JP2023040930A - Weld joint and method for manufacturing the same - Google Patents

Weld joint and method for manufacturing the same Download PDF

Info

Publication number
JP2023040930A
JP2023040930A JP2021148140A JP2021148140A JP2023040930A JP 2023040930 A JP2023040930 A JP 2023040930A JP 2021148140 A JP2021148140 A JP 2021148140A JP 2021148140 A JP2021148140 A JP 2021148140A JP 2023040930 A JP2023040930 A JP 2023040930A
Authority
JP
Japan
Prior art keywords
steel plate
steel plates
plate
strength
mild steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021148140A
Other languages
Japanese (ja)
Other versions
JP7556834B2 (en
Inventor
俊夫 村上
Toshio Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2021148140A priority Critical patent/JP7556834B2/en
Publication of JP2023040930A publication Critical patent/JP2023040930A/en
Application granted granted Critical
Publication of JP7556834B2 publication Critical patent/JP7556834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

To provide a weld joint having high joint strength by superimposing four steel plates including a soft steel plate and a high strength steel plate and performing spot welding.SOLUTION: A weld joint is obtained by superimposing four steel plates and performing spot welding, wherein the four steel plates include at least one soft steel plate having tensile strength of 270 MPa or more and less than 590 MPa, and at least two high strength steel plates having tensile strength of 980 MPa or more. The first soft steel plate is arranged on the outermost side of the four steel plates, the high strength steel plate is superimposed and arranged on one side of the first soft steel plate, a nugget formed by spot welding satisfies an expression (1) and a plate thickness retention rate defined by an expression (2) is 84% or more. Expression (1): dN/√t1≥3.0. In the expression, dN(mm) is a nugget diameter on a contact surface where the soft steel plate and the high strength steel plate are brought into contact with each other, and t1(mm) is a plate thickness of the soft steel plate brought into contact with the high strength steel plate. Expression (2): plate thickness retention rate (%)=(minimum thickness of weld joint)/(total plate thickness of four steel plates)×100.SELECTED DRAWING: Figure 1

Description

本開示は、溶接継手およびその製造方法に関する。 The present disclosure relates to welded joints and methods of making same.

自動車の車体は、鋼板で作られた部品を接合して構造体とするため、鋼板の接合技術は非常に重要な技術となっている。鋼板の接合方法として、重なりあった鋼板を電極で挟み込み、通電することで発生するジュール熱により鋼板を溶融させて接合するスポット溶接が活用されている。 Since automobile bodies are formed by joining parts made of steel plates to form a structure, the joining technology of steel plates is a very important technology. As a method for joining steel plates, spot welding is used, in which overlapping steel plates are sandwiched between electrodes and the steel plates are melted and joined by Joule heat generated by applying an electric current.

例えば、特許文献1には、3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持・加圧しながら通電して、各鋼板の接触箇所を溶接する重ね抵抗スポット溶接方法が記載されている。特許文献1の方法では、前記鋼板のうち板厚が最も薄いものを、前記1対の溶接電極のうちの一方の電極に接触するように板組みして溶接する工程を有し、少なくとも前記板厚が最も薄い鋼板と当該板厚が最も薄い鋼板に隣接する鋼板との重ね合わせ面に、リン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜が形成されている。 For example, Patent Document 1 discloses a lap resistance spot welding method in which a plate assembly in which three or more steel plates are superimposed is sandwiched and pressed by a pair of welding electrodes, and current is applied to weld the contact points of each steel plate. Are listed. The method of Patent Document 1 includes a step of assembling and welding the thinnest one of the steel plates so that it is in contact with one of the pair of welding electrodes, and at least the plate A phosphate treatment film, a chromate treatment film, an organic film or an inorganic film is formed on the overlapping surfaces of the thinnest steel sheet and the steel sheet adjacent to the thinnest steel sheet.

特許文献2には、複数枚の金属板を重ね合わせた板組みを、抵抗スポット溶接により溶接接合し抵抗スポット溶接継手を製造する製造方法が記載されている。特許文献2の製造方法では、前記板組みを、重ね合わせた2枚以上の厚板の少なくとも一方に薄板を重ね合わせた、板厚比が5以上の板組みとている。また、前記抵抗スポット溶接は、第一段・第二段・第三段の三段階からなる溶接とし、第二段の溶接は、前記第一段の溶接に比べて高加圧力、低電流又は同じ電流、長通電時間又は同じ通電時間の溶接とし、さらに第三段は、第二段よりも高電流の通電を繰り返している。 Patent Literature 2 describes a manufacturing method for manufacturing a resistance spot welded joint by welding and joining a plate assembly in which a plurality of metal plates are superimposed by resistance spot welding. In the manufacturing method of Patent Document 2, the plate assembly is a plate assembly having a plate thickness ratio of 5 or more, in which a thin plate is superimposed on at least one of two or more thick plates that are superimposed. In addition, the resistance spot welding is welding consisting of three stages of the first stage, the second stage, and the third stage, and the second stage welding has a higher applied pressure, a lower current, or a higher pressure than the first stage welding. Welding is performed with the same current, long welding time, or the same welding time, and the third stage repeats the welding with a higher current than the second stage.

特許文献3には、特許文献2と類似の抵抗スポット溶接継手の製造方法であって、第三段の溶接を、第二段よりも高加圧力、高電流の通電を繰り返すこと以外は、特許文献2と同様である製造方法が記載されている。 Patent Document 3 discloses a method for manufacturing a resistance spot welded joint similar to Patent Document 2, except that the third stage welding is repeated with a higher pressure and a higher current than the second stage. A manufacturing method similar to that of document 2 is described.

特許文献4には、2以上の鋼板を重ねて溶接する鋼板の重ね溶接方法及び鋼板の重ね溶接継手が記載されている。特許文献4の重ね溶接方法において、2以上の前記鋼板には、板厚が0.3~1mmの範囲の表面側鋼板と、前記表面側鋼板よりも板厚が大きい1以上の高板厚鋼板とが含まれる。また、前記表面側鋼板及び前記1以上の高板厚鋼板の合計板厚に対する前記表面側鋼板の板厚の比(合計板厚/表面側鋼板の板厚)は5以上とする。そして、前記表面側鋼板を表面側に配置するように前記2以上の鋼板を重ね合わせた状態で、レーザ溶接とスポット溶接を併用して溶接する。 Patent Document 4 describes a steel plate lap welding method and a steel plate lap weld joint in which two or more steel plates are overlapped and welded. In the lap welding method of Patent Document 4, the two or more steel plates include a surface-side steel plate having a plate thickness in the range of 0.3 to 1 mm, and one or more high-thickness steel plates having a plate thickness larger than the surface-side steel plate. and are included. Also, the ratio of the plate thickness of the surface-side steel plate to the total plate thickness of the surface-side steel plate and the one or more high-thickness steel plates (total plate thickness/plate thickness of the surface-side steel plate) is set to 5 or more. Then, in a state in which the two or more steel plates are superimposed so that the surface-side steel plate is arranged on the surface side, laser welding and spot welding are used in combination to weld them.

特許文献5には、2枚以上重ねた金属板の重ね合わせ部に溶接電流を通電して接合するスポット溶接方法が記載されている。特許文献5の方法では、重ね合わせ部に電流を流す一対の電極の外周部の一部を、電極とは別の加圧部材を用いて加圧制御することで、溶接電流を高めてもチリ発生を抑制でき、大きなナゲット径を実現することが可能となる。 Patent Literature 5 describes a spot welding method in which two or more metal plates are joined together by applying a welding current to the overlapped portion. In the method of Patent Document 5, a part of the outer peripheral portion of a pair of electrodes for applying current to the overlapped portion is pressurized using a pressurizing member separate from the electrodes, so that even if the welding current is increased, dust is not removed. The generation can be suppressed, and a large nugget diameter can be realized.

特許文献6には、板厚がtおよびtの2枚の鋼板を重ね合わせてスポット溶接した溶接継手であって、スポット溶接で形成されたナゲットの径が3√{(t+t)/2}以上(ナゲットの径、tおよびtの単位はすべてmm)であり、板厚方向断面における、前記ナゲットの径方向両端部の曲率半径が0.3(t+t)以上であるスポット溶接継手が開示されている。 Patent Document 6 discloses a weld joint in which two steel plates having thicknesses of t1 and t2 are superimposed and spot-welded, and the diameter of the nugget formed by spot welding is 3√{( t1 + t2 )/2} (the nugget diameter, t1 and t2 are all in mm), and the radius of curvature of the nugget at both ends in the thickness direction is 0.3 ( t1 + t2 ) Thus, a spot welded joint is disclosed.

特許第4884958号公報Japanese Patent No. 4884958 特開2010-240739号公報JP 2010-240739 A 特開2010-240740号公報JP 2010-240740 A 特開2010-264503号公報JP 2010-264503 A 特開2014-28392号公報JP 2014-28392 A 特開2014-180686号公報JP 2014-180686 A

一般的に、スポット溶接は、鋼板3枚までの溶接しか許容されない。例えば4枚重ねの鋼板をスポット溶接しようとする場合、2枚目と3枚目の鋼板の重ね合わせ面が優先して溶融する。一方、1枚目と2枚目の鋼板の重ね合わせ面および3枚目と4枚目の鋼板の重ね合わせ面は、電極チップによる冷却の影響を強く受けるため溶融しにくい。そのため、それらの重ね合わせ面の溶接が不十分となり、溶接継手の継手強度が十分ではなかった。 In general, spot welding is only acceptable for welding up to three steel plates. For example, when spot-welding four steel plates, the overlapping surfaces of the second and third steel plates are preferentially melted. On the other hand, the overlapping surfaces of the first and second steel plates and the overlapping surfaces of the third and fourth steel plates are hard to melt because they are strongly affected by cooling by the electrode tip. Therefore, the welding of the overlapped surfaces was insufficient, and the joint strength of the welded joint was insufficient.

