JP2023039944A - Coating composition, substrate with adhesive layer, and laminate - Google Patents

Coating composition, substrate with adhesive layer, and laminate Download PDF

Info

Publication number
JP2023039944A
JP2023039944A JP2022143687A JP2022143687A JP2023039944A JP 2023039944 A JP2023039944 A JP 2023039944A JP 2022143687 A JP2022143687 A JP 2022143687A JP 2022143687 A JP2022143687 A JP 2022143687A JP 2023039944 A JP2023039944 A JP 2023039944A
Authority
JP
Japan
Prior art keywords
coating composition
adhesive layer
laminate
substrate
trade name
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022143687A
Other languages
Japanese (ja)
Inventor
直矢 栃下
Naoya TOCHISHITA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2023039944A publication Critical patent/JP2023039944A/en
Pending legal-status Critical Current

Links

Abstract

To provide a coating composition which has excellent coating stability and can form a coating film excellent in transparency, adhesion and weather resistance, a substrate with an adhesive layer, and a laminate.SOLUTION: The coating composition contains: a mixture of polymer particles (A) having a unit (a) derived from a vinyl monomer (a) and an inorganic oxide (B); and/or a composite (C) of the polymer particles (A) and the inorganic oxide (B). The weight average molecular weight of the unit (a) is 10,000-5,000,000. The pH of the coating composition is 7-11.SELECTED DRAWING: None

Description

本発明は、塗料組成物、接着層付き基材及び積層体に関する。 TECHNICAL FIELD The present invention relates to a coating composition, a substrate with an adhesive layer, and a laminate.

近年、作業現場への衛生状態や地球環境への負荷への配慮から、塗料の水系化が望まれている。所定成分を重合して得られる水分散体は、常温あるいは加熱下で乾燥して成膜することができ、このようにして得られる塗膜には、バリア性、耐汚染性、耐薬品性、難燃性、耐熱性、耐候性、耐擦過性、耐摩耗性を付与し得る。しかし、このような塗料を透明性が要求される用途に用いると、屋外や紫外線に長期間曝露されることに起因し、透明性や曇りといった光学特性、変色、白化、クレーズの発生などが問題となり得る。紫外線による劣化を抑制するため、塗料中に紫外線吸収剤を含有することが望ましいが、紫外線吸収剤の多くは水に不溶であるために、水系塗料への適用が困難である。 In recent years, there has been a demand for water-based paints in consideration of hygienic conditions at work sites and load on the global environment. An aqueous dispersion obtained by polymerizing a predetermined component can be dried at room temperature or under heat to form a film. It can impart flame retardancy, heat resistance, weather resistance, abrasion resistance, and wear resistance. However, when such paints are used in applications that require transparency, problems such as optical properties such as transparency and cloudiness, discoloration, whitening, and crazes occur due to long-term exposure to the outdoors or ultraviolet rays. can be. In order to suppress deterioration due to ultraviolet rays, it is desirable to include an ultraviolet absorber in the paint, but most ultraviolet absorbers are insoluble in water, making it difficult to apply them to water-based paints.

塗膜の光学特性を改善するための技術として、特許文献1には、エマルション粒子にシリカを含有させる方法が記載されている。また、特許文献2では、アクリル共重合体に紫外線吸収性基を含有させる方法が記載されている。 As a technique for improving the optical properties of a coating film, Patent Document 1 describes a method of incorporating silica into emulsion particles. Moreover, Patent Document 2 describes a method of incorporating an ultraviolet absorbing group into an acrylic copolymer.

特開2010-100742号公報JP 2010-100742 A 特開2005-97631号公報JP-A-2005-97631

特許文献1の方法で作成した塗料組成物は、透明性に優れた塗膜を形成することが可能であるが、多量の紫外線吸収剤を塗料中に含有させることが困難であり、耐候性の観点で改良の余地がある。 The coating composition prepared by the method of Patent Document 1 can form a coating film with excellent transparency, but it is difficult to contain a large amount of ultraviolet absorber in the coating, and it has poor weather resistance. There is room for improvement from this point of view.

特許文献2の方法で作成した塗料組成物は、紫外線吸収剤を含むために耐候性に優れる塗膜を形成することができるが、溶剤系塗料として使用することが前提とされており、かかる技術をそのまま水系塗料として適用することは困難である。 The coating composition prepared by the method of Patent Document 2 can form a coating film with excellent weather resistance because it contains an ultraviolet absorber, but it is assumed to be used as a solvent-based coating, and such a technique is difficult to apply as a water-based paint as it is.

本発明は、上記の従来技術が有する課題に鑑みてなされたものであり、その目的は、塗料安定性に優れ、かつ、透明性、密着性及び耐候性に優れた塗膜を形成できる、塗料組成物、接着層付き基材及び積層体を提供することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a coating that is excellent in coating stability and can form a coating film that is excellent in transparency, adhesion and weather resistance. An object of the present invention is to provide a composition, a base material with an adhesive layer, and a laminate.

本発明者らは前記課題を解決すべく鋭意検討した結果、所定の構成を有する塗料組成物により当該課題を解決しうることを見出し、本発明を完成するに至った。 As a result of intensive studies aimed at solving the above problems, the present inventors have found that the problems can be solved by a coating composition having a predetermined structure, and have completed the present invention.

すなわち、本発明は、以下の態様を包含する。
[1]
ビニル単量体(a)に由来する単位(a)を有する重合体粒子(A)と無機酸化物(B)との混合物、及び/又は、当該重合体粒子(A)と無機酸化物(B)との複合体(C)を含む塗料組成物であって、
前記単位(a)の重量平均分子量が1万~500万であり、
前記塗料組成物のpHが7~11である、塗料組成物。
[2]
前記単位(a)が、紫外線吸収性ビニル単量体(a-1)に由来する単位(a-1)を含む、[1]に記載の塗料組成物。
[3]
前記単位(a)が、水酸基含有ビニル単量体(a-2)に由来する単位(a-2)を含み、
前記単位(a)における前記単位(a-2)の含有量が、10~40質量%である、[1]又は[2]に記載の塗料組成物。
[4]
有機系紫外線吸収剤(D)をさらに含む、[1]~[3]のいずれかに記載の塗料組成物。
[5]
ブロックポリイソシアネート化合物(E)をさらに含む、[1]~[4]のいずれかに記載の塗料組成物。
[6]
前記単位(a)の重量平均分子量が10万~100万である、[1]~[5]のいずれかに記載の塗料組成物。
[7]
前記塗料組成物の全固形分に対する前記無機酸化物(B)の質量比が25%~60%である、[1]~[6]のいずれかに記載の塗料組成物。
[8]
前記単位(a-1)と前記有機系紫外線吸収剤(D)との質量比が、1:0.5~1:40である、[4]~[7]のいずれかに記載の塗料組成物。
[9]
前記無機酸化物(B)が、球状及び/又は連結構造のシリカである、[1]~[8]のいずれかに記載の塗料組成物。
[10]
連鎖移動剤をさらに含む、[1]~[9]のいずれかに記載の塗料組成物。
[11]
前記重合体粒子(A)が、前記単位(a)を有するエマルション粒子を含む、[1]~[10]のいずれかに記載の塗料組成物。
[12]
基材と、
前記基材上に配される接着層と、
を備える接着層付き基材であって、
前記接着層が、[1]~[11]のいずれかに記載の塗料組成物を含む、接着層付き基材。
[13]
[12]に記載の接着層付き基材と、
前記接着層付き基材上に配されるハードコート層と、
を備える積層体であって、
前記ハードコート層が、無機酸化物(F)と重合体ナノ粒子(G)とを含有するマトリクス成分(H)を含み、
前記重合体ナノ粒子(G)のマルテンス硬度HMGと、前記マトリクス成分(H)のマルテンス硬度HMHとが、HMH/HMG>1の関係を満たす、積層体。
[14]
前記接着層付き基材のヘイズ値H1が、前記積層体のヘイズ値H2よりも大きい、[13]に記載の積層体。
That is, the present invention includes the following aspects.
[1]
A mixture of polymer particles (A) having units (a) derived from a vinyl monomer (a) and an inorganic oxide (B), and/or the polymer particles (A) and an inorganic oxide (B ) A coating composition comprising a complex (C) with
The unit (a) has a weight average molecular weight of 10,000 to 5,000,000,
A coating composition, wherein the coating composition has a pH of 7 to 11.
[2]
The coating composition according to [1], wherein the unit (a) comprises a unit (a-1) derived from an ultraviolet absorbing vinyl monomer (a-1).
[3]
The unit (a) comprises a unit (a-2) derived from a hydroxyl group-containing vinyl monomer (a-2),
The coating composition according to [1] or [2], wherein the content of the unit (a-2) in the unit (a) is 10 to 40% by mass.
[4]
The coating composition according to any one of [1] to [3], further comprising an organic ultraviolet absorber (D).
[5]
The coating composition according to any one of [1] to [4], further comprising a blocked polyisocyanate compound (E).
[6]
The coating composition according to any one of [1] to [5], wherein the unit (a) has a weight average molecular weight of 100,000 to 1,000,000.
[7]
The coating composition according to any one of [1] to [6], wherein the mass ratio of the inorganic oxide (B) to the total solid content of the coating composition is 25% to 60%.
[8]
The coating composition according to any one of [4] to [7], wherein the unit (a-1) and the organic ultraviolet absorber (D) have a mass ratio of 1:0.5 to 1:40. thing.
[9]
The coating composition according to any one of [1] to [8], wherein the inorganic oxide (B) is spherical and/or interconnected silica.
[10]
The coating composition according to any one of [1] to [9], further comprising a chain transfer agent.
[11]
The coating composition according to any one of [1] to [10], wherein the polymer particles (A) comprise emulsion particles having the unit (a).
[12]
a base material;
an adhesive layer disposed on the substrate;
A substrate with an adhesive layer comprising
A substrate with an adhesive layer, wherein the adhesive layer comprises the coating composition according to any one of [1] to [11].
[13]
The substrate with an adhesive layer according to [12];
a hard coat layer disposed on the adhesive layer-attached substrate;
A laminate comprising
The hard coat layer contains a matrix component (H) containing an inorganic oxide (F) and polymer nanoparticles (G),
A laminate in which the Martens hardness HMG of the polymer nanoparticles (G) and the Martens hardness HMH of the matrix component (H) satisfy the relationship HMH/HMG>1.
[14]
The laminate according to [13], wherein the adhesive layer-attached substrate has a haze value H1 higher than the haze value H2 of the laminate.

本発明の塗料組成物は、塗料安定性に優れ、かつ、透明性、密着性及び耐候性に優れた被膜を形成することができる。 The coating composition of the present invention is excellent in coating stability and can form a coating excellent in transparency, adhesion and weather resistance.

以下、本発明を実施するための形態(以下、「本実施形態」ともいう。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。本明細書における「(メタ)アクリル」とは、「アクリル」、及びそれに対応する「メタクリル」を意味する。また、本明細書での「~」とは、特に断りがない場合、その両端の数値を上限値、及び下限値として含む意味である。 EMBODIMENT OF THE INVENTION Hereinafter, the form (henceforth "this embodiment") for implementing this invention is demonstrated in detail. It should be noted that the present invention is not limited to the present embodiment described below, and various modifications can be made within the scope of the gist of the present invention. "(Meth)acryl" as used herein means "acryl" and "methacryl" corresponding thereto. In addition, in the present specification, unless otherwise specified, the term "~" means that the numerical values at both ends are included as the upper limit and the lower limit.

本実施形態の塗料組成物は、ビニル単量体(a)に由来する単位(a)を有する重合体粒子(A)と無機酸化物(B)との混合物、及び/又は、当該重合体粒子(A)と無機酸化物(B)との複合体(C)を含む塗料組成物であって、前記単位(a)の重量平均分子量が1万~500万であり、前記塗料組成物のpHが7~11である。本実施形態の塗料組成物は、このように構成されているため、塗料安定性に優れ、かつ、塗膜を形成した際に、透明性、密着性及び耐候性に優れる。 The coating composition of the present embodiment is a mixture of polymer particles (A) having units (a) derived from a vinyl monomer (a) and an inorganic oxide (B), and/or the polymer particles A coating composition comprising a composite (C) of (A) and an inorganic oxide (B), wherein the unit (a) has a weight average molecular weight of 10,000 to 5,000,000, and the pH of the coating composition is 7-11. Since the coating composition of the present embodiment is configured as described above, the coating composition is excellent in coating stability, and when a coating film is formed, it is excellent in transparency, adhesion and weather resistance.

[重合体粒子(A)]
本実施形態における重合体粒子(A)は、主に基材への密着性向上の役割を果たすものであり、ビニル単量体(a)を構成単位として含む。すなわち、重合体粒子(A)は、ビニル単量体(a)に由来する単位(a)を有するものである。重合体粒子(A)は、ビニル単量体(a)を構成単位として含む粒子状の重合体であれば特に限定されないが、ビニル単量体(a)に由来する単位(a)を有するエマルション粒子を含むことが好ましい。
[Polymer particles (A)]
The polymer particles (A) in the present embodiment mainly play the role of improving the adhesion to the substrate, and contain the vinyl monomer (a) as a structural unit. That is, the polymer particles (A) have units (a) derived from the vinyl monomer (a). The polymer particles (A) are not particularly limited as long as they are particulate polymers containing the vinyl monomer (a) as a structural unit. It preferably contains particles.

本実施形態において、単位(a)は、紫外線吸収性ビニル単量体(a-1)に由来する単位(a-1)を有することが好ましい。単位(a-1)が含有されていることで、塗料組成物中に紫外線吸収性剤が併存する場合でもエマルション内部に当該紫外線吸収剤を取り込みやすくなるため、塗料安定性が向上し、後述する接着層(I)、及び、積層体(K)を形成した際、密着性や耐候性の低下を防ぐことができる。 In this embodiment, the unit (a) preferably has a unit (a-1) derived from the UV-absorbing vinyl monomer (a-1). By containing the unit (a-1), even if the UV absorber coexists in the coating composition, the UV absorber can be easily incorporated into the emulsion, improving the coating stability, which will be described later. When the adhesive layer (I) and the laminate (K) are formed, deterioration of adhesion and weather resistance can be prevented.

本実施形態において、紫外線吸収性ビニル単量体(a-1)とは、紫外線吸収性基を有するビニル単量体を意味し、紫外線吸収性基とは、紫外線領域(波長400nm以下)に吸収を有する官能基を意味する。すなわち、紫外線吸収性ビニル単量体(a-1)は、分子内に紫外線吸収性基を有する(メタ)アクリル系単量体が挙げられ、その具体例としては、以下に限定されるものではないが、2-ヒドロキシ-4-アクリロキシベンゾフェノン、2-ヒドロキシ-4-メタクリロキシベンゾフェノン、2-ヒドロキシ-5-アクリロキシベンゾフェノン、2-ヒドロキシ-5-メタクリロキシベンゾフェノン、2-ヒドロキシ-4-(アクリロキシ-エトキシ)ベンゾフェノン、2-ヒドロキシ-4-(メタクリロキシ-エトキシ)ベンゾフェノン、2-ヒドロキシ-4-(メタクリロキシ-ジエトキシ)ベンゾフェノン、2-ヒドロキシ-4-(アクリロキシ-トリエトキシ)ベンゾフェノンなどのベンゾフェノン系化合物や、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール(大塚化学株式会社製の商品名「RUVA-93」)、2-(2’-ヒドロキシ-5’-メタクリロキシエチル-3-tert-ブチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリリルオキシプロピル-3-tert-ブチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、3-メタクリロイル-2-ヒドロキシプロピル-3-〔3’-(2’’-ベンゾトリアゾリル)-4-ヒドロキシ-5-tert-ブチル〕フェニルプロピオネート(日本チバガイギー株式会社製の商品名「CGL-104」)などのベンゾトリアゾール系化合物が挙げられる。 In the present embodiment, the ultraviolet-absorbing vinyl monomer (a-1) means a vinyl monomer having an ultraviolet-absorbing group, and the ultraviolet-absorbing group is an ultraviolet-absorbing group (wavelength of 400 nm or less). means a functional group having That is, the ultraviolet absorbing vinyl monomer (a-1) includes a (meth)acrylic monomer having an ultraviolet absorbing group in the molecule, and specific examples thereof are not limited to the following: 2-hydroxy-4-acryloxybenzophenone, 2-hydroxy-4-methacryloxybenzophenone, 2-hydroxy-5-acryloxybenzophenone, 2-hydroxy-5-methacryloxybenzophenone, 2-hydroxy-4-( benzophenone compounds such as acryloxy-ethoxy)benzophenone, 2-hydroxy-4-(methacryloxy-ethoxy)benzophenone, 2-hydroxy-4-(methacryloxy-diethoxy)benzophenone, 2-hydroxy-4-(acryloxy-triethoxy)benzophenone; , 2-(2′-hydroxy-5′-methacryloxyethylphenyl)-2H-benzotriazole (trade name “RUVA-93” manufactured by Otsuka Chemical Co., Ltd.), 2-(2′-hydroxy-5′-methacrylic oxyethyl-3-tert-butylphenyl)-2H-benzotriazole, 2-(2′-hydroxy-5′-methacrylyloxypropyl-3-tert-butylphenyl)-5-chloro-2H-benzotriazole, 3 -Methacryloyl-2-hydroxypropyl-3-[3'-(2''-benzotriazolyl)-4-hydroxy-5-tert-butyl]phenylpropionate (manufactured by Nihon Ciba-Geigy Co., Ltd. under the trade name "CGL- 104”) and other benzotriazole compounds.

単位(a-1)の含有量としては、後述する接着層(I)、及び、積層体(K)の耐候性と密着性の観点から、重合体粒子(A)を構成する単位(a)の全質量に対して1~20質量%含まれることが好ましく、1~10質量%含まれることがより好ましい。
なお、本実施形態においては、塗料組成物が複合体(C)とそれとは別体の重合体粒子(A)とを含む場合、複合体(C)に含まれる重合体粒子と、それとは別体の重合体粒子(A)の合計量として上記含有量を算出する。
The content of the unit (a-1) is the unit (a) constituting the polymer particles (A) from the viewpoint of the weather resistance and adhesion of the adhesive layer (I) and the laminate (K) described later. It is preferably contained in an amount of 1 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass of the.
In the present embodiment, when the coating composition contains the composite (C) and the polymer particles (A) separate from it, the polymer particles contained in the composite (C) and the polymer particles separate from it The above content is calculated as the total amount of the polymer particles (A).

本実施形態における重合体粒子(A)は、単位(a-1)に該当しない単量体であって水酸基を有する水酸基含有ビニル単量体(a-2)に由来する単位(a-2)を有することが好ましい。水酸基含有ビニル単量体(a-2)としては、特に限定されないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸のヒドロキシアルキルエステル;N-ヒドロキシエチルアクリルアミド、N-ヒドロキシエチルメタクリルアミド等のヒドロキシエチル(メタ)アクリルアミド;ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチルモノブチルフマレート等のフマル酸のヒドロキシアルキルエステル;アリルアルコールやエチレンオキシド基の数が1~100個の(ポリ)オキシエチレンモノ(メタ)アクリレート;プロピレンオキシド基の数が1~100個の(ポリ)オキシプロピレンモノ(メタ)アクリレート;、さらには、「プラクセルFM、FAモノマー」(ダイセル化学(株)製の、カプロラクトン付加モノマーの商品名)や、その他のα,β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類などが挙げられる。これらは単独または2種以上を混合して使用できる。 The polymer particles (A) in the present embodiment are units (a-2) derived from a hydroxyl group-containing vinyl monomer (a-2) which is a monomer not corresponding to the unit (a-1) and has a hydroxyl group. It is preferred to have Examples of the hydroxyl group-containing vinyl monomer (a-2) include, but are not limited to, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2- Hydroxyalkyl esters of (meth)acrylic acid such as hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate; N-hydroxyethylacrylamide, N-hydroxyethylmethacrylamide and the like Hydroxyethyl (meth)acrylamide; hydroxyalkyl esters of fumaric acid such as di-2-hydroxyethyl fumarate and mono-2-hydroxyethyl monobutyl fumarate; ) Oxyethylene mono (meth) acrylate; (poly) oxypropylene mono (meth) acrylate having 1 to 100 propylene oxide groups; , trade names of caprolactone addition monomers) and other hydroxyalkyl esters of α,β-ethylenically unsaturated carboxylic acids. These can be used alone or in combination of two or more.

上記(ポリ)オキシエチレンモノ(メタ)アクリレートとしては、特に限定されないが、例えば、(メタ)アクリル酸エチレングリコール、メトキシ(メタ)アクリル酸エチレングリコール、(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、(メタ)アクリル酸テトラエチレングリコール、メトキシ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。 The (poly)oxyethylene mono(meth)acrylate is not particularly limited, but examples include ethylene glycol (meth)acrylate, ethylene glycol methoxy(meth)acrylate, diethylene glycol (meth)acrylate, methoxy(meth)acryl acid diethylene glycol, tetraethylene glycol (meth)acrylate, tetraethylene glycol methoxy(meth)acrylate, and the like.

単位(a-2)の含有量としては、重合体粒子(A)を構成するビニル単量体(a)の全質量に対して10%~40質量%、より好ましくは20~40質量%含まれることが好ましい。上記含有量が上記範囲にある場合、前記紫外線吸収性ビニル単量体とその他のビニル単量体との反応が好ましく進行する傾向にあり、また、重合体粒子(A)の親水性が確保されることに起因して、後述する接着層(I)や積層体(K)を形成した際、透明性の低下を防止できる傾向にある。
なお、本実施形態においては、塗料組成物が複合体(C)とそれとは別体の重合体粒子(A)とを含む場合、複合体(C)に含まれる重合体粒子と、それとは別体の重合体粒子(A)の合計量として上記含有量を算出する。
The content of the unit (a-2) is 10% to 40% by mass, more preferably 20 to 40% by mass, based on the total mass of the vinyl monomer (a) constituting the polymer particles (A). preferably When the content is within the above range, the reaction between the UV-absorbing vinyl monomer and other vinyl monomers tends to proceed favorably, and the hydrophilicity of the polymer particles (A) is ensured. Due to this, there is a tendency to prevent a decrease in transparency when an adhesive layer (I) or a laminate (K), which will be described later, is formed.
In the present embodiment, when the coating composition contains the composite (C) and the polymer particles (A) separate from it, the polymer particles contained in the composite (C) and the polymer particles separate from it The above content is calculated as the total amount of the polymer particles (A).

本実施形態における重合体粒子(A)は、上記単位(a-1)及び(a-2)以外に、その他のビニル単量体に由来する単位を有していてもよい。その他のビニル単量体としては、特に限定されないが、例えば、(メタ)アクリル酸エステル、(メタ)アクリル酸アルキルエステル、芳香族ビニル化合物、シアン化ビニル化合物の他、カルボキシル基含有ビニル単量体、エポキシ基含有ビニル単量体、カルボニル基含有ビニル単量体、2級及び/又は3級アミド基を有するビニル単量体を挙げることができる。 The polymer particles (A) in the present embodiment may have units derived from other vinyl monomers in addition to the above units (a-1) and (a-2). Examples of other vinyl monomers include, but are not limited to, (meth)acrylic acid esters, (meth)acrylic acid alkyl esters, aromatic vinyl compounds, vinyl cyanide compounds, and carboxyl group-containing vinyl monomers. , epoxy group-containing vinyl monomers, carbonyl group-containing vinyl monomers, and vinyl monomers having secondary and/or tertiary amide groups.

上記(メタ)アクリル酸エステルとしては、特に限定されないが、例えば、アルキル部の炭素数が1~50の(メタ)アクリル酸アルキルエステル、エチレンオキシド基の数が1~100個の(ポリ)オキシエチレンジ(メタ)アクリレート等が挙げられる。 The (meth)acrylic acid ester is not particularly limited, but for example, (meth)acrylic acid alkyl ester having an alkyl portion having 1 to 50 carbon atoms, (poly)oxyethylene having 1 to 100 ethylene oxide groups, di(meth)acrylate and the like.

上記(ポリ)オキシエチレンジ(メタ)アクリレートとしては、特に限定されないが、例えば、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。 The (poly)oxyethylene di(meth)acrylate is not particularly limited, but examples include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, diethylene glycol methoxy(meth)acrylate, di(meth) Examples include tetraethylene glycol acrylate.

上記(メタ)アクリル酸アルキルエステルとしては、特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル等が挙げられる。 Examples of the (meth)acrylic acid alkyl ester include, but are not limited to, methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, Examples include methylcyclohexyl (meth)acrylate, cyclohexyl (meth)acrylate, lauryl (meth)acrylate, and dodecyl (meth)acrylate.

芳香族ビニル化合物としては、特に限定されないが、例えば、スチレン、4-ビニルトルエン等が挙げられる。 Examples of aromatic vinyl compounds include, but are not limited to, styrene, 4-vinyltoluene, and the like.

シアン化ビニル化合物としては、特に限定されないが、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。 Examples of the vinyl cyanide compound include, but are not particularly limited to, acrylonitrile, methacrylonitrile, and the like.

カルボキシル基含有ビニル単量体としては、特に限定されないが、例えば、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、無水マレイン酸、又はイタコン酸、マレイン酸、フマル酸などの2塩基酸のハーフエステル等が挙げられる。カルボキシル基含有のビニル単量体を用いる場合、本実施形態における重合体粒子(A)にカルボキシル基を導入することができ、粒子間の静電的反発力をもたせることでエマルションとしての安定性を向上させ、例えば攪拌時の凝集といった外部からの分散破壊作用への抵抗力が向上する傾向にある。この際、静電的反発力をさらに向上させる観点から、上記導入したカルボキシル基は、一部又は全部を、アンモニアやトリエチルアミン、ジメチルエタノールアミン等のアミン類やNaOH、KOH等の塩基で中和することもできる。 The carboxyl group-containing vinyl monomer is not particularly limited. Half esters of dibasic acids and the like can be mentioned. When a carboxyl group-containing vinyl monomer is used, a carboxyl group can be introduced into the polymer particles (A) in the present embodiment, and the stability as an emulsion is improved by imparting an electrostatic repulsive force between particles. This tends to improve the resistance to external dispersion destruction, such as aggregation during stirring. At this time, from the viewpoint of further improving the electrostatic repulsion, the introduced carboxyl groups are partially or wholly neutralized with ammonia, amines such as triethylamine and dimethylethanolamine, and bases such as NaOH and KOH. can also

上記エポキシ基含有ビニル単量体としては、特に限定されないが、例えば、グリシジル基含有ビニル単量体等が挙げられる。グリシジル基含有ビニル単量体としては、特に限定されないが、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、アリルジメチルグリシジルエーテル等を挙げることができる。 Examples of the epoxy group-containing vinyl monomer include, but are not particularly limited to, glycidyl group-containing vinyl monomers. Examples of glycidyl group-containing vinyl monomers include, but are not particularly limited to, glycidyl (meth)acrylate, allyl glycidyl ether, allyl dimethyl glycidyl ether, and the like.

上記カルボニル含有ビニル単量体としては、特に限定されないが、例えば、ダイアセトンアクリルアミド等が挙げられる。 Examples of the carbonyl-containing vinyl monomer include, but are not particularly limited to, diacetone acrylamide.

上記2級及び/又は3級アミド基を有するビニル単量体としては、特に限定されないが、例えば、N-アルキル又はN-アルキレン置換(メタ)アクリルアミド等を例示することができる。具体的には、例えば、N-メチルアクリルアミド、N-メチルメタアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタアクリルアミド、N,N-ジエチルアクリルアミド、N-エチルメタアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-エチルメタアクリルアミド、N-イソプロピルアクリルアミド、N-n-プロピルアクリルアミド、N-イソプロピルメタアクリルアミド、N-n-プロピルメタアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-アクリロイルピロリジン、N-メタクリロイルピロリジン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルヘキサヒドロアゼピン、N-アクリロイルモルホリン、N-メタクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N-ビニルアセトアミド、ダイアセトンアクリルアミド、ダイアセトンメタアクリルアミド、N-メチロールアクリルアミド、N-メチロールメタアクリルアミド等を挙げることができる。 Vinyl monomers having a secondary and/or tertiary amide group are not particularly limited, but may include, for example, N-alkyl or N-alkylene substituted (meth)acrylamides. Specifically, for example, N-methylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide, N-ethylmethacrylamide , N-methyl-N-ethylacrylamide, N-methyl-N-ethylmethacrylamide, N-isopropylacrylamide, Nn-propylacrylamide, N-isopropylmethacrylamide, Nn-propylmethacrylamide, N-methyl- Nn-propylacrylamide, N-methyl-N-isopropylacrylamide, N-acryloylpyrrolidine, N-methacryloylpyrrolidine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylhexahydroazepine, N-acryloylmorpholine, N- Methacryloylmorpholine, N-vinylpyrrolidone, N-vinylcaprolactam, N,N'-methylenebisacrylamide, N,N'-methylenebismethacrylamide, N-vinylacetamide, diacetoneacrylamide, diacetonemethacrylamide, N-methylolacrylamide , N-methylol methacrylamide, and the like.

