200μm付近である粒子状担体をカラムに充填して用いた場合、1mLの粒子状担体あたり、大きさが10μm以上25μm未満の細胞を1×10^4個から1×10^5個粒子状担体間に捕捉可能であることから、粒子状担体のカラムへの充填量を適宜調整することで、大きさが10μm以上25μm未満の細胞を粒子状担体の間隙を通過した細胞群または粒子状担体間に捕捉された細胞群として回収可能であることを見出した。 As a result of intensive studies by the present inventors to solve the above problems, a column filled with particulate carriers having a particle size of 150 μm or more and less than 250 μm and a frequency peak particle size of around 200 μm prepared by classification, A mixture of cells with different sizes is passed through, and the cell groups that have passed through the gaps of the particulate carriers are first recovered, then the particulate carriers are removed from the column, and the cell clusters trapped between the particulate carriers are pipetted. The former can be obtained as a cell sap containing small cells with a size of less than 10 μm, and the latter can be obtained as a cell sap containing large cells with a size of 25 μm or more. rice field. In addition, when a column is filled with a particulate carrier having a particle size of 150 μm or more and less than 250 μm in a wet state and a frequency peak particle size of about 200 μm, the size per 1 mL of the particulate carrier is 10 μm or more and less than 25 μm. 1×10^4 to 1×10^5 cells can be captured between the particulate carriers. It has been found that less than 100% of the cells can be collected as a group of cells passing through the gaps of the particulate carriers or a group of cells trapped between the particulate carriers.

すなわち、大きさの異なる細胞の混合物を、粒子状担体を充填してなるカラムへと通液し通過した細胞を回収したのち、カラムから取り出した粒子状担体の洗浄操作により粒子状担体間に捕捉された細胞を回収し、さらにそれぞれの細胞画分を、再び粒子状担体の充填量を調整して充填したカラムへと通液して同様の操作により細胞回収を繰り返すことで、分離対象とする細胞混合物から、大きさが10μm未満の細胞、10μm以上25μm未満の細胞、25μm以上の細胞それぞれを高効率で回収可能であることを見出し、本発明を完成するに至った。 That is, a mixture of cells with different sizes is passed through a column filled with particulate carriers, and after collecting the cells that have passed through, the particulate carriers are taken out of the column and washed to trap them between the particulate carriers. The collected cells are collected, and each cell fraction is passed through the column filled with the particulate carrier again by adjusting the packing amount of the particulate carrier, and the cell collection is repeated by the same operation to obtain a separation target. The inventors have found that cells with a size of less than 10 μm, cells with a size of 10 μm or more and less than 25 μm, and cells with a size of 25 μm or more can be recovered from a cell mixture with high efficiency, and have completed the present invention.

すなわち、本発明は、以下の[1]から[2]に記載した発明を包含するものである。
[1]
カラム内に充填した水に不溶性の粒子状担体と2種類以上の細胞を含む細胞混合物を接触させる工程、カラム内に充填した粒子状担体の間隙を通過した細胞を回収する工程、粒子状担体に捕捉された細胞を洗浄操作により回収する工程を含み、水に不溶性の粒子状担体の粒子径が150~250μmであり、2種類以上の細胞を含む細胞混合物に、大きさが10μm未満の細胞が少なくとも1種類以上と、大きさが10μm以上の細胞が少なくとも1種類以上含まれていることを特徴とする細胞の分離方法。
[2]
2種類以上の細胞を含む細胞混合物に、大きさが10μm未満の細胞が少なくとも1種類以上、大きさが10μm以上25μm未満の細胞が少なくとも1種類以上、大きさが25μm以上の細胞が少なくとも1種類以上含まれていることを特徴とする、[1]に記載の細胞の分離方法。
以下、本発明を詳細に説明する。
That is, the present invention includes the inventions described in [1] to [2] below.
[1]
A step of contacting a water-insoluble particulate carrier packed in a column with a cell mixture containing two or more types of cells, a step of recovering cells that have passed through the gaps of the particulate carrier packed in the column, and including a step of recovering the captured cells by a washing operation, wherein the water-insoluble particulate carrier has a particle size of 150 to 250 μm, and the cell mixture containing two or more types of cells contains cells with a size of less than 10 μm. A method for isolating cells, characterized by containing at least one type of cell and at least one type of cell having a size of 10 μm or more.
[2]
The cell mixture containing two or more types of cells contains at least one type of cell with a size of less than 10 μm, at least one type of cell with a size of 10 μm or more and less than 25 μm, and at least one type of cell with a size of 25 μm or more. The method for separating cells according to [1], comprising the above.
The present invention will be described in detail below.

本発明の大きさの異なる細胞の分離方法(以降、本発明の細胞分離方法と略する場合もある。)は、粒径が特定の粒度分布を持つ水不溶性の粒子状担体を充填してなるカラムに、大きさの異なる細胞の混合物を接触させ、まず粒子状担体の間隙を通過した細胞群を回収し、次にカラムから取り出した粒子状担体の洗浄操作により、粒子状担体間に捕捉された細胞を回収することで、前者を大きさの小さな細胞を含む細胞液、後者を大きさの大きな細胞を含む細胞液として回収し、適宜この操作をカラムへの粒子状担体の充填量を調整して繰り返すことで、大きさの小さな細胞、中程度の細胞、大きさの大きな細胞を分離する細胞分離方法である。 The method for separating cells of different sizes of the present invention (hereinafter sometimes abbreviated as the cell separation method of the present invention) comprises filling a water-insoluble particulate carrier having a specific particle size distribution. A mixture of cells with different sizes is brought into contact with the column, and the cell clusters that have passed through the gaps of the particulate carriers are collected first, and then the particulate carriers are washed after being taken out of the column to be captured between the particulate carriers. The former is collected as a cell sap containing small-sized cells, and the latter as a cell sap containing large-sized cells. This is a cell separation method for separating small-sized cells, medium-sized cells, and large-sized cells by repeating the steps.

次に、本発明の細胞分離方法における粒子状担体について説明する。本発明の細胞分離方法における水不溶性粒子状担体の原料に特に制限はなく、シリカゲルや金薄膜を蒸着させたガラスなどの無機系担体、アガロース、セルロース、キチン、キトサン等の多糖類を原料とした水に不溶性の多糖系担体およびそれらを架橋剤で架橋した架橋多糖系担体、デキストラン、プルラン、デンプン、アルギン酸塩、カラギーナン等の水溶性多糖類を架橋剤で架橋した架橋多糖系担体、ポリ(メタ)アクリレート、ポリビニルアルコール、ポリウレタン、ポリスチレン等の合成高分子系担体およびそれらを架橋剤で架橋した架橋合成高分子系担体を例示することができる。 Next, the particulate carrier in the cell separation method of the present invention will be explained. The raw materials for the water-insoluble particulate carrier in the cell separation method of the present invention are not particularly limited, and inorganic carriers such as silica gel and glass deposited with a thin gold film, and polysaccharides such as agarose, cellulose, chitin and chitosan are used as raw materials. Water-insoluble polysaccharide carriers and crosslinked polysaccharide carriers obtained by cross-linking them with a cross-linking agent, cross-linked polysaccharide carriers obtained by cross-linking water-soluble polysaccharides such as dextran, pullulan, starch, alginate and carrageenan with a cross-linking agent, poly(meth) ) Synthetic polymer carriers such as acrylate, polyvinyl alcohol, polyurethane, polystyrene, etc., and crosslinked synthetic polymer carriers obtained by crosslinking these with a crosslinking agent.

これらの担体の中では、水酸基を有し、後述する親水性高分子による修飾が容易に行える点で、アガロース、セルロース、デキストラン、プルラン等の電荷をもたない多糖系担体およびそれらを架橋剤で架橋した架橋多糖系担体や、ポリ(メタ)アクリレートやポリウレタン等の親水性合成高分子系担体およびそれらを架橋剤で架橋した架橋親水性合成高分子系担体が好ましい。さらに、水不溶性担体の細孔の有無に特に制限はなく、多孔性または無孔性のいずれであってもよい。また、本発明の吸着剤に使用する水不溶性担体は市販品を使用してもよく、例えば、ポリ(メタ)アクリレートを原料としたトヨパール(東ソー製)、アガロースを原料としたSepharose(GEヘルスケア製)、セルロースを原料としたセルフィア(旭化成製)等を使用することができる。 Among these carriers, uncharged polysaccharide carriers such as agarose, cellulose, dextran, and pullulan, which have hydroxyl groups and can be easily modified with a hydrophilic polymer to be described later, and their cross-linking agents. Crosslinked crosslinked polysaccharide carriers, hydrophilic synthetic polymer carriers such as poly(meth)acrylate and polyurethane, and crosslinked hydrophilic synthetic polymer carriers obtained by crosslinking these with a crosslinking agent are preferred. Furthermore, the presence or absence of pores in the water-insoluble carrier is not particularly limited, and may be either porous or non-porous. In addition, the water-insoluble carrier used in the adsorbent of the present invention may be a commercially available product. (manufactured by Asahi Kasei Corp.), Cellophia (manufactured by Asahi Kasei Corp.) using cellulose as a raw material, and the like can be used.

本発明の細胞分離方法で用いる水不溶性担体の表面は、細胞の非特異的吸着を抑制する点で、親水性高分子で修飾されていることが好ましく、親水性高分子が水不溶性担体に共有結合で固定されていることがより好ましい。 The surface of the water-insoluble carrier used in the cell separation method of the present invention is preferably modified with a hydrophilic polymer in order to suppress non-specific adsorption of cells, and the hydrophilic polymer is shared with the water-insoluble carrier. It is more preferable to be fixed by binding.

水不溶性担体の表面を修飾する親水性高分子としては、アガロース、セルロース、デキストラン、プルラン、デンプン等の中性多糖類や、ポリ(2-ヒドロキシエチル(メタ)アクリレート)やポリビニルアルコール等の水酸基を有する合成高分子を例示することができる。これら親水性高分子の中では、親水性が高く、不溶性担体表面への共有結合による固定が容易に行える点で、デキストラン、プルランおよびデンプンなどの中性多糖類が好ましく、デキストランおよびプルランがより好ましい。デキストランおよびプルランの分子量に特に制限はないが、不溶性担体表面の親水性修飾が十分に行える点で、数平均分子量が10,000から1,000,000のものが好ましい。
また、水不溶性担体の形状に特に制限はなく、粒子状、スポンジ状、平膜状、平板状、中空状、繊維状のいずれであってもよいが、細胞の通過をより効率的に行える点で真球状の粒子状担体であることが好ましく、なおかつ一般的に単一種の細胞は特定の大きさの分布を持つことから、ある一定の大きさ以下の細胞を通過させるために、粒子径ができるだけ均一な粒度分布を持つことがより好ましい。
Hydrophilic polymers that modify the surface of water-insoluble carriers include neutral polysaccharides such as agarose, cellulose, dextran, pullulan and starch, and hydroxyl groups such as poly(2-hydroxyethyl (meth)acrylate) and polyvinyl alcohol. can be exemplified by synthetic polymers having Among these hydrophilic polymers, neutral polysaccharides such as dextran, pullulan and starch are preferred, and dextran and pullulan are more preferred, because they are highly hydrophilic and can be easily fixed to the surface of an insoluble carrier by covalent bonding. . Although the molecular weights of dextran and pullulan are not particularly limited, those having a number average molecular weight of 10,000 to 1,000,000 are preferred in terms of sufficient hydrophilic modification of the surface of the insoluble carrier.
In addition, the shape of the water-insoluble carrier is not particularly limited, and may be particulate, spongy, flat membrane, tabular, hollow, or fibrous. A spherical particulate carrier is preferable, and since cells of a single type generally have a specific size distribution, in order to pass cells of a certain size or less, the particle size is It is more preferable to have as uniform a particle size distribution as possible.

本発明の細胞分離方法における吸着剤に使用する水不溶性担体の、水に膨潤させた状態での平均粒径(メジアン径)は、分離対象となる細胞の大きさに応じ、適当な粒径のものを分級して調製して使用すればよい。具体的な分級方法としては、ステンレス製JIS標準ふるいを使用して水に膨潤させた粒子状担体を分級する湿式分級法や、ステンレス製JIS標準ふるいを使用して乾燥させた粒子状担体を分級する乾式分級法を例示することができる。理論的には、真球状の粒子状担体を最密充填した場合、粒子状担体の間隙を通過できる真球の直径は最密充填した粒子状担体直径の16%であると考えられる。 The average particle diameter (median diameter) of the water-insoluble carrier used as the adsorbent in the cell separation method of the present invention in a state of being swollen in water is an appropriate particle size depending on the size of the cells to be separated. What is necessary is just to classify and prepare and use. Specific classification methods include a wet classification method of classifying a particulate carrier swollen in water using a stainless steel JIS standard sieve, and a particulate carrier dried using a stainless steel JIS standard sieve. A dry classification method can be exemplified. Theoretically, when spherical particulate carriers are closely packed, the diameter of the true spheres that can pass through the gaps of the particulate carriers is considered to be 16% of the diameter of the closest packed particulate carriers.