特に、車体の構造を考えた場合、車体内部に、衝突に耐えうる強度の高い鋼板が複数配置され、車体の最外面に、車体を覆う軟鋼板(例えば亜鉛めっき鋼板)が配置される場合がある。このような鋼板の板組では、内部の高強度鋼板は、最外面の軟鋼板に比べて電気抵抗が高いため、優先的に発熱・溶融する。一方、電気抵抗が相対的に低い軟鋼板は、発熱・溶融が起こりにくい。
このように、最外面に配置された軟鋼板は、電極チップによる冷却の影響と、電気抵抗が相対的に低いことによる発熱量不足により、隣接する高強度鋼板との間の溶接が不十分になり易い。
In particular, when considering the structure of the car body, there are cases where multiple steel plates with high strength that can withstand collisions are placed inside the car body, and a mild steel plate (for example, galvanized steel plate) is placed on the outermost surface of the car body to cover the car body. be. In such a combination of steel plates, the internal high-strength steel plate has a higher electric resistance than the outermost mild steel plate, so it heats and melts preferentially. On the other hand, a mild steel plate, which has a relatively low electrical resistance, is less likely to generate heat and melt.
In this way, the mild steel plate placed on the outermost surface is not sufficiently welded to the adjacent high-strength steel plate due to the cooling effect of the electrode tip and the lack of heat generation due to the relatively low electrical resistance. easy to become

最外面の軟鋼板の溶接を促進するためには、スポット溶接の溶接電流を高めることが有効であると考えられる。しかしながら、溶接電流が高くなり過ぎると、溶融金属が飛散する「チリ」と呼ばれる現象が起こるようになる。チリが発生すると、スポット溶接部の金属が減少することから継手強度が不十分になる恐れがある。また、チリの発生により溶融金属が飛散することで、溶接部の周囲が汚染され、さらに、溶融金属により溶接装置および作業者にダメージを与える可能性がある。よって、溶接電流は、チリが起こらない範囲までしか高くすることができず、最外面の軟鋼板の溶接を十分に改善できない場合がある。 It is considered effective to increase the welding current for spot welding in order to promote welding of the outermost mild steel plate. However, if the welding current becomes too high, a phenomenon called "splashing" occurs, in which the molten metal is scattered. If flash occurs, the amount of metal in the spot-welded portion is reduced, which may result in insufficient joint strength. In addition, the scattering of molten metal due to the generation of dust contaminates the surroundings of the welded portion, and the molten metal may damage the welding device and workers. Therefore, the welding current can be increased only to the extent that flash does not occur, and the welding of the mild steel plate on the outermost surface may not be sufficiently improved.

特許文献1~6には、軟鋼板と高強度鋼板とを4枚重ね合わせてスポット溶接することについて具体的な開示がなく、また、最外面の軟鋼板の溶接を改善する必要性について考慮されていない。 Patent Documents 1 to 6 do not specifically disclose spot welding of four layers of mild steel plates and high-strength steel plates, and consideration is given to the need to improve the welding of the outermost mild steel plate. not

そこで本発明の一実施形態は、少なくとも一方の最外面に配置された軟鋼板と、その軟鋼板の片側に配置された2枚以上の高強度鋼板と、を含む4枚の鋼板を重ね合わせて、スポット溶接して形成された溶接継手であって、継手強度が高い溶接継手を提供することを目的とする。本発明の別の実施形態は、そのような溶接継手を製造できる製造方法を提供することを目的とする。 Therefore, in one embodiment of the present invention, four steel plates including a mild steel plate arranged on at least one outermost surface and two or more high-strength steel plates arranged on one side of the mild steel plate are superimposed. An object of the present invention is to provide a welded joint formed by spot welding and having a high joint strength. Another embodiment of the invention aims to provide a manufacturing method by which such welded joints can be manufactured.

本発明の態様1は、
4枚の鋼板を重ね合わせてスポット溶接された溶接継手であって、
重ね合わせた前記4枚の鋼板は、引張強度270MPa以上590MPa未満である少なくとも1枚の軟鋼板と、引張強度980MPa以上である少なくとも2枚の高強度鋼板とを含み、
第1の前記軟鋼板は、前記4枚の鋼板の最も外側に配置され、
前記第1の軟鋼板の片側に、前記少なくとも2枚の高強度鋼板が重ね合わせて配置されており、
スポット溶接で形成されたナゲットが、下記の式(1)を満たし、かつ
下記の式(2)で定義される板厚保持率が84%以上である、溶接継手である。

/√t≧3.0 (1)

ここで、d(mm)は、前記軟鋼板と高強度鋼板とが接触する接触面におけるナゲット径であり、
(mm)は、前記高強度鋼板と接触している前記軟鋼板の板厚である。

板厚保持率(%)=(溶接継手の最小厚み)/(4枚の鋼板の板厚合計)×100 (2)
Aspect 1 of the present invention is
A welded joint in which four steel plates are superimposed and spot-welded,
The four superimposed steel plates include at least one mild steel plate with a tensile strength of 270 MPa or more and less than 590 MPa, and at least two high-strength steel plates with a tensile strength of 980 MPa or more,
The first mild steel plate is arranged on the outermost side of the four steel plates,
The at least two high-strength steel plates are superimposed on one side of the first mild steel plate,
A nugget formed by spot welding satisfies the following formula (1) and has a plate thickness retention rate defined by the following formula (2) of 84% or more.

d N /√t 1 ≧3.0 (1)

Here, d N (mm) is the nugget diameter at the contact surface where the mild steel plate and the high-strength steel plate contact,
t 1 (mm) is the plate thickness of the mild steel plate in contact with the high-strength steel plate.

Plate thickness retention rate (%) = (minimum thickness of welded joint) / (total plate thickness of four steel plates) x 100 (2)

本発明の態様2は、
前記軟鋼板の板厚tが、該軟鋼板と接触している前記高強度鋼板の板厚より小さい、態様1に記載の溶接継手である。
Aspect 2 of the present invention is
The welded joint according to aspect 1 , wherein the thickness t1 of the mild steel plate is smaller than the thickness of the high-strength steel plate in contact with the mild steel plate.

本発明の態様3は、
前記4枚の鋼板が、前記第1の軟鋼板と、前記第1の軟鋼板の片側に重ね合わせて配置された3枚の高強度鋼板とから構成されている、態様1または2に記載の溶接継手である。
Aspect 3 of the present invention is
Aspect 1 or 2, wherein the four steel plates are composed of the first mild steel plate and three high-strength steel plates stacked on one side of the first mild steel plate. It is a welded joint.

本発明の態様4は、
4枚の鋼板の重ね合わせ部をスポット溶接することにより溶接継手を製造する方法であって、
引張強度270MPa以上590MPa未満である少なくとも1枚の軟鋼板と、引張強度980MPa以上である少なくとも2枚の高強度鋼板とを含む4枚の鋼板を重ね合わせる工程であって、
第1の前記軟鋼板が前記4枚の鋼板の最も外側に配置され、かつ前記少なくとも2枚の高強度鋼板が前記第1の軟鋼板の片側に重ね合わせて配置されるように、4枚の鋼板を重ね合わせる工程と、
一対の電極と、各電極の電極先端を囲むように設けられた一対の加圧部材とにより、前記鋼板の前記重ね合わせ部を加圧挟持する工程であって、
前記加圧部材は、前記電極先端を中心とする円周方向において、180°以上の範囲を加圧するように構成されており、
前記加圧部材の加圧先端と前記電極先端との離間距離が0.1mm以上、10.0mm以下であり、
前記重ね合わせ部は、前記電極先端によって1.5kN以上の電極荷重で加圧されるとともに、前記加圧先端によって、前記電極荷重の0.1~1.0倍の外周荷重で加圧される、加圧挟持する工程と、
前記一対の電極に5kA以上15kA以下の溶接電流を通電して前記重ね合わせ部を溶接する工程と、を含む溶接継手の製造方法である。
Aspect 4 of the present invention is
A method for manufacturing a welded joint by spot welding overlapping portions of four steel plates,
A step of superposing four steel plates including at least one mild steel plate having a tensile strength of 270 MPa or more and less than 590 MPa and at least two high-strength steel plates having a tensile strength of 980 MPa or more,
The four steel plates are arranged so that the first mild steel plate is arranged on the outermost side of the four steel plates, and the at least two high-strength steel plates are arranged on one side of the first mild steel plate. a step of superimposing steel plates;
A step of pressurizing and holding the overlapped portion of the steel plate by a pair of electrodes and a pair of pressure members provided so as to surround the electrode tip of each electrode,
The pressurizing member is configured to pressurize a range of 180° or more in a circumferential direction centering on the tip of the electrode,
the separation distance between the pressure tip of the pressure member and the tip of the electrode is 0.1 mm or more and 10.0 mm or less;
The overlapping portion is pressed by the electrode tip with an electrode load of 1.5 kN or more, and is pressed by the pressing tip with a peripheral load of 0.1 to 1.0 times the electrode load. , a step of pressurizing and clamping;
and welding the overlapping portion by applying a welding current of 5 kA or more and 15 kA or less to the pair of electrodes.

本発明の態様5は、
前記軟鋼板の板厚tが、該軟鋼板と接触している前記高強度鋼板の板厚より小さい、態様4に記載の溶接継手の製造方法である。
Aspect 5 of the present invention is
The method for manufacturing a welded joint according to aspect 4, wherein the thickness t1 of the mild steel plate is smaller than the thickness of the high-strength steel plate in contact with the mild steel plate.

本発明の一実施形態に係る溶接継手によれば、継手強度が高い溶接継手を実現することができる。また、本発明の別の実施形態に係る溶接継手の製造方法によれば、一実施形態に係る溶接継手を製造することができる。 According to the welded joint according to one embodiment of the present invention, a welded joint having high joint strength can be realized. Moreover, according to the method for manufacturing a welded joint according to another embodiment of the present invention, the welded joint according to one embodiment can be manufactured.

スポット溶接用の電極および加圧部材の概略構成を示す図であり、図1(a)は底面図、図1(b)は図1(a)のA-A線に沿った断面図である。1(a) is a bottom view and FIG. 1(b) is a cross-sectional view taken along line AA in FIG. 1(a); FIG. . スポット溶接用の電極および加圧端子の概略断面図である(図2(a)、図2(b))。Fig. 2(a) and Fig. 2(b) are schematic cross-sectional views of an electrode for spot welding and a pressure terminal; 図3(a)は、4枚の鋼板を溶接した状態を示す概略斜視図であり、図3(b)は、図3(a)のX-X線に沿った断面の概略断面図である。FIG. 3(a) is a schematic perspective view showing a state in which four steel plates are welded, and FIG. 3(b) is a schematic cross-sectional view of a cross section taken along line XX of FIG. 3(a). .