また、上記以外のビニル単量体の具体例としては、特に限定されないが、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類、ブタジエン等のジエン類、塩化ビニル、塩化ビニリデンフッ化ビニル、テトラフルオロエチレン、クロロトリフルオロエチレン等のハロオレフィン類、酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、安息香酸ビニル、p-t-ブチル安息香酸ビニル、ピバリン酸ビニル、2-エチルヘキサン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル等のカルボン酸ビニルエステル類、酢酸イソプロペニル、プロピオン酸イソプロペニル等のカルボン酸イソプロペニルエステル類、エチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル類、酢酸アリル、安息香酸アリル等のアリルエステル類、アリルエチルエーテル、アリルフェニルエーテル等のアリルエーテル類、さらに4-(メタ)アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(メタ)アクリロイルオキシ-1,2,2,6,6-ペンタメチルピペリジン、パーフルオロメチル(メタ)アクリレート、パーフルオロプロピル(メタ)アクリレート、パーフルオロプロピロメチル(メタ)アクリレート、ビニルピロリドン、トリメチロールプロパントリ(メタ)アクリレート、(メタ)アクリル酸アリル等やそれらの併用が挙げられる。 Further, specific examples of vinyl monomers other than the above are not particularly limited, but include, for example, olefins such as ethylene, propylene, and isobutylene; dienes such as butadiene; vinyl chloride; , Haloolefins such as chlorotrifluoroethylene, vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl benzoate, vinyl pt-butyl benzoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl versatate , carboxylic acid vinyl esters such as vinyl laurate, carboxylic acid isopropenyl esters such as isopropenyl acetate and isopropenyl propionate, vinyl ethers such as ethyl vinyl ether, isobutyl vinyl ether and cyclohexyl vinyl ether, allyl acetate and allyl benzoate allyl esters, allyl ethers such as allyl ethyl ether and allyl phenyl ether, 4-(meth)acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-(meth)acryloyloxy-1,2, 2,6,6-pentamethylpiperidine, perfluoromethyl (meth) acrylate, perfluoropropyl (meth) acrylate, perfluoropropyl (meth) acrylate, vinylpyrrolidone, trimethylolpropane tri (meth) acrylate, (meth) ) Allyl acrylate and the like, and their combined use.

前記重合体粒子(A)は乳化剤に由来する構造を有していてもよい。乳化剤としては、特に限定されず、例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸などの酸性乳化剤;酸性乳化剤のアルカリ金属(Li、Na、K、など)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸などのアニオン性界面活性剤;アルキルトリメチルアンモニウムブロミド、アルキルピリジニウムブロミド、イミダゾリニウムラウレートなどの四級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩型のカチオン性界面活性剤;ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンボロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテルなどのノニオン型界面活性剤やラジカル重合性の二重結合を有する反応性乳化剤などが挙げられる。 The polymer particles (A) may have a structure derived from an emulsifier. The emulsifier is not particularly limited, and examples thereof include acidic emulsifiers such as alkylbenzenesulfonic acid, alkylsulfonic acid, alkylsulfosuccinic acid, polyoxyethylene alkylsulfuric acid, polyoxyethylene alkylarylsulfuric acid, and polyoxyethylene distyrylphenyl ether sulfonic acid; Anionic surfactants such as alkali metal (Li, Na, K, etc.) salts of acidic emulsifiers, ammonium salts of acidic emulsifiers, fatty acid soaps; quaternaries such as alkyltrimethylammonium bromide, alkylpyridinium bromide, imidazolinium laurate Ammonium salt, pyridinium salt, imidazolinium salt type cationic surfactant; nonionic such as polyoxyethylene alkylaryl ether, polyoxyethylene sorbitan fatty acid ester, polyoxyethyleneoxypropylene block copolymer, polyoxyethylene distyrylphenyl ether type surfactants and reactive emulsifiers having radically polymerizable double bonds.

前記ラジカル重合性の二重結合を有する反応性乳化剤としては、以下に限定されるものではないが、例えば、エレミノールJS-2(商品名、三洋化成株式会社製)、ラテムルS-120、S-180A又はS-180(商品名、花王株式会社製)、アクアロンHS-10、KH-1025、RN-10、RN-20、RN30、RN50(商品名、第一工業製薬株式会社製)、アデカリアソープSE1025、SR-1025、NE-20、NE-30、NE-40(商品名、旭電化工業株式会社製)、p-スチレンスルホン酸のアンモニウム塩、p-スチレンスルホン酸のナトリウム塩、p-スチレンスルホン酸のカリウム塩、2-スルホエチルアクリレートなどのアルキルスルホン酸(メタ)アクリレートやメチルプロパンスルホン酸(メタ)アクリルアミド、アリルスルホン酸のアンモニウム塩、アリルスルホン酸のナトリウム塩、アリルスルホン酸のカリウム塩などが挙げられる。 Examples of the reactive emulsifier having a radically polymerizable double bond include, but are not limited to, Eleminol JS-2 (trade name, manufactured by Sanyo Kasei Co., Ltd.), Latemul S-120, S- 180A or S-180 (trade name, manufactured by Kao Corporation), Aqualon HS-10, KH-1025, RN-10, RN-20, RN30, RN50 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Adekaria Soap SE1025, SR-1025, NE-20, NE-30, NE-40 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), ammonium salt of p-styrenesulfonic acid, sodium salt of p-styrenesulfonic acid, p- Potassium salt of styrenesulfonic acid, alkylsulfonic acid (meth)acrylate such as 2-sulfoethyl acrylate, methylpropanesulfonic acid (meth)acrylamide, ammonium salt of allylsulfonic acid, sodium salt of allylsulfonic acid, potassium allylsulfonic acid Examples include salt.

本実施形態において、前記重合体粒子(A)は連鎖移動剤を含むことが好ましい。すなわち、本実施形態の塗料組成物は、連鎖移動剤を含むことが好ましい。連鎖移動剤としては、特に限定されず、例えば、オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン、t-テトラデシルメルカプタンなどのメルカプタン類;ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィドなどのキサントゲンジスルフィド類;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィドなどのチウラムジスルフィド類;四塩化炭素、臭化エチレンなどのハロゲン化炭化水素類;ペンタフェニルエタンなどの炭化水素類;及びアクロレイン、メタクロレイン、アリルアルコール、2-エチルヘキシルチオグリコレート、タービノーレン、α-テルピネン、γ-テルピネン、ジペンテン、α-メチルスチレンダイマー(2,4-ジフェニル-4-メチル-1-ペンテンが50重量%以上のものが好ましい)、さらに9,10-ジヒドロアントラセン、1,4-ジヒドロナフタレン、インデン、1,4-シクロヘキサジエン等の不飽和環状炭化水素化合物;キサンテン、2,5-ジヒドロフラン等の不飽和ヘテロ環状化合物等が挙げられる。これらは、単独でも2種以上を組合せて使用してもよい。
本実施形態の塗料組成物における連鎖移動剤の含有量としては、特に限定されないが、塗料安定性及び接着層(I)の密着性の観点から、単位(a)100質量%に対して、0.1質量%~2質量%以下であることが好ましく、より好ましくは0.25質量%~1質量%である。
なお、本実施形態においては、塗料組成物が複合体(C)とそれとは別体の重合体粒子(A)とを含む場合、複合体(C)に含まれる重合体粒子と、それとは別体の重合体粒子(A)の合計量として上記含有量を算出する。
In this embodiment, the polymer particles (A) preferably contain a chain transfer agent. That is, the coating composition of this embodiment preferably contains a chain transfer agent. The chain transfer agent is not particularly limited, and examples thereof include mercaptans such as octylmercaptan, n-dodecylmercaptan, t-dodecylmercaptan, n-hexadecylmercaptan, n-tetradecylmercaptan, and t-tetradecylmercaptan; dimethylxanthogen; xanthogen disulfides such as disulfide, diethyl xanthogen disulfide and diisopropyl xanthogen disulfide; thiuram disulfides such as tetramethylthiuram disulfide, tetraethyl thiuram disulfide and tetrabutyl thiuram disulfide; halogenated hydrocarbons such as carbon tetrachloride and ethylene bromide; Hydrocarbons such as phenylethane; and acrolein, methacrolein, allyl alcohol, 2-ethylhexylthioglycolate, terbinolene, α-terpinene, γ-terpinene, dipentene, α-methylstyrene dimer (2,4-diphenyl-4- 50% by weight or more of methyl-1-pentene is preferable), and unsaturated cyclic hydrocarbon compounds such as 9,10-dihydroanthracene, 1,4-dihydronaphthalene, indene, and 1,4-cyclohexadiene; xanthene, Examples include unsaturated heterocyclic compounds such as 2,5-dihydrofuran. These may be used alone or in combination of two or more.
The content of the chain transfer agent in the coating composition of the present embodiment is not particularly limited, but from the viewpoint of coating stability and adhesion of the adhesive layer (I), 0 0.1 mass % to 2 mass % or less, more preferably 0.25 mass % to 1 mass %.
In the present embodiment, when the coating composition contains the composite (C) and the polymer particles (A) separate from it, the polymer particles contained in the composite (C) and the polymer particles separate from it The above content is calculated as the total amount of the polymer particles (A).

本実施形態に用いる重合体粒子(A)の調製方法としては、特に限定されず、例えば、乳化重合や溶液重合等、種々の調製方法が選択できるが、水及び乳化剤の存在下に、ビニル単量体を乳化重合して調製することが好ましい。すなわち、重合体粒子(A)は水及び乳化剤の存在下に、ビニル単量体(a)を重合する調製方法によって得られる重合体粒子(ビニル単量体(a)に由来する単位(a)を有するエマルション粒子)であることが好ましい。換言すると、重合体粒子(A)は、乳化剤とビニル単量体(a)とに由来する重合体粒子(ビニル単量体(a)に由来する単位(a)を有するエマルション粒子)であることが好ましい。このようにして得られる重合体粒子(A)が接着層に含まれる場合、基材への密着性の維持により優れる傾向にある。なお、上記のようにして得られる重合体粒子(A)には、典型的には、水が同伴することから、本実施形態に用いる塗料組成物は水系塗料組成物であることが好ましい。ここで、「水系」とは、後述する溶媒(M)に含まれる成分の中で最も多い成分が水であることを意味する。 The method for preparing the polymer particles (A) used in the present embodiment is not particularly limited, and various preparation methods such as emulsion polymerization and solution polymerization can be selected. It is preferably prepared by emulsion polymerization of the polymer. That is, the polymer particles (A) are polymer particles (units (a) is preferably an emulsion particle having In other words, the polymer particles (A) are polymer particles derived from the emulsifier and the vinyl monomer (a) (emulsion particles having units (a) derived from the vinyl monomer (a)). is preferred. When the polymer particles (A) thus obtained are contained in the adhesive layer, there is a tendency that the adhesion to the substrate is maintained more excellently. Since the polymer particles (A) obtained as described above are typically accompanied by water, the coating composition used in the present embodiment is preferably a water-based coating composition. Here, "aqueous" means that water is the most abundant component among the components contained in the solvent (M) described later.

重合体粒子(A)の調製において、重合開始剤を使用することができる。前記重合開始剤としては、特に限定されないが、例えば過酸化水素、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイドなどのハイドロパーオキサイド類、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等のパーオキサイド類、及び2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)プロピオンアミド]}、2,2’-アゾビス[(2-メチルプロピオンアミジン)ジハイドロクロライド]、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチル-プロピオンジアミン]四水塩、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等のアゾ化合物類などの有機系重合開始剤、並びに過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩などの無機系重合開始剤などが挙げられる。また、重亜硫酸ナトリウム、アスコルビン酸及びその塩等の還元剤を重合開始剤と組合せて用いる、いわゆるレドックス系重合開始剤も使用することができる。 A polymerization initiator can be used in the preparation of the polymer particles (A). Examples of the polymerization initiator include, but are not limited to, hydroperoxides such as hydrogen peroxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, and paramenthane hydroperoxide; oxides, and 2,2′-azobis{2-methyl-N-[2-(1-hydroxybutyl)propionamide]}, 2,2′-azobis[(2-methylpropionamidine) dihydrochloride], 2,2'-azobis[N-(2-carboxyethyl)-2-methyl-propiondiamine]tetrahydrate, 2,2'-azobis(2,4-dimethylvaleronitrile), azobisisobutyronitrile, etc. and inorganic polymerization initiators such as persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate. A so-called redox polymerization initiator, which uses a reducing agent such as sodium bisulfite, ascorbic acid and salts thereof in combination with a polymerization initiator, can also be used.

[単位(a)の重量平均分子量]
本実施形態において、前記単位(a)の重量平均分子量は、1万以上500万以下である。上記重量平均分子量が前記範囲内にあることで、塗料組成物中に紫外線吸収性剤が併存する場合でも塗料安定性に優れ、後述する接着層(I)、及び、積層体(K)を形成した際、透明性、密着性、及び耐候性に優れる。また、塗料安定性のさらなる向上、及び後述する接着層(I)の密着性の観点から、前記単位(a)の重量平均分子量は100万以下であることがより好ましく、前記重合体粒子(A)合成時の安定性の観点から、前記単位(a)の重量平均分子量は10万以上であることがより好ましい。
なお、本実施形態においては、塗料組成物が複合体(C)とそれとは別体の重合体粒子(A)とを含む場合、重合体粒子(A)中の単位(a)の含有量W1及び重量平均分子量Mw1と複合体(C)中の単位(a)の含有量W2及び重量平均分子量Mw2より次式にて当該塗料組成物中の単位(a)の重量平均分子量Mwを算出することとする。
Mw={Mw1×(W1/(W1+W2))+Mw2×(W2/(W1+W2))}/2
単位(a)の重量平均分子量は、後述する実施例に記載の方法に基づいて測定することができる。また、単位(a)の重量平均分子量は、例えば、前述した連鎖移動剤の使用等により上述した範囲に調整することができる。
[Weight average molecular weight of unit (a)]
In this embodiment, the unit (a) has a weight average molecular weight of 10,000 or more and 5,000,000 or less. When the weight-average molecular weight is within the above range, excellent coating stability is achieved even when an ultraviolet absorber is present in the coating composition, and an adhesive layer (I) and a laminate (K), which will be described later, are formed. When coated, it has excellent transparency, adhesion and weather resistance. Further, from the viewpoint of further improving the coating stability and the adhesiveness of the adhesive layer (I) described later, the weight average molecular weight of the unit (a) is more preferably 1,000,000 or less, and the polymer particles (A ) From the viewpoint of stability during synthesis, the weight-average molecular weight of the unit (a) is more preferably 100,000 or more.
In the present embodiment, when the coating composition contains the composite (C) and the polymer particles (A) separate therefrom, the content W1 of the unit (a) in the polymer particles (A) And from the weight average molecular weight Mw1 and the content W2 and weight average molecular weight Mw2 of the unit (a) in the composite (C), the weight average molecular weight Mw of the unit (a) in the coating composition is calculated by the following formula. and
Mw={Mw1×(W1/(W1+W2))+Mw2×(W2/(W1+W2))}/2
The weight-average molecular weight of unit (a) can be measured based on the method described in Examples below. Moreover, the weight average molecular weight of the unit (a) can be adjusted to the range described above by using, for example, the chain transfer agent described above.

[重合体粒子(A)の平均粒子径]
本実施形態における重合体粒子(A)の平均粒子径は、動的光散乱法により観測される粒子の大きさから求められる。重合体粒子(A)の平均粒子径は、特に限定されないが、200nm以下であることが好ましい。重合体粒子(A)の平均粒子径を上記範囲に調整することにより、基材との接触面積向上により密着性がより一層優れた接着層を形成できる傾向にある。また、後述する接着層(I)の透明性向上の観点から、平均粒子径は100nm以下であることがより好ましく、貯蔵安定性が良好となる観点から、10nm以上であることが好ましく、50nm以上であることがより好ましい。重合体粒子(A)の平均粒子径は、後述する実施例に記載の方法に基づいて測定することができる。重合体粒子(A)の平均粒子径は、例えば、重合条件等により上述した範囲に調整することができる。
[Average particle size of polymer particles (A)]
The average particle size of the polymer particles (A) in the present embodiment is obtained from the size of particles observed by a dynamic light scattering method. Although the average particle size of the polymer particles (A) is not particularly limited, it is preferably 200 nm or less. By adjusting the average particle size of the polymer particles (A) within the above range, there is a tendency that the contact area with the substrate is increased, thereby forming an adhesive layer with even better adhesion. Further, from the viewpoint of improving the transparency of the adhesive layer (I) described later, the average particle size is more preferably 100 nm or less, and from the viewpoint of good storage stability, it is preferably 10 nm or more, and 50 nm or more. is more preferable. The average particle size of the polymer particles (A) can be measured based on the method described in Examples below. The average particle size of the polymer particles (A) can be adjusted within the range described above, for example, by controlling the polymerization conditions.

本実施形態における重合体粒子(A)の含有量は、透明性、密着性及び耐候性により優れた塗膜を得る観点から、塗料組成物100質量%に対して、1%~40%が好ましく、2%~20%がより好ましく、4%~10%がさらに好ましい。
また、接着層(I)を形成した際、接着層100質量%に対する重合体粒子(A)の含有量は、上記と同様の観点から、20%~60%であることが好ましく、より好ましくは25%~50%である。
なお、本実施形態においては、塗料組成物が複合体(C)とそれとは別体の重合体粒子(A)とを含む場合、複合体(C)に含まれる重合体粒子と、それとは別体の重合体粒子(A)の合計量として上記含有量を算出する。
The content of the polymer particles (A) in the present embodiment is preferably 1% to 40% with respect to 100% by mass of the coating composition, from the viewpoint of obtaining a coating film having excellent transparency, adhesion and weather resistance. , more preferably 2% to 20%, even more preferably 4% to 10%.
Further, when the adhesive layer (I) is formed, the content of the polymer particles (A) with respect to 100% by mass of the adhesive layer is preferably 20% to 60%, more preferably from the same viewpoint as above. 25% to 50%.
In the present embodiment, when the coating composition contains the composite (C) and the polymer particles (A) separate from it, the polymer particles contained in the composite (C) and the polymer particles separate from it The above content is calculated as the total amount of the polymer particles (A).

[無機酸化物(B)]
本実施形態の塗料組成物は、必須成分として無機酸化物(B)を含む。塗料組成物が無機酸化物(B)を含むことで、後述する接着層(I)とハードコート層(J)の相互作用によって、後述する積層体(K)を形成した際の透明性、密着性、耐熱性に優れる。
[Inorganic oxide (B)]
The coating composition of this embodiment contains an inorganic oxide (B) as an essential component. When the coating composition contains the inorganic oxide (B), the interaction between the adhesive layer (I) and the hard coat layer (J) described later improves the transparency and adhesion when the laminate (K) described later is formed. Excellent durability and heat resistance.

本実施形態における無機酸化物(B)の具体例としては、以下に限定されないが、ケイ素、アルミニウム、チタン、ジルコニウム、亜鉛、セリウム、スズ、インジウム、ガリウム、ゲルマニウム、アンチモン、モリブデン、ニオブ、マグネシウム、ビスマス、コバルト、銅などの酸化物が挙げられる。これらは単体であっても混合物でもよい。 Specific examples of the inorganic oxide (B) in the present embodiment include, but are not limited to, silicon, aluminum, titanium, zirconium, zinc, cerium, tin, indium, gallium, germanium, antimony, molybdenum, niobium, magnesium, Oxides of bismuth, cobalt, copper and the like are included. These may be used singly or as a mixture.

前記無機酸化物(B)は、ハードコート層との密着性の観点から、乾式シリカやコロイダルシリカに代表される、シリカ粒子が好ましい。また、水性分散液の形態でも使用できるため、コロイダルシリカが好ましい。 From the viewpoint of adhesion to the hard coat layer, the inorganic oxide (B) is preferably silica particles typified by dry silica and colloidal silica. Colloidal silica is also preferred because it can be used in the form of an aqueous dispersion.

[無機酸化物(B)の形状]
本実施形態における無機酸化物(B)の形状は、以下に限定されないが、例えば、球状、角状、多面体形状、楕円状、扁平状、線状、数珠状、鎖状などのうち1種または2種以上の混合物が挙げられる。本実施形態において、積層体(K)の透明性、耐摩耗性の観点から、無機酸化物(B)は、球状、及び/又は数珠状や鎖状等の連結構造を有するものであることが好ましい。さらに、後述する接着層(I)とハードコート層(J)との密着性の観点から、無機酸化物(B)は、数珠状や鎖状等の連結構造を有するものことがより好ましい。ここで、数珠状とは、球状の一次粒子が数珠状に連結した構造であり、鎖状とは、球状の一次粒子が鎖状に連結した構造である。本実施形態においては、無機酸化物(B)が球状、及び/又は連結構造を有するシリカであることがとりわけ好ましく、連結構造を有するシリカであることが最も好ましい。
[Shape of inorganic oxide (B)]
The shape of the inorganic oxide (B) in the present embodiment is not limited to the following; Mixtures of two or more are included. In the present embodiment, from the viewpoint of the transparency and wear resistance of the laminate (K), the inorganic oxide (B) has a connecting structure such as a spherical shape and/or a beaded or chain shape. preferable. Furthermore, from the viewpoint of adhesion between the adhesive layer (I) and the hard coat layer (J), which will be described later, the inorganic oxide (B) more preferably has a beaded or chained structure. Here, the beaded structure means a structure in which spherical primary particles are connected in a beaded shape, and the chain structure means a structure in which spherical primary particles are connected in a chain shape. In the present embodiment, the inorganic oxide (B) is particularly preferably spherical and/or silica having a linked structure, and most preferably silica having a linked structure.

本実施形態における無機酸化物(B)の平均粒子径は、水系原料組成物の貯蔵安定性が良好となる観点から、2nm以上であることが好ましい。積層体全体としての透明性が良好となる観点から、150nm以下であることが好ましく、より好ましくは100nm以下である。このため、一次平均粒子径は、好ましくは2nm以上100nm以下であり、より好ましくは2nm以上50nm以下であり、さらに好ましくは4nm以上50nm以下である。平均粒子径は、以下に限定されないが、例えば、後述する実施例に記載の方法(動的光散乱法)に基づいて測定することができる。 The average particle size of the inorganic oxide (B) in the present embodiment is preferably 2 nm or more from the viewpoint of good storage stability of the aqueous raw material composition. From the viewpoint of good transparency of the laminate as a whole, the thickness is preferably 150 nm or less, more preferably 100 nm or less. Therefore, the average primary particle size is preferably 2 nm or more and 100 nm or less, more preferably 2 nm or more and 50 nm or less, and still more preferably 4 nm or more and 50 nm or less. The average particle size is not limited to the following, but can be measured, for example, based on the method (dynamic light scattering method) described in Examples below.

[無機酸化物(B)として好適に用いられるコロイダルシリカ]
本実施形態で好適に用いられる水を分散溶媒とする酸性のコロイダルシリカとしては、特に限定されないが、ゾル-ゲル法で調製して使用することもでき、市販品を利用することもできる。ゾル-ゲル法で調製する場合には、Werner Stober etal;J.Colloid and Interface Sci.,26,62-69(1968)、Rickey D.Badley et al;Lang muir 6,792-801(1990)、色材協会誌,61[9]488-493(1988)などを参照できる。
市販品を利用する場合、例えば、スノーテックス-O、スノーテックス-OS、スノーテックス-OXS、スノーテックス-O-40、スノーテックス-OL、スノーテックスOYL、スノーテックス-OUP、スノーテックス-PS-SO、スノーテックス-PS-MO、スノーテックス-AK-XS、スノーテックス-AK、スノーテックス-AK-L、スノーテックス-AK-YL、スノーテックス-AK-PS-S(商品名、日産化学工業株式会社製)、アデライトAT-20Q(商品名、旭電化工業株式会社製)、クレボゾール20H12、クレボゾール30CAL25(商品名、クラリアントジャパン株式会社製)などが挙げられる。
[Colloidal silica suitably used as inorganic oxide (B)]
Acidic colloidal silica having water as a dispersion solvent, which is preferably used in the present embodiment, is not particularly limited, but it can be prepared and used by a sol-gel method, and commercially available products can also be used. When prepared by a sol-gel method, see Werner Stober et al; Colloid and Interface Sci. , 26, 62-69 (1968), Rickey D. Badley et al; Lang muir 6, 792-801 (1990), Journal of the Society of Color Materials, 61 [9] 488-493 (1988).
When using commercially available products, for example, Snowtex-O, Snowtex-OS, Snowtex-OXS, Snowtex-O-40, Snowtex-OL, Snowtex-OYL, Snowtex-OUP, Snowtex-PS- SO, Snowtex-PS-MO, Snowtex-AK-XS, Snowtex-AK, Snowtex-AK-L, Snowtex-AK-YL, Snowtex-AK-PS-S (trade name, Nissan Chemical Industries Co., Ltd.), Adelite AT-20Q (trade name, Asahi Denka Kogyo Co., Ltd.), Clevosol 20H12, and Clevosol 30CAL25 (trade name, Clariant Japan Co., Ltd.).

また、塩基性のコロイダルシリカとしては、アルカリ金属イオン、アンモニウムイオン、アミンの添加で安定化したシリカがあり、特に限定されないが、例えば、スノーテックス-20、スノーテックス-30、スノーテックス-XS、スノーテックス-50、スノーテックス-30L、スノーテックス-XL、スノーテックス-YL、スノーテックスZL、スノーテックス-UP、スノーテックス-ST-PS-S、スノーテックスST-PS-M、スノーテックス-C、スノーテックス-CXS、スノーテックス-CM、スノーテックス-N、スノーテックス-NXS、スノーテックス-NS、スノーテックス-N-40(商品名、日産化学工業株式会社製)、アデライトAT-20、アデライトAT-30、アデライトAT-20N、アデライトAT-30N、アデライトAT-20A、アデライトAT-30A、アデライトAT-40、アデライトAT-50(商品名、旭電化工業株式会社製)、クレボゾール30R9、クレボゾール30R50、クレボゾール50R50(商品名、クラリアントジャパン株式会社製)、ルドックスHS-40、ルドックスHS-30、ルドックスLS、ルドックスAS-30、ルドックスSM-AS、ルドックスAM、ルドックスHSA及びルドックスSM(商品名、デュポン社製)などが挙げられる。 Examples of basic colloidal silica include silica stabilized by the addition of alkali metal ions, ammonium ions, and amines, and are not particularly limited. Examples include Snowtex-20, Snowtex-30, Snowtex-XS, Snowtex-50, Snowtex-30L, Snowtex-XL, Snowtex-YL, Snowtex ZL, Snowtex-UP, Snowtex-ST-PS-S, Snowtex ST-PS-M, Snowtex-C , Snowtex-CXS, Snowtex-CM, Snowtex-N, Snowtex-NXS, Snowtex-NS, Snowtex-N-40 (trade name, manufactured by Nissan Chemical Industries, Ltd.), Adelite AT-20, Adelite AT-30, Adelite AT-20N, Adelite AT-30N, Adelite AT-20A, Adelite AT-30A, Adelite AT-40, Adelite AT-50 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), Clevosol 30R9, Clevosol 30R50 , Clevozol 50R50 (trade name, manufactured by Clariant Japan Co., Ltd.), Ludox HS-40, Ludox HS-30, Ludox LS, Ludox AS-30, Ludox SM-AS, Ludox AM, Ludox HSA and Ludox SM (trade name, DuPont company) and the like.

また、水溶性溶媒を分散媒体とするコロイダルシリカとしては、特に限定されないが、例えば、日産化学工業株式会社製MA-ST-M(粒子径が20~25nmのメタノール分散タイプ)、IPA-ST(粒子径が10~15nmのイソプロピルアルコール分散タイプ)、EG-ST(粒子径が10~15nmのエチレングリコール分散タイプ)、EGST-ZL(粒子径が70~100nmのエチレングリコール分散タイプ)、NPC-ST(粒子径が10~15nmのエチレングリコールモノプロピルエーテール分散タイプ)、TOL-ST(粒子径が10~15nmのトルエン分散タイプ)などが挙げられる。 In addition, the colloidal silica that uses a water-soluble solvent as a dispersion medium is not particularly limited. Isopropyl alcohol dispersion type with a particle size of 10 to 15 nm), EG-ST (ethylene glycol dispersion type with a particle size of 10 to 15 nm), EGST-ZL (ethylene glycol dispersion type with a particle size of 70 to 100 nm), NPC-ST (ethylene glycol monopropyl ether dispersion type with a particle size of 10 to 15 nm), TOL-ST (toluene dispersion type with a particle size of 10 to 15 nm), and the like.

乾式シリカ粒子としては、特に限定されないが、例えば、日本アエロジル株式会社製 AEROSIL、株式会社トクヤマ製レオロシールなどが挙げられる。 The dry silica particles are not particularly limited, but examples thereof include AEROSIL manufactured by Nippon Aerosil Co., Ltd., and Rheolosil manufactured by Tokuyama Corporation.