従って、細胞を特定の正規的粒度分布を持つ真球の集合体であると仮定した場合、例えば直径8μm以未満の細胞を通過させたい場合は、粒径が50μm未満の粒子状担体を用いれば良く、また直径25μm以下の細胞を通過させたい場合は粒径156μm以下の粒子状担体を用いれば良いと考えられる。ただし実際には細胞の大きさは培養条件により変動するほか、細胞を懸濁する細胞懸濁液との浸透圧差により膨張・収縮が起きるため、細胞懸濁液の組成、浸透圧などを考慮した上で、最適な粒子状担体の粒径・粒度分布を決定することが望ましい。 Therefore, assuming that cells are aggregates of true spheres with a specific normal particle size distribution, for example, if cells with a diameter of less than 8 μm are to be passed through, a particulate carrier with a particle size of less than 50 μm can be used. In addition, if it is desired to pass cells with a diameter of 25 μm or less, a particulate carrier with a particle diameter of 156 μm or less may be used. However, in reality, the size of the cells fluctuates depending on the culture conditions, and expansion and contraction occur due to the difference in osmotic pressure between the cell suspension and the cell suspension, so the composition and osmotic pressure of the cell suspension were taken into account. It is desirable to determine the optimum particle size and particle size distribution of the particulate carrier.

本発明の細胞分離方法における水不溶性担体の粒径は、例えば、ベックマンコールター(株)製の精密粒度分布測定装置(製品名「Multisizer 3」)などを用いて測定することができる。あるいは、光学顕微鏡を用いて目盛り付きスライドグラスの画像を撮影したのち、同じ倍率で測定対象の複数個の粒子の画像を撮影し、物差しを用いて撮影した複数個の担体の粒径を測定し、その平均値を算出することで求めることができる。また、本発明における細胞種ごとの大きさの平均大きさ、大きさ分布については、コールターカウンターなどの粒度測定装置で測定ができるほか、血球計算盤と顕微鏡を用いた目視による計測で行っても良い。 The particle size of the water-insoluble carrier in the cell separation method of the present invention can be measured using, for example, a precision particle size distribution analyzer manufactured by Beckman Coulter (product name: "Multisizer 3"). Alternatively, after photographing an image of a slide glass with a scale using an optical microscope, images of a plurality of particles to be measured are photographed at the same magnification, and the particle size of the photographed plurality of carriers is measured using a ruler. , can be obtained by calculating the average value thereof. In addition, the average size and size distribution of each cell type in the present invention can be measured with a particle size measuring device such as a Coulter counter, or can be measured visually using a hemocytometer and a microscope. good.

本発明の細胞分離方法は、特定の粒度分布を持つ粒子状担体を充填してなるカラムに、大きさの異なる細胞の混合物を通液し、粒子状担体間の間隙を通過した細胞を大きさの小さい細胞として回収し、次いでカラムより取り出した粒子状担体から洗浄操作により、粒子状担体間に捕捉された細胞を回収する工程よりなる。その際、前者の工程では、大きさの小さな細胞が粒子状担体間隙を通過することで取得でき、一方大きさの大きな細胞は粒子状担体間に捕捉されて流出しないために、カラムより取り出した粒子状担体の洗浄操作によって回収することができる。また、この操作を粒子状担体の充填量や通液回数を変えながら数段階行うことで、大きさの異なる細胞の分離が可能となる。 In the cell separation method of the present invention, a mixture of cells with different sizes is passed through a column filled with particulate carriers having a specific particle size distribution, and the cells that have passed through the gaps between the particulate carriers are separated into and recovering the cells trapped between the particulate carriers by washing the particulate carriers taken out from the column. At that time, in the former step, small-sized cells can be obtained by passing through the gaps of the particulate carriers, while large-sized cells are trapped between the particulate carriers and do not flow out, so they were removed from the column. It can be recovered by a washing operation of the particulate carrier. In addition, by performing this operation in several steps while changing the filling amount of the particulate carrier and the number of liquid passages, it is possible to separate cells of different sizes.

3種以上の異なる大きさの細胞を個別に分離する方法としては、例えば以下の方法が例示できる。粒径が湿潤状態で150μm以上250μm未満、頻度ピーク粒径が200μm付近である粒子状担体を充填してなるカラムを用い、大きさ10μm未満の細胞と大きさ10μm以上25μm未満の細胞と大きさ25μm以上の細胞の混合物を分離する場合、使用した粒子状担体量あたりの捕捉細胞数は大きさ25μm以上の細胞>10μm以上25μm未満の細胞>10μm未満の細胞となり、この場合、実際には大きさ10μm未満の細胞は殆どが粒子状担体間を通過し、また1mLの粒子状担体あたり、大きさ10μm以上25μm未満の細胞は2~7×10^4個、また大きさ25μm以上の細胞は1~2×10^5個が粒子状担体間の隙間に捕捉されると考えられる。 Examples of methods for separately separating cells of three or more different sizes include the following methods. Cells with a size of less than 10 μm and cells with a size of 10 μm or more and less than 25 μm using a column filled with a particulate carrier having a particle size of 150 μm or more and less than 250 μm in a wet state and a frequency peak particle size of about 200 μm. When separating a mixture of cells of 25 μm or larger, the number of captured cells per amount of particulate carrier used will be cells of 25 μm or larger > cells of 10 μm or more and less than 25 μm > cells of less than 10 μm. Most of the cells with a diameter of less than 10 μm pass between the particulate carriers, and the number of cells with a size of 10 μm or more and less than 25 μm is 2 to 7×10^4 per 1 mL of the particulate carrier, and the cells with a size of 25 μm or more are It is believed that 1-2×10̂5 are trapped in the interstices between particulate carriers.

従って例えば1mLの粒子状担体あたり、10μm以上25μm未満の細胞は6.7×10^4個、また25μm以上の細胞は1.7×10^5個が粒子状担体間の隙間に捕捉されると仮定した場合、1×10^6個ずつの大きさ25μm以上の細胞、大きさ10μm以上25μm未満の細胞、大きさ10μm未満の細胞の混合物を通液した場合、1×10^6個の大きさ25μm以上の細胞をすべて捕捉するのに必要な粒子状担体量は5.4mL、また、1×10^6個の大きさ10μm以上25μm未満の細胞をすべて捕捉するのに必要な粒子状担体量は10.1mLと算出される。 Therefore, for example, 6.7×10̂4 cells with a size of 10 μm or more and less than 25 μm, and 1.7×10̂5 cells with a size of 25 μm or more are captured in the gaps between the particulate carriers per 1 mL of the particulate carriers. Assuming that 1 × 10^6 cells each having a size of 25 µm or more, cells having a size of 10 µm or more and less than 25 µm, and cells having a size of less than 10 µm were passed through the mixture, 1 × 10^6 cells The amount of particulate carrier required to capture all cells with a size of 25 μm or more is 5.4 mL, and the amount of particulate carrier required to capture all 1×10^6 cells with a size of 10 μm or more and less than 25 μm is 5.4 mL. The amount of carrier is calculated to be 10.1 mL.

従って、10mLの粒子状担体に細胞を通液した場合は、大きさ10μm未満の細胞のみが粒子状担体間を通過するが、大きさ10μm以上25μm未満の細胞と大きさ25μm以上の細胞両者はほぼ全て粒子状担体間に捕捉されることになる。またこの場合、10mLの粒子状担体を用いた場合はカラムから取り出した粒子状担体の洗浄操作により、大きさ10μm以上25μm未満の細胞と大きさ25μm以上の細胞両者が回収できる。一方、5mLの粒子状担体を用いた場合は大きさ10μm未満の細胞のほぼ全てと、大きさ10μm以上25μm未満の細胞は半数ほどが粒子状担体間の間隙を通過して流出し、大きさ10μm以上25μm未満の細胞の残り半数と大きさ25μm以上の細胞全てが粒子状担体間に捕捉される。従って5mLの充填剤を用いた場合はカラムから取り出した粒子状担体の洗浄操作により、50%程度の大きさ10μm以上25μm未満の細胞とほぼ全ての大きさ25μm以上の細胞が回収できる。 Therefore, when cells are passed through 10 mL of particulate carriers, only cells with a size of less than 10 μm pass through between the particulate carriers, but both cells with a size of 10 μm or more and less than 25 μm and cells with a size of 25 μm or more pass through. Almost all will be captured between the particulate carriers. In this case, when 10 mL of the particulate carrier is used, both cells with a size of 10 μm or more and less than 25 μm and cells with a size of 25 μm or more can be recovered by washing the particulate carrier removed from the column. On the other hand, when 5 mL of particulate carriers were used, almost all of the cells with a size of less than 10 μm and about half of the cells with a size of 10 μm or more and less than 25 μm flowed out through the gaps between the particulate carriers. The remaining half of the cells with a size of 10 μm or more and less than 25 μm and all the cells with a size of 25 μm or more are captured between the particulate carriers. Therefore, when 5 mL of filler is used, about 50% of the cells with a size of 10 μm or more and less than 25 μm and almost all the cells with a size of 25 μm or more can be recovered by washing the particulate carrier removed from the column.

すなわち、5mLの充填剤から流出細胞として回収した細胞混合物、および洗浄操作により回収した細胞混合物には大きさの違いによる各細胞の分配比が生じることから、それぞれの細胞液を再度粒子状担体量を調整して充填したカラムに通液し、同じ操作を複数回繰り返すことで、流出細胞中と洗浄細胞中の大きさ10μm以上25μm未満の細胞、および大きさ25μm以上の細胞それぞれについて、細胞回収時の分配比率をさらに高めた細胞液を取得することができる。 In other words, the cell mixture collected as the outflow cells from 5 mL of the packing material and the cell mixture collected by the washing operation have a distribution ratio of each cell due to the difference in size. By repeating the same operation multiple times, cells with a size of 10 μm or more and less than 25 μm and cells with a size of 25 μm or more in the outflow cells and washed cells are collected. It is possible to obtain a cell sap with an even higher time distribution ratio.

その結果、大きさ25μm以上の細胞、大きさ10μm以上25μm未満の細胞、大きさ10μm未満の細胞3者の分離が可能である。また、本細胞分離方法では、粒子状担体容量あたりの捕捉細胞数が、大きさ25μm以上の細胞>大きさ10μm以上25μm未満の細胞>大きさ10μm未満の細胞であることを利用していることから、細胞が捕捉されたカラムから粒子状担体を取り出し洗浄操作により細胞を回収する際、カラムを特定の部位で切断して細胞を回収することで、より細胞の分配比が高い洗浄細胞液を回収することが可能である。 As a result, cells with a size of 25 μm or more, cells with a size of 10 μm or more and less than 25 μm, and cells with a size of less than 10 μm can be separated. In addition, in this cell separation method, the number of captured cells per volume of the particulate carrier is: cells with a size of 25 μm or more > cells with a size of 10 μm or more and less than 25 μm > cells with a size of less than 10 μm. Therefore, when the particulate carrier is removed from the column in which the cells are trapped and the cells are recovered by washing, the column is cut at a specific site to recover the cells, resulting in a washed cell solution with a higher cell distribution ratio. It is possible to recover.

つまり例えば前記のように10mLの粒子状担体に大きさ25μm以上の細胞、10μm以上25μm未満の細胞両者が全て捕捉された場合でも、実際にはカラム上部に捕捉されている細胞数は大きさ25μm以上の細胞>大きさ10μm以上25μm未満の細胞であり、カラム上部の部位を切断して粒子状担体から洗浄細胞を回収することで、より大きさ25μm以上の細胞の分配比率の高い細胞液が得られる。 In other words, for example, even when all cells with a size of 25 μm or more and cells with a size of 10 μm or more and less than 25 μm are all trapped in 10 mL of the particulate carrier as described above, the actual number of cells trapped at the top of the column is 25 μm. The above cells > cells with a size of 10 μm or more and less than 25 μm, and by cutting the upper part of the column and collecting the washed cells from the particulate carrier, a cell solution with a high distribution ratio of cells with a size of 25 μm or more can be obtained. can get.