発明者らは、軟鋼板と高強度鋼板とを含む鋼板を4枚重ね合わせた板組を、スポット溶接して溶接継手を形成するとき、最外面に軟鋼板を配置すると、軟鋼板とそれに隣接する高強度鋼板との間で溶接不良が起こること、または所望の継手強度が得られないことに着目し、その原因について研究した。その結果、最外面に配置した軟鋼板まで溶融するように溶融池を厚さ方向に広げようとすると、溶融池が厚さ方向に十分に拡大する前に、横方向に広がって板隙から溶融金属が噴き出して、チリが発生してしまうことが分かった。スポット溶接を行う場合には、チリが発生しない電極電流以下で溶接を行うため、溶融池を厚さ方向に広げることは困難になっていた。発明者らは、チリの発生を抑制しつつ、溶融池を厚さ方向に広げるべく鋭意研究した結果、スポット溶接用の電極周囲の重ね合わせ部に適切な加圧を付与することによって、溶融金属が噴き出すルートを阻害してチリの発生を抑制するとともに、通電による熱を電極間に効率よく集中させることができ、その結果、横方向への溶融の進行とチリ発生とが抑制され、厚さ方向のへの溶融を促進できることを見出して、本発明の実施形態を完成するに至った。 The inventors found that when spot-welding a plate set in which four steel plates including a mild steel plate and a high-strength steel plate are superimposed to form a welded joint, when the mild steel plate is arranged on the outermost surface, the mild steel plate and the adjacent steel plate are formed. We focused on the fact that poor welding occurs between steel and the high-strength steel plate, or that the desired joint strength cannot be obtained, and investigated the cause. As a result, when trying to expand the molten pool in the thickness direction so as to melt the mild steel plate placed on the outermost surface, the molten pool spreads in the lateral direction and melts from the gap before the molten pool expands sufficiently in the thickness direction. It turned out that the metal spouted out and dust was generated. When spot welding is performed, welding is performed at an electrode current that does not generate dust, so it has been difficult to expand the molten pool in the thickness direction. The inventors conducted extensive research to expand the molten pool in the thickness direction while suppressing the generation of dust, and found that by applying an appropriate pressure to the overlapped portion around the electrode for spot welding, the molten metal It is possible to suppress the generation of dust by obstructing the route from which the is ejected, and to efficiently concentrate the heat generated by the energization between the electrodes. The present inventors have completed the embodiments of the present invention by discovering that it is possible to promote melting in all directions.

本発明の実施形態に係る溶接継手の製造方法は、4枚の鋼板の重ね合わせ部をスポット溶接するものであり、
引張強度270MPa以上590MPa未満である少なくとも1枚の軟鋼板と、引張強度980MPa以上である少なくとも2枚の高強度鋼板とを含む4枚の鋼板を重ね合わせる工程であって、
第1の前記軟鋼板が前記4枚の鋼板の最も外側に配置され、かつ前記少なくとも2枚の高強度鋼板が前記第1の軟鋼板の片側に重ね合わせて配置されるように、4枚の鋼板を重ね合わせる工程と、
一対の電極と、各電極の電極先端を囲むように設けられた一対の加圧部材とにより、前記鋼板の前記重ね合わせ部を加圧挟持する工程であって、
前記加圧部材は、前記電極先端を中心とする円周方向において、180°以上の範囲を加圧するように構成されており、
前記加圧部材の加圧先端と前記電極先端との離間距離が0.1mm以上、10.0mm以下であり、
前記重ね合わせ部は、前記電極先端によって1.5kN以上の電極荷重で加圧されるとともに、前記加圧先端によって、前記電極荷重の0.1~1.0倍の外周荷重で加圧される、加圧挟持する工程と、
前記一対の電極に5kA以上15kA以下の溶接電流を通電して前記重ね合わせ部を溶接する工程と、を含む。
A method for manufacturing a welded joint according to an embodiment of the present invention spot-welds overlapping portions of four steel plates,
A step of superposing four steel plates including at least one mild steel plate having a tensile strength of 270 MPa or more and less than 590 MPa and at least two high-strength steel plates having a tensile strength of 980 MPa or more,
The four steel plates are arranged so that the first mild steel plate is arranged on the outermost side of the four steel plates, and the at least two high-strength steel plates are arranged on one side of the first mild steel plate. a step of superimposing steel plates;
A step of pressurizing and holding the overlapped portion of the steel plate by a pair of electrodes and a pair of pressure members provided so as to surround the electrode tip of each electrode,
The pressurizing member is configured to pressurize a range of 180° or more in a circumferential direction centering on the tip of the electrode,
the separation distance between the pressure tip of the pressure member and the tip of the electrode is 0.1 mm or more and 10.0 mm or less;
The overlapping portion is pressed by the electrode tip with an electrode load of 1.5 kN or more, and is pressed by the pressing tip with a peripheral load of 0.1 to 1.0 times the electrode load. , a step of pressurizing and clamping;
and welding the overlapping portion by applying a welding current of 5 kA or more and 15 kA or less to the pair of electrodes.

溶接継手の製造方法は、加圧部材による加圧範囲を、円周方向で180°以上(全周の50%以上)とし、電極荷重を1.5kN以上、外周荷重を電極荷重の0.1~1.0倍とすることにより、従来のスポット溶接方法では十分な溶接ができなかった、最外面に軟鋼板を含む4枚の鋼板のスポット溶接を可能とした。
この製造方法で得られる溶接継手は、以下のような特徴を備えている。
In the method for manufacturing a welded joint, the pressure range of the pressure member is 180° or more in the circumferential direction (50% or more of the entire circumference), the electrode load is 1.5 kN or more, and the outer peripheral load is 0.1 of the electrode load. By setting it to 1.0 times, spot welding of four steel plates including a mild steel plate on the outermost surface, which could not be sufficiently welded by the conventional spot welding method, became possible.
The welded joint obtained by this manufacturing method has the following characteristics.

本発明の実施形態に係る溶接継手は、引張強度(TS)が270MPa以上590MPa未満の軟鋼板と、引張強度980MPa以上の高強度鋼板とを溶接して形成している。ここで、軟鋼板のTSの下限を270MPaとしたのは、一般的な軟鋼板のTSが270MPa以上に規定されているためであり、上限を590MPa未満としたのは、高強度鋼板を含めない趣旨である。また、高強度鋼板のTSの下限を980MPaとしたのは、高強度鋼板のなかでもスポット溶接しにくい高強度レベルの範囲のものを対象とする趣旨であり、その上限は、特に限定されるものではないが、現状では1900MPa程度である。 A welded joint according to an embodiment of the present invention is formed by welding a mild steel plate with a tensile strength (TS) of 270 MPa or more and less than 590 MPa and a high strength steel plate with a tensile strength of 980 MPa or more. Here, the reason why the lower limit of the TS of the mild steel plate is set to 270 MPa is that the TS of the general mild steel plate is specified to be 270 MPa or more, and the upper limit is set to less than 590 MPa because the high-strength steel plate is not included. It is the purpose. In addition, the reason why the lower limit of the TS of the high-strength steel sheet is set to 980 MPa is to target high-strength steel sheets with a high strength level that is difficult to spot weld among high-strength steel sheets, and the upper limit is particularly limited. Although it is not, it is about 1900 MPa at present.

本発明の実施形態に係る溶接継手は、4枚の鋼板を重ね合わせてスポット溶接することで形成される。4枚の鋼板を重ね合わせるときは、1枚の軟鋼板(これを「第1の軟鋼板」と称する)を4枚の鋼板の最も外側に配置し、そして第1の軟鋼板の片側に、少なくとも2枚の高強度鋼板を重ね合わせて配置する。なお、第1の軟鋼板と、少なくとも2枚の高強度鋼板との間に、別の鋼板を1枚配置してもよい。 A welded joint according to an embodiment of the present invention is formed by superimposing four steel plates and spot-welding them. When four steel plates are superimposed, one mild steel plate (referred to as the “first mild steel plate”) is placed on the outermost side of the four steel plates, and on one side of the first mild steel plate, At least two high-strength steel plates are placed one on top of the other. In addition, another steel plate may be arranged between the first mild steel plate and at least two high-strength steel plates.

4枚の鋼板は、少なくとも1枚の軟鋼板と、少なくとも2枚の高強度鋼板とを含む4枚の鋼板からなる。具体的な鋼板の組み合わせとしては、4枚の鋼板が、1枚の軟鋼板と3枚の高強度鋼板からなる場合(パターン1)と、2枚の軟鋼板と2枚の高強度鋼板からなる場合(パターン2)とがあり得る。
4枚の鋼板を重ね合わせる順番(板組)の具体例を、パターン1、パターン2に分けて詳しく説明する。
The four steel plates consist of four steel plates including at least one mild steel plate and at least two high-strength steel plates. As a specific combination of steel plates, four steel plates consist of one mild steel plate and three high-strength steel plates (pattern 1), and two mild steel plates and two high-strength steel plates. There may be a case (pattern 2).
A specific example of the order of stacking four steel plates (plate set) will be described in detail for pattern 1 and pattern 2. FIG.

(パターン1:4枚の鋼板が、1枚の軟鋼板と3枚の高強度鋼板とからなる場合)
パターン1では、1種類の板組(板組(1-1))が想定される。
[板組(1-1)]
1枚の軟鋼板(第1の軟鋼板)を4枚の鋼板の最も外側に配置し、第1の軟鋼板の片側に、3枚の高強度鋼板を重ね合わせて配置する。このように重ね合わせると、4枚の鋼板は、(i)第1の軟鋼板-(ii)高強度鋼板-(iii)高強度鋼板-(iv)高強度鋼板の順に重ねた状態となる。
(Pattern 1: when four steel plates are composed of one mild steel plate and three high-strength steel plates)
In pattern 1, one type of board group (board group (1-1)) is assumed.
[Itagumi (1-1)]
One mild steel plate (first mild steel plate) is arranged on the outermost side of the four steel plates, and three high-strength steel plates are superimposed on one side of the first mild steel plate. By stacking the four steel plates in this manner, the four steel plates are stacked in the order of (i) first mild steel plate - (ii) high strength steel plate - (iii) high strength steel plate - (iv) high strength steel plate.

(パターン2:4枚の鋼板が、2枚の軟鋼板と2枚の高強度鋼板とからなる場合)
パターン2では2種類の板組(板組(2-1)、板組(2-2))が想定される。
[板組(2-1)]
2枚の軟鋼板の間に2枚の高強度鋼板を挟む。言い換えると、一方の軟鋼板(第1の軟鋼板)を4枚の鋼板の最も外側に配置し、他方の軟鋼板(これを「第2の軟鋼板」と称する)を、4枚の鋼板において第1の軟鋼板と反対側の最も外側に配置する。そして、第1の軟鋼板と第2の軟鋼板との間に、2枚の高強度鋼板を重ねて配置する。このように重ね合わせると、4枚の鋼板は、(i)第1の軟鋼板-(ii)高強度鋼板-(iii)高強度鋼板-(iv)第2の軟鋼板の順に重ねた状態となる。
(Pattern 2: when the four steel plates consist of two mild steel plates and two high-strength steel plates)
In pattern 2, two types of board groupings (board grouping (2-1) and board grouping (2-2)) are assumed.
[Itagumi (2-1)]
Two high-strength steel plates are sandwiched between two mild steel plates. In other words, one mild steel plate (first mild steel plate) is arranged on the outermost side of the four steel plates, and the other mild steel plate (this is called a “second mild steel plate”) is placed in the four steel plates. It is arranged on the outermost side opposite to the first mild steel plate. Then, between the first mild steel plate and the second mild steel plate, two high-strength steel plates are stacked and arranged. When the four steel plates are stacked in this way, the four steel plates are stacked in the order of (i) the first mild steel plate - (ii) the high strength steel plate - (iii) the high strength steel plate - (iv) the second mild steel plate. Become.