シリカ粒子は、安定剤として無機塩基(水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなど)や有機塩基(テトラメチルアンモニウム、トリエチルアミンなど)を含んでいてもよい。 Silica particles may contain an inorganic base (sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, etc.) or an organic base (tetramethylammonium, triethylamine, etc.) as a stabilizer.

[重合体粒子(A)と無機酸化物(B)の複合体(C)]
本実施形態の塗料組成物において、重合体粒子(A)と無機酸化物(B)とは、両成分の混合により得られる混合物として含まれていてもよく、また、予め重合体粒子(A)と無機酸化物(B)とを複合化して得られる複合体(C)として含まれていてもよい。本実施形態の塗料組成物は、塗料安定性、及び、後述する接着層(I)や積層体(K)の透明性の観点から、複合体(C)を含むことが好ましい。重合体粒子(A)と無機酸化物(B)の複合体(C)は、例えば、無機酸化物(B)の存在下に、前述した重合体粒子(A)を構成するビニル単量体を重合することで得られる。当該ビニル単量体は、無機酸化物(B)との相互作用の観点から、前述した水酸基含有ビニル単量体、及び/又は、2級及び/又は3級アミド基を有するビニル単量体を含むことが好ましく、それによって無機酸化物(B)の水酸基との水素結合により、好ましく複合体(C)が形成される傾向にある。
[Composite (C) of polymer particles (A) and inorganic oxide (B)]
In the coating composition of the present embodiment, the polymer particles (A) and the inorganic oxide (B) may be contained as a mixture obtained by mixing both components, or the polymer particles (A) may be It may be contained as a composite (C) obtained by combining with the inorganic oxide (B). The coating composition of the present embodiment preferably contains the composite (C) from the viewpoint of coating stability and the transparency of the adhesive layer (I) and laminate (K) described below. The composite (C) of the polymer particles (A) and the inorganic oxide (B) is obtained by, for example, adding the vinyl monomer constituting the polymer particles (A) in the presence of the inorganic oxide (B). Obtained by polymerization. From the viewpoint of interaction with the inorganic oxide (B), the vinyl monomer is the above-mentioned hydroxyl group-containing vinyl monomer and/or a vinyl monomer having a secondary and/or tertiary amide group. It is preferable to contain the inorganic oxide (B), whereby the complex (C) tends to preferably be formed by hydrogen bonding with the hydroxyl group of the inorganic oxide (B).

本実施形態において、重合体粒子(A)と無機酸化物(B)との混合物、及び/又は、複合体(C)の平均粒子径が、後述する接着層(I)、及び、積層体(K)の透明性の観点から、2nm以上200nm以下であることが好ましく、50nm以上150nm以下であることがより好ましい。上記平均粒子径は、動的光散乱法により観測される粒子の大きさから求められる。 In the present embodiment, the mixture of the polymer particles (A) and the inorganic oxide (B) and / or the average particle size of the composite (C) is the adhesive layer (I) described later and the laminate ( From the viewpoint of transparency of K), the thickness is preferably 2 nm or more and 200 nm or less, more preferably 50 nm or more and 150 nm or less. The average particle size is obtained from the size of particles observed by a dynamic light scattering method.

[塗料組成物の全固形分に対する無機酸化物(B)の質量比]
本実施形態において、後述する接着層(I)や積層体(K)の透明性、密着性、耐熱性の観点から、塗料組成物の全固形分に対する前記無機酸化物(B)の質量比が、25%~60%であることが好ましく、35%~50%であることがより好ましい。ここで、塗料組成物の全固形分とは、塗料組成物中に含まれる揮発成分以外の成分の合計重量を表す。塗料中の揮発成分としては、後述する溶媒(M)が主に該当する。なお、本実施形態においては、塗料組成物が複合体(C)とそれとは別体の無機酸化物(B)とを含む場合、複合体(C)に含まれる無機酸化物と、それとは別体の無機酸化物(B)の合計量として上記質量比を算出する。
[Mass ratio of inorganic oxide (B) to total solid content of coating composition]
In the present embodiment, from the viewpoint of the transparency, adhesion, and heat resistance of the adhesive layer (I) and laminate (K) described later, the mass ratio of the inorganic oxide (B) to the total solid content of the coating composition is , preferably 25% to 60%, more preferably 35% to 50%. Here, the total solid content of the coating composition represents the total weight of components other than volatile components contained in the coating composition. A solvent (M), which will be described later, mainly corresponds to the volatile component in the paint. In the present embodiment, when the coating composition contains the composite (C) and the inorganic oxide (B) separate from it, the inorganic oxide contained in the composite (C) and the inorganic oxide separate from it The above mass ratio is calculated as the total amount of the inorganic oxide (B) in the body.

[有機系紫外線吸収剤(D)]
本実施形態の塗料組成物は、耐候性向上の観点から、有機系紫外線吸収剤(D)を含むことが好ましい。有機系紫外線吸収剤(D)の具体例としては、以下に限定されないが、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’ジメトキシベンゾフェノン(BASF社製の商品名「UVINUL3049」)、2,2’,4,4’-テトラヒドロキシベンゾフェノン(BASF社製の商品名「UVINUL3050」)、4-ドデシルオキシ-2-ヒドロキシベンゾフェノン、5-ベンゾイルー2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-ステアリルオキシベンゾフェノン、4,6-ジベンゾイルレゾルチノール、などのベンゾフェノン系紫外線吸収剤;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-オクチルフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’,5’-ビス(α,α’-ジメチルベンジル)フェニル〕ベンゾトリアゾール)、メチル-3-〔3-tert-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル〕プロピオネートとポリエチレングリコール(分子量300)との縮合物(BASF社製の商品名「TINUVIN1130」)、イソオクチル-3-〔3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル〕プロピオネート(BASF社製の商品名「TINUVIN384」)、2-(3-ドデシル-5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール(BASF社製の商品名「TINUVIN571」)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクトキシフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル〕ベンゾトリアゾール、2,2-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製の商品名「TINUVIN900」)、TINUVIN384-2、TINUVIN326、TINUVIN327、TINUVIN109、TINUVIN970、TINUVIN328、TINUVIN171、TINUVIN970、TINUVIN PS、TINUVIN P、TINUVIN99-2、TINVIN928(商品名、BASF社製)などのベンゾトリアゾール系紫外線吸収剤;2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシー4-ブチルオキシフェニル)-6-(2,4-ビスブチルオキシフェニル)-1,3,5-トリアジン(BASF社製の商品名「TINUVIN460」)、2-(2-ヒドロキシ-4-[1-オクチロキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(BASF社製の商品名「TINUVIN479」)、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンと2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンとを含む混合物(BASF社製の商品名「TINUVIN400」)、TINUVIN405、TINUVIN477、TINUVIN1600(商品名、BASF社製)などのトリアジン系紫外線吸収剤;HOSTAVIN PR25、HOSTAVIN B-CAP、HOSTAVIN VSU(商品名、クラリアント社製)、などのマロン酸エステル系紫外線吸収剤;HOSTAVIN3206 LIQ、HOSTAVINVSU P、HOSTAVIN3212 LIQ(商品名、クラリアント社製)、などのアニリド系紫外線吸収剤;アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-イソプロパノールフェニルサリシレート、などのサリシレート系紫外線吸収剤などが挙げられる。
有機系紫外線吸収剤(D)としては、1種を単独で用いてもよく、2種以上を併用してもよい。有機系紫外線吸収剤(D)は、耐候性の観点から、トリアジン系紫外線吸収剤を含むことが好ましく、2-(2-ヒドロキシ-4-[1-オクチロキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、及び/又は、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンと2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンとを含む混合物を含むことがより好ましい。
[Organic UV absorber (D)]
From the viewpoint of improving weather resistance, the coating composition of the present embodiment preferably contains an organic ultraviolet absorber (D). Specific examples of the organic ultraviolet absorber (D) include, but are not limited to, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, bis(5-benzoyl-4-hydroxy-2-methoxyphenyl)methane , 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone (trade name “UVINUL3049” manufactured by BASF), 2,2′,4,4′-tetrahydroxy Benzophenone (trade name "UVINUL3050" manufactured by BASF), 4-dodecyloxy-2-hydroxybenzophenone, 5-benzoyl-2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2-hydroxy -benzophenone UV absorbers such as 4-stearyloxybenzophenone, 4,6-dibenzoylresortinol; 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy- 5'-tert-butylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzo triazole, 2-(2-hydroxy-3,5-di-tert-octylphenyl)benzotriazole, 2-[2'-hydroxy-3',5'-bis(α,α'-dimethylbenzyl)phenyl]benzo triazole), a condensate of methyl-3-[3-tert-butyl-5-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate and polyethylene glycol (molecular weight 300) (manufactured by BASF) name “TINUVIN1130”), isooctyl-3-[3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl]propionate (trade name “TINUVIN384” manufactured by BASF), 2- (3-dodecyl-5-methyl-2-hydroxyphenyl) benzotriazole (trade name "TINUVIN571" manufactured by BASF), 2-(2'-hydroxy- 3′-tert-butyl-5′-methylphenyl)-5-chlorobenzotriazole, 2-(2′-hydroxy-3′,5′-di-tert-amylphenyl)benzotriazole, 2-(2′- hydroxy-4′-octoxyphenyl)benzotriazole, 2-[2′-hydroxy-3′-(3″,4″,5″,6″-tetrahydrophthalimidomethyl)-5′-methylphenyl]benzotriazole, 2,2-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(2H-benzotriazol-2-yl)- 4,6-bis(1-methyl-1-phenylethyl)phenol (trade name "TINUVIN900" manufactured by BASF), TINUVIN384-2, TINUVIN326, TINUVIN327, TINUVIN109, TINUVIN970, TINUVIN328, TINUVIN171, TINUVIN970, TINUVIN PS, TINUVIN P, TINUVIN99-2, TINVIN928 (trade name, manufactured by BASF) and other benzotriazole-based ultraviolet absorbers; 2-[4-[(2-hydroxy-3-dodecyloxypropyl)oxy]-2-hydroxyphenyl]- 4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-[4-[(2-hydroxy-3-tridecyloxypropyl)oxy]-2-hydroxyphenyl]-4 ,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2,4-bis(2-hydroxy-4-butyloxyphenyl)-6-(2,4-bisbutyloxyphenyl)- 1,3,5-triazine (trade name “TINUVIN460” manufactured by BASF), 2-(2-hydroxy-4-[1-octyloxycarbonylethoxy]phenyl)-4,6-bis(4-phenylphenyl) -1,3,5-triazine (trade name “TINUVIN479” manufactured by BASF), 2-[4-[(2-hydroxy-3-dodecyloxypropyl)oxy]-2-hydroxyphenyl]-4,6- Bis(2,4-dimethylphenyl)-1,3,5-triazine and 2-[4-[(2-hydroxy-3-tridecyloxypropyl)oxy]-2-hydroxyphenyl]-4,6-bis (2,4-Dimethylphenyl)-1,3,5-triazine (product manufactured by BASF name "TINUVIN400"), TINUVIN405, TINUVIN477, TINUVIN1600 (trade name, manufactured by BASF), and other triazine-based UV absorbers; Ester UV absorbers; Anilide UV absorbers such as HOSTAVIN3206 LIQ, HOSTAVINVSUP, HOSTAVIN3212 LIQ (trade name, manufactured by Clariant); salicylate-based UV absorbers such as p-isopropanol phenyl salicylate;
As the organic ultraviolet absorber (D), one type may be used alone, or two or more types may be used in combination. From the viewpoint of weather resistance, the organic UV absorber (D) preferably contains a triazine UV absorber, such as 2-(2-hydroxy-4-[1-octyloxycarbonylethoxy]phenyl)-4,6 -bis(4-phenylphenyl)-1,3,5-triazine and/or 2-[4-[(2-hydroxy-3-dodecyloxypropyl)oxy]-2-hydroxyphenyl]-4,6 -bis(2,4-dimethylphenyl)-1,3,5-triazine and 2-[4-[(2-hydroxy-3-tridecyloxypropyl)oxy]-2-hydroxyphenyl]-4,6- More preferred is a mixture containing bis(2,4-dimethylphenyl)-1,3,5-triazine.

[単位(a-1)と有機系紫外線吸収剤(D)の質量比]
本実施形態において、前記紫外線吸収性ビニル単量体(a-1)と前記有機系紫外線吸収剤(D)の質量比は1:0.5~1:40の範囲にあることが好ましく、1:1~1:10の範囲にあることがより好ましく、1:2~1:6の範囲にあることがさらに好ましい。単位(a-1)と前記有機系紫外線吸収剤(D)の質量比が上記範囲内にあることで、塗料中での紫外線吸収剤の分散性が良好となり、後述する接着層(I)、及び/又は、積層体(K)を形成した際の透明性や密着性、耐候性に優れる傾向にある。なお、本実施形態においては、塗料組成物が複合体(C)とそれとは別体の重合体粒子(A)とを含む場合、複合体(C)に含まれるエマルション粒子と、それとは別体の重合体粒子(A)の合計量として上記質量比を算出する。
[Mass ratio of unit (a-1) and organic UV absorber (D)]
In the present embodiment, the mass ratio of the UV-absorbing vinyl monomer (a-1) and the organic UV absorber (D) is preferably in the range of 1:0.5 to 1:40. :1 to 1:10, more preferably 1:2 to 1:6. When the mass ratio of the unit (a-1) and the organic ultraviolet absorber (D) is within the above range, the dispersibility of the ultraviolet absorber in the paint is improved, and the adhesive layer (I) described later, And/or it tends to be excellent in transparency, adhesion, and weather resistance when the laminate (K) is formed. In the present embodiment, when the coating composition contains the composite (C) and the polymer particles (A) separate from it, the emulsion particles contained in the composite (C) and the emulsion particles separate from it The above mass ratio is calculated as the total amount of the polymer particles (A).

[イソシアネート化合物]
本実施形態における塗料組成物は、後述する接着層(I)や積層体(K)の密着性、耐熱性向上の観点から、硬化剤として、イソシアネート化合物及び/又はウレタン化合物を含有することが好ましい。イソシアネート化合物とは、少なくともイソシアネート基を1分子中に1個以上有する化合物のことをいう。イソシアネート化合物は、イソシアネート基を1分子中に2個以上有する化合物であってよい。前記イソシアネート化合物としては、以下に限定されないが、例えば、1,4-テトラメチレンジイソシアネート、エチル(2,6-ジイソシアナート)ヘキサノエート、1,6-ヘキサメチレンジイソシアネート、1,12-ドデカメチレンジイソシアネート、2,2,4-または2,4,4-トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネ-ト;1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアナート-4-イソシアナートメチルオクタン、2-イソシアナートエチル(2,6-ジイソシアナート)ヘキサノエートなどの脂肪族トリイソシアネート;1,3-または1,4-ビス(イソシアナートメチルシクロヘキサン)、1,3-または1,4-ジイソシアナートシクロヘキサン、3,5,5-トリメチル(3-イソシアナートメチル)シクロヘキシルイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、2,5-または2,6-ジイソシアナートメチルノルボルナンなどの脂環族ジイソシアネ-ト;2,5-または2,6-ジイソシアナートメチル-2-イソシネートプロピルノルボルナンなどの脂環族トリイソシアネート;m-キシリレンジイソシアネート、α,α,α’α’-テトラメチル-m-キシリレンジイソシアネートなどのアラルキレンジイソシアネート;m-またはp-フェニレンジイソシアネート、トリレン-2,4-または2,6-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ナフタレン-1,5-ジイソシアネート、ジフェニル-4,4’-ジイソシアネート、4,4’-ジイソシアナート-3,3’-ジメチルジフェニル、3-メチル-ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネートなどの芳香族ジイソシアネート;トリフェニルメタントリイソシアネート、トリス(イソシアナートフェニル)チオホスフェートなどの芳香族トリイソシアネート、さらには上記ジイソシアネートあるいはトリイソシアネートのイソシアネート基どうしを環化二量化して得られるウレトジオン構造を有するジイソシアネートあるいはポリイソシアネート;上記ジイソシアネートあるいはトリイソシアネートのイソシアネート基どうしを環化三量化して得られるイソシアヌレート構造を有するポリイソシアネート;上記ジイソシアネートあるいはトリイソシアネートを水と反応させることにより得られるビュレット構造を有するポリイソシアネート;上記ジイソシアネートあるいはトリイソシアネートを二酸化炭素と反応せしめて得られるオキサダイアジントリオン構造を有するポリイソシアネート;上記ジイソシアネートあるいはトリイソシアネートを種々のアルコールと反応せしめて得られるアロファネート構造を有するポリイソシアネート;上記ジイソシアネートあるいはトリイソシアネートを、ポリヒドロキシ化合物、ポリカルボキシ化合物、ポリアミン化合物の如き活性水素を含有する化合物と反応させて得られるポリイソシアネート等が挙げられる。さらに分子内にアルコキシシラン部位及び/又はシロキサン部位を有するイソシアネート化合物として、3-イソシアネートプロピルトリエトキシシラン等及び/又は3-イソシアネートプロピルトリエトキシシラン等の加水分解縮合物等が挙げられる。これらは1種又は2種以上混合して使用できる。
[Isocyanate compound]
The coating composition in the present embodiment preferably contains an isocyanate compound and/or a urethane compound as a curing agent from the viewpoint of improving the adhesion and heat resistance of the adhesive layer (I) and laminate (K) described later. . An isocyanate compound means a compound having at least one isocyanate group in one molecule. The isocyanate compound may be a compound having two or more isocyanate groups in one molecule. Examples of the isocyanate compound include, but are not limited to, 1,4-tetramethylene diisocyanate, ethyl (2,6-diisocyanato) hexanoate, 1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, Aliphatic diisocyanates such as 2,2,4- or 2,4,4-trimethylhexamethylene diisocyanate; 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanato-4-isocyanatomethyloctane , 2-isocyanatoethyl(2,6-diisocyanato)hexanoate; 1,3- or 1,4-bis(isocyanatomethylcyclohexane), 1,3- or 1,4-diisocyanate; Alicyclics such as isocyanatocyclohexane, 3,5,5-trimethyl(3-isocyanatomethyl)cyclohexylisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 2,5- or 2,6-diisocyanatomethylnorbornane Diisocyanate; alicyclic triisocyanates such as 2,5- or 2,6-diisocyanatomethyl-2-isocyanatopropyl norbornane; m-xylylenediisocyanate, α,α,α'α'-tetramethyl - aralkylene diisocyanates such as m-xylylene diisocyanate; m- or p-phenylene diisocyanate, tolylene-2,4- or 2,6-diisocyanate, diphenylmethane-4,4'-diisocyanate, naphthalene-1,5-diisocyanate, Aromatics such as diphenyl-4,4'-diisocyanate, 4,4'-diisocyanato-3,3'-dimethyldiphenyl, 3-methyl-diphenylmethane-4,4'-diisocyanate, diphenyl ether-4,4'-diisocyanate aromatic triisocyanates such as triphenylmethane triisocyanate and tris(isocyanatophenyl)thiophosphate; diisocyanates having a uretdione structure obtained by cyclodimerizing the isocyanate groups of the above diisocyanates or triisocyanates; Polyisocyanate; polyisocyanate having an isocyanurate structure obtained by cyclotrimerizing the isocyanate groups of the above diisocyanate or triisocyanate; above diisocyanate or triisocyanate a polyisocyanate having a burette structure obtained by reacting a diisocyanate or triisocyanate with water; a polyisocyanate having an oxadiazinetrione structure obtained by reacting the above diisocyanate or triisocyanate with carbon dioxide; Polyisocyanate having an allophanate structure obtained by reacting with; Polyisocyanate obtained by reacting the above diisocyanate or triisocyanate with a compound containing active hydrogen such as polyhydroxy compound, polycarboxy compound, polyamine compound, etc. . Examples of isocyanate compounds having an alkoxysilane moiety and/or a siloxane moiety in the molecule include 3-isocyanatopropyltriethoxysilane and/or hydrolysis condensates of 3-isocyanatopropyltriethoxysilane and the like. These can be used singly or in combination of two or more.

[ブロックポリイソシアネート化合物(E)]
前記イソシアネート化合物は、塗料中での分散性の観点から、イソシアネート基をブロック化剤と反応させたブロックポリイソシアネート化合物(E)であることがより好ましい。
前記ブロック化剤としては、特に限定されないが、硬化剤として機能するものを適宜選択でき、例えば、オキシム系化合物、アルコール系化合物、酸アミド系化合物、酸イミド系化合物、フェノール系化合物、アミン系化合物、活性メチレン系化合物、イミダゾール系化合物、及びピラゾール系化合物が挙げられる。オキシム系化合物としては、特に限定されないが、例えば、ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、及びシクロヘキサノンオキシムが挙げられる。アルコール系化合物としては、特に限定されないが、例えば、メタノール、エタノール、2-プロパノール、n-ブタノール、sec-ブタノール、2-エチル-1-ヘキサノール、2-メトキシエタノール、2-エトキシエタノール、及び2-ブトキシエタノールが挙げられる。酸アミド系化合物としては、特に限定されないが、例えば、アセトアニリド、酢酸アミド、ε-カプロラクタム、δ-バレロラクタム、及びγ-ブチロラクタムが挙げられる。酸イミド系化合物としては、特に限定されないが、例えば、コハク酸イミド、及びマレイン酸イミドが挙げられる。フェノール系化合物としては、特に限定されないが、例えば、フェノール、クレゾール、エチルフェノール、ブチルフェノール、ノニルフェノール、ジノニルフェノール、スチレン化フェノール、及びヒドロキシ安息香酸エステルが挙げられる。アミン系化合物としては、特に限定されないが、例えば、ジフェニルアミン、アニリン、カルバゾール、ジ-n-プロピルアミン、ジイソプロピルアミン、及びイソプロピルエチルアミンが挙げられる。活性メチレン系化合物としては、特に限定されないが、例えば、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、及びアセチルアセトンが挙げられる。イミダゾール系化合物としては、特に限定されないが、例えば、イミダゾール、及び2-メチルイミダゾールが挙げられる。ピラゾール系化合物としては、特に限定されないが、例えば、ピラゾール、3-メチルピラゾール、及び3,5-ジメチルピラゾールが挙げられる。
[Blocked polyisocyanate compound (E)]
From the viewpoint of dispersibility in paint, the isocyanate compound is more preferably a blocked polyisocyanate compound (E) obtained by reacting an isocyanate group with a blocking agent.
The blocking agent is not particularly limited, but one that functions as a curing agent can be appropriately selected. , active methylene compounds, imidazole compounds, and pyrazole compounds. Examples of oxime compounds include, but are not limited to, formaldoxime, acetoaldoxime, acetoxime, methylethylketoxime, and cyclohexanone oxime. Examples of alcohol compounds include, but are not limited to, methanol, ethanol, 2-propanol, n-butanol, sec-butanol, 2-ethyl-1-hexanol, 2-methoxyethanol, 2-ethoxyethanol, and 2- Butoxyethanol can be mentioned. Examples of acid amide compounds include, but are not limited to, acetanilide, acetic amide, ε-caprolactam, δ-valerolactam, and γ-butyrolactam. Examples of acid imide compounds include, but are not particularly limited to, succinimide and maleic acid imide. Examples of phenolic compounds include, but are not limited to, phenol, cresol, ethylphenol, butylphenol, nonylphenol, dinonylphenol, styrenated phenol, and hydroxybenzoate. Examples of amine compounds include, but are not limited to, diphenylamine, aniline, carbazole, di-n-propylamine, diisopropylamine, and isopropylethylamine. Examples of active methylene compounds include, but are not limited to, dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, and acetylacetone. Examples of imidazole compounds include, but are not limited to, imidazole and 2-methylimidazole. Examples of pyrazole compounds include, but are not limited to, pyrazole, 3-methylpyrazole, and 3,5-dimethylpyrazole.

前記ブロックポリイソシアネート化合物(E)としては、水分散性の観点からは、上記1分子中にイソシアネート基を2つ以上有するポリイソシアネート化合物と、ノニオン性及び/又はイオン性の親水基を有する水酸基含有親水性化合物とをイソシアネート基/水酸基の当量比が1.05~1000の範囲で反応させてなる水分散性イソシアネート化合物を、前記ブロック化剤と反応させたものが好ましい。かかる水分散性ブロックポリイソシアネート化合物(E)としては特に限定されず、市販品を採用することもでき、例えば、旭化成(株)製のWT30-100や旭化成(株)製のWM44-L70Gが上述した特徴を備えるものとして好ましく用いられる。 From the viewpoint of water dispersibility, the blocked polyisocyanate compound (E) includes a polyisocyanate compound having two or more isocyanate groups in one molecule, and a hydroxyl group having a nonionic and/or ionic hydrophilic group. A water-dispersible isocyanate compound obtained by reacting a hydrophilic compound with an equivalent ratio of isocyanate group/hydroxyl group in the range of 1.05 to 1000 is preferably reacted with the blocking agent. The water-dispersible block polyisocyanate compound (E) is not particularly limited, and commercially available products can be employed. It is preferably used as one having the features described above.

[NCO/OH比]
本実施形態の塗料組成物における前記イソシアネート化合物の水酸基含有ビニル単量体(a-2)を含む単量体から重合された重合体粒子(A)に対する含有量は、重合体粒子(A)中に含まれる水酸基のモル数と前記イソシアネート化合物中に含まれるイソシアネート基のモル数との比(NCO/OH比)が0.1~1.0であることが好ましく、0.3~0.8であることがより好ましい。NCO/OH比が上記範囲内にあることで、後述する接着層(I)、及び、積層体(K)を形成した際に、透明性を損なうことなく、優れた密着性、耐熱性を発現できる。
なお、本実施形態においては、塗料組成物が複合体(C)とそれとは別体の重合体粒子(A)とを含む場合、複合体(C)に含まれる重合体粒子と、それとは別体の重合体粒子(A)の合計量として上記含有量を算出する。
[NCO/OH ratio]
The content of the isocyanate compound in the coating composition of the present embodiment with respect to the polymer particles (A) polymerized from the monomer containing the hydroxyl group-containing vinyl monomer (a-2) is in the polymer particles (A) The ratio of the number of moles of hydroxyl groups contained in the isocyanate compound to the number of moles of isocyanate groups contained in the isocyanate compound (NCO/OH ratio) is preferably 0.1 to 1.0, preferably 0.3 to 0.8. is more preferable. When the NCO/OH ratio is within the above range, excellent adhesion and heat resistance are exhibited without impairing transparency when the adhesive layer (I) and laminate (K) described later are formed. can.
In the present embodiment, when the coating composition contains the composite (C) and the polymer particles (A) separate from it, the polymer particles contained in the composite (C) and the polymer particles separate from it The above content is calculated as the total amount of the polymer particles (A).

[溶媒(M)]
本実施形態の塗料組成物は溶媒(M)を含有することが好ましい。作業現場への衛生状態や地球環境への負荷低減の観点から、溶媒(M)中の50質量%以上が水であることが好ましく、より好ましくは60質量%以上であり、さらに好ましくは75質量%以上である。水以外の使用可能な溶媒としては、特に限定されず、一般的な溶媒を用いることができる。溶媒としては、以下に限定されないが、例えば、エチレングリコール、ブチルセロソルブ、イソプロパノール、n-ブタノール、2-ブタノール、エタノール、メタノール、変性エタノール、2-メトキシ-1-プロパノール、1-メトキシ-2-プロパノール、ジアセトンアルコールグリセリン、モノアルキルモノグリセリルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジエチレングリコールモノフェニルエーテルテトラエチレングリコールモノフェニルエーテルなどのアルコール類;トルエンやキシレンなどの芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタンなどの脂肪族炭化水素類;酢酸エチル、酢酸n-ブチルなどのエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;テトラヒドロフラン、ジオキサンなどのエーテル類;ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;クロロホルム、塩化メチレン、四塩化炭素などのハロゲン化合物類;ジメチルスルホキシド、ニトロベンゼン;などが挙げられ、これらは1種又は2種以上を併用しても構わない。溶媒(M)の含有量は、塗料組成物の分散安定性の観点から、塗料組成物100質量%に対して、75質量%以上が好ましく、接着層成膜時の膜厚担保の観点から、95質量%以下が好ましい。
[Solvent (M)]
The coating composition of the present embodiment preferably contains a solvent (M). From the viewpoint of sanitary conditions at the work site and reduction of the load on the global environment, it is preferable that 50% by mass or more of the solvent (M) is water, more preferably 60% by mass or more, and still more preferably 75% by mass. % or more. Usable solvents other than water are not particularly limited, and common solvents can be used. Examples of solvents include, but are not limited to, ethylene glycol, butyl cellosolve, isopropanol, n-butanol, 2-butanol, ethanol, methanol, denatured ethanol, 2-methoxy-1-propanol, 1-methoxy-2-propanol, Diacetone Alcohol Glycerin, Monoalkyl Monoglyceryl Ether, Propylene Glycol Monomethyl Ether, Diethylene Glycol Monobutyl Ether, Propylene Glycol Monoethyl Ether, Propylene Glycol Monobutyl Ether, Dipropylene Glycol Monoethyl Ether, Dipropylene Glycol Monobutyl Ether, Diethylene Glycol Monophenyl Ether Tetraethylene Alcohols such as glycol monophenyl ether; Aromatic hydrocarbons such as toluene and xylene; Aliphatic hydrocarbons such as hexane, cyclohexane and heptane; Esters such as ethyl acetate and n-butyl acetate; ketones such as isobutyl ketone and cyclohexanone; ethers such as tetrahydrofuran and dioxane; amides such as dimethylacetamide and dimethylformamide; halogen compounds such as chloroform, methylene chloride and carbon tetrachloride; These may be used singly or in combination of two or more. The content of the solvent (M) is preferably 75% by mass or more with respect to 100% by mass of the coating composition from the viewpoint of dispersion stability of the coating composition. 95 mass % or less is preferable.