本発明の細胞分離方法は、分離対象とする細胞の粒度分布に合わせて粒子状担体の最大頻度粒径や粒度分布を設定することで、様々なサイズの細胞の分離が可能である。また、単位容量当たりの粒子状担体に捕捉される細胞の大きさと個数の関係は、カラム直径(断面積)やカラム長さによる影響を受ける。一般的には、カラムの断面積は細胞の詰まりが無い限り小さい方がよく、カラム長さが長いほど大きさの異なる細胞の分離能は向上する。 The cell separation method of the present invention can separate cells of various sizes by setting the maximum frequency particle size and particle size distribution of the particulate carrier according to the particle size distribution of cells to be separated. In addition, the relationship between the size and the number of cells captured by the particulate carrier per unit volume is affected by the column diameter (cross-sectional area) and column length. In general, the cross-sectional area of the column should be small as long as there is no cell clogging, and the longer the column length, the better the ability to separate cells of different sizes.

本発明の細胞分離方法は、細胞サイズのみをパラメータとした細胞分離が可能であるため、細胞懸濁液の組成は、浸透圧による細胞の膨張・収縮のみを考慮すればよく、細胞の生存性に支障があるものでなければ特に限定されない。例えば、水、MACS緩衝液((リン酸緩衝液であるPBSに0.5%(w/v)bovine serum albumin(以下、BSAと略す。)と2mM エチレンジアミン四酢酸(以下、EDTAと略す。)を添加したもの))、またはマンニトール水溶液など、様々な溶媒を用いることが可能である。その他にも、細胞の生存率を高める試薬を添加することや、pHの変動を抑制するために緩衝液をベース液に用いることも可能である。またさらに、カラムより取り出した粒子状担体の洗浄により粒子状担体間に捕捉された細胞を回収する工程では、より細胞の剥離を促進するために、20mM程度のEDTAや界面活性剤、細胞脱離液などを、細胞の生存に支障がない範囲で適宜添加して調整することが可能である。 Since the cell separation method of the present invention allows cell separation using only cell size as a parameter, the composition of the cell suspension only needs to consider expansion and contraction of cells due to osmotic pressure. is not particularly limited as long as it does not interfere with For example, water, MACS buffer (0.5% (w / v) bovine serum albumin (hereinafter abbreviated as BSA) and 2 mM ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA) in PBS, which is a phosphate buffer) )), or an aqueous solution of mannitol, etc., can be used. In addition, it is also possible to add a reagent that enhances cell viability, or to use a buffer solution as the base solution to suppress pH fluctuations. Furthermore, in the step of recovering the cells trapped between the particulate carriers by washing the particulate carriers taken out from the column, in order to further promote the detachment of the cells, EDTA of about 20 mM, a surfactant, and cell detachment were added. A liquid or the like can be added as appropriate to the extent that it does not interfere with the survival of the cells.

本発明の細胞分離方法は、カラム状に充填してなる吸着剤を用いることで、大量の細胞液を連続して通液処理することができるため、特に培養基材からトリプシンなどの酵素を用いて回収した培養細胞の懸濁液など、細胞濃度が低く液量が多いような細胞液から、直接目的の大きさを持つ細胞を高回収率で分離回収する場合において極めて有効な手段である。また薬剤による細胞の前処理などが不要であるため、ヒトから抽出した全血などの細胞液でも直接細胞分離に供することができ、回収する細胞のロスを低減することができる。 In the cell separation method of the present invention, a large amount of cell fluid can be continuously treated by using an adsorbent packed in a column. This is an extremely effective means for directly separating and recovering cells with a desired size at a high recovery rate from a cell solution with a low cell concentration and a high liquid volume, such as a suspension of cultured cells recovered by the method. In addition, since pretreatment of cells with a drug or the like is unnecessary, even cell fluid such as whole blood extracted from humans can be directly subjected to cell separation, and the loss of recovered cells can be reduced.

本発明の細胞分離方法は、一定の粒度分布を持つ粒子状担体を充填してなるカラムに大きさの異なる細胞の混合物を通過させ、粒子状担体の間隙を通過した細胞を回収したのち、粒子状担体に捕捉された細胞を洗浄操作により回収することで、前者を大きさの小さい細胞、後者を大きさの大きい細胞としてそれぞれ高効率で取得するため有効な細胞分離方法である。本発明の細胞分離回収方法により、例えば大きさが10μm未満の小さい細胞、大きさが10~25μmの中程度の細胞、大きさが25μm以上の大きい細胞、のような様々なサイズの細胞を高回収率で分離精製でき、分離対象となる細胞サイズの基準は、粒子状担体の粒径およびカラムへの充填量を適切に選択することで、コントロールすることが可能である。 In the cell separation method of the present invention, a mixture of cells with different sizes is passed through a column filled with particulate carriers having a certain particle size distribution, and after collecting the cells that have passed through the gaps of the particulate carriers, the particles are This is an effective cell separation method because the cells trapped in the carrier are collected by washing, and the former are obtained as small cells and the latter as large cells, respectively, with high efficiency. By the cell separation and collection method of the present invention, cells of various sizes, such as small cells less than 10 μm in size, medium cells 10 to 25 μm in size, and large cells 25 μm or more in size, can be collected at high efficiency. It is possible to separate and purify by the recovery rate, and the standard of cell size to be separated can be controlled by appropriately selecting the particle size of the particulate carrier and the filling amount of the column.

また、本発明の細胞分離方法は既存の方法である密度勾配遠心法やマイクロ流路デバイス、誘電泳動、細胞表面マーカー分子の標識による方法と比べ、大量の細胞を簡便に短時間で処理することができ、なおかつラベルフリー・前処理不要で分離が可能であることから、特に再生医療用途に向けた、高品質な医療用細胞の大量精製にきわめて有効な手段である。 In addition, the cell separation method of the present invention can easily process a large amount of cells in a short time compared to existing methods such as density gradient centrifugation, microfluidic devices, dielectrophoresis, and labeling of cell surface marker molecules. Furthermore, since separation is possible without labels or pretreatment, it is an extremely effective means for large-scale purification of high-quality medical cells, especially for regenerative medicine applications.

作製例1で作製した、粒子径が150-250μmであるトヨパールHW-40ECの粒度分布を示した図である。1 is a diagram showing the particle size distribution of Toyopearl HW-40EC having a particle size of 150-250 μm, produced in Production Example 1. FIG. 実施例1、実施例2、比較例1、実施例3で用いたRamos細胞、RD細胞、ヒトiPS細胞201B7株(以下、201B7細胞と略する)、ヒト間葉系幹細胞を、MACS緩衝液で洗浄後に血球計算盤へ導入して撮影した細胞写真である。スケールバーは100μmであり、大きさはそれぞれRamos細胞が10μm未満、RD細胞と201B7細胞は10~25μm、ヒト間葉系幹細胞は25μm超であることを示した写真である。Ramos cells, RD cells, human iPS cell 201B7 strain (hereinafter abbreviated as 201B7 cells), and human mesenchymal stem cells used in Example 1, Example 2, Comparative Example 1, and Example 3 were treated with MACS buffer. It is a photograph of cells taken by introducing them into a hemocytometer after washing. The scale bar is 100 μm, and the size is less than 10 μm for Ramos cells, 10-25 μm for RD cells and 201B7 cells, and greater than 25 μm for human mesenchymal stem cells. 実施例1における、カラムへの細胞通液1回目と2回目、それぞれの流出細胞液中におけるRamos細胞、RD細胞、201B7細胞、ヒト間葉系幹細胞の回収率を示したグラフである。1 is a graph showing the recovery rates of Ramos cells, RD cells, 201B7 cells, and human mesenchymal stem cells in each of the first and second passages of cells through the column in Example 1. FIG. 実施例2と比較例1における、流出細胞液中のRamos細胞、RD細胞、ヒト間葉系幹細胞の回収率を示したグラフである。2 is a graph showing recovery rates of Ramos cells, RD cells, and human mesenchymal stem cells in the effluent cell fluid in Example 2 and Comparative Example 1. FIG. 実施例2と比較例1における、洗浄細胞液中のRamos細胞、RD細胞、ヒト間葉系幹細胞の回収率を示したグラフである。2 is a graph showing recovery rates of Ramos cells, RD cells, and human mesenchymal stem cells in washed cell sap in Example 2 and Comparative Example 1. FIG. 実施例3における、流出細胞液Fr.1~10中のRamos細胞とヒト間葉系幹細胞の回収率を示したグラフである。In Example 3, the effluent cell fluid Fr. 1 is a graph showing recovery rates of Ramos cells and human mesenchymal stem cells in 1 to 10. FIG. 実施例3における、洗浄細胞液UP.1~5中のRamos細胞とヒト間葉系幹細胞の回収率を示したグラフである。Washed cell suspension UP. 1 is a graph showing recovery rates of Ramos cells and human mesenchymal stem cells in 1 to 5. FIG. 実施例3における、アプライ細胞(App.)と流出細胞液Fr.1~10中のRamos細胞とヒト間葉系幹細胞の細胞比率を示したグラフである。The applied cells (App.) and the effluent cell fluid Fr. 1 is a graph showing the cell ratios of Ramos cells and human mesenchymal stem cells in 1-10. 実施例3における、アプライ細胞(App.)と洗浄細胞液UP.1~5中のRamos細胞とヒト間葉系幹細胞の細胞比率を示したグラフである。The applied cells (App.) and the washed cell suspension UP. 1 is a graph showing cell ratios of Ramos cells and human mesenchymal stem cells in 1 to 5. FIG.

以下、作製例、実施例、比較例をあげて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail below with reference to Production Examples, Examples, and Comparative Examples, but the present invention is not limited to these.

作製例1 粒子径が150~250μmである粒子状担体の作製
グラスフィルターを用いて多孔性合成高分子系粒子状担体であるトヨパールHW-40EC(東ソー製、粒子径100~300μm)を水で洗浄し、水で懸濁した状態で150μmと250μmのステンレス製標準ふるい(東京スクリーン製)を用いて湿式分級することにより、粒子径が150-250μmであるトヨパールHW-40ECを作製した(以下、HW-40EC/150-250μmと略する場合もある。)。作製したHW-40EC/150-250μmの粒度分布を図1に示す。
Preparation Example 1 Preparation of particulate carrier having a particle size of 150 to 250 μm Using a glass filter, Toyopearl HW-40EC (manufactured by Tosoh, particle size of 100 to 300 μm), which is a porous synthetic polymer particulate carrier, was washed with water. Then, in a state of being suspended in water, by wet classification using 150 μm and 250 μm stainless steel standard sieves (manufactured by Tokyo Screen), Toyopearl HW-40EC with a particle size of 150-250 μm was produced (hereinafter referred to as HW -40EC/150-250μm may be abbreviated). FIG. 1 shows the particle size distribution of the produced HW-40EC/150-250 μm.

実施例1 HW-40EC/150~250μm充填カラムを用いた、Ramos細胞、RD細胞、201B7細胞、ヒト間葉系幹細胞の混合物からのヒト間葉系幹細胞の分離
(1)粒子状担体を充填したカラムの作製
2.5mL容シリンジ(テルモ製)と注射針(テルモ製、22G)の間に目開き35μmのナイロンメッシュフィルター(日本BD製セルストレーナー・キャップ付き5mLポリスチレンラウンドチューブより取り出して使用)を装着したカラムを作製した。次に、作製例1で作製したHW-40EC/150-250μmをMACS緩衝液で置換したのち、12時間以上放置後の沈降体積が50%となるように調整した粒子状担体の50%懸濁液を調製し、作製したカラムに4.0mLを添加して、粒子状担体をカラムに充填した(担体充填容量:2.0mL)。同一のカラムを2本準備した。
Example 1 Separation of human mesenchymal stem cells from mixture of Ramos cells, RD cells, 201B7 cells and human mesenchymal stem cells using HW-40EC/150-250 μm packed column (1) Packed with particulate carrier Preparation of column Between a 2.5 mL syringe (manufactured by Terumo) and an injection needle (manufactured by Terumo, 22G), a nylon mesh filter with an opening of 35 μm (taken out from a 5 mL polystyrene round tube with a cell strainer and cap manufactured by Japan BD) was used. A mounted column was prepared. Next, HW-40EC/150-250 μm prepared in Preparation Example 1 was replaced with MACS buffer, and after standing for 12 hours or more, a 50% suspension of the particulate carrier was adjusted so that the sedimentation volume was 50%. A liquid was prepared, 4.0 mL of the liquid was added to the prepared column, and the column was packed with the particulate carrier (carrier packing volume: 2.0 mL). Two identical columns were prepared.