[板組(2-2)]
2枚の軟鋼板を重ね合わせ、一方の軟鋼板の片側に2枚の高強度鋼板を重ね合わせる。言い換えると、第1の軟鋼板を4枚の鋼板の最も外側に配置し、第1の軟鋼板の片側に、2枚の高強度鋼板を重ね合わせて配置し、そして、第1の軟鋼板と2枚の高強度鋼板との間に、もう1枚の軟鋼板(第2の軟鋼板)を配置する。このように重ね合わせると、4枚の鋼板は、(i)第1の軟鋼板-(ii)第2の軟鋼板-(iii)高強度鋼板-(iv)高強度鋼板の順に重ねた状態となる。なお、第1の軟鋼板と高強度鋼板との間に第2の軟鋼板が存在するので、第1の軟鋼板と高強度鋼板とは直接接触しない。
[Itagumi (2-2)]
Two mild steel plates are superimposed, and two high-strength steel plates are superimposed on one side of one of the mild steel plates. In other words, the first mild steel plate is arranged on the outermost side of the four steel plates, the two high-strength steel plates are superimposed on one side of the first mild steel plate, and the first mild steel plate and Another mild steel plate (second mild steel plate) is arranged between the two high-strength steel plates. When superimposed in this way, the four steel plates are stacked in the order of (i) the first mild steel plate - (ii) the second mild steel plate - (iii) the high strength steel plate - (iv) the high strength steel plate. Become. Since the second mild steel plate exists between the first mild steel plate and the high-strength steel plate, the first mild steel plate and the high-strength steel plate do not directly contact each other.

本発明の実施形態に係る溶接継手は、軟鋼板と当該軟鋼板に隣接する高強度鋼板との接触面におけるナゲット径(mm)が、式(1)を満たしている。

/√t≧3.0 (1)

ここで、d(mm)は、前記軟鋼板と高強度鋼板とが接触する接触面におけるナゲット径であり、
(mm)は、前記高強度鋼板と接触している前記軟鋼板の板厚である。
In the welded joint according to the embodiment of the present invention, the nugget diameter (mm) at the contact surface between the mild steel plate and the high-strength steel plate adjacent to the mild steel plate satisfies the formula (1).

d N /√t 1 ≧3.0 (1)

Here, d N (mm) is the nugget diameter at the contact surface where the mild steel plate and the high-strength steel plate contact,
t 1 (mm) is the plate thickness of the mild steel plate in contact with the high-strength steel plate.

一般的に、溶接で形成した継手は、d/√tが大きいほど良好な(例えば、継手強度が高い)溶接継手とされている。本実施の形態では、式(1)のようにd/√tが3以上と規定することで、十字引張強度が充分に高い溶接継手を得ることができる。 In general, a joint formed by welding is considered to be a better welded joint (for example, a higher joint strength) as d N /√t 1 is larger. In the present embodiment, by specifying d N /√t 1 to be 3 or more as in Equation (1), a welded joint having sufficiently high cross tensile strength can be obtained.

溶接部の溶接強度(継手強度)にとって一番重要なナゲット径(溶融部に生じる溶融凝固した部分(ナゲット)の直径)については、一般的には、板厚の平方根の数倍以上あることが必要とされている。本発明の実施形態では、溶融しにくい軟鋼板の表面に形成されるナゲット径を管理することが特に重要であると考えて、軟鋼板とその軟鋼板に直接接触している高強度鋼板との接触面(重ね合わせ面)におけるナゲット径d(mm)が3√t以上(t(mm)は軟鋼板の板厚)であること、すなわち式(1)を満たすことを規定した。ナゲット径は、4√t以上とすることが好ましく、5√t以上とすることがより好ましく、6√t以上とすることがさらに好ましい。 The nugget diameter (the diameter of the melted and solidified portion (nugget) generated in the molten part), which is the most important factor for the weld strength (joint strength) of the weld, is generally several times the square root of the plate thickness. is necessary. In the embodiment of the present invention, considering that it is particularly important to control the nugget diameter formed on the surface of a mild steel plate that is difficult to melt, It was specified that the nugget diameter d N (mm) at the contact surface (overlapping surface) is 3√t 1 or more (t 1 (mm) is the thickness of the mild steel plate), that is, the expression (1) is satisfied. The nugget diameter is preferably 4√t 1 or more, more preferably 5√t 1 or more, and even more preferably 6√t 1 or more.

「ナゲット径」は、「JIS Z3139:2009 スポット, プロジェクション及びシーム溶接部の断面試験方法」に記載の2枚または3枚重ね溶接部におけるナゲット径の測定方法に準じている。本発明の実施形態におけるナゲット径の測定方法について、図3(a)、(b)を参照しながら詳しく説明する。
図3(a)は、1枚の軟鋼板と3枚の高強度鋼板とを含む板組の例(上記の[板組(1-1)]に相当)を示す概略斜視図である。この図では、上から、1枚の軟鋼板P1と3枚の高強度鋼板P2、P3、P4とをこの順に重ねた4枚の鋼板を、溶接継手WJによって溶接した状態を示している。図3(b)は、図3(a)において、溶接継手WJの中央付近を通る面(X-X線に沿った断面)における概略断面図である。図3(b)に示すように、軟鋼板P1と高強度鋼板P2との接触面(または界面)におけるナゲットNの直径(ナゲットNの幅)を測定し、それをナゲット径dと定義する。
The "nugget diameter" conforms to the method for measuring the nugget diameter in two-layer or three-layer welds described in "JIS Z3139: 2009 Spot, projection and seam weld section test methods". A method for measuring the nugget diameter in the embodiment of the present invention will be described in detail with reference to FIGS. 3(a) and 3(b).
FIG. 3(a) is a schematic perspective view showing an example of a plate set including one mild steel plate and three high-strength steel plates (corresponding to [plate set (1-1)] above). In this figure, four steel plates, one mild steel plate P1 and three high-strength steel plates P2, P3, and P4 stacked in this order from the top, are welded together by a weld joint WJ. FIG. 3(b) is a schematic cross-sectional view of a plane (a cross section along line XX) passing through the vicinity of the center of the welded joint WJ in FIG. 3(a). As shown in FIG. 3(b), the diameter of the nugget N (width of the nugget N) at the contact surface (or interface) between the mild steel plate P1 and the high-strength steel plate P2 is measured and defined as the nugget diameter dN. .

さらに、別の板組の場合の「ナゲット径d」について説明する。
板組(2-1)の場合、軟鋼板と高強度鋼板とが接する接触面が2つ存在する(第1の軟鋼板と高強度鋼板との接触面と、第2の軟鋼板と高強度鋼板との接触面)。この場合、ナゲット径dは、2つの接触面の両方で測定される。本発明の実施形態では、いずれの接触面におけるナゲット径dも式(1)を満たすことにより、十字引張強度が充分に高い溶接継手を得ることができる。
Furthermore, the “nugget diameter d N ” for another set of plates will be described.
In the case of the plate set (2-1), there are two contact surfaces where the mild steel plate and the high-strength steel plate contact (a contact surface between the first mild steel plate and the high-strength steel plate, and a contact surface between the second mild steel plate and the high-strength steel plate. contact surface with steel plate). In this case the nugget diameter dN is measured on both two contact surfaces. In the embodiment of the present invention, a welded joint with sufficiently high cross tensile strength can be obtained by satisfying the formula (1) for the nugget diameter d N at any contact surface.

板組(2-2)の場合、軟鋼板と高強度鋼板とが接する接触面が1つ存在する(第2の軟鋼板と高強度鋼板との接触面)。ナゲット径dは、第2の軟鋼板と高強度鋼板との接触面で測定される。 In the case of the plate set (2-2), there is one contact surface where the mild steel plate and the high strength steel plate are in contact (contact surface between the second mild steel plate and the high strength steel plate). The nugget diameter dN is measured at the contact surface between the second mild steel plate and the high strength steel plate.

本発明の実施形態に係る溶接継手は、式(2)で定義される板厚保持率が84%以上である。

板厚保持率(%)=(前記溶接継手の最小厚み)/(前記4枚の鋼板の板厚合計)×100 (2)
The welded joint according to the embodiment of the present invention has a plate thickness retention rate of 84% or more defined by the formula (2).

Plate thickness retention rate (%) = (minimum thickness of the welded joint) / (total plate thickness of the four steel plates) x 100 (2)

式(2)における「溶接継手の最小厚み」とは、溶接継手WJを通る断面において、溶接継手WJの最も薄い部分であり、図3(b)において符号tWJで示されている厚みのことを指す。 The "minimum thickness of the welded joint" in formula (2) is the thinnest portion of the welded joint WJ in a cross section passing through the welded joint WJ, and is the thickness indicated by symbol t WJ in FIG. 3(b). point to

式(2)における「4枚の鋼板の板厚合計」とは、図3(b)に示す板組(1-1)の例では、軟鋼板P1の厚みtと、高強度鋼板P2、P3、P4のそれぞれの厚みt、t、tとの合計(=t+t+t+t)である。
板組(2-1)および板組(2-2)の場合も、「4枚の鋼板の板厚合計」とは、4枚の鋼板の各々の厚みの合計のことを指す。
The “total thickness of the four steel plates” in the formula (2) means, in the example of the plate set ( 1-1 ) shown in FIG. It is the total (=t 1 +t 2 +t 3 +t 4 ) of the respective thicknesses t 2 , t 3 and t 4 of P3 and P4.
In the case of the plate set (2-1) and the plate set (2-2) as well, the “total thickness of the four steel plates” refers to the total thickness of each of the four steel plates.

上述したように、一般的なスポット溶接では、重ね合わせる鋼板は3枚までである。そのため、4枚の鋼板を重ね合わせて溶接継手を作製するには、溶接電流をできるだけ高める必要がある。高すぎる溶接電流を通電すると、溶接時に鋼板の強度が過度に低下し、電極の加圧により溶接部に大きな塑性変形が起こる。場合によっては、溶接部からチリが発生して、電極直下の溶接部において著しい板厚減少が起こる。これらにより、継手強度に寄与する溶接部のナゲットの体積が減少するため、継手強度の低下および継手強度のばらつき(不安定化)の要因となると想定される。 As described above, in general spot welding, up to three steel plates are overlapped. Therefore, the welding current must be increased as much as possible to fabricate a welded joint by stacking four steel plates. If an excessively high welding current is applied, the strength of the steel sheet is excessively reduced during welding, and large plastic deformation occurs in the weld zone due to the pressure applied by the electrode. In some cases, flash is generated from the welded portion, and the plate thickness is significantly reduced at the welded portion immediately below the electrode. As a result, the volume of the weld nugget that contributes to the joint strength is reduced, which is presumed to be a factor in joint strength reduction and variations (instability) in the joint strength.