[塗料組成物に含んでもよい成分]
本実施形態の塗料組成物は、用途に応じて、乳化剤、可塑剤、顔料、染料、充填剤、老化防止剤、導電材、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤、触媒を含んでもよい。特に耐候性向上の観点から、光安定剤を含むことが好ましい。具体的には、以下に限定されないが、ビス(2,2,6,6-テトラメチル-4-ピペリジル)サクシネート、ビス(2,2,6,6-テトラメチルピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕-2,2,6,6-テトラメチルピペリジン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル-1,2,2,6,6-ペンタメチル-4-ピペリジル-セバケートの混合物(BASF社製の商品名「TINUVIN292」)、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、TINUVIN123、TINUVIN144、TINUVIN152、TINUVIN249、TINUVIN292、TINUVIN5100(商品名、BASF社製)などのヒンダードアミン系光安定剤;1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、1,2,2,6,6-ペンタメチル-4-ピペリジルアクリレート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-4-ピペリジルアクリレート、1,2,2,6,6-ペンタメチル-4-イミノピペリジルメタクリレート、2,2,6,6,-テトラメチル-4-イミノピペリジルメタクリレート、4-シアノ-2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-シアノ-1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレートなどのラジカル重合性ヒンダードアミン系光安定剤;ユーダブルE-133、ユーダブルE-135、ユーダブルS-2000、ユーダブルS-2834、ユーダブルS-2840、ユーダブルS-2818、ユーダブルS-2860(商品名、日本触媒株式会社製)などの光安定性を有する重合体などが挙げられる。
[Ingredients that may be included in the coating composition]
The coating composition of the present embodiment contains emulsifiers, plasticizers, pigments, dyes, fillers, antioxidants, conductive materials, light stabilizers, release modifiers, softeners, surfactants, and flame retardants, depending on the application. , antioxidants, and catalysts. In particular, from the viewpoint of improving weather resistance, it is preferable to contain a light stabilizer. Specifically, but not limited to, bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(2,2,6,6-tetramethylpiperidyl)sebacate, bis(1, 2,2,6,6-pentamethyl-4-piperidyl) 2-(3,5-di-tert-butyl-4-hydroxybenzyl)-2-butylmalonate, 1-[2-[3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propynyloxy]ethyl]-4-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propynyloxy]-2,2,6, 6-tetramethylpiperidine, a mixture of bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6-pentamethyl-4-piperidyl-sebacate (BASF manufactured by BASF (trade name “TINUVIN292”), bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, TINUVIN123, TINUVIN144, TINUVIN152, TINUVIN249, TINUVIN292, TINUVIN5100 (trade name, manufactured by BASF ); 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl acrylate, 2,2,6,6 -tetramethyl-4-piperidyl methacrylate, 2,2,6,6-tetramethyl-4-piperidyl acrylate, 1,2,2,6,6-pentamethyl-4-iminopiperidyl methacrylate, 2,2,6,6 ,-tetramethyl-4-iminopiperidyl methacrylate, 4-cyano-2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4-cyano-1,2,2,6,6-pentamethyl-4-piperidyl Radical polymerizable hindered amine light stabilizers such as methacrylates; manufactured by Nippon Shokubai Co., Ltd.).

[塗料組成物の濃度、粘度]
本実施形態の塗料組成物は、塗装性の観点から、好ましい固形分濃度は0.01~60質量%、より好ましくは1~40質量%である。また、塗装性の観点から、本実施形態の塗料組成物の20℃における粘度としては、0.1~100000mPa・sが好ましく、1~10000mPa・sがより好ましい。
[Concentration and viscosity of paint composition]
From the viewpoint of paintability, the coating composition of the present embodiment preferably has a solid content concentration of 0.01 to 60% by mass, more preferably 1 to 40% by mass. From the viewpoint of paintability, the viscosity of the coating composition of the present embodiment at 20° C. is preferably 0.1 to 100,000 mPa·s, more preferably 1 to 10,000 mPa·s.

[塗料組成物のpH]
本実施形態において、塗料組成物のpHは7~11である。pHが前記範囲内にあることで、重合体粒子(A)の分散性が向上し、結果として塗料安定性が向上する。また、後述する接着層(I)の透明性の観点から、pHは8~11の範囲にあることがより好ましい。pHは後述する実施例に記載の方法に基づいて測定することができる。また、pHは、例えば、アンモニアを添加すること等により上述した範囲に調整することができる。
[pH of paint composition]
In this embodiment, the pH of the coating composition is 7-11. When the pH is within the above range, the dispersibility of the polymer particles (A) is improved, resulting in improved paint stability. Further, from the viewpoint of the transparency of the adhesive layer (I), which will be described later, the pH is more preferably in the range of 8 to 11. The pH can be measured based on the method described in Examples below. Also, the pH can be adjusted to the range described above by, for example, adding ammonia.

[接着層(I)付き基材]
本実施形態の接着層(I)付き基材は、基材と、前記基材上に配される接着層(I)と、を備える接着層付き基材であって、前記接着層(I)が、本実施形態の塗料組成物を含む。「接着層(I)が本実施形態の塗料組成物を含む」とは、接着層(I)が本実施形態の塗料組成物から得られることを包含する趣旨である。すなわち、接着層(I)は、例えば、本実施形態における塗料組成物を基材に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することにより得ることができる。さらに、前記塗装方法としては、以下に限定されないが、例えばスプレー吹付法、フローコート法、刷毛塗法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法などが挙げられる。なお、塗装された本実施形態の塗料組成物は、好ましくは室温~250℃、より好ましくは40℃~150℃での熱処理や紫外線、赤外線照射などにより塗膜化することができる。さらに、この塗装は、すでに成型した基材だけでなく、防錆鋼板を含むプレコートメタルのように、成型加工する前にあらかじめ平板に塗装することも可能である。
[Base material with adhesive layer (I)]
The substrate with an adhesive layer (I) of the present embodiment is a substrate with an adhesive layer comprising a substrate and an adhesive layer (I) disposed on the substrate, wherein the adhesive layer (I) contains the coating composition of the present embodiments. The phrase "adhesive layer (I) comprises the coating composition of the present embodiment" is meant to include the fact that the adhesive layer (I) is obtained from the coating composition of the present embodiment. That is, the adhesive layer (I) can be obtained, for example, by coating the coating composition of the present embodiment on a substrate and forming a coating film by heat treatment, ultraviolet irradiation, infrared irradiation, or the like. Furthermore, the coating method is not limited to the following, but includes, for example, a spraying method, a flow coating method, a brush coating method, a dip coating method, a spin coating method, a screen printing method, a casting method, a gravure printing method, a flexographic printing method, and the like. is mentioned. The coated coating composition of the present embodiment can be formed into a coating film by heat treatment at preferably room temperature to 250° C., more preferably 40° C. to 150° C., UV irradiation, or infrared irradiation. Furthermore, this coating can be applied not only to already molded substrates, but also to pre-coated flat plates before molding, such as pre-coated metal containing rust-proof steel plates.

上記接着層(I)の厚みは、後述する密着性の観点から、好ましくは0.1μm以上であり、より好ましくは0.3μm以上あり、透明性の観点から、好ましくは100.0μm以下であり、より好ましくは50.0μm以下である。 The thickness of the adhesive layer (I) is preferably 0.1 μm or more, more preferably 0.3 μm or more, from the viewpoint of adhesion to be described later, and preferably 100.0 μm or less from the viewpoint of transparency. , and more preferably 50.0 μm or less.

上記基材としては、特に限定されないが、樹脂、金属、ガラス等が挙げられる。基材の形状としては、以下に限定されないが、例えば、板状、凹凸を含む形状、曲面を含む形状、中空の形状、多孔体の形状、それらの組み合わせ、などが挙げられる。また、基材の種類は問わず、例えば、シート、フィルム、繊維、などが挙げられる。その中で、耐摩耗性の付与や成形性の観点から樹脂であることが好ましい。基材として用いられる樹脂としては、以下に限定されないが、例えば、熱可塑性樹脂や熱硬化性樹脂が挙げられる。基材として用いられる熱可塑性樹脂としては、以下に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、塩化ビニル樹脂、メタクリル酸メチル樹脂、ナイロン、フッ素樹脂、ポリカーボネート、ポリエステル樹脂などが挙げられる。また基材として用いられる熱硬化性樹脂としては、以下に限定されないが、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ケイ素樹脂、シリコーンゴム、SBゴム、天然ゴム、熱硬化性エラストマーなどが挙げられる。 Examples of the base material include, but are not particularly limited to, resins, metals, and glass. Examples of the shape of the substrate include, but are not limited to, a plate shape, a shape including unevenness, a shape including curved surfaces, a hollow shape, a porous shape, and combinations thereof. Moreover, the type of base material is not limited, and examples thereof include sheets, films, fibers, and the like. Among them, resins are preferable from the viewpoint of imparting abrasion resistance and moldability. Examples of the resin used as the base material include, but are not limited to, thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin used as the base material include, but are not limited to, polyethylene, polypropylene, polystyrene, ABS resin, vinyl chloride resin, methyl methacrylate resin, nylon, fluororesin, polycarbonate, and polyester resin. . The thermosetting resin used as the base material is not limited to the following, but phenol resin, urea resin, melamine resin, unsaturated polyester resin, epoxy resin, silicon resin, silicone rubber, SB rubber, natural rubber, thermosetting resin, and elastic elastomers.

[積層体(K)]
本実施形態における積層体(K)は、本実施形態の接着層付き基材と、前記接着層付き基材上に配されるハードコート層と、を備える積層体であって、前記ハードコート層が、無機酸化物(F)と重合体ナノ粒子(G)とを含有するマトリクス成分(H)を含み、前記重合体ナノ粒子(G)のマルテンス硬度HMGと、前記マトリクス成分(H)のマルテンス硬度HMHとが、HMH/HMG>1の関係を満たす。本実施形態における積層体(K)は、前記接着層(I)付き基材上に、前記ハードコート層(J)を備えるため、優れた耐摩耗性、密着性、耐久性及び光学特性を有する。本実施形態の積層体(K)は、高いレベルでの耐摩耗性、密着性、耐久性及び光学特性を発現するため、以下に限定されないが、例えば、建材、自動車部材や電子機器や電機製品等のハードコートとして有用であり、とりわけ自動車部材用とすることが好ましい。
[Laminate (K)]
The laminate (K) in the present embodiment is a laminate comprising the adhesive layer-attached base material of the present embodiment and a hard coat layer disposed on the adhesive layer-attached base material, wherein the hard coat layer contains a matrix component (H) containing an inorganic oxide (F) and polymer nanoparticles (G), the Martens hardness HMG of the polymer nanoparticles (G), and the Martens hardness of the matrix component (H) The hardness HMH satisfies the relationship of HMH/HMG>1. Since the laminate (K) in the present embodiment comprises the hard coat layer (J) on the base material with the adhesive layer (I), it has excellent wear resistance, adhesion, durability and optical properties. . Since the laminate (K) of the present embodiment exhibits high levels of wear resistance, adhesion, durability and optical properties, it is not limited to the following, for example, building materials, automobile members, electronic devices and electrical products It is useful as a hard coat for the like, and is particularly preferably used for automobile members.

[ハードコート層(J)]
本実施形態におけるハードコート層(J)は、前記接着層(I)付き基材上に配されると共に無機酸化物(F)と重合体ナノ粒子(G)を含有するマトリクス成分(H)を含むものであり、積層体(K)の耐久性に寄与する。
[Hard coat layer (J)]
The hard coat layer (J) in the present embodiment is arranged on the substrate with the adhesive layer (I) and contains a matrix component (H) containing an inorganic oxide (F) and polymer nanoparticles (G). and contributes to the durability of the laminate (K).

本実施形態において、積層体(K)の耐摩耗性の観点から、前記重合体ナノ粒子(G)のマルテンス硬度HMGと、前記マトリクス成分(H)のマルテンス硬度HMHとが、HMH/HMG>1の関係を満たす。なお、上記マルテンス硬度HMG及びマルテンス硬度HMHの大小関係を確認し難い場合でも、後述する重合体ナノ粒子(G)及びマトリクス成分(H)の凝着力を比較することで、前述したマルテンス硬度の大小関係を推定することができる。凝着力は、低いほど弾性が高いため、凝着力が低いほど塗膜は変形しにくく、硬度が高いことを表す。具体的には、上述した好ましいハードコート層(J)は、次のように特定することもできる。すなわち、本実施形態におけるハードコート層(J)は、重合体ナノ粒子(G)と、マトリクス成分(H)と、を含み、走査型プローブ顕微鏡(SPM)の凝着力モードで測定される、前記重合体ナノ粒子Gの凝着力Fと、前記マトリクス成分(H)の凝着力Fとが、F/F>1の関係を満たす。 In the present embodiment, from the viewpoint of the wear resistance of the laminate (K), the Martens hardness HMG of the polymer nanoparticles (G) and the Martens hardness HMH of the matrix component (H) are such that HMH/HMG>1. satisfy the relationship Even when it is difficult to confirm the magnitude relationship between the Martens hardness HMG and the Martens hardness HMH, the magnitude of the Martens hardness described above can be determined by comparing the adhesive forces of the polymer nanoparticles (G) and the matrix component (H) described later. Relationships can be inferred. Since the lower the adhesive strength, the higher the elasticity, the lower the adhesive strength, the less the coating film is deformed and the higher the hardness. Specifically, the preferred hard coat layer (J) described above can also be specified as follows. That is, the hard coat layer (J) in the present embodiment contains polymer nanoparticles (G) and a matrix component (H), and is measured in the adhesion force mode of a scanning probe microscope (SPM). The adhesive force F G of the polymer nanoparticles G and the adhesive force F H of the matrix component (H) satisfy the relationship of F G /F H >1.

本実施形態のハードコート層(J)において、重合体ナノ粒子(G)は、マトリクス成分(H)に分散していることが好ましい。本実施形態における「分散」とは、重合体ナノ粒子(G)を分散相とし、マトリクス成分(H)を連続相とし、重合体ナノ粒子(G)がマトリクス成分(H)中へ均一または構造を形成しながら分布することである。上記分散は、ハードコート層の断面SEM観察によって確認することができる。本実施形態におけるハードコート層においては、重合体ナノ粒子(G)が、マトリクス成分(H)に分散していることにより、積層体(K)が高い耐摩耗性を有する傾向にある。 In the hard coat layer (J) of this embodiment, the polymer nanoparticles (G) are preferably dispersed in the matrix component (H). "Dispersion" in the present embodiment means that the polymer nanoparticles (G) are dispersed phase, the matrix component (H) is a continuous phase, and the polymer nanoparticles (G) are uniformly or structurally dispersed in the matrix component (H). It is to distribute while forming The dispersion can be confirmed by cross-sectional SEM observation of the hard coat layer. In the hard coat layer of the present embodiment, the polymer nanoparticles (G) are dispersed in the matrix component (H), so the laminate (K) tends to have high wear resistance.

[マルテンス硬度]
本実施形態におけるマルテンス硬度は、ISO14577-1に準拠した硬度であり、測定条件(ビッカース四角錘ダイヤモンド圧子、荷重の増加条件2mN/20sec、荷重の減少条件2mN/20sec)において2mNでの押し込み深さから算出される値である。本実施形態におけるマルテンス硬度は、例えば、微小硬度計フィッシャースコープ(フィッシャー・インストルメンツ社製HM2000S)、超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-NEXUS)、ナノインデンター(東陽テクニカ社製iNano、G200)、ナノインデンテーションシステム(ブルカー社製TI980)を用いて測定でき、押し込み深さが浅い程マルテンス硬度は高く、深い程マルテンス硬度は低い。
[Martens hardness]
Martens hardness in the present embodiment is a hardness in accordance with ISO14577-1, and the indentation depth at 2 mN under the measurement conditions (Vickers square pyramid diamond indenter, load increase condition 2 mN / 20 sec, load decrease condition 2 mN / 20 sec) is a value calculated from Martens hardness in the present embodiment, for example, micro hardness tester Fisher scope (HM2000S manufactured by Fisher Instruments), ultra-micro indentation hardness tester (ENT-NEXUS manufactured by Elionix Co., Ltd.), nanoindenter (Toyo Technica (iNano, G200, manufactured by Bruker) and a nanoindentation system (TI980, manufactured by Bruker).

[凝着力]
本実施形態における凝着力は、走査型プローブ顕微鏡(SPM)で測定することができ、凝着力が低いほど弾性が高いため、凝着力が低いほど塗膜は変形しにくく、硬度が高い。凝着力の測定方法は、以下に限定されないが、例えば、島津製作所製SPM-970、SPM-9700HT、Bruker AXS社製Dimension ICON、日立ハイテクサイエンス社製AFM5000II等を用いて測定することができる。
[Adhesion]
The adhesive force in the present embodiment can be measured with a scanning probe microscope (SPM). Since the lower the adhesive force, the higher the elasticity, the lower the adhesive force, the more difficult the coating film to deform and the higher the hardness. The adhesive force can be measured using, but not limited to, SPM-970 and SPM-9700HT manufactured by Shimadzu Corporation, Dimension ICON manufactured by Bruker AXS, AFM5000II manufactured by Hitachi High-Tech Science, and the like.

[他の硬度]
上述した本実施形態におけるマルテンス硬度や凝着力の大小関係は、他の硬度を指標として測定値の大小関係を確認することによっても推定することができる。他の硬度としては、材料に力が加えられた際の、材料の変形のしにくさを示す指標であれば特に限定されず、微小硬度計やナノインデンテーション測定機器に代表される押し込み硬度計で測定されるビッカース硬度、インデンテーション硬度や、剛体振り子型物性試験器に代表される振り子型粘弾性で測定される対数減衰率で表現される指標を挙げることができる。その他、走査型プローブ顕微鏡(SPM)で測定される、位相、摩擦力、粘弾性、吸着力、硬さ及び弾性率で表現される指標を挙げることもできる。これらの指標において、マトリクス成分(H)の硬度が重合体ナノ粒子(G)の硬度よりも高いことが確認されれば、マルテンス硬度や凝着力についても、マトリクス成分(H)の方が重合体ナノ粒子(G)よりも硬質であることが推定される。
[Other hardness]
The magnitude relation of Martens hardness and cohesive strength in the present embodiment described above can also be estimated by confirming the magnitude relation of measured values using other hardness as an index. Other hardness is not particularly limited as long as it is an index that indicates the difficulty of deformation of the material when force is applied to the material. Vickers hardness, indentation hardness, and logarithmic decrement measured by pendulum viscoelasticity typified by a rigid pendulum physical property tester. In addition, indices expressed by phase, frictional force, viscoelasticity, adsorptive force, hardness and elastic modulus measured by a scanning probe microscope (SPM) can also be used. In these indices, if it is confirmed that the hardness of the matrix component (H) is higher than that of the polymer nanoparticles (G), the Martens hardness and cohesive strength of the matrix component (H) are also higher than that of the polymer. It is presumed to be harder than the nanoparticles (G).

[重合体ナノ粒子(G)のマルテンス硬度HMGとマトリクス成分(H)のマルテンス硬度HMH]
本実施形態における重合体ナノ粒子(G)のマルテンス硬度HMGと、マトリクス成分(H)のマルテンス硬度HMHとは、下記式(1)の関係を満たすことが好ましい。
HMH/HMG>1 式(1)
式(1)は、柔軟な重合体ナノ粒子(G)が硬質なマトリクス成分(H)中に存在することを表しており、このように硬度が3次元的に傾斜をもつことで、ハードコート層(J)は、従来の塗膜では発現しなかったような耐摩耗性を付与できる傾向にある。この要因としては、以下に限定する趣旨ではないが、柔軟なナノ粒子が衝撃を吸収し、硬質なマトリクス成分が変形を抑制しているためと推察される。HMGの範囲としては、衝撃吸収性の観点から、50N/mm以上が好ましく、100N/mm以上がより好ましく、成膜性の観点から2000N/mm以下が好ましく、800N/mm以下がより好ましく、350N/mm以下が更に好ましい。HMHの範囲としては衝撃吸収性の観点から100N/mm以上が好ましく、150N/mm以上がより好ましく、成膜性の観点から4000N/mm以下が好ましく、2000N/mm以下がより好ましい。
なお、ハードコート層(J)は、後述する塗料組成物(L)を加水分解縮合等により硬化させた硬化物として得ることができる。重合体ナノ粒子(G)は、かかる硬化の過程においてその組成は変化しないことが通常である。したがって、後述する実施例に記載された方法により測定される塗料組成物(L)中の重合体ナノ粒子(G)のマルテンス硬度HMGの値は、ハードコート層(J)中の重合体ナノ粒子(G)のマルテンス硬度HMGによく一致するものとして、ハードコート層(J)におけるマルテンス硬度HMGの値を決定することができる。また、マトリクス成分(H)は、後述するマトリクス原料成分(H’)を加水分解縮合等により硬化させた硬化物に該当する。したがって、後述する実施例に記載された方法により測定されるマトリクス原料成分(H’)のマルテンス硬度HMHの値は、対応するマトリクス成分(H)のマルテンス硬度HMHによく一致するものとして、マルテンス硬度HMHの値を決定することができる。
上記HMG及びHMHの値は、それぞれ、重合体ナノ粒子(G)及び後述するマトリクス原料成分(H’)の構成成分の構造及び組成比等により、前述した大小関係となるように調整できるが、特にこの方法に限定されるものではない。
[Martens hardness HMG of polymer nanoparticles (G) and Martens hardness HMH of matrix component (H)]
The Martens hardness HMG of the polymer nanoparticles (G) and the Martens hardness HMH of the matrix component (H) in the present embodiment preferably satisfy the relationship of the following formula (1).
HMH/HMG>1 Formula (1)
Formula (1) expresses that the flexible polymer nanoparticles (G) are present in the hard matrix component (H). Layer (J) tends to impart wear resistance that conventional coatings do not exhibit. Although not intended to be limited to the following, the reason for this is presumed to be that the soft nanoparticles absorb impact and the hard matrix component suppresses deformation. The range of HMG is preferably 50 N/mm 2 or more, more preferably 100 N/mm 2 or more, from the viewpoint of impact absorption, and preferably 2000 N/mm 2 or less, and 800 N/mm 2 or less from the viewpoint of film formation. More preferably, 350 N/mm 2 or less is even more preferable. The range of HMH is preferably 100 N/mm 2 or more, more preferably 150 N/mm 2 or more, from the viewpoint of impact absorption, and preferably 4000 N/mm 2 or less, more preferably 2000 N/mm 2 or less from the viewpoint of film formation. .
The hard coat layer (J) can be obtained as a cured product obtained by curing the coating composition (L) described later by hydrolytic condensation or the like. The polymer nanoparticles (G) generally do not change their composition during the curing process. Therefore, the value of the Martens hardness HMG of the polymer nanoparticles (G) in the coating composition (L) measured by the method described in Examples below is The value of the Martens hardness HMG in the hard coat layer (J) can be determined as one that closely matches the Martens hardness HMG of (G). Further, the matrix component (H) corresponds to a cured product obtained by curing a matrix raw material component (H'), which will be described later, by hydrolytic condensation or the like. Therefore, the value of the Martens hardness HMH of the matrix raw material component (H′) measured by the method described in the examples described later agrees well with the Martens hardness HMH of the corresponding matrix component (H). The value of HMH can be determined.
The values of HMG and HMH can be adjusted so as to have the above-described size relationship depending on the structures and composition ratios of the constituent components of the polymer nanoparticles (G) and the matrix raw material component (H′) described later, respectively. It is not particularly limited to this method.

[重合体ナノ粒子(G)の凝着力Fとマトリクス成分(H)の凝着力F
本実施形態における重合体ナノ粒子(G)の凝着力Fと、マトリクス成分(H)の凝着力Fとは、下記式(2)の関係を満たすことが好ましい。
/F>1 式(2)
上記式(1)と同様に、式(2)も柔軟な重合体ナノ粒子(G)が硬質なマトリクス成分(H)中に存在することを表しており、このように硬度が3次元的に傾斜をもつことで、ハードコート層(J)は、従来の塗膜では発現しなかったような耐摩耗性を付与できる傾向にある。この要因としては、以下に限定する趣旨ではないが、柔軟なナノ粒子が衝撃を吸収し、硬質なマトリクス成分が変形を抑制しているためと推察される。
上述のとおり、重合体ナノ粒子(G)の凝着力F及びマトリクス成分(H)の凝着力Fとは各成分の硬度と相関があり、重合体ナノ粒子(G)及び後述するマトリクス原料成分(H’)の構成成分の構造及び組成比等により、前述した大小関係となるように調整できるが、特にこの方法に限定されるものではない。
[Adhesive force F G of polymer nanoparticles (G) and adhesive force F H of matrix component (H)]
The adhesive force FG of the polymer nanoparticles (G) and the adhesive force FH of the matrix component (H) in the present embodiment preferably satisfy the relationship of the following formula (2).
F G /F H >1 Formula (2)
Similar to formula (1) above, formula (2) also expresses that the flexible polymer nanoparticles (G) are present in the hard matrix component (H), and thus the hardness is three-dimensionally By having a slope, the hard coat layer (J) tends to be able to impart wear resistance that conventional coating films do not exhibit. Although not intended to be limited to the following, the reason for this is presumed to be that the soft nanoparticles absorb impact and the hard matrix component suppresses deformation.
As described above, the adhesive force F G of the polymer nanoparticles (G) and the adhesive force F H of the matrix component (H) are correlated with the hardness of each component. Depending on the structure and composition ratio of the constituent components of component (H'), adjustment can be made so as to achieve the above-described size relationship, but the method is not particularly limited to this method.

[ハードコート層(J)のマルテンス硬度HMJ]
ハードコート層(J)のマルテンス硬度HMJは、積層体(K)の耐摩耗性の観点から100N/mm以上であり、高いほど衝撃に対し変形が少なく、破壊を伴う傷付きが少ない点で有利である。ハードコート層(J)のマルテンス硬度HMJは、好ましくは100N/mm以上であり、より好ましくは150N/mm以上であり、更に好ましくは200N/mm以上であり、耐屈曲性の観点から、好ましくは4000N/mm以下、より好ましくは2000N/mm以下、更に好ましくは1500N/mm以下である。ハードコート層(J)のマルテンス硬度HMJを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、後述する式(3)で表される所定の関係を満たす、重合体ナノ粒子(G)と後述するマトリクス原料成分(H’)を混合した組成物を溶媒中で分散、溶解させた塗料組成物を、基材上に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することが挙げられる。特に、重合体ナノ粒子(G)とマトリクス成分(H)の合計量に対するマトリクス成分(H)の含有量を増やすと、ハードコート層(J)のマルテンス硬度HMJは上がる傾向にあり、マトリクス成分(H)の含有量を減らすとハードコート層(J)のマルテンス硬度HMJは下がる傾向にある。
[Martens hardness HMJ of hard coat layer (J)]
The Martens hardness HMJ of the hard coat layer (J) is 100 N/mm 2 or more from the viewpoint of the wear resistance of the laminate (K). Advantageous. The Martens hardness HMJ of the hard coat layer (J) is preferably 100 N/mm 2 or more, more preferably 150 N/mm 2 or more, and still more preferably 200 N/mm 2 or more, from the viewpoint of bending resistance. , preferably 4000 N/mm 2 or less, more preferably 2000 N/mm 2 or less, still more preferably 1500 N/mm 2 or less. Methods for adjusting the Martens hardness HMJ of the hard coat layer (J) within the above range include, but are not limited to, polymer nano A coating composition obtained by dispersing and dissolving a composition obtained by mixing particles (G) and a matrix raw material component (H′) described later in a solvent is coated on a substrate, followed by heat treatment, ultraviolet irradiation, infrared irradiation, or the like. film formation. In particular, when the content of the matrix component (H) with respect to the total amount of the polymer nanoparticles (G) and the matrix component (H) is increased, the Martens hardness HMJ of the hard coat layer (J) tends to increase, and the matrix component ( When the content of H) is reduced, the Martens hardness HMJ of the hard coat layer (J) tends to decrease.