(2)Ramos細胞の培養と細胞懸濁液の調製
浮遊性細胞であるRamos細胞(ヒトバーキットリンパ腫細胞、JCRB9119)は、10%FBS(Biological Industries製)と抗生物質溶液(ペニシリン-ストレプトマイシン溶液、富士フイルム和光純薬製)を添加したRPMI 1640培地(富士フイルム和光純薬製)を用い、浮遊培養用シャーレ(住友ベークライト製)に細胞を播種し、5%CO2雰囲気下、37℃で培養した。
(2) Culture of Ramos Cells and Preparation of Cell Suspension Ramos cells (human Burkitt's lymphoma cells, JCRB9119), which are free-floating cells, were mixed with 10% FBS (manufactured by Biological Industries) and an antibiotic solution (penicillin-streptomycin solution, Using RPMI 1640 medium (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) supplemented with the cells (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), cells were seeded in petri dishes for suspension culture (manufactured by Sumitomo Bakelite) and cultured at 37 ° C. in a 5% CO2 atmosphere. .

Ramos細胞を50mLチューブに回収後、1500rpm、5分間遠心分離し、上清を廃棄した。次に、細胞ペレットを無血清RPMI 1640培地(フェノールレッド不含)に懸濁し、再び1500rpm、5分間遠心分離し、上清を廃棄することで細胞を洗浄した。細胞ペレットを、Cell Tracker Greenを無血清RPMI培地(フェノールレッド不含)に終濃度0.3μMで溶解した液に懸濁し、培養シャーレに移し替え、5%CO2雰囲気下、37℃で1時間培養した。
次に細胞を50mLチューブに回収し、1500rpm、5分間遠心分離し、上清を廃棄した後、10%FBSと抗生物質溶液を添加したRPMI 1640培地に懸濁し、5%CO2雰囲気下、37℃で一晩培養を行った。次に50mLチューブ中に細胞を回収し、1500rpm、5分間遠心分離して沈降後、細胞をMACS緩衝液で懸濁し、再度遠心分離して上清を廃棄することで細胞を洗浄した。
The Ramos cells were collected in a 50 mL tube, centrifuged at 1500 rpm for 5 minutes, and the supernatant was discarded. Cells were then washed by suspending the cell pellet in serum-free RPMI 1640 medium (without phenol red), centrifuging again at 1500 rpm for 5 minutes, and discarding the supernatant. The cell pellet was suspended in a solution obtained by dissolving Cell Tracker Green in serum-free RPMI medium (without phenol red) at a final concentration of 0.3 μM, transferred to a culture petri dish, and cultured at 37° C. for 1 hour in a 5% CO atmosphere. bottom.
Next, the cells were collected in a 50 mL tube, centrifuged at 1500 rpm for 5 minutes, and the supernatant was discarded. was cultured overnight. Next, the cells were collected in a 50 mL tube, centrifuged at 1500 rpm for 5 minutes to sediment, suspended in MACS buffer, centrifuged again, and the supernatant was discarded to wash the cells.

細胞洗浄操作を2回繰り返したのち、MACS緩衝液で懸濁し、セルストレーナを用いてろ過することにより、Ramos細胞の細胞懸濁液を調製した。得られたRamos細胞懸濁液は一部を分取し、10倍希釈して血球計算盤にて細胞密度の算出を行った。以下、この細胞密度を元にして、細胞密度×カラムへのアプライ細胞液量から、カラムへの細胞添加量を算出した。また、血球計算盤でRamos細胞の大きさを計測した結果、平均8μmであった。本発明では10μm未満の細胞に相当する。図2にRamos細胞の顕微鏡撮影画像を示す。 After repeating the cell washing operation twice, the cells were suspended in a MACS buffer and filtered using a cell strainer to prepare a cell suspension of Ramos cells. A portion of the obtained Ramos cell suspension was taken, diluted 10-fold, and the cell density was calculated using a hemocytometer. Hereinafter, based on this cell density, the amount of cells to be added to the column was calculated from cell density×amount of cell solution applied to the column. In addition, the size of the Ramos cells measured by a hemocytometer was 8 μm on average. In the present invention, it corresponds to cells of less than 10 μm. FIG. 2 shows microscopic images of Ramos cells.

(3)RD細胞の培養と細胞懸濁液の調製
接着性細胞であるRD細胞(ヒト胎児横紋筋肉腫細胞、細胞Jp. EC85111502-G0)は、細胞増殖用培地No.104(細胞Jp. DSGM104)を用い、接着培養用フラスコ(住友ベークライト製)に細胞を播種し、5%CO2雰囲気下、37℃で培養した。次に、Cell Tracker Orange(サーモフィッシャーサイエンティフィック製)を用いたRD細胞の蛍光染色は以下の方法で行った。
RD細胞を培養中のフラスコ内の培地を廃棄後、無血清のRPMI 1640培地を添加して細胞を洗浄したのち、無血清のRPMI 1640培地を廃棄した。次に、Cell Tracker Orangeを最終濃度が10μMとなるように無血清のRPMI 1640培地に溶解した液を添加し、5%CO2雰囲気下、37℃で1時間培養した。前記蛍光試薬液を廃棄後、細胞増殖用培地No.104を添加し、5%CO2雰囲気下、37℃で1時間培養した。次に、培地を廃棄したのち、再び新しい細胞増殖用培地No.104を添加し、5%CO2雰囲気下、37℃で一晩培養した。次に、細胞の回収と細胞懸濁液の調製を以下の方法で行った。
(3) Cultivation of RD Cells and Preparation of Cell Suspension RD cells (human fetal rhabdomyosarcoma cells, cell Jp. EC85111502-G0), which are adherent cells, were grown in cell growth medium No. 104 (cell Jp. DSGM104), the cells were seeded in an adhesive culture flask (manufactured by Sumitomo Bakelite) and cultured at 37° C. in a 5% CO 2 atmosphere. Next, RD cells were fluorescently stained using Cell Tracker Orange (manufactured by Thermo Fisher Scientific) by the following method.
After discarding the medium in the flask during culturing of the RD cells, serum-free RPMI 1640 medium was added to wash the cells, and then the serum-free RPMI 1640 medium was discarded. Next, Cell Tracker Orange dissolved in serum-free RPMI 1640 medium to a final concentration of 10 μM was added, and cultured at 37° C. for 1 hour in a 5% CO 2 atmosphere. After discarding the fluorescent reagent solution, cell growth medium No. 104 was added and cultured at 37°C for 1 hour in a 5% CO2 atmosphere. Next, after discarding the medium, new cell growth medium No. 1 was added again. 104 was added and cultured overnight at 37°C in a 5% CO2 atmosphere. Next, cell collection and cell suspension preparation were performed by the following methods.

細胞培養中のフラスコ内の培地を廃棄してD-PBS(-)を添加したのち、細胞を洗浄してD-PBS(-)を廃棄した。次に、適当量のAccutase(イノベーティブセルテクノロジー製)を添加し、数分間放置することでRD細胞を剥離させ、50mLチューブへと回収した。回収した細胞を遠心分離して沈降後、細胞をMACS緩衝液で懸濁し、再度遠心分離して上清を廃棄することで細胞を洗浄した。細胞洗浄操作を2回繰り返したのち、MACS緩衝液で懸濁し、セルストレーナを用いてろ過することにより、Cell Tracker Orangeで染色したRD細胞の細胞懸濁液を調製した。得られたRD細胞懸濁液は一部を分取し、10倍希釈して血球計算盤にて細胞密度の算出を行った。以下、この細胞密度を元にして、細胞密度×カラムへのアプライ細胞液量から、カラムへの細胞添加量を算出した。また、血球計算盤でRD細胞の大きさを計測した結果、平均15μmであった。本発明では10~25μmの細胞に相当する。図2にRD細胞の顕微鏡撮影画像を示す。 After discarding the medium in the flask during cell culture and adding D-PBS(-), the cells were washed and D-PBS(-) was discarded. Next, an appropriate amount of Accutase (manufactured by Innovative Cell Technology) was added and left for several minutes to detach the RD cells and collect them in a 50 mL tube. After centrifuging and sedimenting the collected cells, the cells were suspended in MACS buffer, centrifuged again, and the supernatant was discarded to wash the cells. After repeating the cell washing operation twice, the cells were suspended in MACS buffer and filtered using a cell strainer to prepare a cell suspension of RD cells stained with Cell Tracker Orange. A portion of the obtained RD cell suspension was taken, diluted 10-fold, and the cell density was calculated using a hemocytometer. Hereinafter, based on this cell density, the amount of cells to be added to the column was calculated from cell density×amount of cell solution applied to the column. In addition, as a result of measuring the size of the RD cells with a hemocytometer, the average size was 15 μm. In the present invention, this corresponds to cells of 10-25 μm. FIG. 2 shows microscopic images of RD cells.

(4)201B7細胞の培養と細胞懸濁液の調製
接着性細胞であるヒトiPS細胞201B7株(iPSアカデミアジャパン社からライセンスを受けて購入。)の培養は、接着培養用フラスコ(住友ベークライト製)を用いて、以下の方法で行った。予め調製したiMatrix-511(ニッピ製)をD-PBS(-)に3μg/mLで希釈した溶液をシャーレに添加して4℃で一晩以上放置することにより、シャーレ培養面へのiMatrix-511のコーティングを行った。
コーティングを行ったシャーレのiMatrix-511溶液を廃棄したのち、iPS細胞培養用培地であるStemFit AK02N培地(味の素製)を添加して洗浄後、凍結バイアルより解凍した201B7細胞を、ロックインヒビター(Y-27632:富士フイルム和光純薬製)を10μM添加した同培地に懸濁して播種した。5%CO2雰囲気下、37℃で一晩培養後、Y-27632を含むStemFit AK02N培地を廃棄し、Y-27632を含まないStemFit AK02N培地へと培地交換を行い、適切な細胞密度になったところで、細胞回収と継代を行った。
(4) Culture of 201B7 Cells and Preparation of Cell Suspension Human iPS cell 201B7 strain (purchased under license from iPS Academia Japan), which is an adhesive cell, was cultured in an adhesive culture flask (manufactured by Sumitomo Bakelite). was used in the following manner. iMatrix-511 (manufactured by Nippi) prepared in advance was diluted to 3 μg/mL in D-PBS (−), added to the petri dish, and left at 4° C. overnight or longer to spread iMatrix-511 onto the petri dish culture surface. was coated.
After discarding the iMatrix-511 solution in the coated petri dish, StemFit AK02N medium (manufactured by Ajinomoto Co., Ltd.), which is an iPS cell culture medium, was added and washed. 27632: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was suspended in the same medium to which 10 μM was added and seeded. After culturing overnight at 37°C in a 5% CO2 atmosphere, the StemFit AK02N medium containing Y-27632 was discarded, and the medium was replaced with StemFit AK02N medium not containing Y-27632. , cell harvesting and passaging were performed.

次に、細胞の回収と細胞懸濁液の調製を以下の方法で行った。シャーレにD-PBS(-)を添加して細胞をリンスしたのち、D-PBS(-)を廃棄する操作を2回繰り返して細胞を洗浄後、CTS TrypLE Select Enzyme(サーモフィッシャーサイエンティフィック製)とVersene Solution(サーモフィッシャーサイエンティフィック製)を1:1で混合した剥離溶液を添加して5%CO2雰囲気下、37℃で10分間放置した。細胞が丸く剥がれつつあるのを確認したのち、剥離溶液中にてピペッティングを繰り返すことで細胞を剥離し、50mLチューブ中に回収した。回収した細胞を遠心分離して沈降後、細胞をMACS緩衝液で懸濁し、再度遠心分離して上清を廃棄することで細胞を洗浄した。 Next, cell collection and cell suspension preparation were performed by the following methods. After washing the cells by adding D-PBS (-) to the petri dish and rinsing the cells, discarding the D-PBS (-) was repeated twice, and then the cells were washed with CTS TrypLE Select Enzyme (manufactured by Thermo Fisher Scientific). and Versene Solution (manufactured by Thermo Fisher Scientific) were added at a ratio of 1:1 and left at 37° C. for 10 minutes in a 5% CO 2 atmosphere. After confirming that the cells were detaching in a round shape, the cells were detached by repeating pipetting in the detachment solution and collected in a 50 mL tube. After centrifuging and sedimenting the collected cells, the cells were suspended in MACS buffer, centrifuged again, and the supernatant was discarded to wash the cells.