本発明の実施形態では、溶接前の総板厚(=溶接前の鋼板の板厚合計)に対する溶接部の板厚(=スポット溶接継手の最小厚み)の割合を「板厚保持率」として式(2)に定義し、板厚保持率が84%以上あれば健全な溶接継手であると判断する。
板厚保持率は、85%以上あることが好ましく、87%以上あることがさらに好ましい。
In the embodiment of the present invention, the ratio of the plate thickness of the welded portion (= the minimum thickness of the spot welded joint) to the total plate thickness before welding (= total plate thickness of the steel plate before welding) is expressed as a “plate thickness retention ratio”. Defined in (2), if the plate thickness retention rate is 84% or more, it is determined that the welded joint is sound.
The plate thickness retention rate is preferably 85% or more, more preferably 87% or more.

重ね合わせる4枚の鋼板の各々の厚さは任意であるが、例えば自動車の車体の最外面に設けられる第1の軟鋼板の板厚tは、車体内部の高強度鋼板より小さくされることがある。同じ鋼種の鋼板の場合でも、薄板-厚板-厚板-厚板のように重ね合わせてスポット溶接した場合、厚板-厚板間の重ね合わせ面が優先して溶融し、薄板-厚板間の重ね合わせ面での溶融は起こりにくい。これは、厚板に比べて、薄板の方が電極チップによる冷却の影響をより強く受けるためである。そのため、軟鋼板が薄く、高強度鋼板が厚い場合、板組(1-1)の例では、「(i)薄板の第1の軟鋼板-(ii)厚板の高強度鋼板-(iii)厚板の高強度鋼板-(iv)厚板の高強度鋼板」の順に重ねた状態になる。このような重ね合わせ鋼板を従来のスポット溶接で溶接すると、(i)薄板の第1の軟鋼板と(ii)厚板の高強度鋼板との接触面での溶接が不十分になり得る。 The thickness of each of the four steel plates to be superimposed is arbitrary, but for example, the thickness t1 of the first mild steel plate provided on the outermost surface of the vehicle body of an automobile should be smaller than the high-strength steel plate inside the vehicle body. There is Even in the case of steel plates of the same grade, if spot welding is performed by stacking them in the order of thin plate-thick plate-thick plate-thick plate, the overlapping surface between the thick plate and the thick plate melts preferentially, causing the thin plate-thick plate to melt. Melting is less likely to occur at the overlapping surfaces between them. This is because the thin plate is more strongly affected by the cooling by the electrode tip than the thick plate. Therefore, when the mild steel plate is thin and the high-strength steel plate is thick, in the example of the set of plates (1-1), “(i) first mild steel plate of thin plate-(ii) high-strength steel plate of thick plate-(iii) Thick high-strength steel plate - (iv) thick high-strength steel plate” are stacked in this order. When such laminated steel plates are welded by conventional spot welding, the welding at the contact surfaces between (i) the thin first mild steel plate and (ii) the thick high strength steel plate may be insufficient.

しかしながら、本発明の実施形態に係る溶接継手は、上記の式(1)を満たし、かつ式(2)で定義される板厚保持率が84%以上であることにより、十分な継手強度を達成することができるため、最外面の第1の軟鋼板の板厚tが薄い場合でも、十分な継手強度を有する溶接継手とすることができる。よって、本発明の実施形態にかかる溶接継手は、薄い軟鋼板を含む重ね合わせ鋼板の溶接にも好適である。 However, the welded joint according to the embodiment of the present invention satisfies the above formula (1) and has a plate thickness retention rate defined by the formula (2) of 84% or more, thereby achieving sufficient joint strength. Therefore, even when the plate thickness t1 of the first mild steel plate on the outermost surface is thin, a welded joint having sufficient joint strength can be obtained. Therefore, the welded joint according to the embodiment of the present invention is also suitable for welding laminated steel plates including thin mild steel plates.

式(2)の規定について、板組(1-1)の場合の溶接継手における作用効果を説明した。板組(2-1)および板組(2-2)の場合の溶接継手においても、最外面に設けられる第1の軟鋼板を備えることから、式(2)を満たすことにより同様の作用効果を奏し得る。 Regarding the definition of formula (2), the effect of the welded joint in the case of plate set (1-1) has been explained. Since the welded joints of the plate assembly (2-1) and the plate assembly (2-2) also have the first mild steel plate provided on the outermost surface, the same effect can be obtained by satisfying expression (2). can play

次に、溶接継手の好ましい製造方法について説明する。
4枚の鋼板の重ね合わせ部をスポット溶接することにより溶接継手を製造する方法は、
引張強度270MPa以上590MPa未満である少なくとも1枚の軟鋼板と、引張強度980MPa以上である少なくとも2枚の高強度鋼板とを含む4枚の鋼板を重ね合わせる工程と、
一対の電極と、各電極の電極先端を囲むように設けられた一対の加圧部材とにより、前記鋼板の前記重ね合わせ部を加圧挟持する工程と、
前記一対の電極に5kA以上15kA以下の溶接電流を通電して前記重ね合わせ部を溶接する工程と、を含む。
A preferred method of manufacturing the welded joint will now be described.
A method of manufacturing a welded joint by spot welding overlapping portions of four steel plates,
A step of superimposing four steel plates including at least one mild steel plate having a tensile strength of 270 MPa or more and less than 590 MPa and at least two high-strength steel plates having a tensile strength of 980 MPa or more;
a step of pressing and holding the overlapped portion of the steel plate by a pair of electrodes and a pair of pressure members provided so as to surround the electrode tip of each electrode;
and welding the overlapping portion by applying a welding current of 5 kA or more and 15 kA or less to the pair of electrodes.

(1.重ね合わせる工程)
引張強度270MPa以上590MPa未満である少なくとも1枚の軟鋼板と、引張強度980MPa以上である少なくとも2枚の高強度鋼板とを含む4枚の鋼板を準備する。1枚の軟鋼板(第1の軟鋼板)が4枚の鋼板の最も外側に配置され、かつ少なくとも2枚の高強度鋼板が第1の軟鋼板の片側に重ね合わせて配置されるように、4枚の鋼板を重ね合わせる。これにより少なくとも一方の最外面に軟鋼板を配置した4枚の鋼板の重ね合わせ部を構成することができる。
重ね合わせる4枚の鋼板の各々の厚さは任意であるが、最外面に設けられる第1の軟鋼板の板厚tは、第1の軟鋼板と接触している高強度鋼板より小さくされてもよい。
(1. Step of superimposing)
Four steel plates including at least one mild steel plate with a tensile strength of 270 MPa or more and less than 590 MPa and at least two high-strength steel plates with a tensile strength of 980 MPa or more are prepared. One mild steel plate (first mild steel plate) is arranged on the outermost side of the four steel plates, and at least two high-strength steel plates are superimposed on one side of the first mild steel plate, Overlap four steel plates. As a result, a superimposed portion of four steel plates having a mild steel plate disposed on at least one of the outermost surfaces can be formed.
The thickness of each of the four overlapping steel plates is arbitrary, but the thickness t1 of the first mild steel plate provided on the outermost surface is made smaller than the high-strength steel plate in contact with the first mild steel plate. may

(2.重ね合わせ部を加圧挟持する工程)
一対の電極と、各電極の電極先端を囲むように設けられた一対の加圧部材とにより、前記鋼板の前記重ね合わせ部を加圧挟持する。
重ね合わせた4枚の鋼板は、上下方向から電極で加圧しつつ通電するにより、板間でのジュール熱で鋼板同士の界面を溶融させる。その準備として、通電前に、鋼板を溶接装置内に加圧固定する。鋼板は、電極と加圧部材とで加圧挟持される。加圧部材は、電極周囲を加圧することにより、溶融池が横方向に成長することを抑制して、板厚方向への溶融池の成長を促すことができる。
(2. Step of pressure-sandwiching the overlapped portion)
A pair of electrodes and a pair of pressing members provided so as to surround the electrode tip of each electrode press and hold the overlapped portion of the steel plate.
The four superimposed steel sheets are energized while being pressed by electrodes from above and below, so that the interfaces between the steel sheets are melted by Joule heat between the sheets. As a preparation, the steel plate is fixed under pressure in the welding device before the current is applied. The steel plate is pressurized and sandwiched between the electrodes and the pressurizing member. By applying pressure around the electrode, the pressure member can suppress the lateral growth of the molten pool and promote the growth of the molten pool in the plate thickness direction.

電極および加圧部材について、図1および図2を参照しながら詳細に説明する。
図1は、スポット溶接用の電極1および加圧部材2の概略構成を示す図であり、(a)は底面図、(b)は図1(a)のA-A線に沿った断面図である。
なお、図1は、重ね合わせた鋼板の上側に配置される電極1および加圧部材2のみを示しており、溶接する際には、同じような構成で上下が逆になった電極1および加圧部材2を、重ね合わせた鋼板の下側にも配置する。後述するように、鋼板の重ね合わせ部は、上下の電極の間および上下の加圧部材の間で、それぞれ加圧される。
The electrodes and pressure member will be described in detail with reference to FIGS. 1 and 2. FIG.
FIG. 1 is a diagram showing a schematic configuration of an electrode 1 and a pressure member 2 for spot welding, where (a) is a bottom view and (b) is a cross-sectional view taken along line AA in FIG. 1(a). is.
Note that FIG. 1 shows only the electrode 1 and the pressure member 2 arranged on the upper side of the superimposed steel plates. A pressure member 2 is also arranged on the underside of the superimposed steel plates. As will be described later, the overlapping portions of the steel plates are pressurized between the upper and lower electrodes and between the upper and lower pressure members.

図1に示す電極1は円柱状の先端平滑型電極であり、電極先端1xの直径はDである。電極1は、図1(b)に示す上側の電極と、図示していない下側の電極とから、上下一対で構成される。一対の電極で、4枚重ねた鋼板の重ね合わせ部を両面から挟持して、該重ね合わせ部に電流を流す。電極1の形状としては、図1(b)に示すような先端平滑型の他に、DR型などのスポット溶接で一般的に用いられる電極形状を用いることができる。 The electrode 1 shown in FIG. 1 is a cylindrical electrode with a smooth tip, and the diameter of the tip 1x of the electrode is D. As shown in FIG. The electrode 1 is composed of a pair of upper and lower electrodes, which are composed of an upper electrode shown in FIG. 1(b) and a lower electrode (not shown). A pair of electrodes sandwiches the overlapped portion of the four steel plates from both sides, and an electric current is passed through the overlapped portion. As for the shape of the electrode 1, in addition to the smooth tip type as shown in FIG.