[テーバー摩耗試験におけるヘイズ変化量]
本実施形態におけるテーバー摩耗試験とは、ASTM D1044に記載の方法で測定される方法に準じており、摩耗輪CS-10F、荷重500gの条件下で測定を実施する。ヘイズ変化量が小さいほど耐摩耗性に優れた材料となり、試験前におけるヘイズに対する500回転におけるヘイズ変化量、すなわち回転数500回におけるヘイズと前記テーバー摩耗試験前のヘイズとの差が10以下であれば、ECE R43のリアクオーターガラスの規格に適合し、4以下であれば、ANSI/SAE Z.26.1の規格に適合し、自動車用窓材として好適に使用可能である。また、1000回転におけるヘイズ変化量、すなわち、回転数1000回におけるヘイズと前記テーバー摩耗試験前のヘイズとの差が10以下であれば、自動車窓の規格に適合し、自動車用窓材として好適に使用でき、2以下であればANSI/SAE Z.26.1、ECE R43、JIS R3211/R3212の規格に適合し、全ての自動車用窓材に好適に使用可能である。1000回転におけるヘイズ変化量が10以下であれば好ましく、6以下であればより好ましく、2以下であれば、更に好ましい。ヘイズ変化量を上記範囲内に調整するための方法としては、以下に限定されないが、例えば、後述する式(3)で表される所定の関係を満たす、重合体ナノ粒子(G)と後述するマトリクス原料成分(H’)を混合した組成物を溶媒中で分散、溶解させた塗料組成物を、基材上に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することが挙げられる。
[Haze change amount in Taber abrasion test]
The Taber abrasion test in this embodiment conforms to the measurement method described in ASTM D1044, and is measured under the conditions of a wear wheel CS-10F and a load of 500 g. The smaller the amount of change in haze, the more excellent the material is in abrasion resistance, and the amount of change in haze at 500 rotations relative to the haze before the test, that is, the difference between the haze at 500 rotations and the haze before the Taber abrasion test is 10 or less. For example, if it conforms to the ECE R43 standard for reactor glass, and if it is 4 or less, it conforms to ANSI/SAE Z. 26.1 standard, and can be suitably used as a window material for automobiles. Further, if the amount of haze change at 1000 rpm, that is, the difference between the haze at 1000 rpm and the haze before the Taber abrasion test is 10 or less, it conforms to automotive window standards and is suitable as an automotive window material. ANSI/SAE Z.V. 26.1, ECE R43, and JIS R3211/R3212 standards, and can be suitably used for all automotive window materials. The amount of haze change per 1000 rotations is preferably 10 or less, more preferably 6 or less, and even more preferably 2 or less. Methods for adjusting the amount of change in haze within the above range include, but are not limited to, polymer nanoparticles (G) that satisfy a predetermined relationship represented by formula (3) described later, and polymer nanoparticles (G) described later. A coating composition obtained by dispersing and dissolving a composition in which a matrix raw material component (H') is mixed in a solvent is coated on a base material, and a coating film is formed by heat treatment, ultraviolet irradiation, infrared irradiation, or the like. .

[ハードコート層(J)中の重合体ナノ粒子(G)の体積分率]
本実施形態において、ハードコート層(J)中の重合体ナノ粒子(G)の体積分率は成膜性の観点から、好ましくは2%以上であり、より好ましくは3%以上であり、更に好ましくは5%以上であり、透明性の観点から、好ましくは80%以下であり、より好ましくは70%以下であり、更に好ましくは45%以下である。ハードコート層(J)中の重合体ナノ粒子(G)の体積分率は、例えば、ハードコート層(J)の断面SEM画像における塗膜全体の中での重合体ナノ粒子(G)の割合や、ハードコート層(J)を構成させる成分中の重合体ナノ粒子(G)の成分比から算出することができる。
[Volume fraction of polymer nanoparticles (G) in hard coat layer (J)]
In the present embodiment, the volume fraction of the polymer nanoparticles (G) in the hard coat layer (J) is preferably 2% or more, more preferably 3% or more, from the viewpoint of film-forming properties. It is preferably 5% or more, and from the viewpoint of transparency, preferably 80% or less, more preferably 70% or less, and even more preferably 45% or less. The volume fraction of the polymer nanoparticles (G) in the hard coat layer (J) is, for example, the ratio of the polymer nanoparticles (G) in the entire coating film in the cross-sectional SEM image of the hard coat layer (J). Alternatively, it can be calculated from the component ratio of the polymer nanoparticles (G) in the components constituting the hard coat layer (J).

[重合体ナノ粒子(G)の構成成分]
[加水分解性珪素化合物(g)]
本実施形態における重合体ナノ粒子(G)は、加水分解性珪素化合物(g)を含むことが好ましい。加水分解性珪素化合物(g)は、加水分解性を有する珪素化合物、その加水分解生成物、及び縮合物であれば、特に限定されない。
[Constituents of polymer nanoparticles (G)]
[Hydrolyzable silicon compound (g)]
The polymer nanoparticles (G) in this embodiment preferably contain a hydrolyzable silicon compound (g). The hydrolyzable silicon compound (g) is not particularly limited as long as it is a hydrolyzable silicon compound, its hydrolysis product, or condensate.

加水分解性珪素化合物(b)は、耐摩耗性や耐候性が向上する観点から、下記式(g-1)で表される原子団を含有する化合物、その加水分解生成物、及び縮合物であることが好ましい。
-R n1SiX 3-n1 (g-1)
From the viewpoint of improving wear resistance and weather resistance, the hydrolyzable silicon compound (b) is a compound containing an atomic group represented by the following formula (g-1), a hydrolysis product thereof, or a condensate thereof. Preferably.
-R 1 n1 SiX 1 3-n1 (g-1)

式(g-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n1は、0~2の整数を表す。加水分解性基は、加水分解により水酸基が生じる基であれば特に限定されず、このような基としては、例えば、ハロゲン、アルコキシ基、アシルオキシ基、アミノ基、フェノキシ基、オキシム基などが挙げられる。 In formula (g-1), R 1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, or an aryl group, and R 1 represents a halogen, a hydroxy group, a mercapto group, or an amino group. , (meth)acryloyl group, or epoxy group-containing substituent, X 1 represents a hydrolyzable group, and n1 represents an integer of 0-2. The hydrolyzable group is not particularly limited as long as it produces a hydroxyl group by hydrolysis, and examples of such groups include halogen, alkoxy groups, acyloxy groups, amino groups, phenoxy groups, and oxime groups. .

式(g-1)で表される原子団を含有する化合物の具体例としては、以下に限定されないが、例えば、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリメトキシラン、ヘキシルトリエトキシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリフェノキシシリル)エタン、1,1-ビス(トリエトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタン、1,1-ビス(トリエトキシシリル)プロパン、1,2-ビス(トリエトキシシリル)プロパン、1,3-ビス(トリエトキシシリル)プロパン、1,4-ビス(トリエトキシシリル)ブタン、1,5-ビス(トリエトキシシリル)ペンタン、1,1-ビス(トリメトキシシリル)エタン、1,2-ビス(トリメトキシシリル)エタン、1,1-ビス(トリメトキシシリル)プロパン、1,2-ビス(トリメトキシシリル)プロパン、1,3-ビス(トリメトキシシリル)プロパン、1,4-ビス(トリメトキシシリル)ブタン、1,5-ビス(トリメトキシシリル)ペンタン、1,3-ビス(トリフェノキシシリル)プロパン、1,4-ビス(トリメトキシシリル)ベンゼン、1,4-ビス(トリエトキシシリル)ベンゼン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、1,7-ビス(トリエトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、1,8-ビス(トリエトキシシリル)オクタン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシラン、3-グリシドキシプロピルメチルジエトキシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、ビニルトリメトキシラン、ビニルトリエトキシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、トリアセトキシシラン、トリス(トリクロロアセトキシ)シラン、トリス(トリフルオロアセトキシ)シラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、トリス-(トリエトキシシリルプロピル)イソシアヌレート、メチルトリアセトキシシラン、メチルトリス(トリクロロアセトキシ)シラン、トリクロロシラン、トリブロモシラン、メチルトリフルオロシラン、トリス(メチルエチルケトキシム)シラン、フェニルトリス(メチルエチルケトキシム)シラン、ビス(メチルエチルケトキシム)シラン、メチルビス(メチルエチルケトキシム)シラン、ヘキサメチルジシラン、ヘキサメチルシクロトリシラザン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジエチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルシラン、ビス(ジエチルアミノ)メチルシラン、2-[(トリエトキシシリル)プロピル]ジベンジルレゾルシノール、2-[(トリメトキシシリル)プロピル]ジベンジルレゾルシノール、2,2,6,6-テトラメチル-4-[3-(トリエトキシシリル)プロポキシ]ピペリジン、2,2,6,6-テトラメチル-4-[3-(トリメトキシシリル)プロポキシ]ピペリジン、2-ヒドロキシ-4-[3-(トリエトキシシリル)プロポキシ]ベンゾフェノン、2-ヒドロキシ-4-[3-(トリメトキシシリル)プロポキシ]ベンゾフェノンなどが挙げられる。 Specific examples of the compound containing the atomic group represented by formula (g-1) include, but are not limited to, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltri Methoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltri ethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxysilane, diethoxysilane, methyldimethoxysilane, methyldiethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethoxydiphenyl Silane, diethoxydiphenylsilane, bis(trimethoxysilyl)methane, bis(triethoxysilyl)methane, bis(triphenoxysilyl)ethane, 1,1-bis(triethoxysilyl)ethane, 1,2-bis(tri ethoxysilyl)ethane, 1,1-bis(triethoxysilyl)propane, 1,2-bis(triethoxysilyl)propane, 1,3-bis(triethoxysilyl)propane, 1,4-bis(triethoxysilyl) ) butane, 1,5-bis(triethoxysilyl)pentane, 1,1-bis(trimethoxysilyl)ethane, 1,2-bis(trimethoxysilyl)ethane, 1,1-bis(trimethoxysilyl)propane , 1,2-bis(trimethoxysilyl)propane, 1,3-bis(trimethoxysilyl)propane, 1,4-bis(trimethoxysilyl)butane, 1,5-bis(trimethoxysilyl)pentane, 1 ,3-bis(triphenoxysilyl)propane, 1,4-bis(trimethoxysilyl)benzene, 1,4-bis(triethoxysilyl)benzene, 1,6-bis(trimethoxysilyl)hexane, 1,6 -bis(triethoxysilyl)hexane, 1,7-bis(trimethoxysilyl)heptane, 1,7-bis(triethoxysilyl)heptane, 1,8-bis(trimethoxysilyl)octane, 1,8-bis (triethoxysilyl) octane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, trifluoropropyl trimethoxysilane, trifluoropropyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3-hydroxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane , 3-mercaptopropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane , 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3 -methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane Silane, p-styryltriethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldiethoxysilane, N-2-(amino ethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3- aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, 3-trimethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, 3-triethoxysilyl-N-(1,3 -dimethyl-butylidene)propylamine, triacetoxysilane, tris(trichloroacetoxy)silane, tris(trifluoroacetoxy)silane, tris-(trimethoxysilylpropyl)isocyanurate, tris-(triethoxysilylpropyl)isocyanurate, methyl triacetoxysilane, methyltris(trichloroacetoxy)silane, trichlorosilane, tribromosilane, methyltrifluorosilane, tris(methylethylketoxime)silane , phenyltris(methylethylketoxime)silane, bis(methylethylketoxime)silane, methylbis(methylethylketoxime)silane, hexamethyldisilane, hexamethylcyclotrisilazane, bis(dimethylamino)dimethylsilane, bis(diethylamino)dimethylsilane, bis( dimethylamino)methylsilane, bis(diethylamino)methylsilane, 2-[(triethoxysilyl)propyl]dibenzylresorcinol, 2-[(trimethoxysilyl)propyl]dibenzylresorcinol, 2,2,6,6-tetramethyl- 4-[3-(triethoxysilyl)propoxy]piperidine, 2,2,6,6-tetramethyl-4-[3-(trimethoxysilyl)propoxy]piperidine, 2-hydroxy-4-[3-(tri ethoxysilyl)propoxy]benzophenone, 2-hydroxy-4-[3-(trimethoxysilyl)propoxy]benzophenone and the like.

加水分解性珪素化合物(g)は、ハードコート層に高い硬度を付与でき、より耐摩耗性が向上する観点から、下記式(g-2)で表される化合物、その加水分解生成物、及び縮合物を含むことが好ましい。
SiX (g-2)
式(a-2)中、Xは、加水分解性基を表す。加水分解性基は、加水分解により水酸基が生じる基であれば特に限定されず、例えば、ハロゲン、アルコキシ基、アシルオキシ基、アミノ基、フェノキシ基、オキシム基などが挙げられる。
The hydrolyzable silicon compound (g) can impart high hardness to the hard coat layer, and from the viewpoint of further improving wear resistance, a compound represented by the following formula (g-2), a hydrolysis product thereof, and It preferably contains a condensate.
SiX 2 4 (g−2)
In formula (a-2), X2 represents a hydrolyzable group. The hydrolyzable group is not particularly limited as long as it produces a hydroxyl group by hydrolysis, and examples thereof include halogens, alkoxy groups, acyloxy groups, amino groups, phenoxy groups, and oxime groups.

式(g-2)で表される化合物の具体例としては、以下に限定されないが、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ(n-プロポキシ)シラン、テトラ(i-プロポキシ)シラン、テトラ(n-ブトキシ)シラン、テトラ(i-ブトキシ)シラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラアセトキシシラン、テトラ(トリクロロアセトキシ)シラン、テトラ(トリフルオロアセトキシ)シラン、テトラクロロシラン、テトラブロモシラン、テトラフルオロシラン、テトラ(メチルエチルケトキシム)シラン、テトラメトキシシラン又はテトラエトキシシランの部分加水分解縮合物(例えば、多摩化学工業社製の商品名「Mシリケート51」、「シリケート35」、「シリケート45」、「シリケート40」、「FR-3」;三菱化学社製の商品名「MS51」、「MS56」、「MS57」、「MS56S」;コルコート社製の商品名「メチルシリケート51」、「メチルシリケート53A」、「エチルシリケート40」、「エチルシリケート48」、「EMS-485」、「N-103X」、「PX」、「PS-169」、「PS-162R」、「PC-291」、「PC-301」、「PC-302R」、「PC-309」、「EMSi48」)などが挙げられる。 Specific examples of the compound represented by formula (g-2) include, but are not limited to, tetramethoxysilane, tetraethoxysilane, tetra(n-propoxy)silane, tetra(i-propoxy)silane, tetra (n-butoxy)silane, tetra(i-butoxy)silane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetraacetoxysilane, tetra(trichloroacetoxy)silane, tetra(trifluoroacetoxy)silane, tetrachlorosilane , tetrabromosilane, tetrafluorosilane, tetra(methylethylketoxime)silane, tetramethoxysilane or partial hydrolysis condensate of tetraethoxysilane (for example, trade names "M Silicate 51" and "Silicate 35" manufactured by Tama Chemical Industry Co., Ltd.) , “Silicate 45”, “Silicate 40”, “FR-3”; trade names “MS51”, “MS56”, “MS57”, “MS56S” manufactured by Mitsubishi Chemical Corporation; trade names “Methyl Silicate 51” manufactured by Colcoat Co., Ltd. ”, “Methyl Silicate 53A”, “Ethyl Silicate 40”, “Ethyl Silicate 48”, “EMS-485”, “N-103X”, “PX”, “PS-169”, “PS-162R”, “PC -291”, “PC-301”, “PC-302R”, “PC-309”, “EMSi48”) and the like.

以上のとおり、本実施形態において、加水分解性珪素化合物(g)が、上記式(g-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに上記式(g-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含むことが好ましい。 As described above, in the present embodiment, the hydrolyzable silicon compound (g) is a compound containing an atomic group represented by the above formula (g-1), its hydrolysis product and condensate, and the above formula ( It preferably contains one or more selected from the compound represented by g-2), its hydrolysis products and condensates.

[重合体ナノ粒子(G)中の加水分解性珪素化合物(g)の含有量]
本実施形態における加水分解性珪素化合物(g)の含有量とは、重合体ナノ粒子(G)中に含まれる加水分解性珪素化合物(g)の固形分重量割合を示し、含有量が高いほど耐摩耗性や耐候性、耐熱性が向上する観点から、含有量が高いほど好ましく、含有量は、好ましくは50質量%以上であり、より好ましくは60質量%以上である。重合体ナノ粒子(G)中の加水分解性珪素化合物(g)の含有量は、以下に限定されないが、例えば、重合体ナノ粒子(G)のIR解析、NMR解析、元素分析等で測定することができる。
[Content of hydrolyzable silicon compound (g) in polymer nanoparticles (G)]
The content of the hydrolyzable silicon compound (g) in the present embodiment indicates the solid content weight ratio of the hydrolyzable silicon compound (g) contained in the polymer nanoparticles (G). From the viewpoint of improving wear resistance, weather resistance, and heat resistance, the higher the content, the more preferable, and the content is preferably 50% by mass or more, more preferably 60% by mass or more. The content of the hydrolyzable silicon compound (g) in the polymer nanoparticles (G) is not limited to the following, but is measured, for example, by IR analysis, NMR analysis, elemental analysis, etc. of the polymer nanoparticles (G). be able to.

[マトリクス成分(H)]
本実施形態におけるマトリクス成分(H)を用いることにより、ハードコート層(J)に衝撃吸収性を付与でき、ハードコート層(J)のテーバー摩耗試験におけるヘイズ変化量を小さくできる。マトリクス成分(H)の硬度HMHについては、後述するマトリクス原料成分(H’)の構成成分の構造及び組成比により、前述した範囲に制御できるが、特にこの方法に限定されるものではない。
[Matrix component (H)]
By using the matrix component (H) in the present embodiment, the hard coat layer (J) can be imparted with impact absorption properties, and the amount of change in haze in the Taber abrasion test of the hard coat layer (J) can be reduced. The hardness HMH of the matrix component (H) can be controlled within the range described above depending on the structure and composition ratio of the constituent components of the matrix raw material component (H'), which will be described later, but is not particularly limited to this method.

[マトリクス成分(H)の構成成分]
[加水分解性珪素化合物(h)]
本実施形態におけるマトリクス成分(H)は、重合体ナノ粒子(G)が分散できるような成分であれば特に限定されない。本実施形態において、高靭性の観点から、マトリクス成分(H)は、加水分解性珪素化合物(h)を含むことが好ましい。本明細書において、「マトリクス成分(H)が加水分解性珪素化合物(h)を含む」とは、マトリクス成分(H)が、加水分解性珪素化合物(h)に由来する構成単位を有する高分子を含むことを意味する。加水分解性珪素化合物(h)は、加水分解性を有する珪素化合物、その加水分解生成物及び縮合物であれば、特に限定されない。
マトリクス成分(H)としては、上述した高分子以外にも、重合体ナノ粒子(G)を除く様々な成分が含まれていてもよい。その中でも、上述した高分子以外に含まれ得るその他の高分子としては、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、ポリアクリル酸等の水溶性樹脂;PMMA、PAN、ポリアクリルアミド等のアクリル樹脂;ポリスチレン、ポリウレタン、ポリアミド、ポリイミド、ポリ塩化ビニリデン、ポリエステル、ポリカーボネート、ポリエーテル、ポリエチレン、ポリスルホン、ポリプロピレン、ポリブタジエン、PTFE、PVDF、EVA等のポリマー;及びこれらのコポリマー等が挙げられる。
[Constituents of matrix component (H)]
[Hydrolyzable silicon compound (h)]
The matrix component (H) in the present embodiment is not particularly limited as long as the polymer nanoparticles (G) can be dispersed. In the present embodiment, from the viewpoint of high toughness, the matrix component (H) preferably contains a hydrolyzable silicon compound (h). In the present specification, "the matrix component (H) contains the hydrolyzable silicon compound (h)" means that the matrix component (H) is a polymer having structural units derived from the hydrolyzable silicon compound (h). is meant to contain The hydrolyzable silicon compound (h) is not particularly limited as long as it is a hydrolyzable silicon compound, its hydrolysis product or condensate.
The matrix component (H) may contain various components other than the polymer nanoparticles (G) other than the polymer described above. Among them, other polymers that can be contained in addition to the above-described polymers include water-soluble resins such as polyvinyl alcohol, polyethylene glycol, polyvinylpyrrolidone, and polyacrylic acid; acrylic resins such as PMMA, PAN, and polyacrylamide; Polymers such as polyurethane, polyamide, polyimide, polyvinylidene chloride, polyester, polycarbonate, polyether, polyethylene, polysulfone, polypropylene, polybutadiene, PTFE, PVDF, EVA; and copolymers thereof.

加水分解性珪素化合物(h)は、積層体(K)の耐摩耗性及び耐候性が一層向上する観点から、下記式(h-1)で表される原子団を含有する化合物、その加水分解生成物、及び縮合物、並びに下記式(h-2)で表される化合物、その加水分解生成物、及び縮合物からなる群より選択される1種以上を含むことが好ましい。
-R n2SiX 3-n2 (h-1)
式(h-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n2は、0~2の整数を表す。加水分解性基は、加水分解により水酸基が生じる基であれば特に限定されず、そのような基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基、アミノ基、フェノキシ基、オキシム基などが挙げられる。
SiX (h-2)
式(h-2)中、Xは、加水分解性基を表す。加水分解性基は、加水分解により水酸基が生じる基であれば特に限定されず、そのような基としては、例えば、ハロゲン、アルコキシ基、アシルオキシ基、アミノ基、フェノキシ基、オキシム基などが挙げられる。
From the viewpoint of further improving the wear resistance and weather resistance of the laminate (K), the hydrolyzable silicon compound (h) is a compound containing an atomic group represented by the following formula (h-1), its hydrolysis It preferably contains one or more selected from the group consisting of products, condensates, compounds represented by the following formula (h-2), hydrolysis products thereof, and condensates.
-R 2 n2 SiX 3 3-n2 (h-1)
In formula (h-1), R 2 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an alkynyl group, or an aryl group, and R 2 represents a halogen, a hydroxy group, a mercapto group, or an amino group. , (meth)acryloyl group, or epoxy group-containing substituent, X 3 represents a hydrolyzable group, and n2 represents an integer of 0-2. The hydrolyzable group is not particularly limited as long as it produces a hydroxyl group by hydrolysis, and examples of such groups include halogen atoms, alkoxy groups, acyloxy groups, amino groups, phenoxy groups, and oxime groups. be done.
SiX 4 4 (h-2)
In formula (h-2), X 4 represents a hydrolyzable group. The hydrolyzable group is not particularly limited as long as it produces a hydroxyl group by hydrolysis, and examples of such groups include halogen, alkoxy groups, acyloxy groups, amino groups, phenoxy groups, and oxime groups. .

一般式(h-1)で表される原子団を含む化合物の具体例としては、以下に限定されないが、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリメトキシラン、ヘキシルトリエトキシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリフェノキシシリル)エタン、1,1-ビス(トリエトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタン、1,1-ビス(トリエトキシシリル)プロパン、1,2-ビス(トリエトキシシリル)プロパン、1,3-ビス(トリエトキシシリル)プロパン、1,4-ビス(トリエトキシシリル)ブタン、1,5-ビス(トリエトキシシリル)ペンタン、1,1-ビス(トリメトキシシリル)エタン、1,2-ビス(トリメトキシシリル)エタン、1,1-ビス(トリメトキシシリル)プロパン、1,2-ビス(トリメトキシシリル)プロパン、1,3-ビス(トリメトキシシリル)プロパン、1,4-ビス(トリメトキシシリル)ブタン、1,5-ビス(トリメトキシシリル)ペンタン、1,3-ビス(トリフェノキシシリル)プロパン、1,4-ビス(トリメトキシシリル)ベンゼン、1,4-ビス(トリエトキシシリル)ベンゼン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、1,7-ビス(トリエトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、1,8-ビス(トリエトキシシリル)オクタン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシラン、3-グリシドキシプロピルメチルジエトキシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、ビニルトリメトキシラン、ビニルトリエトキシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、トリアセトキシシラン、トリス(トリクロロアセトキシ)シラン、トリス(トリフルオロアセトキシ)シラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、トリス-(トリエトキシシリルプロピル)イソシアヌレート、メチルトリアセトキシシラン、メチルトリス(トリクロロアセトキシ)シラン、トリクロロシラン、トリブロモシラン、メチルトリフルオロシラン、トリス(メチルエチルケトキシム)シラン、フェニルトリス(メチルエチルケトキシム)シラン、ビス(メチルエチルケトキシム)シラン、メチルビス(メチルエチルケトキシム)シラン、ヘキサメチルジシラン、ヘキサメチルシクロトリシラザン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジエチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルシラン、ビス(ジエチルアミノ)メチルシラン、2-[(トリエトキシシリル)プロピル]ジベンジルレゾルシノール、2-[(トリメトキシシリル)プロピル]ジベンジルレゾルシノール、2,2,6,6-テトラメチル-4-[3-(トリエトキシシリル)プロポキシ]ピペリジン、2,2,6,6-テトラメチル-4-[3-(トリメトキシシリル)プロポキシ]ピペリジン、2-ヒドロキシ-4-[3-(トリエトキシシリル)プロポキシ]ベンゾフェノン、2-ヒドロキシ-4-[3-(トリメトキシシリル)プロポキシ]ベンゾフェノンなどが挙げられる。 Specific examples of the compound containing the atomic group represented by general formula (h-1) include, but are not limited to, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane. , ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane , cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxysilane, diethoxysilane, methyldimethoxysilane, methyldiethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethoxydiphenylsilane, Diethoxydiphenylsilane, bis(trimethoxysilyl)methane, bis(triethoxysilyl)methane, bis(triphenoxysilyl)ethane, 1,1-bis(triethoxysilyl)ethane, 1,2-bis(triethoxysilyl) ) ethane, 1,1-bis(triethoxysilyl)propane, 1,2-bis(triethoxysilyl)propane, 1,3-bis(triethoxysilyl)propane, 1,4-bis(triethoxysilyl)butane , 1,5-bis(triethoxysilyl)pentane, 1,1-bis(trimethoxysilyl)ethane, 1,2-bis(trimethoxysilyl)ethane, 1,1-bis(trimethoxysilyl)propane, 1 , 2-bis(trimethoxysilyl)propane, 1,3-bis(trimethoxysilyl)propane, 1,4-bis(trimethoxysilyl)butane, 1,5-bis(trimethoxysilyl)pentane, 1,3 -bis(triphenoxysilyl)propane, 1,4-bis(trimethoxysilyl)benzene, 1,4-bis(triethoxysilyl)benzene, 1,6-bis(trimethoxysilyl)hexane, 1,6-bis (triethoxysilyl)hexane, 1,7-bis(trimethoxysilyl)heptane, 1,7-bis(triethoxysilyl)heptane, 1,8-bis(trimethoxysilyl)octane, 1,8-bis(tri ethoxysilyl)octane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, trifluoropropyltrimeth xysilane, trifluoropropyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3-hydroxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3 - mercaptopropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2 -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxysilane roxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, p-styryltriethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldiethoxysilane, N-2-(aminoethyl) -3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, 3-trimethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, 3-triethoxysilyl-N-(1,3-dimethyl -butylidene)propylamine, triacetoxysilane, tris(trichloroacetoxy)silane, tris(trifluoroacetoxy)silane, tris-(trimethoxysilylpropyl)isocyanurate, tris-(triethoxysilylpropyl)isocyanurate, methyltriacetoxy silane, methyltris(trichloroacetoxy)silane, trichlorosilane, tribromosilane, methyltrifluorosilane, tris(methylethylketoxime)silane, phenyl Lutris(methylethylketoxime)silane, Bis(methylethylketoxime)silane, Methylbis(methylethylketoxime)silane, Hexamethyldisilane, Hexamethylcyclotrisilazane, Bis(dimethylamino)dimethylsilane, Bis(diethylamino)dimethylsilane, Bis(dimethylamino ) methylsilane, bis(diethylamino)methylsilane, 2-[(triethoxysilyl)propyl]dibenzylresorcinol, 2-[(trimethoxysilyl)propyl]dibenzylresorcinol, 2,2,6,6-tetramethyl-4- [3-(triethoxysilyl)propoxy]piperidine, 2,2,6,6-tetramethyl-4-[3-(trimethoxysilyl)propoxy]piperidine, 2-hydroxy-4-[3-(triethoxysilyl) ) propoxy]benzophenone, 2-hydroxy-4-[3-(trimethoxysilyl)propoxy]benzophenone, and the like.