細胞洗浄操作を2回繰り返したのち、MACS緩衝液で懸濁し、セルストレーナを用いてろ過することにより、201B7細胞の細胞懸濁液を調製した。得られた201B7細胞懸濁液は一部を分取し、10倍希釈して血球計算盤にて細胞密度の算出を行った。以下、この細胞密度を元にして、細胞密度×カラムへのアプライ細胞液量から、カラムへの細胞添加量を算出した。また、血球計算盤で201B7細胞の大きさを計測した結果、平均15μmであった。本発明では10~25μmの細胞に相当する。図2に201B7細胞の顕微鏡撮影画像を示す。 After repeating the cell washing operation twice, the cells were suspended in a MACS buffer and filtered using a cell strainer to prepare a cell suspension of 201B7 cells. A portion of the obtained 201B7 cell suspension was taken, diluted 10-fold, and the cell density was calculated using a hemocytometer. Hereinafter, based on this cell density, the amount of cells to be added to the column was calculated from cell density×amount of cell solution applied to the column. In addition, as a result of measuring the size of the 201B7 cells with a hemocytometer, the average size was 15 μm. In the present invention, this corresponds to cells of 10-25 μm. FIG. 2 shows microscopic images of 201B7 cells.

(5)ヒト間葉系幹細胞の培養と細胞懸濁液の調製
接着性細胞であるヒト間葉系幹細胞UE6E7T-2(以下、ヒト間葉系幹細胞と記載する。)はJCRB細胞バンクより入手した。また、培養は以下の手順で行った。接着性細胞であるヒト間葉系幹細胞は、10%FBS(Biological Industries製)と4mM L-グルタミン(富士フイルム和光純薬製)および抗生物質溶液(ペニシリン-ストレプトマイシン溶液、富士フイルム和光純薬製)を添加したD-MEM培地(Low Glucose、シグマアルドリッチ製)を用い、接着培養用フラスコ(住友ベークライト製)に細胞を播種し、5%CO2雰囲気下、37℃で培養した。
(5) Culture of Human Mesenchymal Stem Cells and Preparation of Cell Suspension Adhesive human mesenchymal stem cells UE6E7T-2 (hereinafter referred to as human mesenchymal stem cells) were obtained from the JCRB cell bank. . In addition, culture was performed according to the following procedure. Human mesenchymal stem cells, which are adherent cells, were prepared with 10% FBS (manufactured by Biological Industries), 4 mM L-glutamine (manufactured by Fujifilm Wako Pure Chemical Industries) and an antibiotic solution (penicillin-streptomycin solution, manufactured by Fujifilm Wako Pure Chemical Industries). was added to the D-MEM medium (Low Glucose, Sigma-Aldrich), cells were seeded in an adherent culture flask (Sumitomo Bakelite), and cultured at 37° C. in a 5% CO 2 atmosphere.

次に、Cell Tracker Red(サーモフィッシャーサイエンティフィック製)を用いたヒト間葉系幹細胞の蛍光染色は以下の方法で行った。ヒト間葉系幹細胞を培養中のシャーレ内の培地を廃棄後、無血清のRPMI 1640培地を添加して細胞を洗浄したのち、無血清のRPMI 1640培地を廃棄した。次に、Cell Tracker Redを最終濃度が10μMとなるように無血清のRPMI 1640培地に溶解した液を添加し、5%CO2雰囲気下、37℃で1時間培養した。前記蛍光試薬液を廃棄後、10%FBSと4mM L-グルタミンおよび抗生物質溶液を添加したD-MEM培地を添加し、5%CO2雰囲気下、37℃で1時間培養した。次に、培地を廃棄したのち、再び新しい10%FBSと4mM L-グルタミンおよび抗生物質溶液を添加したD-MEM培地を添加し、5%CO2雰囲気下、37℃で一晩培養した。次に、細胞の回収と細胞懸濁液の調製を以下の方法で行った。細胞培養中のシャーレ内の培地を廃棄してD-PBS(-)を添加したのち、細胞を洗浄してD-PBS(-)を廃棄した。次に、適当量のAccutase(イノベーティブセルテクノロジー製)を添加し、数分間放置することでヒト間葉系幹細胞を剥離させ、50mLチューブへと回収した。回収した細胞を遠心分離して沈降後、細胞をMACS緩衝液で懸濁し、再度遠心分離して上清を廃棄することで細胞を洗浄した。細胞洗浄操作を2回繰り返したのち、MACS緩衝液で懸濁し、セルストレーナを用いてろ過することにより、Cell Tracker Redで染色したヒト間葉系幹細胞の細胞懸濁液を調製した。得られたヒト間葉系幹細胞懸濁液は一部を分取し、10倍希釈して血球計算盤にて細胞密度の算出を行った。以下、この細胞密度を元にして、細胞密度×カラムへのアプライ細胞液量から、カラムへの細胞添加量を算出した。 Next, fluorescent staining of human mesenchymal stem cells using Cell Tracker Red (manufactured by Thermo Fisher Scientific) was performed by the following method. After discarding the medium in the petri dish in which the human mesenchymal stem cells were being cultured, serum-free RPMI 1640 medium was added to wash the cells, and then the serum-free RPMI 1640 medium was discarded. Next, Cell Tracker Red dissolved in serum-free RPMI 1640 medium to a final concentration of 10 μM was added and cultured at 37° C. for 1 hour in a 5% CO 2 atmosphere. After discarding the fluorescent reagent solution, D-MEM medium supplemented with 10% FBS, 4 mM L-glutamine and an antibiotic solution was added, and cultured at 37° C. for 1 hour in a 5% CO 2 atmosphere. Next, after discarding the medium, fresh D-MEM medium supplemented with 10% FBS, 4 mM L-glutamine and an antibiotic solution was added, and cultured overnight at 37° C. in a 5% CO 2 atmosphere. Next, cell collection and cell suspension preparation were performed by the following methods. After the medium in the petri dish during cell culture was discarded and D-PBS(-) was added, the cells were washed and D-PBS(-) was discarded. Next, an appropriate amount of Accutase (manufactured by Innovative Cell Technology) was added and left for several minutes to detach the human mesenchymal stem cells, which were collected in a 50 mL tube. After centrifuging and sedimenting the collected cells, the cells were suspended in MACS buffer, centrifuged again, and the supernatant was discarded to wash the cells. After repeating the cell washing operation twice, the cells were suspended in MACS buffer and filtered using a cell strainer to prepare a cell suspension of human mesenchymal stem cells stained with Cell Tracker Red. A portion of the obtained human mesenchymal stem cell suspension was taken, diluted 10-fold, and the cell density was calculated using a hemocytometer. Hereinafter, based on this cell density, the amount of cells to be added to the column was calculated from cell density×amount of cell solution applied to the column.

また、血球計算盤でヒト間葉系幹細胞の大きさを計測した結果、平均35μm以上であった。本発明では25μm以上の細胞に相当する。図2にヒト間葉系幹細胞の顕微鏡撮影画像を示す。 In addition, as a result of measuring the size of human mesenchymal stem cells with a hemocytometer, the average size was 35 μm or more. In the present invention, it corresponds to cells of 25 μm or more. FIG. 2 shows microscopic images of human mesenchymal stem cells.

(6)粒子状担体充填カラムを用いたヒト間葉系幹細胞の分離
前記の方法で調製した細胞懸濁液を混合し、MACS緩衝液で希釈することで、細胞懸濁液量2mL、添加細胞数がRamos細胞は6.7×10^5個、RD細胞は8.9×10^5個、201B7細胞は8.9×10^5個、ヒト間葉系幹細胞は8.9×10^5個となるように調製し、2mLのHW-40EC/150-250μmを充填したカラム1本を垂直に立てた状態で、カラム上部より添加した。カラム下部の22Gシリンジ針より、流出細胞液2mLを回収した(以下、流出細胞液-1と記載する)。流出細胞液-1のうち少量を細胞回収率測定用に分取したのち、次に2mLのHW-40EC/150-250μmを充填したもう1本のカラムを垂直に立てた状態で、カラム上部より流出細胞液-1を2mL添加することで、カラム下部の22Gシリンジ針より、さらに流出細胞液2mLを回収した(以下、流出細胞液-2と記載する)。
(6) Separation of Human Mesenchymal Stem Cells Using a Particulate Carrier-filled Column The number of Ramos cells is 6.7×10^5, the number of RD cells is 8.9×10^5, the number of 201B7 cells is 8.9×10^5, and the number of human mesenchymal stem cells is 8.9×10^. A column filled with 2 mL of HW-40EC/150-250 μm was vertically placed and added from the top of the column. 2 mL of the effluent cell sap was collected from the 22G syringe needle at the bottom of the column (hereinafter referred to as effluent cell sap-1). After collecting a small amount of the effluent cell fluid-1 for measuring the cell recovery rate, another column filled with 2 mL of HW-40EC/150-250 μm was placed vertically, and from the top of the column, By adding 2 mL of the effluent cell sap-1, 2 mL of the effluent cell sap was collected from the 22G syringe needle at the bottom of the column (hereinafter referred to as effluent cell sap-2).

(7)流出細胞液中の細胞回収率の測定
上記の操作により得られた、流出細胞液-1、2にMACS緩衝液を加えて希釈したのち、それぞれ2mLをセルストレーナー・キャップ付き5mLポリスチレンラウンドチューブ(日本BD製)に分取した。細胞数計測用内部標準ビーズとしてCountBright Absolute Counting Beads(インビトロゲン製)を50μL、および細胞生死判定試薬として7-AADを50μL添加した後、セルソーターBD FACSAria(日本BD製)にて細胞数の測定を行った。
各細胞液中に含まれるRamos細胞、RD細胞、201B7細胞、ヒト間葉系幹細胞はFITC、PE、APCなどの蛍光強度をパラメータとして2重展開したドットプロットを用いてそれぞれの細胞を判別し、細胞数は内部標準ビーズの粒子数を元に、比例計算により算出した(この細胞数をそれぞれ流出細胞数-1、2とする)。流出細胞液-1、2における各細胞の回収率は、流出細胞数-1、2をカラムへアプライした各細胞数で除することにより算出した。
(7) Measurement of cell recovery rate in effluent cell effluent After adding MACS buffer to effluent cell effluent-1 and 2 obtained by the above operation and diluting, 2 mL of each 5 mL polystyrene round with cell strainer cap It was separated into a tube (manufactured by BD Japan). After adding 50 μL of CountBright Absolute Counting Beads (manufactured by Invitrogen) as an internal standard bead for counting cells and 50 μL of 7-AAD as a cell viability determination reagent, the number of cells was measured using a cell sorter BD FACSAria (manufactured by BD Japan). gone.
Ramos cells, RD cells, 201B7 cells, and human mesenchymal stem cells contained in each cell solution were identified using dot plots that were double developed using the fluorescence intensity of FITC, PE, APC, etc. as parameters, The number of cells was calculated by proportional calculation based on the number of particles of the internal standard beads (this number of cells is defined as the number of outflow cells -1 and 2, respectively). The recovery rate of each cell in the effluent cell sap-1, 2 was calculated by dividing the effluent cell number-1, 2 by the number of each cell applied to the column.

各細胞の回収率を算出した結果を表1、図3に示す。この結果から、粒子状担体2mLを充填したカラムを用いてRamos細胞、RD細胞、201B7細胞、ヒト間葉系幹細胞の混合細胞液を通液処理した場合、細胞を1回通液して通過した細胞である流出細胞液-1ではヒト間葉系幹細胞の回収率が29.3%低下することが分かった。また、細胞を2回別のカラムに通液して通過した細胞である流出細胞液-2では、ヒト間葉系幹細胞の回収率がさらに38.1%低下することが分かった。この結果は、ヒト間葉系幹細胞が平均35μmと、混合細胞中の他の細胞と比べ大きいために、粒状担体間の間隙に捕捉されやすいためであると考えられた。 Table 1 and FIG. 3 show the results of calculating the recovery rate of each cell. From this result, when a mixed cell solution of Ramos cells, RD cells, 201B7 cells, and human mesenchymal stem cells was passed through a column filled with 2 mL of a particulate carrier, the cells passed through once. It was found that the recovery rate of human mesenchymal stem cells decreased by 29.3% in the cell effluent cell sap-1. In addition, it was found that the recovery rate of human mesenchymal stem cells was further reduced by 38.1% in the effluent cell sap-2, in which the cells were passed through separate columns twice. This result was considered to be due to the fact that human mesenchymal stem cells are larger than other cells in the mixed cells, averaging 35 μm, and thus easily captured in the gaps between the granular carriers.