加圧部材2は、電極1の電極先端1xを囲むように設けられた部材である。加圧部材2の加圧先端2xは、重ね合わせた鋼板と接触してそれらを加圧する。加圧先端2xは、例えばリング状であってもよく、別の形状であってもよい。溶接中に鋼板が軟化したときに、鋼板が局所変形しない程度であれば、加圧先端2xを、リング状の一部を切除して非加圧部を設けた形態にしてもよい。例えば、加圧先端2xは、底面視において、1か所を切除したC字状、2か所以上を切除して複数の円弧に分割した形状(例えば図1(a)のように、3個の円弧に分割した形状)にすることができる。 The pressure member 2 is a member provided so as to surround the electrode tip 1x of the electrode 1 . A pressing tip 2x of the pressing member 2 contacts and presses the stacked steel plates. The pressing tip 2x may be ring-shaped, for example, or may have another shape. As long as the steel plate is not deformed locally when the steel plate is softened during welding, the pressure tip 2x may be formed by removing a ring-shaped portion to provide a non-pressure portion. For example, the pressurizing tip 2x has a C-shape in which one portion is cut in a bottom view, or a shape in which two or more portions are cut and divided into a plurality of arcs (for example, as shown in FIG. 1(a), three can be divided into arcs).

以下、図1(a)、(b)に示した加圧部材2の形態について詳しく説明する。
図1(a)に示すように、加圧部材2は3つの加圧部品21、22、23から構成されている。3つの加圧部品21、22、23は、電極1の電極先端1xの周囲を取り囲むように配置されている。加圧部品21、22、23は、それぞれ、電極先端1xを中心とする円周方向の中心角がa1、a2およびa3で、厚みがtの扇形の加圧先端2xを有する。隣接する加圧部品21、22、23は、電極先端1xを中心とする円周方向の中心角がb1、b2またはb3の隙間により、互いに離間している。
Hereinafter, the form of the pressure member 2 shown in FIGS. 1(a) and 1(b) will be described in detail.
As shown in FIG. 1( a ), the pressure member 2 is composed of three pressure members 21 , 22 and 23 . The three pressurizing parts 21, 22, 23 are arranged so as to surround the electrode tip 1x of the electrode 1. As shown in FIG. The pressurizing parts 21, 22, 23 each have a fan-shaped pressurizing tip 2x with central angles a1, a2, and a3 in the circumferential direction around the electrode tip 1x and a thickness t. Adjacent pressing parts 21, 22, and 23 are separated from each other by gaps having central angles b1, b2, or b3 in the circumferential direction about the electrode tip 1x.

加圧部材2は、電極先端1xを中心とする円周方向において、180°以上(全周の50%)の範囲を加圧できるように設計されている。ここで、「180°以上」とは、図1(a)に示すように加圧部材2が複数(3つ)の加圧部品21、22、23に分割されている場合、各加圧部品21、22、23の加圧先端2xの中心角a1、a2、a3の合計が180°以上であることを意味している。言い換えれば、隙間の中心角b1、b2、b3の合計が180°以下である。
加圧部材2で加圧できる角度範囲が180°以上であると、4枚の鋼板を溶接するために比較的大きい溶接電流を通電した場合でも、チリの発生を抑制できる。加圧部材2で加圧できる角度範囲は、好ましくは270°以上(全周の75%以上)であり、さらに好ましくは360°(全周の100%であり、加圧部材2の加圧先端2xがリング状の場合に相当する)である。
The pressurizing member 2 is designed to pressurize a range of 180° or more (50% of the entire circumference) in the circumferential direction around the electrode tip 1x. Here, “180° or more” means that, as shown in FIG. It means that the sum of the central angles a1, a2, a3 of the pressing tips 2x of 21, 22, 23 is 180° or more. In other words, the sum of the central angles b1, b2, and b3 of the gaps is 180° or less.
When the angle range that can be applied by the pressure member 2 is 180° or more, even when a relatively large welding current is applied to weld four steel plates, the generation of dust can be suppressed. The angle range in which pressure can be applied by the pressure member 2 is preferably 270° or more (75% or more of the entire circumference), more preferably 360° (100% of the circumference). 2x is ring-shaped).

図1(b)に示すように、各加圧部品21、22、23の加圧先端2xと、電極1の電極先端1xとは、離間距離(クリアランス)CLだけ離れている。本発明の実施形態では、離間距離CLは0.1mm以上、10.0mm以下とする。加圧先端2xと電極先端1xとの離間距離CLが狭すぎると、電極1と加圧部材2とが接触してしまい、加圧部材2から電極1へ通電が起こり、溶融池の横方向への広がりを抑制する効果が得られない。離間距離CLが広すぎると、電極1周囲で重ね合わせ部を加圧部材2で加圧する効果が低下し、チリの発生を抑制する効果が十分に発揮できない。離間距離CLの下限は、好ましくは0.5mm、さらに好ましくは1.0mmであり、離間距離CLの上限は、好ましくは8.0mm、さらに好ましくは6.0mmである。 As shown in FIG. 1B, the pressing tip 2x of each of the pressing parts 21, 22, and 23 and the electrode tip 1x of the electrode 1 are separated by a clearance CL. In the embodiment of the present invention, the distance CL is 0.1 mm or more and 10.0 mm or less. If the separation distance CL between the pressure tip 2x and the electrode tip 1x is too narrow, the electrode 1 and the pressure member 2 will come into contact with each other, and current will flow from the pressure member 2 to the electrode 1, causing the liquid to flow in the lateral direction of the molten pool. It is not possible to obtain the effect of suppressing the spread of If the separation distance CL is too large, the effect of pressing the overlapped portion around the electrode 1 with the pressing member 2 is reduced, and the effect of suppressing the generation of dust cannot be sufficiently exhibited. The lower limit of the clearance CL is preferably 0.5 mm, more preferably 1.0 mm, and the upper limit of the clearance CL is preferably 8.0 mm, more preferably 6.0 mm.

鋼板の重ね合わせ部は、上下一対の電極1の電極先端1xの間で加圧される。さらに、重ね合わせ部は、電極先端1xで加圧される部分の周囲を、上下に配置された加圧部材2の加圧先端2xの間で加圧される。 The overlapping portion of the steel plates is pressed between the electrode tips 1 x of the pair of upper and lower electrodes 1 . Further, in the overlapped portion, the periphery of the portion pressed by the electrode tip 1x is pressed between the pressing tips 2x of the pressing members 2 arranged above and below.

電極1によって重ね合わせ部に付与される荷重(これを「電極荷重」と称する)が高いと、溶接中の加熱および溶融に起因する鋼板の変形を抑制する効果、およびチリの発生を抑制する効果が高い。しかし、電極荷重が高すぎると、溶接中に溶接部が押しつぶされて変形して、板厚残存率が減少するおそれがある。電極荷重が低すぎると、溶接中に溶接部で発生する熱を電極1を介して放熱する抜熱量が小さくなり、表チリが発生しやすくなる。
電極荷重の下限は1.5kN、好ましくは2.0kNである。電極荷重は過度に高くなければよく、その上限は、好ましくは7.0kN、より好ましくは6.0kNである。
When the load applied to the overlapped portion by the electrode 1 (this is referred to as "electrode load") is high, the effect of suppressing the deformation of the steel plate due to heating and melting during welding, and the effect of suppressing the generation of dust. is high. However, if the electrode load is too high, the welded portion may be crushed and deformed during welding, reducing the plate thickness retention rate. If the electrode load is too low, the amount of heat generated in the welded portion during welding is dissipated through the electrode 1, and the amount of heat removed is reduced, which tends to cause surface flaking.
The lower limit of the electrode load is 1.5 kN, preferably 2.0 kN. The electrode load should not be excessively high, and its upper limit is preferably 7.0 kN, more preferably 6.0 kN.

加圧部材2によって重ね合わせ部に付与される荷重(これを「外周荷重」と称する)は、電極荷重の0.1倍以上1.0倍以下とする。外周荷重が低すぎると、チリを抑制する効果が得られない。なお、溶接装置の制約上、外周荷重と電極荷重との総荷重に上限がある。外周荷重を高くすると、電極荷重を低くする必要があり、電極1を介した抜熱量が小さくなって表チリが発生しやすくなる。そのため、外周荷重は、電極荷重を十分に確保できるように、適正に設定する必要がある。
外周荷重の下限は、好ましくは電極荷重に対する倍率で0.2倍であり、さらに好ましくは0.3倍である。外周荷重の上限は、好ましくは電極荷重に対する倍率で0.8倍であり、さらに好ましくは0.5倍である。
The load applied to the overlapped portion by the pressing member 2 (this is referred to as "peripheral load") is set to 0.1 times or more and 1.0 times or less of the electrode load. If the peripheral load is too low, the effect of suppressing dust cannot be obtained. Note that there is an upper limit to the total load of the peripheral load and the electrode load due to limitations of the welding equipment. If the peripheral load is increased, it is necessary to reduce the electrode load, which reduces the amount of heat removed through the electrode 1 and tends to cause surface dust. Therefore, it is necessary to properly set the peripheral load so that the electrode load can be sufficiently secured.
The lower limit of the peripheral load is preferably 0.2 times the electrode load, more preferably 0.3 times. The upper limit of the peripheral load is preferably 0.8 times the electrode load, more preferably 0.5 times.

電極1の材料としては、純銅、クロム銅、アルミナ分散銅など、スポット溶接で一般的に用いられる電極材料を用いることができる。
加圧部材2の材料は、非導電体、導体のいずれでもよい。また、加圧部材2の材料は、加圧時に塑性変形しない程度の強度を有する必要がある。
As the material of the electrode 1, electrode materials commonly used in spot welding, such as pure copper, chromium copper, and alumina-dispersed copper, can be used.
The material of the pressure member 2 may be either a non-conductor or a conductor. Also, the material of the pressing member 2 needs to have strength to the extent that it is not plastically deformed when pressurized.

(3.重ね合わせ部を溶接する工程)
一対の電極に5A以上15kA以下の溶接電流を通電して、重ね合わせ部を溶接する。溶接電流の上限は、好ましくは13kA、より好ましくは10kAである。
(3. Process of welding overlapped portions)
A welding current of 5 A or more and 15 kA or less is applied to the pair of electrodes to weld the overlapping portions. The upper limit of welding current is preferably 13 kA, more preferably 10 kA.