式(h-2)で表される化合物の具体例としては、以下に限定されないが、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ(n-プロポキシ)シラン、テトラ(i-プロポキシ)シラン、テトラ(n-ブトキシ)シラン、テトラ(i-ブトキシ)シラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラアセトキシシラン、テトラ(トリクロロアセトキシ)シラン、テトラ(トリフルオロアセトキシ)シラン、テトラクロロシラン、テトラブロモシラン、テトラフルオロシラン、テトラ(メチルエチルケトキシム)シラン、テトラメトキシシラン又はテトラエトキシシランの部分加水分解縮合物(例えば、多摩化学工業社製の商品名「Mシリケート51」、「シリケート35」、「シリケート45」、「シリケート40」、「FR-3」;三菱化学社製の商品名「MS51」、「MS56」、「MS57」、「MS56S」;コルコート社製の商品名「メチルシリケート51」、「メチルシリケート53A」、「エチルシリケート40」、「エチルシリケート48」、「EMS-485」、「N-103X」、「PX」、「PS-169」、「PS-162R」、「PC-291」、「PC-301」、「PC-302R」、「PC-309」、「EMSi48」)などが挙げられる。 Specific examples of the compound represented by formula (h-2) include, but are not limited to, tetramethoxysilane, tetraethoxysilane, tetra(n-propoxy)silane, tetra(i-propoxy)silane, tetra (n-butoxy)silane, tetra(i-butoxy)silane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetraacetoxysilane, tetra(trichloroacetoxy)silane, tetra(trifluoroacetoxy)silane, tetrachlorosilane , tetrabromosilane, tetrafluorosilane, tetra(methylethylketoxime)silane, tetramethoxysilane or partial hydrolysis condensate of tetraethoxysilane (for example, trade names "M Silicate 51" and "Silicate 35" manufactured by Tama Chemical Industry Co., Ltd.) , “Silicate 45”, “Silicate 40”, “FR-3”; trade names “MS51”, “MS56”, “MS57”, “MS56S” manufactured by Mitsubishi Chemical Corporation; trade names “Methyl Silicate 51” manufactured by Colcoat Co., Ltd. ”, “Methyl Silicate 53A”, “Ethyl Silicate 40”, “Ethyl Silicate 48”, “EMS-485”, “N-103X”, “PX”, “PS-169”, “PS-162R”, “PC -291”, “PC-301”, “PC-302R”, “PC-309”, “EMSi48”) and the like.

以上のとおり、本実施形態において、加水分解性珪素化合物(h)が、上記式(h-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに上記式(h-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含むことが好ましい。 As described above, in the present embodiment, the hydrolyzable silicon compound (h) is a compound containing an atomic group represented by the above formula (h-1), its hydrolysis product and condensate, and the above formula ( It preferably contains one or more selected from the compound represented by h-2), its hydrolysis products and condensates.

本実施形態において、「重合体ナノ粒子(G)に含まれる加水分解性珪素化合物(g)」は、「マトリクス成分(H)に含まれる加水分解性珪素化合物(h)」と同一種のものであってもよく、別種のものであってもよい。両者が同一種である場合であっても、重合体ナノ粒子(G)に含まれる方を加水分解性珪素化合物(g)とし、マトリクス成分(H)に含まれる方を加水分解性珪素化合物(h)とすることで区別するものとする。 In the present embodiment, the "hydrolyzable silicon compound (g) contained in the polymer nanoparticles (G)" is of the same type as the "hydrolyzable silicon compound (h) contained in the matrix component (H)". It may be of a different type. Even if both are of the same type, the one contained in the polymer nanoparticles (G) is the hydrolyzable silicon compound (g), and the one contained in the matrix component (H) is the hydrolyzable silicon compound ( h).

[無機酸化物(F)]
本実施形態におけるマトリクス成分(H)は、無機酸化物(F)を含む。無機酸化物(F)を含むことにより、マトリクス成分(H)の硬度を向上させ耐摩耗性が向上する。また、無機酸化物(F)の粒子表面の水酸基の親水性によって塗膜の耐汚染性が向上する傾向にある。
[Inorganic oxide (F)]
The matrix component (H) in this embodiment contains an inorganic oxide (F). By including the inorganic oxide (F), the hardness of the matrix component (H) is improved and the abrasion resistance is improved. In addition, the hydrophilicity of the hydroxyl groups on the surfaces of the inorganic oxide (F) particles tends to improve the contamination resistance of the coating film.

本実施形態における無機酸化物(F)の具体例としては、以下に限定されないが、ケイ素、アルミニウム、チタン、ジルコニウム、亜鉛、セリウム、スズ、インジウム、ガリウム、ゲルマニウム、アンチモン、モリブデン、ニオブ、マグネシウム、ビスマス、コバルト、銅などの酸化物が挙げられる。これらは形状を問わず、単独で用いてもよく、混合物として用いてもよい。無機酸化物(F)としては、前述した加水分解性珪素化合物(h)との相互作用の観点から、乾式シリカやコロイダルシリカに代表されるシリカ粒子を更に含むことが好ましく、分散性の観点から、シリカ粒子の形態としてコロイダルシリカを更に含むことが好ましい。無機酸化物(F)がコロイダルシリカを含む場合、水性分散液の形態であることが好ましく、酸性、塩基性のいずれであっても用いることができる。
また、本実施形態において、無機酸化物(F)は、Ce、Nb、Al、Zn、Ti、Zr、Sb、Mg、Sn、Bi、Co及びCuからなる群より選択される少なくとも1種の無機成分(以下、単に「無機成分」ともいう。)を含有することが好ましい。無機酸化物(F)が当該無機成分を含むことにより、耐摩耗性と耐久性を損ねることなく耐候性が向上する傾向にある。以下に限定されないが、市販品を利用する場合、例えば、CIKナノテック株式会社製の酸化セリウム、酸化亜鉛、酸化アルミニウム、酸化ビスマス、酸化コバルト、酸化銅、酸化錫、酸化チタンの超微粒子マテリアル製品;多木化学社製の酸化チタン「タイノック」(商品名)、酸化セリウム「ニードラール」(商品名)、酸化錫「セラメース」(商品名)、酸化ニオブゾル、酸化ジルコニウムゾルが挙げられる。耐候性向上性能の観点から、無機酸化物(F)が、Ce、Nb、Zn、Ti及びZrからなる群より選択される少なくとも1種の無機成分を含むことが好ましく、Ceを含むことがより好ましい。
本実施形態における無機酸化物(F)は、耐摩耗性、耐久性及び耐候性のバランスの観点から、Ce、Nb、Zn、Ti及びZrからなる群より選択される少なくとも1種の無機酸化物(F’)を含有することが好ましく、ハードコート塗膜中における無機酸化物(F’)の含有量は、特に限定されないが、耐摩耗性、耐久性及び耐候性のバランスの観点から、1質量%以上であることが好ましく、より好ましくは2質量%以上である。また、透明性の観点から、上記含有量は、50質量%以下であることが好ましく、より好ましくは30質量%以下である。ここで、上記含有量は、ハードコート塗膜を100質量%としたときのCe、Nb、Zn、Ti及びZrの総量として特定することができる。
Specific examples of the inorganic oxide (F) in the present embodiment include, but are not limited to, silicon, aluminum, titanium, zirconium, zinc, cerium, tin, indium, gallium, germanium, antimony, molybdenum, niobium, magnesium, Oxides of bismuth, cobalt, copper and the like are included. These may be used singly or as a mixture regardless of the shape. From the viewpoint of interaction with the hydrolyzable silicon compound (h), the inorganic oxide (F) preferably further contains silica particles typified by dry silica and colloidal silica, and from the viewpoint of dispersibility. , preferably further contains colloidal silica in the form of silica particles. When the inorganic oxide (F) contains colloidal silica, it is preferably in the form of an aqueous dispersion, and it can be used whether it is acidic or basic.
In the present embodiment, the inorganic oxide (F) is at least one inorganic oxide selected from the group consisting of Ce, Nb, Al, Zn, Ti, Zr, Sb, Mg, Sn, Bi, Co and Cu. It is preferable to contain a component (hereinafter also simply referred to as “inorganic component”). Including the inorganic component in the inorganic oxide (F) tends to improve weather resistance without impairing wear resistance and durability. Although not limited to the following, when using commercially available products, for example, CIK Nanotech Co., Ltd. cerium oxide, zinc oxide, aluminum oxide, bismuth oxide, cobalt oxide, copper oxide, tin oxide, ultrafine particle material products of titanium oxide; Titanium oxide “Tynoc” (trade name), cerium oxide “Needral” (trade name), tin oxide “Ceramase” (trade name), niobium oxide sol, and zirconium oxide sol manufactured by Taki Kagaku Co., Ltd. may be mentioned. From the viewpoint of weather resistance improvement performance, the inorganic oxide (F) preferably contains at least one inorganic component selected from the group consisting of Ce, Nb, Zn, Ti and Zr, and more preferably contains Ce. preferable.
The inorganic oxide (F) in the present embodiment is at least one inorganic oxide selected from the group consisting of Ce, Nb, Zn, Ti and Zr from the viewpoint of the balance of wear resistance, durability and weather resistance. (F') is preferably contained, and the content of the inorganic oxide (F') in the hard coat film is not particularly limited. It is preferably at least 2% by mass, more preferably at least 2% by mass. From the viewpoint of transparency, the content is preferably 50% by mass or less, more preferably 30% by mass or less. Here, the above content can be specified as the total amount of Ce, Nb, Zn, Ti and Zr when the hard coat film is taken as 100% by mass.

[無機酸化物(F)の平均粒子径]
本実施形態における無機酸化物(F)の平均粒子径は、ハードコート層(J)の組成物の貯蔵安定性が良好となる観点から、2nm以上であることが好ましい。積層体全体としての透明性が良好となる観点から、150nm以下であることが好ましく、より好ましくは100nm以下であり、更に好ましくは50nm以下である。このため、平均粒子径は、好ましくは2nm以上100nm以下であり、より好ましくは2nm以上50nm以下である。無機酸化物の平均粒子径(F)の測定方法は、以下に限定されないが、例えば、水分散コロイダルシリカに対し、透過型顕微鏡写真を用いて50,000~100,000倍に拡大して観察し、粒子として100~200個の無機酸化物が写るように撮影して、その無機酸化物粒子の長径及び短径の平均値から測定することができる。
[Average particle size of inorganic oxide (F)]
The average particle size of the inorganic oxide (F) in the present embodiment is preferably 2 nm or more from the viewpoint of good storage stability of the composition of the hard coat layer (J). From the viewpoint of good transparency of the laminate as a whole, the thickness is preferably 150 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less. Therefore, the average particle diameter is preferably 2 nm or more and 100 nm or less, more preferably 2 nm or more and 50 nm or less. The method for measuring the average particle size (F) of the inorganic oxide is not limited to the following, but for example, the water-dispersed colloidal silica is observed using a transmission microscope photograph at a magnification of 50,000 to 100,000 times. Then, 100 to 200 inorganic oxide particles are photographed, and the average value of the long and short diameters of the inorganic oxide particles can be used for measurement.

[無機酸化物(F)に含まれうるコロイダルシリカ]
本実施形態で好適に用いられる水を分散溶媒とする酸性のコロイダルシリカとしては、特に限定されないが、ゾル-ゲル法で調製して使用することもでき、市販品を利用することもできる。ゾル-ゲル法で調製する場合には、Werner Stober etal;J.Colloid and Interface Sci.,26,62-69(1968)、Rickey D.Badley et al;Lang muir 6,792-801(1990)、色材協会誌,61[9]488-493(1988)などを参照できる。市販品を利用する場合、例えば、スノーテックス-O、スノーテックス-OS、スノーテックス-OXS、スノーテックス-O-40、スノーテックス-OL、スノーテックスOYL、スノーテックス-OUP、スノーテックス-PS-SO、スノーテックス-PS-MO、スノーテックス-AK-XS、スノーテックス-AK、スノーテックス-AK-L、スノーテックス-AK-YL、スノーテックス-AK-PS-S(商品名、日産化学工業株式会社製)、アデライトAT-20Q(商品名、旭電化工業株式会社製)、クレボゾール20H12、クレボゾール30CAL25(商品名、クラリアントジャパン株式会社製)などが挙げられる。
[Colloidal silica that can be contained in the inorganic oxide (F)]
The acidic colloidal silica having water as a dispersion solvent, which is suitably used in the present embodiment, is not particularly limited, but it can be prepared and used by a sol-gel method, or a commercially available product can be used. When prepared by a sol-gel method, see Werner Stober et al; Colloid and Interface Sci. , 26, 62-69 (1968), Rickey D. Badley et al; Lang muir 6, 792-801 (1990), Journal of the Color Material Association, 61 [9] 488-493 (1988). When using commercially available products, for example, Snowtex-O, Snowtex-OS, Snowtex-OXS, Snowtex-O-40, Snowtex-OL, Snowtex-OYL, Snowtex-OUP, Snowtex-PS- SO, Snowtex-PS-MO, Snowtex-AK-XS, Snowtex-AK, Snowtex-AK-L, Snowtex-AK-YL, Snowtex-AK-PS-S (trade name, Nissan Chemical Industries Co., Ltd.), Adelite AT-20Q (trade name, Asahi Denka Kogyo Co., Ltd.), Clevosol 20H12, and Clevosol 30CAL25 (trade name, Clariant Japan Co., Ltd.).

また、塩基性のコロイダルシリカとしては、アルカリ金属イオン、アンモニウムイオン、アミンの添加で安定化したシリカがあり、特に限定されないが、例えば、スノーテックス-20、スノーテックス-30、スノーテックス-XS、スノーテックス-50、スノーテックス-30L、スノーテックス-XL、スノーテックス-YL、スノーテックスZL、スノーテックス-UP、スノーテックス-ST-PS-S、スノーテックスST-PS-M、スノーテックス-C、スノーテックス-CXS、スノーテックス-CM、スノーテックス-N、スノーテックス-NXS、スノーテックス-NS、スノーテックス-N-40(商品名、日産化学工業株式会社製)、アデライトAT-20、アデライトAT-30、アデライトAT-20N、アデライトAT-30N、アデライトAT-20A、アデライトAT-30A、アデライトAT-40、アデライトAT-50(商品名、旭電化工業株式会社製)、クレボゾール30R9、クレボゾール30R50、クレボゾール50R50(商品名、クラリアントジャパン株式会社製)、ルドックスHS-40、ルドックスHS-30、ルドックスLS、ルドックスAS-30、ルドックスSM-AS、ルドックスAM、ルドックスHSA及びルドックスSM(商品名、デュポン社製)などが挙げられる。 Examples of basic colloidal silica include silica stabilized by the addition of alkali metal ions, ammonium ions, and amines, and are not particularly limited. Examples include Snowtex-20, Snowtex-30, Snowtex-XS, Snowtex-50, Snowtex-30L, Snowtex-XL, Snowtex-YL, Snowtex ZL, Snowtex-UP, Snowtex-ST-PS-S, Snowtex ST-PS-M, Snowtex-C , Snowtex-CXS, Snowtex-CM, Snowtex-N, Snowtex-NXS, Snowtex-NS, Snowtex-N-40 (trade name, manufactured by Nissan Chemical Industries, Ltd.), Adelite AT-20, Adelite AT-30, Adelite AT-20N, Adelite AT-30N, Adelite AT-20A, Adelite AT-30A, Adelite AT-40, Adelite AT-50 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), Clevosol 30R9, Clevosol 30R50 , Clevozol 50R50 (trade name, manufactured by Clariant Japan Co., Ltd.), Ludox HS-40, Ludox HS-30, Ludox LS, Ludox AS-30, Ludox SM-AS, Ludox AM, Ludox HSA and Ludox SM (trade name, DuPont company) and the like.

また、水溶性溶媒を分散媒体とするコロイダルシリカとしては、特に限定されないが、例えば、日産化学工業株式会社製MA-ST-M(粒子径が20~25nmのメタノール分散タイプ)、IPA-ST(粒子径が10~15nmのイソプロピルアルコール分散タイプ)、EG-ST(粒子径が10~15nmのエチレングリコール分散タイプ)、EGST-ZL(粒子径が70~100nmのエチレングリコール分散タイプ)、NPC-ST(粒子径が10~15nmのエチレングリコールモノプロピルエーテール分散タイプ)、TOL-ST(粒子径が10~15nmのトルエン分散タイプ)などが挙げられる。 In addition, the colloidal silica that uses a water-soluble solvent as a dispersion medium is not particularly limited. Isopropyl alcohol dispersion type with a particle size of 10 to 15 nm), EG-ST (ethylene glycol dispersion type with a particle size of 10 to 15 nm), EGST-ZL (ethylene glycol dispersion type with a particle size of 70 to 100 nm), NPC-ST (ethylene glycol monopropyl ether dispersion type with a particle size of 10 to 15 nm), TOL-ST (toluene dispersion type with a particle size of 10 to 15 nm), and the like.

乾式シリカ粒子としては、特に限定されないが、例えば、日本アエロジル株式会社製 AEROSIL、株式会社トクヤマ製レオロシールなどが挙げられる。 The dry silica particles are not particularly limited, but examples thereof include AEROSIL manufactured by Nippon Aerosil Co., Ltd., and Rheolosil manufactured by Tokuyama Corporation.

また、これらシリカ粒子は、安定剤として無機塩基(水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなど)や有機塩基(テトラメチルアンモニウム、トリエチルアミンなど)を含んでいてもよい。 Further, these silica particles may contain an inorganic base (sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia, etc.) or an organic base (tetramethylammonium, triethylamine, etc.) as a stabilizer.

[無機酸化物(F)の形状]
さらに、本実施形態における無機酸化物(F)の形状は、以下に限定されないが、例えば、球状、角状、多面体形状、楕円状、扁平状、線状、数珠状、鎖状などが挙げられ、ハードコート層の硬度及び透明性の観点から、球状であることが特に好ましい。
[Shape of inorganic oxide (F)]
Furthermore, the shape of the inorganic oxide (F) in the present embodiment is not limited to the following, and examples thereof include spherical, angular, polyhedral, elliptical, flattened, linear, beaded, and chain-like. From the viewpoint of hardness and transparency of the hard coat layer, a spherical shape is particularly preferable.

[官能基(g-3)]
本実施形態における重合体ナノ粒子(G)は、マトリクス成分(B)中への重合体ナノ粒子(G)の分散性が向上し、耐摩耗性を向上させることができる観点から、マトリクス成分(H)と相互作用する官能基(g-3)を有することが好ましい。重合体ナノ粒子(G)が官能基(g-3)を有することは、例えば、IR、GC-MS、熱分解GC-MS、LC-MS、GPC、MALDI-MS、TOF-SIMS、TG-DTA、NMRによる組成解析、及びこれらの組み合わせによる解析等により確認することができる。
[Functional group (g-3)]
The polymer nanoparticles (G) in the present embodiment can improve the dispersibility of the polymer nanoparticles (G) in the matrix component (B) and improve the abrasion resistance. It preferably has a functional group (g-3) that interacts with H). The fact that the polymer nanoparticles (G) have functional groups (g-3) can be confirmed, for example, by IR, GC-MS, pyrolysis GC-MS, LC-MS, GPC, MALDI-MS, TOF-SIMS, TG- It can be confirmed by composition analysis by DTA and NMR, analysis by a combination thereof, and the like.

本実施形態における官能基(g-3)の具体例としては、以下に限定されないが、水酸基、カルボキシル基、アミノ基、アミド基、エーテル結合からなる官能基が挙げられ、相互作用の観点から水素結合を有する官能基であることが好ましく、高い水素結合性の観点から、アミド基であることがより好ましく、2級アミド基及び/又は3級アミド基であることが更に好ましい。 Specific examples of the functional group (g-3) in the present embodiment include, but are not limited to, a hydroxyl group, a carboxyl group, an amino group, an amide group, and a functional group consisting of an ether bond. It is preferably a functional group having a bond, more preferably an amide group, and even more preferably a secondary amide group and/or a tertiary amide group from the viewpoint of high hydrogen bondability.

官能基(g-3)を含有している化合物及びその反応物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチルビニルエーテル若しくは4-ヒドロキシブチルビニルエーテル、2-ヒドロキシエチルアリルエーテル、(メタ)アクリル酸、2-カルボキシエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、2-ジ-n-プロピルアミノエチル(メタ)アクリレート、3-ジメチルアミノプロピル(メタ)アクリレート、4-ジメチルアミノブチル(メタ)アクリレート、N-[2-(メタ)アクリロイルオキシ]エチルモルホリン、ビニルピリジン、N-ビニルカルバゾール、N-ビニルキノリン、N-メチルアクリルアミド、N-メチルメタアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタアクリルアミド、N,N-ジエチルアクリルアミド、N-エチルメタアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-エチルメタアクリルアミド、N-イソプロピルアクリルアミド、N-n-プロピルアクリルアミド、N-イソプロピルメタアクリルアミド、N-n-プロピルメタアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-アクリロイルピロリジン、N-メタクリロイルピロリジン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルヘキサヒドロアゼピン、N-アクリロイルモルホリン、N-メタクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N-ビニルアセトアミド、ダイアセトンアクリルアミド、ダイアセトンメタアクリルアミド、N-メチロールアクリルアミド、N-メチロールメタアクリルアミド、ブレンマーPE-90、PE-200、PE-350、PME-100、PME-200、PME-400、AE-350(商品名、日本油脂社製)、MA-30、MA-50、MA-100、MA-150、RA-1120、RA-2614、RMA-564、RMA-568、RMA-1114、MPG130-MA(商品名、日本乳化剤社製)などが挙げられる。なお、本明細書中で、(メタ)アクリレートとはアクリレート又はメタアクリレートを、(メタ)アクリル酸とはアクリル酸又はメタアクリル酸を簡便に表記したものである。 Examples of compounds containing a functional group (g-3) and reactants thereof include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2 -hydroxyethyl vinyl ether or 4-hydroxybutyl vinyl ether, 2-hydroxyethyl allyl ether, (meth)acrylic acid, 2-carboxyethyl (meth)acrylate, 2-dimethylaminoethyl (meth)acrylate, 2-diethylaminoethyl (meth) acrylates, 2-di-n-propylaminoethyl (meth)acrylate, 3-dimethylaminopropyl (meth)acrylate, 4-dimethylaminobutyl (meth)acrylate, N-[2-(meth)acryloyloxy]ethylmorpholine, vinylpyridine, N-vinylcarbazole, N-vinylquinoline, N-methylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide , N-ethylmethacrylamide, N-methyl-N-ethylacrylamide, N-methyl-N-ethylmethacrylamide, N-isopropylacrylamide, Nn-propylacrylamide, N-isopropylmethacrylamide, Nn-propylmethacrylamide Acrylamide, N-methyl-Nn-propylacrylamide, N-methyl-N-isopropylacrylamide, N-acryloylpyrrolidine, N-methacryloylpyrrolidine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylhexahydroazepine, N -acryloylmorpholine, N-methacryloylmorpholine, N-vinylpyrrolidone, N-vinylcaprolactam, N,N'-methylenebisacrylamide, N,N'-methylenebismethacrylamide, N-vinylacetamide, diacetoneacrylamide, diacetonemetha Acrylamide, N-methylol acrylamide, N-methylol methacrylamide, Blemmer PE-90, PE-200, PE-350, PME-100, PME-200, PME-400, AE-350 (trade name, manufactured by NOF Corporation) , MA-30, MA-50, MA-100, MA-150, RA-1120, RA-2614, RMA-564, RMA-568, RMA-1114, MPG130-MA (trade name, manufactured by Nippon Nyukazai Co., Ltd.) and the like. In this specification, "(meth)acrylate" simply indicates acrylate or methacrylate, and "(meth)acrylic acid" indicates acrylic acid or methacrylic acid.

[重合体ナノ粒子(G)のコア/シェル構造]
本実施形態における重合体ナノ粒子(G)は、コア層と、コア層を被覆する1層又は2層以上のシェル層とを備えたコア/シェル構造を有することが好ましい。重合体ナノ粒子(G)は、コア/シェル構造の最外層におけるマトリクス成分(H)との相互作用の観点から、官能基(g-3)を有することが好ましい。
[Core/shell structure of polymer nanoparticles (G)]
The polymer nanoparticles (G) in this embodiment preferably have a core/shell structure comprising a core layer and one or more shell layers covering the core layer. The polymer nanoparticles (G) preferably have a functional group (g-3) from the viewpoint of interaction with the matrix component (H) in the outermost layer of the core/shell structure.

[重合体ナノ粒子(G)に含んでもよいその他の化合物]
本実施形態による重合体ナノ粒子(G)は、粒子間の静電反発力をもたせることで粒子の安定性を向上させる観点から、以下に示す重合体を含んでもよい。例えば、ポリウレタン系、ポリエステル系、ポリ(メタ)アクリレート系、ポリ(メタ)アクリル酸、ポリビニルアセテート系、ポリブタジエン系、ポリ塩化ビニル系、塩素化ポリプロピレン系、ポリエチレン系、ポリスチレン系の重合体、又はポリ(メタ)アクリレート-シリコーン系、ポリスチレン-(メタ)アクリレート系、スチレン無水マレイン酸系の共重合体が挙げられる。
[Other compounds that may be contained in the polymer nanoparticles (G)]
The polymer nanoparticles (G) according to the present embodiment may contain the following polymers from the viewpoint of improving the stability of the particles by imparting an electrostatic repulsive force between the particles. For example, polyurethane-based, polyester-based, poly(meth)acrylate-based, poly(meth)acrylic acid, polyvinyl acetate-based, polybutadiene-based, polyvinyl chloride-based, chlorinated polypropylene-based, polyethylene-based, polystyrene-based polymers, or poly (Meth)acrylate-silicone, polystyrene-(meth)acrylate, and styrene-maleic anhydride copolymers.

上述の重合体ナノ粒子(G)に含んでもよい重合体の中でも、静電反発に特に優れる化合物として、(メタ)アクリル酸と(メタ)アクリレートの重合体又は共重合体が挙げられる。具体例としては、以下に限定されないが、メチルアクリレート、(メタ)アクリル酸、メチルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルアクリレート、n-ブチルアクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートの重合体または共重合体が挙げられる。この際、(メタ)アルクリ酸は、静電反発力をさらに向上させるために、一部又は全部を、アンモニアやトリエチルアミン、ジメチルエタノールアミンなどのアミン類や、NaOH、KOHなどの塩基で中和してもよい。 Among the polymers that may be contained in the polymer nanoparticles (G) described above, a compound having particularly excellent electrostatic repulsion is a polymer or copolymer of (meth)acrylic acid and (meth)acrylate. Specific examples include, but are not limited to, methyl acrylate, (meth) acrylic acid, methyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl acrylate, n-butyl acrylate, 2-hydroxyethyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate polymer or copolymer mentioned. At this time, (meth)acrylic acid is partially or wholly neutralized with amines such as ammonia, triethylamine and dimethylethanolamine, and bases such as NaOH and KOH, in order to further improve the electrostatic repulsion. may

また、重合体ナノ粒子(G)は乳化剤を含んでもよい。乳化剤としては、特に限定されず、例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸などの酸性乳化剤;酸性乳化剤のアルカリ金属(Li、Na、K、など)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸などのアニオン性界面活性剤;アルキルトリメチルアンモニウムブロミド、アルキルピリジニウムブロミド、イミダゾリニウムラウレートなどの四級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩型のカチオン性界面活性剤;ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンボロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテルなどのノニオン型界面活性剤やラジカル重合性の二重結合を有する反応性乳化剤などが挙げられる。 Moreover, the polymer nanoparticles (G) may contain an emulsifier. The emulsifier is not particularly limited, and examples thereof include acidic emulsifiers such as alkylbenzenesulfonic acid, alkylsulfonic acid, alkylsulfosuccinic acid, polyoxyethylene alkylsulfuric acid, polyoxyethylene alkylarylsulfuric acid, and polyoxyethylene distyrylphenyl ether sulfonic acid; Anionic surfactants such as alkali metal (Li, Na, K, etc.) salts of acidic emulsifiers, ammonium salts of acidic emulsifiers, fatty acid soaps; quaternaries such as alkyltrimethylammonium bromide, alkylpyridinium bromide, imidazolinium laurate Ammonium salt, pyridinium salt, imidazolinium salt type cationic surfactant; nonionic such as polyoxyethylene alkylaryl ether, polyoxyethylene sorbitan fatty acid ester, polyoxyethyleneoxypropylene block copolymer, polyoxyethylene distyrylphenyl ether type surfactants and reactive emulsifiers having radically polymerizable double bonds.

前記ラジカル重合性の二重結合を有する反応性乳化剤としては、以下に限定されるものではないが、例えば、エレミノールJS-2(商品名、三洋化成株式会社製)、ラテムルS-120、S-180A又はS-180(商品名、花王株式会社製)、アクアロンHS-10、KH-1025、RN-10、RN-20、RN30、RN50(商品名、第一工業製薬株式会社製)、アデカリアソープSE1025、SR-1025、NE-20、NE-30、NE-40(商品名、旭電化工業株式会社製)、p-スチレンスルホン酸のアンモニウム塩、p-スチレンスルホン酸のナトリウム塩、p-スチレンスルホン酸のカリウム塩、2-スルホエチルアクリレートなどのアルキルスルホン酸(メタ)アクリレートやメチルプロパンスルホン酸(メタ)アクリルアミド、アリルスルホン酸のアンモニウム塩、アリルスルホン酸のナトリウム塩、アリルスルホン酸のカリウム塩などが挙げられる。 Examples of the reactive emulsifier having a radically polymerizable double bond include, but are not limited to, Eleminol JS-2 (trade name, manufactured by Sanyo Kasei Co., Ltd.), Latemul S-120, S- 180A or S-180 (trade name, manufactured by Kao Corporation), Aqualon HS-10, KH-1025, RN-10, RN-20, RN30, RN50 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Adekaria Soap SE1025, SR-1025, NE-20, NE-30, NE-40 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), ammonium salt of p-styrenesulfonic acid, sodium salt of p-styrenesulfonic acid, p- Potassium salt of styrenesulfonic acid, alkylsulfonic acid (meth)acrylate such as 2-sulfoethyl acrylate, methylpropanesulfonic acid (meth)acrylamide, ammonium salt of allylsulfonic acid, sodium salt of allylsulfonic acid, potassium allylsulfonic acid Examples include salt.