また、ヒト間葉系幹細胞は1回目の通液では粒子状担体1mLあたり1.310×^5個、2回目の通液では1.7×10^5個が粒子状担体間の間隙に挟まり、RD細胞は1回目の通液では粒子状担体1mLあたり2.7×10^4個、2回目の通液では6.7×10^4個が粒子状担体間の間隙に挟まることが明らかとなった。通液後のカラム2本から粒子状担体を取り出し、セルストレーナ上にて20mMのEDTAを添加したMACS緩衝液を用いて、ピペッティングで洗浄することで、ヒト間葉系幹細胞の存在比が高い細胞懸濁液を得ることができた。これらの結果から、大きさの大きな細胞ほど容量当たりの粒子状担体間に挟まる細胞個数が多く、この違いを利用することで、大きさの異なる細胞同士を分離できることが明らかとなった。また理論的には、真球状の粒子状担体を最密充填した場合、その間隙を通過できる真球の最大直径は粒子状担体直径の16%程度であると見積られ、本実施例で用いた粒子状担体の湿潤状態での直径が>190μmであることから、その間隙を通過できる細胞の直径は<30μmと見積られ、本実施例の結果を裏付けるものであることが証明できた。 In addition, 1.310×^5 human mesenchymal stem cells per 1 mL of the particulate carrier were caught in the gaps between the particulate carriers in the first passage, and 1.7×10^5 in the second passage. , It is clear that 2.7×10^4 RD cells per 1 mL of the particulate carrier were caught in the gaps between the particulate carriers in the first passage, and 6.7×10^4 were caught in the gaps between the particulate carriers in the second passage. became. The particulate carriers are removed from the two columns after the passage of the liquid, and washed on a cell strainer with a MACS buffer solution containing 20 mM EDTA by pipetting, resulting in a high abundance ratio of human mesenchymal stem cells. A cell suspension could be obtained. From these results, it was clarified that the larger the size of the cells, the larger the number of cells sandwiched between the particulate carriers per volume, and that by utilizing this difference, cells of different sizes can be separated from each other. Theoretically, when spherical particulate carriers are closely packed, the maximum diameter of the true spheres that can pass through the gap is estimated to be about 16% of the diameter of the particulate carriers. Since the wet state diameter of the particulate carrier is >190 μm, the diameter of the cells that can pass through the interstices was estimated to be <30 μm, which could prove to support the results of this example.

Figure 2023042352000001
Figure 2023042352000001

実施例2 HW-40EC/150~250μm充填カラムを用いた、Ramos細胞、RD細胞、ヒト間葉系幹細胞の混合物からのRamos細胞の分離
(1)粒子状担体を充填したカラムの作製
20.0mL容シリンジ(テルモ製)と注射針(テルモ製、22G)の間に目開き35μmのナイロンメッシュフィルター(セルストレーナー・キャップ付き5mLポリスチレンラウンドチューブより取り出して使用)を装着したカラムを作製した。
Example 2 Separation of Ramos cells from mixture of Ramos cells, RD cells and human mesenchymal stem cells using HW-40EC/150-250 μm packed column (1) Preparation of column filled with particulate carrier 20.0 mL A column was prepared by attaching a nylon mesh filter with an opening of 35 μm (taken out from a 5 mL polystyrene round tube with a cell strainer cap and used) between a holding syringe (manufactured by Terumo) and an injection needle (manufactured by Terumo, 22G).

次に、作製例1で作製したHW-40EC/150-250μmをMACS緩衝液で置換したのち、12時間以上放置後の粒子状担体の沈降体積が50%となるように調整した粒子状担体の50%懸濁液を調製し、作製したカラムに20.0mLを添加して、粒子状担体をカラムに充填した(粒子状担体充填容量:10.0mL)。 Next, HW-40EC/150-250 μm prepared in Preparation Example 1 was replaced with MACS buffer solution, and after leaving for 12 hours or longer, the particulate carriers were adjusted so that the sedimentation volume of the particulate carriers was 50%. A 50% suspension was prepared, 20.0 mL of the suspension was added to the prepared column, and the column was filled with the particulate carrier (packed volume of the particulate carrier: 10.0 mL).

(2)Ramos細胞、RD細胞、ヒト間葉系幹細胞の培養と細胞懸濁液の調製
Ramos細胞、RD細胞、ヒト間葉系幹細胞の培養と細胞懸濁液の調製は実施例1の
(2)、(3)および(5)と同様の方法で行った。
(2) Culture of Ramos cells, RD cells, and human mesenchymal stem cells and preparation of cell suspension ), (3) and (5).

(3)粒子状担体充填カラムを用いたRamos細胞の分離
前記の方法で調製した細胞懸濁液を混合し、MACS緩衝液で希釈することで、細胞懸濁液量0.5mL、添加細胞数がRamos細胞は1.0×10^7個、RD細胞は6.8×10^5個、ヒト間葉系幹細胞は9.1×10^5個となるように調製し、10mLのHW-40EC/150-212μmを充填したカラムを垂直に立てた状態で、カラム上部より添加した。続いてカラム上部より4.0mLのMACS緩衝液を添加し、カラム下部の22Gシリンジ針より、流出細胞液計4.5mLを回収した(以下、流出細胞液と記載する)。次に、カラムから粒子状担体を取り出し、セルストレーナ上にて20mMのEDTAを添加したMACS緩衝液4mLを用いて、ピペッティングで繰り返し洗浄することで、粒子状担体間に捕捉された細胞を流出させて、細胞液4mLを回収した(以下、洗浄細胞液と記載する)。
(3) Separation of Ramos cells using a particulate carrier-filled column The cell suspension prepared by the above method was mixed and diluted with MACS buffer to obtain a cell suspension volume of 0.5 mL and the number of added cells. was prepared to have 1.0 × 10^7 Ramos cells, 6.8 × 10^5 RD cells, and 9.1 × 10^5 human mesenchymal stem cells, and 10 mL of HW- A column filled with 40EC/150-212 μm was placed vertically and added from the top of the column. Subsequently, 4.0 mL of MACS buffer was added from the top of the column, and a total of 4.5 mL of effluent cell fluid was recovered from the 22G syringe needle at the bottom of the column (hereinafter referred to as effluent cell fluid). Next, the particulate carriers are removed from the column and repeatedly washed with 4 mL of MACS buffer containing 20 mM EDTA on a cell strainer by pipetting to remove the cells trapped between the particulate carriers. Then, 4 mL of cell fluid was collected (hereinafter referred to as washed cell fluid).

(4)流出細胞液と洗浄細胞液中の細胞回収率の測定
上記の操作により得られた、流出細胞液と洗浄細胞液にMACS緩衝液を加えて希釈したのち、それぞれ2mLをセルストレーナー・キャップ付き5mLポリスチレンラウンドチューブ(日本BD製)に分取した。細胞数計測用内部標準ビーズとしてCountBright Absolute Counting Beads(インビトロゲン製)を50μL、および細胞生死判定試薬として7-AADを50μL添加した後、セルソーターBD FACSAria(日本BD製)にて細胞数の測定を行った。各細胞液中に含まれるRamos細胞、RD細胞、ヒト間葉系幹細胞はFITC、PE、APCなどの蛍光強度をパラメータとして2重展開したドットプロットを用いてそれぞれの細胞を判別し、細胞数は内部標準ビーズの粒子数を元に、比例計算により算出した(この細胞数をそれぞれ流出細胞数、洗浄細胞数とする)。流出細胞液、洗浄細胞液における各細胞の回収率は、流出細胞数、洗浄細胞数をカラムへアプライした各細胞数で除することにより算出した。
(4) Measurement of cell recovery rate in effluent cell sap and washed cell sap, after dilution by adding MACS buffer to the effluent cell sap and washed cell sap obtained by the above operation, 2 mL of each cell strainer cap It was fractionated into a 5 mL polystyrene round tube (manufactured by BD Japan). After adding 50 μL of CountBright Absolute Counting Beads (manufactured by Invitrogen) as an internal standard bead for counting cells and 50 μL of 7-AAD as a cell viability determination reagent, the number of cells was measured using a cell sorter BD FACSAria (manufactured by BD Japan). gone. Ramos cells, RD cells, and human mesenchymal stem cells contained in each cell solution were discriminated using dot plots that were double-developed using the fluorescence intensity of FITC, PE, APC, etc. as parameters. It was calculated by proportional calculation based on the number of particles of the internal standard beads (this number of cells is defined as the number of outflow cells and the number of washed cells, respectively). The recovery rate of each cell in the effluent cell sap and the washed cell sap was calculated by dividing the number of effluent cells and the number of washed cells by the number of each cell applied to the column.

流出細胞液、洗浄細胞液における各細胞の回収率を算出した結果を表2、図4、図5に示す。流出細胞液中の細胞回収率は、Ramos細胞80.3%、RD細胞9.0%、ヒト間葉系幹細胞2.3%、洗浄細胞液中の細胞回収率は、Ramos細胞13.1%、RD細胞81.5%、ヒト間葉系幹細胞89.9%であった。 Table 2, FIG. 4 and FIG. 5 show the results of calculating the recovery rate of each cell in the effluent cell sap and the washed cell sap. The cell recovery rate in the effluent cell liquid was 80.3% for Ramos cells, 9.0% for RD cells, and 2.3% for human mesenchymal stem cells, and the cell recovery rate in the washed cell liquid was 13.1% for Ramos cells. , RD cells 81.5%, and human mesenchymal stem cells 89.9%.

この結果から、粒子状担体10mLを充填したカラムを用いてRamos細胞、RD細胞、ヒト間葉系幹細胞の混合細胞液を通液処理した場合、通過した細胞である流出細胞液ではRD細胞とヒト間葉系幹細胞の回収率が低く、Ramos細胞の回収率が高いことが分かった。また、粒子状担体間に捕捉された細胞をピペッティングにより回収した細胞液である洗浄細胞液では逆に、RD細胞とヒト間葉系幹細胞の回収率が高く、Ramos細胞の回収率が低いことが分かった。すなわち、粒子状担体を10mLと多量に用いた場合は、平均35μmであるヒト間葉系幹細胞および平均15μmであるRD細胞の両者が粒子状担体間に挟まることで、平均8μmであるRamos細胞のみの回収率が高い流出細胞液が得られ、また、粒子状担体から細胞を洗浄回収することで、RD細胞とヒト間葉系幹細胞の混合物が分離できることが示された。 From this result, when a mixed cell sap of Ramos cells, RD cells, and human mesenchymal stem cells was passed through a column filled with 10 mL of a particulate carrier, the effluent cell sap, which is the cells that passed through, was RD cells and human cells. It was found that the recovery rate of mesenchymal stem cells was low and the recovery rate of Ramos cells was high. Conversely, in the washed cell solution, which is a cell solution obtained by collecting the cells trapped between the particulate carriers by pipetting, the recovery rate of RD cells and human mesenchymal stem cells is high, and the recovery rate of Ramos cells is low. I found out. That is, when a large amount of 10 mL of particulate carriers is used, both human mesenchymal stem cells with an average size of 35 μm and RD cells with an average size of 15 μm are sandwiched between the particulate carriers, resulting in only Ramos cells with an average size of 8 μm. It was also shown that a mixture of RD cells and human mesenchymal stem cells can be separated by washing and recovering the cells from the particulate carrier.

さらに実施例1では粒子状担体1mLあたり最大で1.7×10^5個のヒト間葉系幹細胞および6.7×10^4個のRD細胞が粒子状担体間に捕捉されるという結果が得られたが、この結果をもとにした場合、実施例2でアプライした細胞数である9.1×10^5個のヒト間葉系幹細胞および6.8×10^5個のRD細胞をそれぞれ100%捕捉するのに必要な粒子状担体の必要量はヒト間葉系幹細胞で5.4mL、RD細胞で10.1mLと見積られた。すなわち実施例2では実施例1の粒子状担体使用量の2mLに比べ、10mLと多量の粒子状担体を用いたために、ヒト間葉系幹細胞とRD細胞の両者を十分粒子状担体間に捕捉でき、Ramos細胞のみを分離できたと考えられた。 Furthermore, in Example 1, a maximum of 1.7×10̂5 human mesenchymal stem cells and 6.7×10̂4 RD cells per 1 mL of particulate carriers were captured between the particulate carriers. Based on this result, 9.1 × 10^5 human mesenchymal stem cells and 6.8 × 10^5 RD cells, the number of cells applied in Example 2 It was estimated that the amount of particulate carrier required to capture 100% of each was 5.4 mL for human mesenchymal stem cells and 10.1 mL for RD cells. That is, in Example 2, compared to the amount of the particulate carrier used in Example 1, which was 2 mL, 10 mL of the particulate carrier was used, so that both the human mesenchymal stem cells and the RD cells were sufficiently captured between the particulate carriers. , it was thought that only Ramos cells could be separated.