・被溶接試験体
軟鋼板として、板厚0.6mmの270MPa級GA鋼板を準備し、高強度鋼板として、板厚1.4mmの1180MPa級非めっき鋼板(CR鋼板)を準備した。軟鋼板と高強度鋼板を、表1に示す板組の通りに重ね合わせて、被溶接試験体(4枚の鋼板の積層体)を作製した。
- Welded specimen A 270 MPa grade GA steel sheet with a thickness of 0.6 mm was prepared as a mild steel sheet, and a 1180 MPa grade non-plated steel sheet (CR steel sheet) with a thickness of 1.4 mm was prepared as a high strength steel sheet. A mild steel plate and a high-strength steel plate were laminated in the same manner as shown in Table 1 to prepare a welded specimen (a laminate of four steel plates).

・溶接方法
溶接機には、エアシリンダ方式の加圧機構を有する直流インバータスポット溶接機を用いた。電極1には、図2(a)、(b)に示すDR形状(電極径13.0mm、先端径6.0mm)のクロム銅製の電極チップを使用した。
加圧部材2としては、電極1の周囲を覆うパイプ状の加圧部材を使用した。パイプ状の加圧部材2を用いることにより、電極先端1xを中心とする円周方向において、360°の範囲に外周荷重を付与できる。なお、電極1の加圧機構とは別に、加圧部材2を加圧するためのエアシリンダを準備した。
パイプ状の加圧部材2を被溶接試験体の重ね合わせ部に押圧して、電極先端1xの周囲に外周荷重を付与した。
・Welding method A DC inverter spot welder having an air cylinder type pressure mechanism was used as the welder. As the electrode 1, an electrode tip made of chromium copper and having a DR shape (electrode diameter 13.0 mm, tip diameter 6.0 mm) shown in FIGS. 2(a) and 2(b) was used.
As the pressure member 2, a pipe-shaped pressure member covering the periphery of the electrode 1 was used. By using the pipe-shaped pressure member 2, the peripheral load can be applied in a range of 360° in the circumferential direction around the electrode tip 1x. In addition to the pressurizing mechanism for the electrode 1, an air cylinder for pressurizing the pressurizing member 2 was prepared.
A pipe-shaped pressure member 2 was pressed against the overlapped portion of the specimen to be welded to apply a peripheral load around the electrode tip 1x.

電極1と加圧部材2との間の離間距離(クリアランス)CLが溶接継手に与える影響を確認するために、加圧先端2xの形状が異なる2種類の加圧部材2を用いた(図2(a)、(b))。
図2(a)に示す加圧部材201は、加圧先端2x近傍が先端方向に向かって縮径している。加圧部材2の各寸法は、平行部(縮径していない部分)の内径が14.0mm、加圧先端2xの内径が10.0mm、加圧部材の肉厚が1.0mmであった。また、加圧先端2xと電極先端1xとのクリアランスCLは2.0mmであった。
図2(b)に示す加圧部材202は、その全体が一定の直径を有している。つまり、加圧部材2は、加圧先端2x近傍が縮径していない。加圧部材2の各寸法は、内径が14.0mm、肉厚が1.0mmであった。また、加圧先端2xと電極先端1xとのクリアランスCLは4.0mmであった。
In order to confirm the influence of the separation distance (clearance) CL between the electrode 1 and the pressure member 2 on the welded joint, two types of pressure members 2 having different shapes of the pressure tip 2x were used (Fig. 2 (a), (b)).
The pressurizing member 201 shown in FIG. 2A has a diameter that decreases in the vicinity of the pressurizing tip 2x toward the tip. The dimensions of the pressure member 2 were 14.0 mm for the inner diameter of the parallel portion (the portion whose diameter was not reduced), 10.0 mm for the inner diameter of the pressure tip 2x, and 1.0 mm for the thickness of the pressure member. . Also, the clearance CL between the pressurizing tip 2x and the electrode tip 1x was 2.0 mm.
The pressure member 202 shown in FIG. 2(b) has a constant diameter as a whole. That is, the pressing member 2 does not have a reduced diameter in the vicinity of the pressing tip 2x. The pressure member 2 had an inner diameter of 14.0 mm and a wall thickness of 1.0 mm. Also, the clearance CL between the pressurizing tip 2x and the electrode tip 1x was 4.0 mm.

表1に示す板組の被溶接試験体を、表2に示す各条件(電極1による電極荷重、加圧部材2による外周荷重、および加圧先端2xと電極先端1xとのクリアランスCL)で加圧挟持した。なお、クリアランスCLが「2.0mm」とは、図2(a)に図示した加圧部材201を用い、クリアランスCLが「4.0mm」とは、図2(b)に図示した加圧部材202を用いたことを意味している。また、C1~C4は、加圧部材2を用いなかった。
その後、表2に示す溶接電流を電極間に通電してスポット溶接を行った。通電時間は320ms(ミリ秒)とした。
The plate assembly specimens to be welded shown in Table 1 were applied under the conditions shown in Table 2 (electrode load by electrode 1, peripheral load by pressure member 2, and clearance CL between pressure tip 2x and electrode tip 1x). clamped. The clearance CL of "2.0 mm" means that the pressure member 201 shown in FIG. 2(a) is used, and the clearance CL of "4.0 mm" means that the pressure member shown in FIG. 202 is used. In C1 to C4, the pressure member 2 was not used.
After that, a welding current shown in Table 2 was applied between the electrodes to perform spot welding. The energization time was 320 ms (milliseconds).

溶接後の被溶接試験体について、ナゲット径d、溶接継手の最小厚みtWJを測定した。ナゲット径dはJIS Z3139:2009に記載の2枚または3枚溶接でのナゲット径の測定方法に準じた。詳しくは、図3(b)に示すように、最外面の軟鋼板P1と高強度鋼板P2との界面におけるナゲットNの直径(ナゲットNの幅)を測定し、それをナゲット径dとした。
溶接継手の最小厚みtWJは、溶接継手WJを通る断面において、溶接継手WJの最も薄い部分である。断面マクロを観察し、溶接継手の中心部の最も薄い部分の厚みを測定して、溶接継手の最小厚みtWJとした(図3(b))。
The nugget diameter d N and the minimum thickness t WJ of the welded joint were measured for the welded specimens after welding. The nugget diameter dN conformed to the method for measuring the nugget diameter in two- or three-layer welding described in JIS Z3139:2009. Specifically, as shown in FIG. 3(b), the diameter of the nugget N (the width of the nugget N) at the interface between the outermost mild steel plate P1 and the high-strength steel plate P2 was measured, and was taken as the nugget diameter dN. .
The minimum weld joint thickness tWJ is the thinnest portion of the weld joint WJ in a cross section through the weld joint WJ. The cross-sectional macro was observed, and the thickness of the thinnest part at the center of the welded joint was measured to determine the minimum thickness tWJ of the welded joint (Fig. 3(b)).

測定したナゲット径dの値と、軟鋼板の厚みtの値を用いて、各実施例が式(1)を充足しているか否かを検証した。

/√t≧3.0 (1)

ここで、d(mm)は、前記軟鋼板と高強度鋼板とが接触する接触面におけるナゲット径であり、
(mm)は、前記高強度鋼板と接触している前記軟鋼板の板厚である。

表2には、d/√tの値を記載した。この値が3.0以上の場合(つまり、式(1)を充足している)を「良」と判定し、4.0以上の場合を「優」と判定した。
Using the measured value of the nugget diameter dN and the value of the thickness t1 of the mild steel plate, it was verified whether or not each example satisfied the formula (1).

d N /√t 1 ≧3.0 (1)

Here, d N (mm) is the nugget diameter at the contact surface where the mild steel plate and the high-strength steel plate contact,
t 1 (mm) is the plate thickness of the mild steel plate in contact with the high-strength steel plate.

Table 2 lists the values of d N /√t 1 . When this value was 3.0 or more (that is, the formula (1) was satisfied), it was determined as "good", and when it was 4.0 or more, it was determined as "excellent".

また、被溶接試験体の総板厚=前記4枚の鋼板の板厚合計とみなし、かつ測定した溶接継手の最小厚みを用いて、式(2)に規定する板厚保持率を求めた。

板厚保持率(%)=(前記溶接継手の最小厚み)/(前記4枚の鋼板の板厚合計)×100 (2)

板厚保持率が84%以上の場合を「合格」と判定した。
In addition, the thickness retention rate defined by the formula (2) was obtained by considering the total thickness of the test piece to be welded=the total thickness of the four steel sheets, and using the measured minimum thickness of the welded joint.

Plate thickness retention rate (%) = (minimum thickness of the welded joint) / (total plate thickness of the four steel plates) x 100 (2)

A plate thickness retention rate of 84% or more was determined as "accepted".

また、いくつかの被溶接試験体については、最外面(軟鋼板)と2枚目(高強度鋼板)との間の溶接継手の継手強度を評価するために、十字引張試験を実施した。十字引張試験は、JIS Z3140:2017に準じて実施した。
十字引張強度については、2.1kN以上を「良」と判定し、3.0kN以上の場合を「優」と判定した。
In addition, a cross tension test was performed on some welded specimens in order to evaluate the joint strength of the welded joint between the outermost surface (mild steel plate) and the second sheet (high strength steel plate). A cross tension test was performed according to JIS Z3140:2017.
Regarding the cross tension strength, 2.1 kN or more was judged as "good", and 3.0 kN or more was judged as "excellent".

表2に、測定結果を記載する。なお、表2において、下線を付した数値は本発明の実施形態で規定された範囲から外れていることを示している。 Table 2 lists the measurement results. In addition, in Table 2, the underlined numerical values deviate from the ranges specified in the embodiments of the present invention.

Figure 2023040930000002
Figure 2023040930000002

Figure 2023040930000003
Figure 2023040930000003

表2の結果を検討する。
溶接継手が本発明の実施形態の製造条件を満たすNo.D-3、E-1、E-2、F-2およびF-3では、溶接継手のd/√tが3.0以上で、板厚保持率が84%以上であった。その結果、継手強度が高くなると考えられる。実際に十字引張試験を行ったNo.D-3、F-3では、溶接継手の十字引張強度が高かった。
特に、溶接継手のd/√tが4.0以上のNo.E-2、F-2およびF-3は、継手強度がさらに高くなると考えられる。実際に十字引張試験を行ったNo.F-3では、No.D-3よりも溶接継手の十字引張強度が高かった。
Consider the results in Table 2.
The welded joint satisfies the manufacturing conditions of the embodiment of the present invention. In D-3, E-1, E-2, F-2 and F-3, the d N /√t 1 of the welded joint was 3.0 or more and the plate thickness retention was 84% or more. As a result, it is considered that the joint strength increases. No. on which the cross tension test was actually performed. In D-3 and F-3, the cross tensile strength of the welded joint was high.
In particular, No. 1 welded joints with d N /√t 1 of 4.0 or more. E-2, F-2 and F-3 are considered to have even higher joint strength. No. on which the cross tension test was actually performed. In F-3, No. The cross tensile strength of the welded joint was higher than that of D-3.