[ハードコート層(J)に含んでもよいその他の成分]
本実施形態におけるハードコート層(J)は、用途に応じて、マトリクス成分(H)として、溶媒、乳化剤、可塑剤、顔料、染料、充填剤、老化防止剤、導電材、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤、触媒を含んでもよい。特に屋外用途では高い耐候性が求められることから、紫外線吸収剤、光安定剤を含むことが好ましい。
紫外線吸収剤及び光安定剤の具体例としては、以下に限定されないが、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’ジメトキシベンゾフェノン(BASF社製の商品名「UVINUL3049」)、2,2’,4,4’-テトラヒドロキシベンゾフェノン(BASF社製の商品名「UVINUL3050」)、4-ドデシルオキシ-2-ヒドロキシベンゾフェノン、5-ベンゾイルー2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-ステアリルオキシベンゾフェノン、4,6-ジベンゾイルレゾルチノール、などのベンゾフェノン系紫外線吸収剤;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-オクチルフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’,5’-ビス(α,α’-ジメチルベンジル)フェニル〕ベンゾトリアゾール)、メチル-3-〔3-tert-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル〕プロピオネートとポリエチレングリコール(分子量300)との縮合物(BASF社製の商品名「TINUVIN1130」)、イソオクチル-3-〔3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル〕プロピオネート(BASF社製の商品名「TINUVIN384」)、2-(3-ドデシル-5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール(BASF社製の商品名「TINUVIN571」)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクトキシフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル〕ベンゾトリアゾール、2,2-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製の商品名「TINUVIN900」)、TINUVIN384-2、TINUVIN326、TINUVIN327、TINUVIN109、TINUVIN970、TINUVIN328、TINUVIN171、TINUVIN970、TINUVIN PS、TINUVIN P、TINUVIN99-2、TINVIN928(商品名、BASF社製)などのベンゾトリアゾール系紫外線吸収剤;2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシー4-ブチルオキシフェニル)-6-(2,4-ビスブチルオキシフェニル)-1,3,5-トリアジン(BASF社製の商品名「TINUVIN460」)、2-(2-ヒドロキシ-4-[1-オクチロキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(BASF社製の商品名「TINUVIN479」)、TINUVIN400、TINUVIN405、TINUVIN477、TINUVIN1600(商品名、BASF社製)などのトリアジン系紫外線吸収剤;HOSTAVIN PR25、HOSTAVIN B-CAP、HOSTAVIN VSU(商品名、クラリアント社製)、などのマロン酸エステル系紫外線吸収剤;HOSTAVIN3206 LIQ、HOSTAVINVSU P、HOSTAVIN3212 LIQ(商品名、クラリアント社製)、などのアニリド系紫外線吸収剤;アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-イソプロパノールフェニルサリシレート、などのサリシレート系紫外線吸収剤;エチル-2-シアノ-3,3-ジフェニルアクリレート(BASF社製の商品名「UVINUL3035」)、(2-エチルヘキシル)-2-シアノ-3,3-ジフェニルアクリレート(BASF社製の商品名「UVINUL3039」、1,3-ビス((2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ)-2,2-ビス-(((2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ)メチル)プロパン(BASF社製の商品名「UVINUL3030)、などのシアノアクリレート系紫外線吸収剤;2-ヒドロキシ-4-アクリロキシベンゾフェノン、2-ヒドロキシ-4-メタクリロキシベンゾフェノン、2-ヒドロキシ-5-アクリロキシベンゾフェノン、2-ヒドロキシ-5-メタクリロキシベンゾフェノン、2-ヒドロキシ-4-(アクリロキシ-エトキシ)ベンゾフェノン、2-ヒドロキシ-4-(メタクリロキシ-エトキシ)ベンゾフェノン、2-ヒドロキシ-4-(メタクリロキシ-ジエトキシ)ベンゾフェノン、2-ヒドロキシ-4-(アクリロキシ-トリエトキシ)ベンゾフェノン、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール(大塚化学株式会社製の商品名「RUVA-93」)、2-(2’-ヒドロキシ-5’-メタクリロキシエチル-3-tert-ブチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリリルオキシプロピル-3-tert-ブチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、3-メタクリロイル-2-ヒドロキシプロピル-3-〔3’-(2’’-ベンゾトリアゾリル)-4-ヒドロキシ-5-tert-ブチル〕フェニルプロピオネート(日本チバガイギー株式会社製の商品名「CGL-104」)などの分子内にラジカル重合性の二重結合を有するラジカル重合性紫外線吸収剤;UV-G101、UV-G301、UV-G137、UV-G12、UV-G13(日本触媒株式会社製の商品名)などの紫外線吸収性を有する重合体;ビス(2,2,6,6-テトラメチル-4-ピペリジル)サクシネート、ビス(2,2,6,6-テトラメチルピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕-2,2,6,6-テトラメチルピペリジン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル-1,2,2,6,6-ペンタメチル-4-ピペリジル-セバケートの混合物(BASF社製の商品名「TINUVIN292」)、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、TINUVIN123、TINUVIN144、TINUVIN152、TINUVIN249、TINUVIN292、TINUVIN5100(商品名、BASF社製)などのヒンダードアミン系光安定剤;1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、1,2,2,6,6-ペンタメチル-4-ピペリジルアクリレート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-4-ピペリジルアクリレート、1,2,2,6,6-ペンタメチル-4-イミノピペリジルメタクリレート、2,2,6,6,-テトラメチル-4-イミノピペリジルメタクリレート、4-シアノ-2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-シアノ-1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレートなどのラジカル重合性ヒンダードアミン系光安定剤;ユーダブルE-133、ユーダブルE-135、ユーダブルS-2000、ユーダブルS-2834、ユーダブルS-2840、ユーダブルS-2818、ユーダブルS-2860(商品名、日本触媒株式会社製)などの光安定性を有する重合体;シラノール基、イソシアネート基、エポキシ基、セミカルバジド基、ヒドラジド基との反応性を有する紫外線吸収剤;酸化セリウム、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化ニオブ、酸化ビスマス、酸化コバルト、酸化銅、酸化スズ、酸化チタンなどの無機系紫外線吸収剤等が挙げられ、これらは1種もしくは2種以上を併用しても構わない。
[Other components that may be included in the hard coat layer (J)]
The hard coat layer (J) in the present embodiment contains solvents, emulsifiers, plasticizers, pigments, dyes, fillers, antioxidants, conductive materials, ultraviolet absorbers, light Stabilizers, release modifiers, softeners, surfactants, flame retardants, antioxidants, catalysts may also be included. In particular, since high weather resistance is required for outdoor use, it is preferable to contain an ultraviolet absorber and a light stabilizer.
Specific examples of UV absorbers and light stabilizers include, but are not limited to, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2 -hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, bis(5-benzoyl-4-hydroxy-2-methoxyphenyl)methane, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'dimethoxybenzophenone (trade name "UVINUL3049" manufactured by BASF), 2,2',4,4'-tetrahydroxybenzophenone (trade name "UVINUL3050" manufactured by BASF), 4-dodecyloxy-2-hydroxybenzophenone, 5-benzoyl-2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2-hydroxy- Benzophenone UV absorbers such as 4-stearyloxybenzophenone, 4,6-dibenzoylresortinol; 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy-5 '-tert-butylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole , 2-(2-hydroxy-3,5-di-tert-octylphenyl)benzotriazole, 2-[2'-hydroxy-3',5'-bis(α,α'-dimethylbenzyl)phenyl]benzotriazole ), a condensate of methyl-3-[3-tert-butyl-5-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]propionate and polyethylene glycol (molecular weight 300) (manufactured by BASF, trade name "TINUVIN1130"), isooctyl-3-[3-(2H-benzotriazol-2-yl)-5-tert-butyl-4-hydroxyphenyl]propionate (manufactured by BASF under the trade name "TINUVIN384"), 2-( 3-dodecyl-5-methyl-2-hydroxyphenyl)benzotriazole (trade name "TINUVIN571" manufactured by BASF), 2-(2'-hydroxy- 3′-tert-butyl-5′-methylphenyl)-5-chlorobenzotriazole, 2-(2′-hydroxy-3′,5′-di-tert-amylphenyl)benzotriazole, 2-(2′- hydroxy-4′-octoxyphenyl)benzotriazole, 2-[2′-hydroxy-3′-(3″,4″,5″,6″-tetrahydrophthalimidomethyl)-5′-methylphenyl]benzotriazole, 2,2-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(2H-benzotriazol-2-yl)- 4,6-bis(1-methyl-1-phenylethyl)phenol (trade name "TINUVIN900" manufactured by BASF), TINUVIN384-2, TINUVIN326, TINUVIN327, TINUVIN109, TINUVIN970, TINUVIN328, TINUVIN171, TINUVIN970, TINUVIN PS, TINUVIN P, TINUVIN99-2, TINVIN928 (trade name, manufactured by BASF) and other benzotriazole-based ultraviolet absorbers; 2-[4-[(2-hydroxy-3-dodecyloxypropyl)oxy]-2-hydroxyphenyl]- 4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-[4-[(2-hydroxy-3-tridecyloxypropyl)oxy]-2-hydroxyphenyl]-4 ,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2,4-bis(2-hydroxy-4-butyloxyphenyl)-6-(2,4-bisbutyloxyphenyl)- 1,3,5-triazine (trade name “TINUVIN460” manufactured by BASF), 2-(2-hydroxy-4-[1-octyloxycarbonylethoxy]phenyl)-4,6-bis(4-phenylphenyl) - Triazine-based UV absorbers such as 1,3,5-triazine (trade name "TINUVIN479" manufactured by BASF), TINUVIN400, TINUVIN405, TINUVIN477, TINUVIN1600 (trade name, manufactured by BASF); HOSTAVIN PR25, HOSTAVIN B-CAP , HOSTAVIN VSU (trade name, manufactured by Clariant), and the like; HOSTAVIN3206 LIQ, HOSTAVINVSU P , HOSTAVIN3212 LIQ (trade name, manufactured by Clariant), etc.; salicylate UV absorbers such as amyl salicylate, menthyl salicylate, homomenthyl salicylate, octyl salicylate, phenyl salicylate, benzyl salicylate, p-isopropanol phenyl salicylate, etc. Absorbent; Ethyl-2-cyano-3,3-diphenyl acrylate (trade name “UVINUL3035” manufactured by BASF), (2-ethylhexyl)-2-cyano-3,3-diphenyl acrylate (trade name manufactured by BASF) "UVINUL3039", 1,3-bis((2'-cyano-3',3'-diphenylacryloyl)oxy)-2,2-bis-(((2'-cyano-3',3'-diphenylacryloyl ) Oxy) methyl) propane (trade name “UVINUL3030” manufactured by BASF), and other cyanoacrylate UV absorbers; 2-hydroxy-4-acryloxybenzophenone, 2-hydroxy-4-methacryloxybenzophenone, 2-hydroxy- 5-acryloxybenzophenone, 2-hydroxy-5-methacryloxybenzophenone, 2-hydroxy-4-(acryloxy-ethoxy)benzophenone, 2-hydroxy-4-(methacryloxy-ethoxy)benzophenone, 2-hydroxy-4-(methacryloxy -diethoxy)benzophenone, 2-hydroxy-4-(acryloxy-triethoxy)benzophenone, 2-(2'-hydroxy-5'-methacryloxyethylphenyl)-2H-benzotriazole (manufactured by Otsuka Chemical Co., Ltd., trade name "RUVA -93”), 2-(2′-hydroxy-5′-methacryloxyethyl-3-tert-butylphenyl)-2H-benzotriazole, 2-(2′-hydroxy-5′-methacrylyloxypropyl-3 -tert-butylphenyl)-5-chloro-2H-benzotriazole, 3-methacryloyl-2-hydroxypropyl-3-[3′-(2″-benzotriazolyl)-4-hydroxy-5-tert- Radically polymerizable UV absorbers having a radically polymerizable double bond in the molecule such as butyl]phenylpropionate (trade name “CGL-104” manufactured by Nihon Ciba-Geigy Co., Ltd.); UV-G101, UV-G301, UV - Ultraviolet absorption such as G137, UV-G12, UV-G13 (product name manufactured by Nippon Shokubai Co., Ltd.) Absorbent polymers; bis(2,2,6,6-tetramethyl-4-piperidyl) succinate, bis(2,2,6,6-tetramethylpiperidyl) sebacate, bis(1,2,2, 6,6-pentamethyl-4-piperidyl) 2-(3,5-di-tert-butyl-4-hydroxybenzyl)-2-butylmalonate, 1-[2-[3-(3,5-di- tert-butyl-4-hydroxyphenyl)propynyloxy]ethyl]-4-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propynyloxy]-2,2,6,6-tetramethyl Piperidine, a mixture of bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6-pentamethyl-4-piperidyl-sebacate (manufactured by BASF, trade name "TINUVIN292"), bis(1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, hindered amines such as TINUVIN123, TINUVIN144, TINUVIN152, TINUVIN249, TINUVIN292, TINUVIN5100 (trade name, manufactured by BASF) System light stabilizer; 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl acrylate, 2,2,6,6-tetramethyl- 4-piperidyl methacrylate, 2,2,6,6-tetramethyl-4-piperidyl acrylate, 1,2,2,6,6-pentamethyl-4-iminopiperidyl methacrylate, 2,2,6,6,-tetramethyl - Radicals such as 4-iminopiperidyl methacrylate, 4-cyano-2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4-cyano-1,2,2,6,6-pentamethyl-4-piperidyl methacrylate Polymerizable hindered amine light stabilizers; U-double E-133, U-double E-135, U-double S-2000, U-double S-2834, U-double S-2840, U-double S-2818, U-double S-2860 (trade name, Nippon Shokubai Co., Ltd. ); UV absorbers reactive with silanol groups, isocyanate groups, epoxy groups, semicarbazide groups, hydrazide groups; cerium oxide, zinc oxide, aluminum oxide, zirconium oxide, niobium oxide , bismuth oxide, cobalt oxide, copper oxide, tin oxide, oxide Inorganic UV absorbers such as titanium may be mentioned, and these may be used singly or in combination of two or more.

[ハードコート層(J)の製法]
本実施形態におけるハードコート層の製法は、特に限定されないが、例えば、後述する塗料組成物(L)を塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することにより得ることができる。さらに、前記塗装方法としては、以下に限定されないが、例えばスプレー吹付法、フローコート法、刷毛塗法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法などが挙げられる。なお、前記塗装された塗料組成物(L)は、好ましくは室温~250℃、より好ましくは40℃~150℃での熱処理や紫外線、赤外線照射などにより塗膜化することができる。さらに、この塗装は、すでに成型した基材だけでなく、防錆鋼板を含むプレコートメタルのように、成型加工する前にあらかじめ平板に塗装することも可能である。
[Manufacturing method of hard coat layer (J)]
The method for producing the hard coat layer in the present embodiment is not particularly limited, but for example, it can be obtained by applying a coating composition (L) described later and forming a coating film by heat treatment, ultraviolet irradiation, infrared irradiation, or the like. Further, the coating method is not limited to the following, but includes, for example, a spraying method, a flow coating method, a brush coating method, a dip coating method, a spin coating method, a screen printing method, a casting method, a gravure printing method, a flexographic printing method, and the like. are mentioned. The coated coating composition (L) can be formed into a coating film by heat treatment, preferably at room temperature to 250° C., more preferably at 40° C. to 150° C., UV irradiation, or infrared irradiation. Furthermore, this coating can be applied not only to already molded substrates, but also to pre-coated flat plates before molding, such as pre-coated metal containing rust-proof steel plates.

[ハードコート層の表面加工]
本実施形態におけるハードコート層(J)は、耐候性の観点から、表面をシリカ加工してシリカ層を形成してもよい。シリカ層の形成方法としては、特に限定されないが、具体例としては、シリコーン又はシラザンを蒸着/硬化させるPECVDによるシリカ加工、155nm紫外線照射によって表面をシリカに改質させるシリカ加工技術が挙げられる。特に、表面を劣化させることなく酸素や水蒸気を通しにくい層を作製できることから、PECVDによる表面加工が好ましい。PECVDに用いることのできるシリコーン又はシラザンは、以下に限定されないが、具体的には、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、ビニルメトリキシラン、ビニルメトキシシラン、ジメチルジメトキシラン、TEOS、テトラメチルジシロキサン、テトラメチルテトラビニルシクロテトラシロキサン、ヘキサメチルジシラザンなどが挙げられ、これらを1種もしくは2種以上を併用しても構わない。
[Surface treatment of hard coat layer]
From the viewpoint of weather resistance, the hard coat layer (J) in the present embodiment may have its surface treated with silica to form a silica layer. The method for forming the silica layer is not particularly limited, but specific examples include silica processing by PECVD in which silicone or silazane is vapor-deposited/cured, and silica processing technology in which the surface is modified into silica by irradiating 155 nm ultraviolet rays. In particular, surface processing by PECVD is preferable because a layer that is difficult to permeate oxygen and water vapor can be produced without degrading the surface. Silicones or silazanes that can be used for PECVD include, but are not limited to, octamethylcyclotetrasiloxane, tetramethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane, vinylmethoxysilane, vinyl Methoxysilane, dimethyldimethoxysilane, TEOS, tetramethyldisiloxane, tetramethyltetravinylcyclotetrasiloxane, hexamethyldisilazane, etc., may be mentioned, and these may be used singly or in combination of two or more.

本実施形態において、ハードコート層(J)の少なくとも1つの表面上に機能層をさらに有してもよい。機能層としては、以下に限定されないが、例えば、反射防止層、防汚層、偏光層、衝撃吸収層などが挙げられる。 In this embodiment, a functional layer may be further provided on at least one surface of the hard coat layer (J). Examples of functional layers include, but are not limited to, an antireflection layer, an antifouling layer, a polarizing layer, and an impact absorption layer.

[塗料組成物(L)]
本実施形態において、ハードコート層(J)は、例えば、下記の塗料組成物(L)を用いることで好ましく得られる。塗料組成物(L)は、無機酸化物(F)と重合体ナノ粒子(G)、マトリクス原料成分(H’)と、を含む塗料組成物であって、ISO14577-1に準拠し、インデンテーション試験から測定される、前記重合体ナノ粒子(G)の弾性回復率ηITGが、0.30以上0.90以下であり、前記重合体ナノ粒子(G)のマルテンス硬度HMGと、前記マトリクス原料成分(H’)のマルテンス硬度HMH’とが、HMH’/HMG>1の関係を満たすことが好ましい。
塗料組成物(L)に含まれる各成分については、以下で言及のない点についての詳細はハードコート層(J)に含まれる各成分について前述したとおりである。
[Paint composition (L)]
In this embodiment, the hard coat layer (J) is preferably obtained by using, for example, the following coating composition (L). The coating composition (L) is a coating composition containing an inorganic oxide (F), a polymer nanoparticle (G), and a matrix raw material component (H'), and conforms to ISO 14577-1, indentation The elastic recovery rate η ITG of the polymer nanoparticles (G) measured from a test is 0.30 or more and 0.90 or less, and the Martens hardness HMG of the polymer nanoparticles (G) and the matrix raw material The Martens hardness HMH' of the component (H') preferably satisfies the relationship HMH'/HMG>1.
Regarding each component contained in the coating composition (L), details of points not mentioned below are as described above for each component contained in the hard coat layer (J).

[重合体ナノ粒子(G)の硬度HMGとマトリクス原料成分(H’)の硬度HMH’]
塗料組成物(L)において、重合体ナノ粒子(G)のマルテンス硬度HMGと、マトリクス原料成分(H’)のマルテンス硬度HMH’とは、下記式(3)の関係を満たすことが好ましい。
HMH’/HMG>1 式(3)
上記のとおり、塗料組成物(L)において、上記関係が満たされるため、塗料組成物(L)を用いることで得られるハードコート層(J)において、重合体ナノ粒子(G)のマルテンス硬度HMGと、マトリクス原料成分(H’)のマルテンス硬度HMH’も上記式(3)関係を満たすこととなる。塗料組成物(L)における各マルテンス硬度は、例えば、遠心分離、限外濾過等の操作により重合体ナノ粒子(G)とマトリクス原料成分(H’)とを分離し、分離された各成分に対し、後述する実施例に記載の方法に基づいて測定することができる。
上記HMG及びHMHの値は、それぞれ、重合体ナノ粒子(G)及びマトリクス原料成分(H’)の構成成分の構造及び組成比等により、前述した大小関係となるように調整できるが、特にこの方法に限定されるものではない。
[Hardness HMG of polymer nanoparticles (G) and hardness HMH' of matrix raw material component (H')]
In the coating composition (L), the Martens hardness HMG of the polymer nanoparticles (G) and the Martens hardness HMH' of the matrix raw material component (H') preferably satisfy the relationship of the following formula (3).
HMH''/HMG>1 Formula (3)
As described above, since the above relationship is satisfied in the coating composition (L), in the hard coat layer (J) obtained by using the coating composition (L), the polymer nanoparticles (G) have a Martens hardness HMG Then, the Martens hardness HMH' of the matrix raw material component (H') also satisfies the above formula (3). Each Martens hardness in the coating composition (L) is determined by, for example, separating the polymer nanoparticles (G) and the matrix raw material component (H′) by an operation such as centrifugation or ultrafiltration, and On the other hand, it can be measured based on the method described in Examples described later.
The values of HMG and HMH can be adjusted so as to satisfy the above-described magnitude relationship depending on the structures and composition ratios of the constituent components of the polymer nanoparticles (G) and the matrix raw material component (H'), respectively. The method is not limited.

[重合体ナノ粒子(G)の弾性回復率ηITG
本実施形態における重合体ナノ粒子(G)の弾性回復率ηITGは、ISO14577-1でWelast/Wtotalの比ηITとして記載されているパラメータを、成膜した重合体ナノ粒子(G)の塗膜で測定したものであり、くぼみの全機械的仕事量Wtotalとくぼみの弾性戻り変形仕事量Welastとの比で示される。弾性回復率ηITGが高いほど、塗膜が衝撃を受けた際、元の状態に戻ることが可能であり、衝撃に対する自己修復能が高い。自己修復能を効果的に発揮する観点から、重合体ナノ粒子(G)の弾性回復率ηITGは、測定条件(ビッカース四角錘ダイヤモンド圧子、荷重の増加条件2mN/20sec、荷重の減少条件2mN/20sec)において0.30以上であることが好ましく、塗膜にする際の基材やマトリクス原料成分(H’)の変形に追従できる観点からηITGは0.90以下であることが好ましい。重合体ナノ粒子(A)の弾性回復率ηITGは0.50以上であるとより好ましく、0.60以上であれば更に好ましい。重合体ナノ粒子(G)の弾性回復率の測定は、以下に限定されないが、例えば、遠心分離、限外濾過等の操作により重合体ナノ粒子(G)とマトリクス原料成分(H’)とを分離し、分離された重合体ナノ粒子(G)を溶媒中に分散させて得られる組成物を塗装し、乾燥させて成膜した塗膜を微小硬度計フィッシャースコープ(フィッシャー・インストルメンツ社製HM2000S)、超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-NEXUS)、ナノインデンター(東陽テクニカ社製iNano、G200)、ナノインデンテーションシステム(ブルカー社製TI980)等を用いて測定することができる。弾性回復率ηITGを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、重合体ナノ粒子(G)の構成成分の構造及び組成比を調整すること等が挙げられる。
なお、ハードコート層(J)は、塗料組成物(L)を加水分解縮合等により硬化させた硬化物として得ることができる。重合体ナノ粒子(G)は、かかる硬化の過程においてその組成は変化しないことが通常である。したがって、後述する実施例に記載された方法により測定される塗料組成物(L)中の重合体ナノ粒子(G)の弾性回復率ηITGの値は、ハードコート層(J)中の重合体ナノ粒子(G)の弾性回復率ηITGによく一致するものとして、ハードコート層(J)における弾性回復率ηITGの値を決定することができる。
[Elastic recovery rate η ITG of polymer nanoparticles (G)]
The elastic recovery rate η ITG of the polymer nanoparticles (G) in the present embodiment is the parameter described as the W elast /W total ratio η IT in ISO14577-1. and is indicated by the ratio of the total mechanical work of the indentation W total to the elastic return deformation work of the indentation W elast . The higher the elastic recovery rate η ITG , the more the coating film can return to its original state when receiving an impact, and the higher the self-healing ability against impact. From the viewpoint of effectively exhibiting the self-healing ability, the elastic recovery rate η ITG of the polymer nanoparticles (G) is measured under the measurement conditions (Vickers square pyramid diamond indenter, load increase condition 2 mN / 20 sec, load decrease condition 2 mN / 20 sec) is preferably 0.30 or more, and η ITG is preferably 0.90 or less from the viewpoint of being able to follow the deformation of the base material and the matrix raw material component (H′) when forming a coating film. The elastic recovery rate ηITG of the polymer nanoparticles (A) is more preferably 0.50 or more, and even more preferably 0.60 or more. Measurement of the elastic recovery rate of the polymer nanoparticles (G) is not limited to the following. A composition obtained by separating and dispersing the separated polymer nanoparticles (G) in a solvent is applied and dried to form a film. ), ultra-micro indentation hardness tester (ENT-NEXUS manufactured by Elionix Co., Ltd.), nanoindenter (iNano, G200 manufactured by Toyo Technica), nanoindentation system (TI980 manufactured by Bruker), etc. be able to. Methods for adjusting the elastic recovery rate ηITG within the above range include, but are not limited to, adjusting the structure and composition ratio of the constituent components of the polymer nanoparticles (G).
The hard coat layer (J) can be obtained as a cured product obtained by curing the coating composition (L) by hydrolytic condensation or the like. The polymer nanoparticles (G) generally do not change their composition during the curing process. Therefore, the value of the elastic recovery rate η ITG of the polymer nanoparticles (G) in the coating composition (L) measured by the method described in the examples below is the value of the polymer in the hard coat layer (J). As a good match to the elastic recovery rate η ITG of the nanoparticles (G), the value of the elastic recovery rate η ITG in the hard coat layer (J) can be determined.

[マトリクス原料成分(H’)の弾性回復率ηITH’及びマトリクス成分(H)の弾性回復率ηITH
塗料組成物(L)において、マトリクス原料成分(H’)の弾性回復率ηITH’は、ISO14577-1で「Welast/Wtotalの比ηIT」として記載されているパラメータで、成膜したマトリクス原料成分(H’)の塗膜を測定したものであり、くぼみの全機械的仕事量Wtotalとくぼみの弾性戻り変形仕事量Welastとの比で示される。弾性回復率ηITH’が高いほど、塗膜が衝撃を受けた際、元の状態に戻ることが可能であり、衝撃に対する自己修復能が高い。自己修復能を効果的に発揮する観点から、マトリクス原料成分(H’)の弾性回復率ηITH’は、測定条件(ビッカース四角錘ダイヤモンド圧子、荷重の増加条件2mN/20sec、荷重の減少条件2mN/20sec)において0.60以上が好ましく、より好ましくは0.65以上である。また、塗膜にする際の基材や成分(G)の変形に追従できる観点から、ηITH’は0.95以下であることが好ましい。マトリクス原料成分(G’)の弾性回復率の測定は、以下に限定されないが、例えば、遠心分離等の操作により重合体ナノ粒子(G)とマトリクス原料成分(H’)とを分離し、分離されたマトリクス原料成分(H’)を溶媒中に溶解させた組成物を塗装し、乾燥させて成膜した塗膜を微小硬度計フィッシャースコープ(フィッシャー・インストルメンツ社製HM2000S)、超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-NEXUS)、ナノインデンター(東陽テクニカ社製iNano、G200)、ナノインデンテーションシステム(ブルカー社製TI980)等を用いて測定することができる。
なお、前述したとおり、マトリクス原料成分(H’)を加水分解縮合等により硬化させた硬化物がマトリクス成分(H)に該当する。したがって、後述する実施例に記載された方法により測定されるマトリクス原料成分(H’)の弾性回復率ηITH’の値は、対応するマトリクス成分(H)の弾性回復率ηITHによく一致するものとして、弾性回復率ηITHの値を決定することができる。すなわち、本実施形態におけるマトリクス成分(H)の弾性回復率ηITHは、0.60以上が好ましく、より好ましくは0.65以上である。また、塗膜にする際の基材や成分(G)の変形に追従できる観点から、ηITHは0.95以下であることが好ましい。
弾性回復率ηITH’及び弾性回復率ηITHを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、マトリクス原料成分(H’)の構成成分の構造及び組成比を調整すること等が挙げられる。
[Elastic Recovery Rate η ITH of Matrix Raw Material Component (H′) and Elastic Recovery Rate η ITH of Matrix Component (H)]
In the coating composition (L), the elastic recovery rate η ITH ' of the matrix raw material component (H') is a parameter described in ISO 14577-1 as the "W elast /W total ratio η IT ". It is a measurement of the coating film of the matrix raw material component (H'), and is indicated by the ratio of the total mechanical work W total of the dents to the elastic return deformation work W elast of the dents. The higher the elastic recovery rate ηITH' , the more the coating film can return to its original state when receiving an impact, and the higher the self-healing ability against impact. From the viewpoint of effectively exhibiting the self-healing ability, the elastic recovery rate η ITH ' of the matrix raw material component (H') is measured under the measurement conditions (Vickers square pyramid diamond indenter, load increase condition 2 mN/20 sec, load decrease condition 2 mN /20 sec) is preferably 0.60 or more, more preferably 0.65 or more. In addition, η ITH' is preferably 0.95 or less from the viewpoint of being able to follow the deformation of the base material and component (G) when forming a coating film. The measurement of the elastic recovery rate of the matrix raw material component (G') is not limited to the following, but for example, the polymer nanoparticles (G) and the matrix raw material component (H') are separated by an operation such as centrifugation, and then separated. A composition obtained by dissolving the obtained matrix raw material component (H′) in a solvent is applied and dried to form a film. It can be measured using a hardness tester (ENT-NEXUS manufactured by Elionix Co., Ltd.), a nanoindenter (iNano, G200 manufactured by Toyo Technica), a nanoindentation system (TI980 manufactured by Bruker), and the like.
As described above, the matrix component (H) corresponds to a cured product obtained by curing the matrix raw material component (H') by hydrolytic condensation or the like. Therefore, the value of the elastic recovery rate ηITH' of the matrix raw material component (H') measured by the method described in the examples described later agrees well with the elastic recovery rate ηITH of the corresponding matrix component (H). As such, the value of the elastic recovery η ITH can be determined. That is, the elastic recovery rate η ITH of the matrix component (H) in this embodiment is preferably 0.60 or more, more preferably 0.65 or more. In addition, η ITH is preferably 0.95 or less from the viewpoint of being able to follow the deformation of the base material and component (G) when forming a coating film.
Methods for adjusting the elastic recovery rate ηITH' and the elastic recovery rate ηITH within the above ranges include, but are not limited to, adjusting the structure and composition ratio of the constituent components of the matrix raw material component (H'). and so on.