従って、粒子状担体の使用量を細胞数に応じて適宜調整することで、平均8μmのRamos細胞、平均15μmのRD細胞、平均35μmのヒト間葉系幹細胞の混合物から、実施例1ではヒト間葉系幹細胞のみ、およびRamos細胞とRD細胞の混合物、実施例2ではRamos細胞のみ、およびRD細胞と間葉系幹細胞の混合物をそれぞれ分離可能であることが証明された。またこの両者の結果からは、Ramos細胞、RD細胞、ヒト間葉系幹細胞の混合物を、まずヒト間葉系幹細胞を十分捕捉可能な少量の粒子状担体を充填したカラムに複数通液することでRamos細胞とRD細胞の混合物を粒子状担体間の間隙を通過した細胞液として取得でき、次に粒子状担体の洗浄操作によりヒト間葉系幹細胞が含まれる細胞液を回収でき、なおかつ流出細胞液として回収されたRamos細胞とRD細胞の混合物を、次にRD細胞を十分捕捉することができるより大量の粒子状担体を充填したカラムに通液することで、Ramos細胞を粒子状担体間の間隙を通過した細胞液として取得でき、次いで粒子状担体間に捕捉された細胞を洗浄して回収することで、RD細胞が含まれる細胞液を回収できることから、当然の帰結として、Ramos細胞、RD細胞、ヒト間葉系幹細胞の大きさの異なる3細胞種をそれぞれ分離可能であると考えられた。 Therefore, by appropriately adjusting the amount of the particulate carrier used according to the number of cells, from a mixture of Ramos cells with an average size of 8 μm, RD cells with an average size of 15 μm, and human mesenchymal stem cells with an average size of 35 μm, in Example 1, between humans It was demonstrated that leaf stem cells alone and a mixture of Ramos cells and RD cells, and in Example 2, Ramos cells alone and a mixture of RD cells and mesenchymal stem cells can be separated. In addition, from the results of both, it was found that a mixture of Ramos cells, RD cells, and human mesenchymal stem cells was first passed through a column filled with a small amount of particulate carriers capable of sufficiently capturing human mesenchymal stem cells. A mixture of Ramos cells and RD cells can be obtained as a cell sap that has passed through the gaps between the particulate carriers, and then the cell sap containing human mesenchymal stem cells can be recovered by washing the particulate carriers, and the effluent cell sap can be obtained. Then, the mixture of Ramos cells and RD cells collected as RD cells is passed through a column filled with a larger amount of particulate carriers that can sufficiently trap RD cells, thereby removing Ramos cells from the gaps between the particulate carriers. Then, by washing and collecting the cells trapped between the particulate carriers, it is possible to collect the cell liquid containing the RD cells. , it was thought possible to separate three types of human mesenchymal stem cells with different sizes.

比較例1 市販メンブレンフィルタを用いた、Ramos細胞、RD細胞、ヒト間葉系幹細胞の混合物からの大きさの異なる細胞の分離
実施例1と同様の方法で細胞の調製を行った。実施例1と同様、Ramos細胞は1.0×10^7個、RD細胞は6.8×10^5個、ヒト間葉系幹細胞は9.1×10^5個を含む混合細胞懸濁液500μLを調製し、市販のメッシュサイズ3μm(プルリセレクトライフサイエンス製3μm メンブレンストレイナー)、8μm(プルリセレクトライフサイエンス製8μm メンブレンストレイナー)、20μm(プルリセレクトライフサイエンス製20μm プルリストレイナー)のメンブレンフィルタにそれぞれ通液し、続けてフィルタ上部より2.0mLのMACS緩衝液でフィルタを洗うことで、濾過された細胞液合計2.5mLを回収した(以下、流出細胞液と記載する)を取得した。次に別の回収チューブへ、フィルタを上下逆にしたのち20mMのEDTAを含むMACS緩衝液4.0mLで逆洗浄を行うことで、フィルタに捕捉された細胞液を回収した(以下、洗浄細胞液と記載する)。
Comparative Example 1 Separation of Cells of Different Sizes from a Mixture of Ramos Cells, RD Cells, and Human Mesenchymal Stem Cells Using a Commercially Available Membrane Filter Cells were prepared in the same manner as in Example 1. As in Example 1, a mixed cell suspension containing 1.0 × 10^7 Ramos cells, 6.8 × 10^5 RD cells, and 9.1 × 10^5 human mesenchymal stem cells 500 μL of the liquid was prepared, and a commercially available mesh size of 3 μm (3 μm membrane strainer manufactured by Pullreselect Life Science), 8 μm (8 μm membrane strainer manufactured by Pullreselect Life Science), and 20 μm (20 μm pull restrainer manufactured by Pullreselect Life Science). A total of 2.5 mL of the filtered cell sap was collected by passing the liquid through each filter and then washing the filter with 2.0 mL of MACS buffer solution from the top of the filter (hereinafter referred to as the effluent cell sap). bottom. Next, the filter was placed upside down in another collection tube, and then reverse washed with 4.0 mL of MACS buffer containing 20 mM EDTA to collect the cell fluid trapped in the filter (hereinafter referred to as washed cell fluid ).

流出細胞液、洗浄細胞液における各細胞の回収率を算出した結果を表2、図4、図5に示す。この結果から、3μmフィルタの場合は流出細胞液と洗浄細胞液中の各細胞液の回収率が低いことが分かった。また8μmフィルタにおける流出細胞液、および20μmフィルタにおける流出細胞液と洗浄細胞液はいずれも各細胞の回収率が同程度であり、大きさによる細胞分離ができないことが分かった。 Table 2, FIG. 4 and FIG. 5 show the results of calculating the recovery rate of each cell in the effluent cell sap and the washed cell sap. From this result, it was found that in the case of the 3 μm filter, the recovery rate of each cell sap in the effluent cell sap and the washed cell sap was low. In addition, the effluent cell sap from the 8 μm filter, and the effluent cell sap and the washed cell sap from the 20 μm filter all had the same recovery rate of each cell, indicating that the cells could not be separated by size.

Figure 2023042352000002
Figure 2023042352000002

実施例3 HW-40EC/150~250μm充填カラムを用いた、Ramos細胞、ヒト間葉系幹細胞の混合物からの両細胞の分離
(1)粒子状担体を充填したピペットカラムの作製
10.0mL容ディスポピペット(ファルコン製 357530)と注射針(テルモ製、22G)の間に目開き35μmのナイロンメッシュフィルター(セルストレーナー・キャップ付き5mLポリスチレンラウンドチューブより取り出して使用)を装着したピペットカラムを作製した。
Example 3 Separation of both cells from mixture of Ramos cells and human mesenchymal stem cells using HW-40EC/150-250 μm packed column (1) Preparation of pipette column filled with particulate carrier 10.0 mL disposable A pipette column was prepared by attaching a nylon mesh filter with an opening of 35 μm (taken out from a 5 mL polystyrene round tube with a cell strainer cap and used) between a pipette (357530 manufactured by Falcon) and an injection needle (22G manufactured by Terumo).

次に、作製例1で作製したHW-40EC/150-250μmをMACS緩衝液で置換したのち、12時間以上放置後の粒子状担体の沈降体積が50%となるように調整した粒子状担体の50%懸濁液を調製し、作製したカラムに20.0mLを添加して、粒子状担体をピペットカラムに充填した(粒子状担体充填容量:10.0mL)。 Next, HW-40EC/150-250 μm prepared in Preparation Example 1 was replaced with MACS buffer solution, and after leaving for 12 hours or longer, the particulate carriers were adjusted so that the sedimentation volume of the particulate carriers was 50%. A 50% suspension was prepared, 20.0 mL was added to the prepared column, and the particulate carrier was packed in the pipette column (packed volume of particulate carrier: 10.0 mL).

(2)Ramos細胞、ヒト間葉系幹細胞の培養と細胞懸濁液の調製
Ramos細胞、ヒト間葉系幹細胞の培養と細胞懸濁液の調製は実施例1の(2)および(5)と同様の方法で行った。
(3)粒子状担体充填カラムを用いたRamos細胞およびヒト間葉系幹細胞の分離
前記の方法で調製した細胞懸濁液を混合し、MACS緩衝液で希釈することで、細胞懸濁液量1.0mL、添加細胞数がRamos細胞は2.110×^7個、ヒト間葉系幹細胞は1.8×10^6個となるように調製し、HW-40EC/150-250μmを充填したカラムを垂直に立てた状態で、カラム上部より添加した。続いてカラム上部より1.0mLのMACS緩衝液を添加し、カラム下部の22Gシリンジ針より、流出細胞液計2.0mLを回収した(以下、流出細胞液Fr.1と記載する)。次にカラム上部から、2.0mLのMACS緩衝液を添加し、カラム下部の22Gシリンジ針より、流出細胞液2.0mLを回収した(以下、流出細胞液Fr.2と記載する)。この操作をさらに8回繰り返し、それぞれ2.0mLの流出細胞液である流出細胞液Fr.3~10を同様に取得した。次に、カラムを上部から、目盛りに従い粒子状担体容量2mL刻みで5つに切断し、それぞれから2mLずつの粒子状担体を取り出し、セルストレーナ上で20mMのEDTAを添加したMACS緩衝液8mLで洗浄することで、粒子状担体間に捕捉された細胞を流出させて洗浄細胞液8mLを回収した(以下、カラム上部からカラム下部への順番で、それぞれ2mLの粒子状担体から回収した洗浄細胞液を順にUP.1~5と記載する)。
(2) Culturing of Ramos cells and human mesenchymal stem cells and preparation of cell suspension I did it in a similar way.
(3) Separation of Ramos cells and human mesenchymal stem cells using a particulate carrier-filled column The cell suspension prepared by the above method is mixed and diluted with MACS buffer to obtain a cell suspension volume of 1 Column filled with HW-40EC/150-250 μm, prepared so that the number of added cells was 2.110×^7 for Ramos cells and 1.8×10^6 for human mesenchymal stem cells. was added from the top of the column while standing vertically. Subsequently, 1.0 mL of MACS buffer was added from the top of the column, and a total of 2.0 mL of effluent cell fluid was recovered from the 22G syringe needle at the bottom of the column (hereinafter referred to as effluent cell fluid Fr.1). Next, 2.0 mL of MACS buffer was added from the top of the column, and 2.0 mL of effluent cell fluid was collected from the 22G syringe needle at the bottom of the column (hereinafter referred to as effluent cell fluid Fr.2). This operation was repeated eight more times, and each 2.0 mL of effluent cell effluent Fr. 3-10 were obtained similarly. Next, the column was cut from the upper part into 5 parts with a particulate carrier capacity of 2 mL according to the scale, and 2 mL of the particulate carrier was taken out from each part and washed with 8 mL of MACS buffer containing 20 mM EDTA on a cell strainer. By doing so, the cells trapped between the particulate carriers were discharged, and 8 mL of the washed cell sap was recovered (hereinafter, in order from the top of the column to the bottom of the column, each 2 mL of the washed cell sap collected from each 2 mL of the particulate carrier was collected. listed as UP.1 to UP.5).