No.C-1~C-4は、加圧部材2を用いなかったため、溶接時に鋼板を加圧挟持しなかった。そのため、d/√tが3.0未満、および/または板厚保持率が84%未満となった。その結果、継手強度が低くなると考えられる。実際に十字引張試験を行ったNo.C-1、C-3では、溶接継手の十字引張強度が低かった。 No. In C-1 to C-4, the pressure member 2 was not used, so the steel plate was not clamped under pressure during welding. Therefore, d N /√t 1 was less than 3.0 and/or thickness retention was less than 84%. As a result, the joint strength is considered to be low. No. on which the cross tension test was actually performed. In C-1 and C-3, the cross tension strength of the welded joint was low.

No.D-1、D-2は、d/√tが3.0未満であった。その結果、継手強度が低くなると考えられる。
No.D-4は、板厚保持率が84%未満であった。その結果、継手強度が低くなると考えられる。
No.E-3、E-4は板厚保持率が84%未満であった。その結果、継手強度が低くなると考えられる。
No.F-1は、d/√tが3.0未満であった。その結果、継手強度が低くなると考えられる。
No.F-4は、板厚保持率が84%未満であった。その結果、継手強度が低くなると考えられる。
No. D-1 and D-2 had d N /√t 1 of less than 3.0. As a result, the joint strength is considered to be low.
No. D-4 had a plate thickness retention rate of less than 84%. As a result, the joint strength is considered to be low.
No. E-3 and E-4 had a plate thickness retention rate of less than 84%. As a result, the joint strength is considered to be low.
No. F-1 had d N /√t 1 less than 3.0. As a result, the joint strength is considered to be low.
No. F-4 had a plate thickness retention rate of less than 84%. As a result, the joint strength is considered to be low.

1 電極
2 加圧端子
P1 軟鋼板
P2、P3、P4 高強度鋼板
WJ 溶接継手
N ナゲット
REFERENCE SIGNS LIST 1 electrode 2 pressure terminal P1 mild steel plate P2, P3, P4 high-strength steel plate WJ welded joint N nugget

Claims (5)

4枚の鋼板を重ね合わせてスポット溶接された溶接継手であって、
重ね合わせた前記4枚の鋼板は、引張強度270MPa以上590MPa未満である少なくとも1枚の軟鋼板と、引張強度980MPa以上である少なくとも2枚の高強度鋼板とを含み、
第1の前記軟鋼板は、前記4枚の鋼板の最も外側に配置され、
前記第1の軟鋼板の片側に、前記少なくとも2枚の高強度鋼板が重ね合わせて配置されており、
スポット溶接で形成されたナゲットが、下記の式(1)を満たし、かつ
下記の式(2)で定義される板厚保持率が84%以上である、溶接継手。

/√t≧3.0 (1)

ここで、d(mm)は、前記軟鋼板と高強度鋼板とが接触する接触面におけるナゲット径であり、
(mm)は、前記高強度鋼板と接触している前記軟鋼板の板厚である。

板厚保持率(%)=(溶接継手の最小厚み)/(4枚の鋼板の板厚合計)×100 (2)
A welded joint in which four steel plates are superimposed and spot-welded,
The four superimposed steel plates include at least one mild steel plate with a tensile strength of 270 MPa or more and less than 590 MPa, and at least two high-strength steel plates with a tensile strength of 980 MPa or more,
The first mild steel plate is arranged on the outermost side of the four steel plates,
The at least two high-strength steel plates are superimposed on one side of the first mild steel plate,
A welded joint, wherein a nugget formed by spot welding satisfies the following formula (1) and has a plate thickness retention rate defined by the following formula (2) of 84% or more.

d N /√t 1 ≧3.0 (1)

Here, d N (mm) is the nugget diameter at the contact surface where the mild steel plate and the high-strength steel plate contact,
t 1 (mm) is the plate thickness of the mild steel plate in contact with the high-strength steel plate.

Plate thickness retention rate (%) = (minimum thickness of welded joint) / (total plate thickness of four steel plates) x 100 (2)
前記軟鋼板の板厚tが、該軟鋼板と接触している前記高強度鋼板の板厚より小さい、請求項1に記載の溶接継手。 Welded joint according to claim 1 , wherein the thickness t1 of the mild steel plate is less than the thickness of the high-strength steel plate in contact with the mild steel plate. 前記4枚の鋼板が、前記第1の軟鋼板と、前記第1の軟鋼板の片側に重ね合わせて配置された3枚の高強度鋼板とから構成されている、請求項1または2に記載の溶接継手。 3. The four steel plates according to claim 1 or 2, wherein the four steel plates are composed of the first mild steel plate and three high-strength steel plates stacked on one side of the first mild steel plate. welded joints. 4枚の鋼板の重ね合わせ部をスポット溶接することにより溶接継手を製造する方法であって、
引張強度270MPa以上590MPa未満である少なくとも1枚の軟鋼板と、引張強度980MPa以上である少なくとも2枚の高強度鋼板とを含む4枚の鋼板を重ね合わせる工程であって、
第1の前記軟鋼板が前記4枚の鋼板の最も外側に配置され、かつ前記少なくとも2枚の高強度鋼板が前記第1の軟鋼板の片側に重ね合わせて配置されるように、4枚の鋼板を重ね合わせる工程と、
一対の電極と、各電極の電極先端を囲むように設けられた一対の加圧部材とにより、前記鋼板の前記重ね合わせ部を加圧挟持する工程であって、
前記加圧部材は、前記電極先端を中心とする円周方向において、180°以上の範囲を加圧するように構成されており、
前記加圧部材の加圧先端と前記電極先端との離間距離が0.1mm以上、10.0mm以下であり、
前記重ね合わせ部は、前記電極先端によって1.5kN以上の電極荷重で加圧されるとともに、前記加圧先端によって、前記電極荷重の0.1~1.0倍の外周荷重で加圧される、加圧挟持する工程と、
前記一対の電極に5kA以上15kA以下の溶接電流を通電して前記重ね合わせ部を溶接する工程と、を含む溶接継手の製造方法。
A method for manufacturing a welded joint by spot welding overlapping portions of four steel plates,
A step of superposing four steel plates including at least one mild steel plate having a tensile strength of 270 MPa or more and less than 590 MPa and at least two high-strength steel plates having a tensile strength of 980 MPa or more,
The four steel plates are arranged so that the first mild steel plate is arranged on the outermost side of the four steel plates, and the at least two high-strength steel plates are arranged on one side of the first mild steel plate. a step of superimposing steel plates;
A step of pressurizing and holding the overlapped portion of the steel plate by a pair of electrodes and a pair of pressure members provided so as to surround the electrode tip of each electrode,
The pressurizing member is configured to pressurize a range of 180° or more in a circumferential direction centering on the tip of the electrode,
the separation distance between the pressure tip of the pressure member and the tip of the electrode is 0.1 mm or more and 10.0 mm or less;
The overlapping portion is pressed by the electrode tip with an electrode load of 1.5 kN or more, and is pressed by the pressing tip with a peripheral load of 0.1 to 1.0 times the electrode load. , a step of pressurizing and clamping;
a welding current of 5 kA or more and 15 kA or less being applied to the pair of electrodes to weld the overlapped portion.
前記軟鋼板の板厚tが、該軟鋼板と接触している前記高強度鋼板の板厚より小さい、請求項4に記載の溶接継手の製造方法。 The method for producing a welded joint according to claim 4, wherein the thickness t1 of the mild steel plate is smaller than the thickness of the high-strength steel plate in contact with the mild steel plate.
JP2021148140A 2021-09-10 2021-09-10 Welded joint and manufacturing method thereof Active JP7556834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021148140A JP7556834B2 (en) 2021-09-10 2021-09-10 Welded joint and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021148140A JP7556834B2 (en) 2021-09-10 2021-09-10 Welded joint and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2023040930A true JP2023040930A (en) 2023-03-23
JP7556834B2 JP7556834B2 (en) 2024-09-26

Family

ID=85632446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021148140A Active JP7556834B2 (en) 2021-09-10 2021-09-10 Welded joint and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7556834B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640409B2 (en) 2009-03-17 2014-12-17 Jfeスチール株式会社 Method of manufacturing resistance spot welded joint
JP2014028392A (en) 2012-06-29 2014-02-13 Kobe Steel Ltd Spot welding method
US10675701B2 (en) 2017-06-30 2020-06-09 GM Global Technology Operations LLC Method and apparatus for resistance spot welding overlapping steel workpieces
JP7173736B2 (en) 2018-02-28 2022-11-16 ダイハツ工業株式会社 Spot welding method and steel plate parts
JP2021126702A (en) 2020-02-17 2021-09-02 日本製鉄株式会社 Manufacturing method of spot welded joint and spot welded joint

Also Published As

Publication number Publication date
JP7556834B2 (en) 2024-09-26

Similar Documents

Publication Publication Date Title
JP6108030B2 (en) Resistance spot welding method
JP5267320B2 (en) Steel plate lap welding method and steel plate lap weld joint
JP7426564B2 (en) Welding method
JP5960655B2 (en) Spot laser combined weld joint
JP5599553B2 (en) Resistance spot welding method
JP6001478B2 (en) Spot welded joint
JP2000197969A (en) Blank for integrally forming and forming method thereof
KR102127991B1 (en) Resistance spot welding method and welded structure
JP2009279597A (en) Resistance welding method and resistance welding joined body
WO2003018245A1 (en) Conductive heat seam welding
JP6519510B2 (en) Method of manufacturing spot welds and manufacturing apparatus therefor
JPH06246462A (en) Lap spot welding method to composite steel plate
JP2023040930A (en) Weld joint and method for manufacturing the same
JP2003236673A (en) Method for joining different kinds of materials
JP6060579B2 (en) Resistance spot welding method
JP6123904B2 (en) Resistance spot welding method and manufacturing method of welded structure
JP6175041B2 (en) Spot welding method
JP5605405B2 (en) Resistance welded joint
JP6418224B2 (en) Method of manufacturing spot welded material and spot welding electrode
JP2023132882A (en) Manufacturing method of weld joint
JP6811063B2 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
CN113001001A (en) Combined stacking device for resistance spot welding
JP2022148636A (en) Manufacturing method of spot welding member and spot welding member
JP6794006B2 (en) Resistance spot welded joints, resistance spot welded methods and resistance spot welded joint manufacturing methods
CN114473164A (en) Resistance spot welding method for different metal workpiece stacked assembly and different metal stacked assembly for resistance spot welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240912

R150 Certificate of patent or registration of utility model

Ref document number: 7556834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150