(4)流出細胞液と洗浄細胞液中の細胞回収率の測定
上記の操作により得られた、流出細胞液Fr.1~10と洗浄細胞液UP.1~5にMACS緩衝液を加えて希釈したのち、それぞれ2mLをセルストレーナー・キャップ付き5mLポリスチレンラウンドチューブ(日本BD製)に分取した。細胞数計測用内部標準ビーズとしてCountBright Absolute Counting Beads(インビトロゲン製)を50μL、および細胞生死判定試薬として7-AADを50μL添加した後、セルソーターBD FACSAria(日本BD製)にて細胞数の測定を行った。各細胞液中に含まれるRamos細胞、ヒト間葉系幹細胞はFITC、APCなどの蛍光強度をパラメータとして2重展開したドットプロットを用いてそれぞれの細胞を判別し、細胞数は内部標準ビーズの粒子数を元に、比例計算により算出した(この細胞数をそれぞれ流出細胞数、洗浄細胞数とする)。流出細胞液、洗浄細胞液における各細胞の回収率は、流出細胞数、洗浄細胞数をカラムへアプライした各細胞数で除することにより算出した。
(4) Measurement of cell recovery rate in effluent cell sap and washed cell sap The effluent cell sap Fr. 1 to 10 and the washed cell suspension UP. After adding MACS buffer to 1 to 5 to dilute, 2 mL of each was dispensed into a 5 mL polystyrene round tube with a cell strainer cap (manufactured by BD Japan). After adding 50 μL of CountBright Absolute Counting Beads (manufactured by Invitrogen) as an internal standard bead for counting cells and 50 μL of 7-AAD as a cell viability determination reagent, the number of cells was measured using a cell sorter BD FACSAria (manufactured by BD Japan). gone. Ramos cells and human mesenchymal stem cells contained in each cell solution were discriminated using dot plots that were double-developed using the fluorescence intensity of FITC, APC, etc. as parameters. Based on the number, it was calculated by proportional calculation (this cell number is defined as the outflow cell number and the washed cell number, respectively). The recovery rate of each cell in the effluent cell sap and the washed cell sap was calculated by dividing the number of effluent cells and the number of washed cells by the number of each cell applied to the column.

流出細胞液Fr.1~10と洗浄細胞液UP.1~5における各細胞の回収率を算出した結果を表3、図6、図7に示す。また、アプライ細胞と流出細胞液Fr.1~10と洗浄細胞液UP.1~5における細胞比率を算出した結果を表4、図8、図9に示す。流出細胞液中の細胞回収率の合計は、Ramos細胞76.5%、ヒト間葉系幹細胞5.0%、洗浄細胞液中の細胞回収率の合計は、Ramos細胞11.4%、ヒト間葉系幹細胞80.5%であり、流出細胞液ではRamos細胞の回収率が高く、洗浄細胞液ではヒト間葉系幹細胞の回収率が高いことが分かった。 Effluent cell fluid Fr. 1 to 10 and the washed cell suspension UP. Table 3, FIG. 6 and FIG. 7 show the results of calculating the recovery rate of each cell in 1 to 5. In addition, the applied cells and the effluent cell fluid Fr. 1 to 10 and the washed cell suspension UP. Table 4, FIG. 8 and FIG. 9 show the results of calculating the cell ratios in 1 to 5. The total cell recovery rate in the effluent cell solution was 76.5% for Ramos cells and 5.0% for human mesenchymal stem cells, and the total cell recovery rate for the washed cell solution was 11.4% for Ramos cells and between humans. Leaf stem cells were 80.5%, and it was found that the recovery rate of Ramos cells was high in the effluent cell sap, and the recovery rate of human mesenchymal stem cells was high in the washed cell sap.

また、流出細胞中のRamos細胞の流出率はFr.2で62.1%、Fr.3で12.5%と高くなっており、Ramos細胞:ヒト間葉系幹細胞の細胞数比率はアプライ細胞では92.0%:8.0%であったのに対し、Fr.2で99.8%:0.2%、Fr.3で98.2%:1.8%であることから、これらのFr.ではRamos細胞の比率が高い細胞液が回収できていることが明らかとなった。一方、洗浄細胞中のRamos細胞の回収率は1.8~3.2%と低く、ヒト間葉系幹細胞の回収率はUP.1で29.2%、UP.2で23.7%、UP.3で11.6%、UP.4で12.2%、UP.5で3.7%であり、特にカラム上部から細胞を回収した画分であるUP.1、UP.2において特に回収率が高く、カラム下部になるに従い、捕捉されたヒト間葉系幹細胞の細胞数が減少していくことが分かった。また、Ramos細胞:ヒト間葉系幹細胞の細胞数比率はアプライ細胞では92.0%:8.0%であったのに対し、洗浄細胞中のUP.1で46.0%:54.0%、UP.2で53.4%:46.6%、UP.3で63.7%:36.3%、UP.4で75.2%:24.8%、UP.5で84.7%:15.3%とカラム上部に捕捉された細胞ほどヒト間葉系幹細胞の細胞比率が高くなっており、またカラム下部になるに従いRamos細胞の細胞比率は高くなるが、UP.1~5のいずれもアプライ細胞よりも高いヒト間葉系幹細胞の細胞比率で細胞が回収されていることが明らかとなった。 In addition, the efflux rate of Ramos cells among the efflux cells was determined by Fr. 2 at 62.1%, Fr. 3, and the cell number ratio of Ramos cells:human mesenchymal stem cells was 92.0%:8.0% in the applied cells, whereas in Fr. 99.8% at 2:0.2%, Fr. 3 is 98.2%:1.8%, these Fr. It was found that a cell sap with a high proportion of Ramos cells could be recovered. On the other hand, the recovery rate of Ramos cells in washed cells is as low as 1.8-3.2%, and the recovery rate of human mesenchymal stem cells is UP. 1 at 29.2%, UP. 2 at 23.7%, UP. 3 at 11.6%, UP. 4 at 12.2%, UP. 5 is 3.7%, and the UP. 1, UP. In 2, the recovery rate was particularly high, and it was found that the number of captured human mesenchymal stem cells decreased toward the bottom of the column. In addition, the cell number ratio of Ramos cells:human mesenchymal stem cells was 92.0%:8.0% in the applied cells, whereas UP. 1: 46.0%: 54.0%, UP. 2: 53.4%: 46.6%, UP. 3: 63.7%: 36.3%, UP. 75.2% at 4: 24.8%, UP. 5, 84.7%: 15.3%, the cell ratio of human mesenchymal stem cells is higher in the upper part of the column, and the cell ratio of Ramos cells is higher in the lower part of the column. UP. In all of 1 to 5, it was revealed that the cells were recovered at a higher cell ratio of human mesenchymal stem cells than the applied cells.

この結果から、粒子状担体を充填したカラムに平均8μmであるRamos細胞と平均35μmであるヒト間葉系幹細胞の混合細胞液を通液し、粒子状担体の間隙を通過した細胞をFr.として取得することで、Ramos細胞の存在比率が極めて高い細胞液Fr.が得られることが証明された。また、粒子状担体をカラム上部から分割して回収し、それぞれの画分から粒子状担体間に捕捉された細胞を取得することで、よりカラム上部の粒子状担体から回収した細胞液ほど、ヒト間葉系幹細胞の細胞比率が高い細胞液を得られることが証明された。またさらに、実施例2の結果からは実施例3でアプライしたヒト間葉系幹細胞1.8×10^6個を捕捉するのに必要な粒子状担体必要量は10.8mLであると見積もられるが、本実施例で10.0mLの粒子状担体を用いてヒト間葉系幹細胞の粒子状担体間への捕捉・洗浄回収を行ったところ、洗浄回収液中のヒト間葉系幹細胞の回収率合計は80.5%であり、アプライしたヒト間葉系細胞の大部分が捕捉されていることが明らかとなり、この結果を裏付けるものとなった。 Based on this result, a mixed cell solution of Ramos cells having an average size of 8 μm and human mesenchymal stem cells having an average size of 35 μm was passed through a column filled with particulate carriers, and the cells that passed through the gaps between the particulate carriers were treated with Fr. As a result, the cell fluid Fr. is obtained. In addition, by dividing and collecting the particulate carrier from the upper part of the column and obtaining the cells trapped between the particulate carriers from each fraction, the cell sap collected from the particulate carrier at the upper part of the column is more likely to be interhuman. It was proved that a cell sap with a high cell ratio of leaf stem cells can be obtained. Furthermore, from the results of Example 2, it is estimated that the necessary amount of particulate carrier required to capture 1.8×10^6 human mesenchymal stem cells applied in Example 3 is 10.8 mL. However, in this example, when 10.0 mL of the particulate carrier was used to capture and wash the human mesenchymal stem cells between the particulate carriers, the recovery rate of the human mesenchymal stem cells in the washing and recovery solution was The total was 80.5%, indicating that most of the applied human mesenchymal cells were captured, supporting this result.

Figure 2023042352000003
Figure 2023042352000003

Figure 2023042352000004
Figure 2023042352000004

Claims (2)

カラム内に充填した水に不溶性の粒子状担体と2種類以上の細胞を含む細胞混合物を接触させる工程、カラム内に充填した粒子状担体の間隙を通過した細胞を回収する工程、粒子状担体に捕捉された細胞を洗浄操作により回収する工程を含み、水に不溶性の粒子状担体の粒子径が150~250μmであり、2種類以上の細胞を含む細胞混合物に、大きさが10μm未満の細胞が少なくとも1種類以上と、大きさが10μm以上の細胞が少なくとも1種類以上含まれていることを特徴とする細胞の分離方法。 A step of contacting a water-insoluble particulate carrier packed in a column with a cell mixture containing two or more types of cells, a step of recovering cells that have passed through the gaps of the particulate carrier packed in the column, and including a step of recovering the captured cells by a washing operation, wherein the water-insoluble particulate carrier has a particle size of 150 to 250 μm, and the cell mixture containing two or more types of cells contains cells with a size of less than 10 μm. A method for isolating cells, characterized by containing at least one type of cell and at least one type of cell having a size of 10 μm or more. 2種類以上の細胞を含む細胞混合物に、大きさが10μm未満の細胞が少なくとも1種類以上、大きさが10μm以上25μm未満の細胞が少なくとも1種類以上、大きさが25μm以上の細胞が少なくとも1種類以上含まれていることを特徴とする、請求項1に記載の細胞の分離方法。 The cell mixture containing two or more types of cells contains at least one type of cell with a size of less than 10 μm, at least one type of cell with a size of 10 μm or more and less than 25 μm, and at least one type of cell with a size of 25 μm or more. 2. The method for separating cells according to claim 1, comprising the above.
JP2021149604A 2021-09-14 2021-09-14 Method for separating cells having different sizes Pending JP2023042352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021149604A JP2023042352A (en) 2021-09-14 2021-09-14 Method for separating cells having different sizes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021149604A JP2023042352A (en) 2021-09-14 2021-09-14 Method for separating cells having different sizes

Publications (1)

Publication Number Publication Date
JP2023042352A true JP2023042352A (en) 2023-03-27

Family

ID=85717312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021149604A Pending JP2023042352A (en) 2021-09-14 2021-09-14 Method for separating cells having different sizes

Country Status (1)

Country Link
JP (1) JP2023042352A (en)

Similar Documents

Publication Publication Date Title
Bruil et al. The mechanisms of leukocyte removal by filtration
Monguió‐Tortajada et al. Extracellular‐vesicle isolation from different biological fluids by size‐exclusion chromatography
JP6453592B2 (en) Blood sample processing method
JP6474540B2 (en) Cell separation method for separating cells from solution, hydrating composition for cell adsorption, and cell separation system
JPWO2003050532A1 (en) Blood cell separation system
JP2020503887A (en) Deterministic transverse substitution in the preparation of therapeutic cells and compositions
Cunha et al. Filtration methodologies for the clarification and concentration of human mesenchymal stem cells
González‐González et al. Current strategies and challenges for the purification of stem cells
CN112608820B (en) Method and device for separating and enriching high-cell-activity rare cells and application
JP2019000063A (en) Method for exfoliating and recovering undifferentiated cells
Gothard et al. In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration
Mawji et al. Challenges and opportunities in downstream separation processes for mesenchymal stromal cells cultured in microcarrier‐based stirred suspension bioreactors
Higuchi et al. Peripheral blood cell separation through surface‐modified polyurethane membranes
Higuchi et al. Direct ex vivo expansion of hematopoietic stem cells from umbilical cord blood on membranes
JP6143746B2 (en) Nucleated cell capture filter or nucleated cell preparation method using the same
Higuchi et al. Cell separation of hepatocytes and fibroblasts through surface‐modified polyurethane membranes
JP2023042352A (en) Method for separating cells having different sizes
JP2018116040A (en) Centrifuge tube and method of using the same
CN102965339A (en) Kit for treating human bone marrow, umbilical cord blood, and peripheral blood cells, and cell treatment method
JP4706057B2 (en) Adsorbent for cell separation, adsorbent module for cell separation, and cell separation method
WO2021197459A1 (en) Method for obtaining endometrial mesenchymal stem cells from human menstrual blood
WO2013152330A1 (en) Method and device for the homogeneous distribution of suspended cell components
JP2003202334A (en) Sample for cell diagnosis and method and device for preparing the same
Higuchi et al. Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes
Higuchi et al. Cell separation between mesenchymal progenitor cells through porous polymeric membranes