[溶媒(N)]
本実施形態における塗料組成物(L)は溶媒(N)を含有することが好ましい。使用可能な溶媒は、特に限定されず、一般的な溶媒を用いることができる。溶媒としては、以下に限定されないが、例えば、水;エチレングリコール、ブチルセロソルブ、イソプロパノール、n-ブタノール、2-ブタノール、エタノール、メタノール、変性エタノール、2-メトキシ-1-プロパノール、1-メトキシ-2-プロパノール、ジアセトンアルコールグリセリン、モノアルキルモノグリセリルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジエチレングリコールモノフェニルエーテルテトラエチレングリコールモノフェニルエーテルなどのアルコール類;トルエンやキシレンなどの芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタンなどの脂肪族炭化水素類;酢酸エチル、酢酸n-ブチルなどのエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;テトラヒドロフラン、ジオキサンなどのエーテル類;ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;クロロホルム、塩化メチレン、四塩化炭素などのハロゲン化合物類;ジメチルスルホキシド、ニトロベンゼン;などが挙げられ、これらは1種又は2種以上を併用しても構わない。その中で、溶媒除去時の環境負荷低減の観点から、水、アルコール類を含む方が特に好ましい。
[Solvent (N)]
The coating composition (L) in the present embodiment preferably contains a solvent (N). Solvents that can be used are not particularly limited, and common solvents can be used. Examples of solvents include, but are not limited to, water; ethylene glycol, butyl cellosolve, isopropanol, n-butanol, 2-butanol, ethanol, methanol, denatured ethanol, 2-methoxy-1-propanol, 1-methoxy-2- Propanol, diacetone alcohol glycerin, monoalkyl monoglyceryl ether, propylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, diethylene glycol monophenyl ether Alcohols such as tetraethylene glycol monophenyl ether; Aromatic hydrocarbons such as toluene and xylene; Aliphatic hydrocarbons such as hexane, cyclohexane and heptane; Esters such as ethyl acetate and n-butyl acetate; , methyl isobutyl ketone, ketones such as cyclohexanone; ethers such as tetrahydrofuran and dioxane; amides such as dimethylacetamide and dimethylformamide; halogen compounds such as chloroform, methylene chloride and carbon tetrachloride; These may be used singly or in combination of two or more. Among them, it is particularly preferable to contain water and alcohols from the viewpoint of reducing the environmental burden when removing the solvent.

[塗料組成物(L)の性状]
塗料組成物(L)は、塗装性の観点から好ましい固形分濃度は0.01~60質量%、より好ましくは1~40質量%である。また、塗装性の観点から、塗料組成物(L)の20℃における粘度としては、好ましくは0.1~100000mPa・s、好ましくは1~10000mPa・sである。
[Properties of coating composition (L)]
The coating composition (L) preferably has a solid content concentration of 0.01 to 60% by mass, more preferably 1 to 40% by mass, from the viewpoint of coating properties. From the viewpoint of paintability, the viscosity of the coating composition (L) at 20° C. is preferably 0.1 to 100000 mPa·s, preferably 1 to 10000 mPa·s.

[接着層(I)付き基材のヘイズ値H1と積層体(K)のヘイズ値H2]
本実施形態において、接着層(I)付き基材のヘイズ値H1は、積層体のヘイズ値H2よりも大きいことが好ましい。このような関係を満たすことで、本実施形態の積層体(K)は、接着層(I)付き基材とハードコート層(J)との界面に散乱層が形成される結果、干渉縞の生成が抑制され、光学特性が向上する傾向にある。
[Haze value H1 of substrate with adhesive layer (I) and haze value H2 of laminate (K)]
In the present embodiment, the haze value H1 of the substrate with the adhesive layer (I) is preferably higher than the haze value H2 of the laminate. By satisfying such a relationship, in the laminate (K) of the present embodiment, a scattering layer is formed at the interface between the substrate with the adhesive layer (I) and the hard coat layer (J), resulting in interference fringes. The production tends to be suppressed, and the optical properties tend to improve.

本実施形態において、透明性の観点から、接着層(I)付き基材のヘイズ値H1は60%以下であることが好ましく、より好ましくは40%以下であり、さらに好ましくは20%以下である。同様の観点から、積層体(K)のヘイズ値H2は5%以下であることが好ましく、より好ましくは2%以下であり、さらに好ましくは1%以下である。各ヘイズ値を上記範囲内に調整するための方法としては、以下に限定されないが、例えば、H1は重合体粒子(A)の粒径、無機酸化物(B)の粒子径や形状、重合体粒子(A)と無機酸化物(B)の重量比率、有機系紫外線吸収剤(D)の含有量、ブロックポリイソシアネート化合物(E)やその他添加剤の含有量を制御することが挙げられ、H2は重合体ナノ粒子(G)の粒径、重合体ナノ粒子(G)とマトリクス成分(H)の成分比及びマトリクス成分(H)中の無機酸化物(F)の含有率を制御することが挙げられる。特に、無機酸化物(B)あるいは無機酸化物(F)の量を増やすと各ヘイズ値は上がる傾向にあり、減らすと下がる傾向にある。
各ヘイズ値は後述する実施例に記載の方法により測定することができる。なお、ヘイズ値H1については、接着層付き基材を対象として測定し、ヘイズ値H2については、積層体(K)(接着層(I)付き基材及びハードコート層(J))を対象として測定することができる。ヘイズ値H1及びH2は、接着層(I)付き基材及び積層体(K)を形成させた後にそれぞれ測定してもよい。
In the present embodiment, from the viewpoint of transparency, the haze value H1 of the substrate with the adhesive layer (I) is preferably 60% or less, more preferably 40% or less, and still more preferably 20% or less. . From the same viewpoint, the haze value H2 of the laminate (K) is preferably 5% or less, more preferably 2% or less, and still more preferably 1% or less. The method for adjusting each haze value within the above range is not limited to the following, but for example, H1 is the particle size of the polymer particles (A), the particle size and shape of the inorganic oxide (B), the polymer Examples include controlling the weight ratio of the particles (A) and the inorganic oxide (B), the content of the organic ultraviolet absorber (D), the content of the blocked polyisocyanate compound (E) and other additives. can control the particle size of the polymer nanoparticles (G), the component ratio of the polymer nanoparticles (G) and the matrix component (H), and the content of the inorganic oxide (F) in the matrix component (H). mentioned. In particular, each haze value tends to increase when the amount of the inorganic oxide (B) or the inorganic oxide (F) is increased, and tends to decrease when the amount is decreased.
Each haze value can be measured by the method described in Examples below. The haze value H1 is measured for the substrate with the adhesive layer, and the haze value H2 is measured for the laminate (K) (the substrate with the adhesive layer (I) and the hard coat layer (J)). can be measured. The haze values H1 and H2 may be measured after forming the base material with the adhesive layer (I) and the laminate (K), respectively.

[接着層(I)付き基材の表面粗さRa1と積層体(K)の表面粗さRa2]
本実施形態の積層体において、接着層(I)付き基材の表面粗さRa1は、積層体の積層体(K)の表面粗さRa2よりも大きいことが好ましい。このような関係を満たすことで、本実施形態の積層体(K)は、接着層(I)付き基材とハードコート層(J)との界面に散乱層が形成される結果、干渉縞の生成が抑制され、光学特性が向上する傾向にある。
[Surface roughness Ra1 of substrate with adhesive layer (I) and surface roughness Ra2 of laminate (K)]
In the laminate of the present embodiment, the surface roughness Ra1 of the substrate with the adhesive layer (I) is preferably larger than the surface roughness Ra2 of the laminate (K) of the laminate. By satisfying such a relationship, in the laminate (K) of the present embodiment, a scattering layer is formed at the interface between the substrate with the adhesive layer (I) and the hard coat layer (J), resulting in interference fringes. The production tends to be suppressed, and the optical properties tend to improve.

本実施形態において、透明性の観点から、接着層(I)付き基材の表面粗さRa1は500nm以下であることが好ましく、より好ましくは300nm以下であり、さらに好ましくは200nm以下であり、最も好ましくは150nm以下である。また、本実施形態において、密着性の観点から、接着層(I)付き基材の表面粗さRa1は10nm以上であることが好ましく、より好ましくは20nm以上であり、さらに好ましくは40nm以上である。
また、透明性の観点から、積層体(K)の表面粗さRa2は100nm未満であることが好ましく、より好ましくは50nm以下であり、さらに好ましくは30nm以下であり、よりさらに好ましくは20nm以下である。
表面粗さRa1及びRa2を上記範囲内に調整するための方法としては、以下に限定されないが、例えば、Ra1は重合体粒子(A)の粒径、無機酸化物(B)の粒子径や形状、重合体粒子(A)と無機酸化物(B)の重量比率、有機系紫外線吸収剤(D)の含有量、ブロックポリイソシアネート化合物(E)やその他添加剤の含有量を制御することが挙げられ、Ra2は重合体ナノ粒子(G)の粒径、重合体ナノ粒子(G)とマトリクス成分(H)の成分比及びマトリクス成分(H)中の無機酸化物(F)の含有率を制御することが挙げられる。特に、無機酸化物(B)あるいは無機酸化物(F)の量を増やすと各表面粗さRaは上がる傾向にあり、減らすと下がる傾向にある。
各表面粗さRa1及びRa2は後述する実施例に記載の方法により測定することができる。なお、表面粗さRa1については、接着層(I)付き基材を対象として測定し、表面粗さRa2については、積層体(K)を対象として測定することができる。表面粗さRa1及びRa2は、接着層(I)付き基材及び積層体(K)を形成させた後にそれぞれ測定してもよい。また、積層体(K)の断面SEM像から、接着層(I)、及びハードコート層(J)界面の形状を測定し、表面粗さRaを算出してもよい。
In the present embodiment, from the viewpoint of transparency, the surface roughness Ra1 of the substrate with the adhesive layer (I) is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, and most preferably 200 nm or less. It is preferably 150 nm or less. In the present embodiment, from the viewpoint of adhesion, the surface roughness Ra1 of the substrate with the adhesive layer (I) is preferably 10 nm or more, more preferably 20 nm or more, and still more preferably 40 nm or more. .
From the viewpoint of transparency, the surface roughness Ra2 of the laminate (K) is preferably less than 100 nm, more preferably 50 nm or less, still more preferably 30 nm or less, and even more preferably 20 nm or less. be.
The method for adjusting the surface roughnesses Ra1 and Ra2 within the above range is not limited to the following, but for example, Ra1 is the particle size of the polymer particles (A), the particle size and shape of the inorganic oxide (B) , the weight ratio of the polymer particles (A) and the inorganic oxide (B), the content of the organic ultraviolet absorber (D), the content of the blocked polyisocyanate compound (E) and other additives are controlled. Ra2 controls the particle size of the polymer nanoparticles (G), the component ratio of the polymer nanoparticles (G) and the matrix component (H), and the content of the inorganic oxide (F) in the matrix component (H). to do. In particular, when the amount of inorganic oxide (B) or inorganic oxide (F) is increased, each surface roughness Ra tends to increase, and when the amount is decreased, it tends to decrease.
Each surface roughness Ra1 and Ra2 can be measured by the method described in Examples below. The surface roughness Ra1 can be measured for the substrate with the adhesive layer (I), and the surface roughness Ra2 can be measured for the laminate (K). The surface roughnesses Ra1 and Ra2 may be measured after forming the base material with the adhesive layer (I) and the laminate (K), respectively. Alternatively, the surface roughness Ra may be calculated by measuring the shape of the interface between the adhesive layer (I) and the hard coat layer (J) from the cross-sectional SEM image of the laminate (K).

[積層体の用途]
本実施形態の積層体(K)は、優れた耐摩耗性と耐久性を有する。したがって、上記積層体(K)の用途としては、特に限定されないが、例えば、建材、車両用部材や電子機器、電機製品などが挙げられる。
建材用途としては、以下に限定されないが、例えば、建設機械の窓ガラス、ビルや家屋、温室などの窓ガラス、ガレージ及びアーケードなどの屋根、照明や信号機等の照灯類、壁紙表皮材、看板、浴槽や洗面台のようなサニタリー製品、台所用建材外壁材、フローリング材、コルク材、タイル、クッションフロア、リノリウムのような内装用床材が挙げられる。
車両用部材としては、以下に限定されないが、例えば、自動車、航空機、列車の各用途で使用される部品が挙げられる。具体的な例としては、フロント、リア、フロントドア、リアドア、リアクォーター、サンルーフ等の各ガラス、フロントバンパーやリアバンパー、スポイラー、ドアミラー、フロントグリル、エンブレムカバー、ボディー等の外装部材、センターパネル、ドアパネル、インストルメンタルパネル、センターコンソールなどの内装部材、ヘッドランプやリアランプ等のランプ類の部材、車載カメラ用レンズ部材、照明用カバー、加飾フィルム、さらには種々のガラス代替部材が挙げられ。
電子機器や電機製品としては、以下に限定されないが、例えば、携帯電話、携帯情報端末、パソコン、携帯ゲーム機、OA機器、太陽電池、フラットパネルディスプレイ、タッチパネル、DVDやブルーレイディスク等の光ディスク、偏光板や光学フィルター、レンズ、プリズム、光ファイバー等の光学部品、反射防止フィルムや配向フィルム、偏光フィルム、位相差フィルム等の光学フィルム等が好ましく挙げられる。
本実施形態における積層体(K)は、上記の他、機械部品や農業資材、漁業資材、搬送容器、包装容器、遊戯具及び雑貨など、様々な領域への適用が可能である。
[Use of laminate]
The laminate (K) of this embodiment has excellent wear resistance and durability. Therefore, the use of the laminate (K) is not particularly limited, but examples thereof include building materials, vehicle members, electronic devices, and electric products.
Examples of building material applications include, but are not limited to, window glass for construction machinery, window glass for buildings, houses, greenhouses, etc., roofs for garages and arcades, lights such as lighting and traffic lights, wallpaper surface materials, and signboards. , sanitary products such as bathtubs and washbasins, exterior wall materials for kitchen building materials, flooring materials, cork materials, tiles, cushion floors, and interior floor materials such as linoleum.
Examples of vehicle members include, but are not limited to, parts used in automobiles, aircraft, and trains. Specific examples include front, rear, front door, rear door, rear quarter, sunroof glass, front and rear bumpers, spoilers, door mirrors, front grills, emblem covers, exterior parts such as the body, center panels, door panels, Interior components such as instrument panels and center consoles, lamp components such as headlamps and rear lamps, vehicle-mounted camera lens components, lighting covers, decorative films, and various glass replacement components.
Electronic devices and electrical products are not limited to the following, but for example, mobile phones, personal digital assistants, personal computers, portable game machines, OA equipment, solar cells, flat panel displays, touch panels, optical discs such as DVDs and Blu-ray discs, polarized light Optical parts such as plates, optical filters, lenses, prisms, and optical fibers, and optical films such as antireflection films, oriented films, polarizing films, and retardation films are preferred.
In addition to the above, the laminate (K) in the present embodiment can be applied to various fields such as machine parts, agricultural materials, fishery materials, transport containers, packaging containers, playground equipment and miscellaneous goods.

以下、実施例及び比較例により本実施形態を詳細に説明するが、本実施形態はこれらの例によって何ら限定されるものでない。 EXAMPLES The present embodiment will be described in detail below with reference to examples and comparative examples, but the present embodiment is not limited to these examples.

後述する実施例及び比較例における、各種の物性は下記の方法で測定した。 Various physical properties in Examples and Comparative Examples described later were measured by the following methods.

(1)重合体粒子(A)、及び、複合体(C)、に含まれる単位(a)の重量平均分子量
後述する方法により得られた重合体粒子(A)を、ジメチルホルムアミドで0.5質量%に希釈し、口径0.45μmのメンブレンフィルターに通すことで抽出された単位(a)をゲルパーミエーションクロマトグラフで測定したクロマトグラムから、標準ポリスチレンの分子量を基準にして、重合体粒子(A)に含まれる単位(a)の重量平均分子量を算出した。ゲルパーミエーションクロマトグラフは、「HLC-8420GPC」(東ソー株式会社製)を使用した。カラムとしては、「TSKgel guardcolumn SuperAW-H」、「TSKgel SuperAWM-H」2本、「TSKgel SuperH-RC」(いずれも東ソー(株)社製、商品名)の計4本を用い、移動相;ジメチルホルムアミド、測定温度;40℃、流速;0.6mL/分、検出器;RIの条件で行った。
また、後述する方法により得られた複合体(C)に含まれる単位(a)の重量平均分子量も上記と同様にして算出した。
なお、塗料組成物中に重合体粒子(A)及び複合体(C)の双方が含まれる場合、重合体粒子(A)中の単位(a)の含有量W1及び重量平均分子量Mw1と複合体(C)中の単位(a)の含有量W2及び重量平均分子量Mw2より(ここで、含有量W1及びW2は仕込み比より求めた。)、質量比を考慮し、次式にて当該塗料組成物中の単位(a)の重量平均分子量Mwを算出した。
Mw={Mw1×(W1/(W1+W2))+Mw2×(W2/(W1+W2))}/2
(1) Weight Average Molecular Weight of Unit (a) Contained in Polymer Particles (A) and Composite (C) From the chromatogram measured by gel permeation chromatography of the unit (a) extracted by diluting to % by mass and passing through a membrane filter with a diameter of 0.45 μm, the polymer particles ( A weight average molecular weight of the unit (a) contained in A) was calculated. For the gel permeation chromatograph, "HLC-8420GPC" (manufactured by Tosoh Corporation) was used. As columns, "TSKgel guardcolumn SuperAW-H", two "TSKgel SuperAWM-H", and "TSKgel SuperH-RC" (both manufactured by Tosoh Corporation, trade names) were used for a total of four columns, and a mobile phase; Dimethylformamide, measurement temperature: 40°C, flow rate: 0.6 mL/min, detector: RI.
Also, the weight average molecular weight of the unit (a) contained in the composite (C) obtained by the method described later was calculated in the same manner as described above.
In addition, when both the polymer particles (A) and the composite (C) are contained in the coating composition, the content W1 and the weight average molecular weight Mw1 of the unit (a) in the polymer particles (A) and the composite From the content W2 and the weight average molecular weight Mw2 of the unit (a) in (C) (here, the content W1 and W2 were obtained from the feed ratio.), Considering the mass ratio, the following formula is used for the coating composition The weight average molecular weight Mw of the unit (a) in the product was calculated.
Mw={Mw1×(W1/(W1+W2))+Mw2×(W2/(W1+W2))}/2

(2)重合体粒子(A)、無機酸化物(B)、重合体粒子(A)と無機酸化物(B)との混合物、複合体(C)、及び重合体粒子(F)の平均粒子径
重合体粒子(A)、無機酸化物(B)、重合体粒子(A)と無機酸化物(B)との混合物、複合体(C)、又は重合体粒子(F)を用いて、大塚電子株式会社製動的光散乱式粒度分布測定装置(品番:ELSZ-1000)によりキュムラント粒子径を測定し、重合体粒子(A)、無機酸化物(B)、重合体粒子(A)と無機酸化物(B)との混合物、複合体(C)、又は重合体粒子(F)の平均粒子径とした。
(2) Average particle of polymer particles (A), inorganic oxide (B), mixture of polymer particles (A) and inorganic oxide (B), composite (C), and polymer particles (F) Otsuka The cumulant particle size is measured with a dynamic light scattering particle size distribution analyzer (product number: ELSZ-1000) manufactured by Denshi Co., Ltd., and the polymer particles (A), the inorganic oxide (B), the polymer particles (A) and the inorganic The average particle size of the mixture with the oxide (B), the composite (C), or the polymer particles (F) was used.

(3)塗料組成物の塗料安定性評価
塗料組成物を、調製直後から塗料組成物の調製用の容器内にて室温環境下で1h静置し、静置後の塗料状態から、塗料安定性を下記のように目視評価した。
S:凝集物の発生なし、
A:少量の凝集物が発生(容器の壁面に凝集物の付着がみられる状態)、
B:多量の凝集物が発生(容器の底面に凝集物の沈殿がみられる状態)
(3) Paint stability evaluation of the paint composition The paint composition was left to stand for 1 h at room temperature in a container for preparing the paint composition immediately after preparation, and from the state of the paint after standing, the paint stability was evaluated visually as follows.
S: no generation of aggregates;
A: A small amount of aggregates is generated (a state where aggregates are attached to the wall surface of the container),
B: A large amount of aggregates are generated (a state in which precipitates of aggregates are observed on the bottom of the container)

(4)塗料組成物のpH
東亜ディーケーケー株式会社製pHメーター(HM-25R型)により、塗料組成物のpHを測定した。
(4) pH of the coating composition
The pH of the coating composition was measured using a pH meter (HM-25R type) manufactured by DKK Toa Co., Ltd.

(5)接着層(I)付き基材、積層体(K)の透明性の評価
接着層(I)付き基材、積層体(K)の透明性は、日本電色工業株式会社製濁度計(品番:NDH5000SP)を用いて、JIS K7136に規定される方法により測定されたヘイズ値により評価した。ヘイズ値H1については、接着層付き基材を対象として上記方法にて測定した。ヘイズ値H2については、積層体(接着層付き基材(I)及びハードコート層(J))を対象として上記方法にて測定した。
(5) Base material with adhesive layer (I), evaluation of transparency of laminate (K) Base material with adhesive layer (I), transparency of laminate (K) is manufactured by Nippon Denshoku Industries Co., Ltd. The haze value measured by the method specified in JIS K7136 was evaluated using a meter (product number: NDH5000SP). The haze value H1 was measured by the above method for the base material with the adhesive layer. The haze value H2 was measured by the above method for the laminate (adhesive layer-attached substrate (I) and hard coat layer (J)).

(6)重合体ナノ粒子(G)のマルテンス硬度HMG及び弾性回復率ηITGの測定
重合体ナノ粒子(G)のマルテンス硬度HMGは、重合体ナノ粒子(G)の水分散体を、バーコーターを用いて膜厚が3μmになるようにガラス基材(材質:白板ガラス、厚み:2mm)上に塗布し、130℃2時間かけて乾燥することにより、得られた塗膜を用い、前記塗膜を形成する側の表面を対象として測定した。測定は、フィッシャー・インストルメンツ社製フィッシャースコープ(品番:HM2000S)を用いた押し込み試験(試験条件;圧子:ビッカース四角錘ダイヤモンド圧子、荷重の増加条件:2mN/20sec、荷重の減少条件:2mN/20sec)により微小硬度を測定し、ISO14577-1準拠のインデンテーション試験法に基づき、重合体ナノ粒子(G)のマルテンス硬度HMGを測定した。また、上記のとおりに得られた塗膜を用い、フィッシャー・インストルメンツ社製フィッシャースコープ(品番:HM2000S)を用いた押し込み試験(試験条件;圧子:ビッカース四角錘ダイヤモンド圧子、荷重の増加条件:2mN/20sec、荷重の減少条件:2mN/20sec)により微小硬度を測定し、ISO14577-1準拠のインデンテーション試験法に基づき、くぼみの全機械的仕事量Wtotalに対するくぼみの弾性戻り変形仕事量Welastの比、すなわち、Welast/Wtotalの値を重合体ナノ粒子(G)の弾性回復率ηITGとして測定した。
(6) Measurement of Martens hardness HMG and elastic recovery rate η ITG of polymer nanoparticles (G) was applied to a glass substrate (material: white plate glass, thickness: 2 mm) so that the film thickness was 3 μm, and dried at 130 ° C. for 2 hours. The surface on which the film is to be formed was targeted for the measurement. The measurement is an indentation test using a Fisher Scope (product number: HM2000S) manufactured by Fisher Instruments (test conditions; indenter: Vickers square pyramid diamond indenter, load increase condition: 2 mN / 20 sec, load decrease condition: 2 mN / 20 sec ), and the Martens hardness HMG of the polymer nanoparticles (G) was measured based on the indentation test method conforming to ISO 14577-1. In addition, using the coating film obtained as described above, an indentation test using a Fischer scope (product number: HM2000S) manufactured by Fisher Instruments (test conditions; indenter: Vickers square pyramid diamond indenter, load increase condition: 2 mN / 20 sec, load reduction condition: 2 mN / 20 sec), and based on the indentation test method in accordance with ISO 14577-1, the elastic return deformation work W elast of the dent with respect to the total mechanical work W total of the dent , that is, the value of W elast /W total was measured as the elastic recovery rate η ITG of the polymer nanoparticles (G).

(7)成分(H’)のマルテンス硬度HMH’及び弾性回復率ηITH’の測定
成分(H’)のマルテンス硬度HMH’は、成分(H’)を固形分濃度8質量%として水/エタノール/酢酸(組成比77質量%/20質量%/3質量%)へ溶解又は分散させ、得られた溶液はバーコーターを用いて膜厚が3μmになるようにガラス基材(材質:白板ガラス、厚み:2mm)上に塗布し、130℃で2時間かけて乾燥することにより、得られた塗膜を用いて測定した。測定は、フィッシャー・インストルメンツ社製フィッシャースコープ(品番:HM2000S)を用いた押し込み試験(試験条件;圧子:ビッカース四角錘ダイヤモンド圧子、荷重の増加条件:2mN/20sec、荷重の減少条件:2mN/20sec)により微小硬度を測定し、ISO14577-1準拠のインデンテーション試験法に基づき、HMH’及びηITH’(=Welast/Wtotal)を計測した。後述するとおり、成分(H)は、対応する成分(H’)の加水分解縮合物に該当することから、上記のようにして測定された成分(H’)のマルテンス硬度HMB’及び弾性回復率ηITH’の値は、それぞれ、マトリクス成分(H)のマルテンス硬度HMH及び弾性回復率ηITHによく一致するものとしてマルテンス硬度HMH及び弾性回復率ηITHの値を決定した。
(7) Measurement of Martens hardness HMH' and elastic recovery rate η ITH' of component (H') / acetic acid (composition ratio 77% by mass / 20% by mass / 3% by mass), and the resulting solution is coated with a glass substrate (material: white plate glass, Thickness: 2 mm) and dried at 130° C. for 2 hours to measure using the obtained coating film. The measurement is an indentation test using a Fisher Scope (product number: HM2000S) manufactured by Fisher Instruments (test conditions; indenter: Vickers square pyramid diamond indenter, load increase condition: 2 mN / 20 sec, load decrease condition: 2 mN / 20 sec ), and HMH' and η ITH' (=W elast /W total ) were measured based on the indentation test method conforming to ISO14577-1. As will be described later, the component (H) corresponds to the hydrolytic condensate of the corresponding component (H'), so the Martens hardness HM B' and the elastic recovery of the component (H') measured as described above The values of the modulus η ITH′ were determined as being in good agreement with the Martens hardness HMH and elastic recovery η ITH of the matrix component (H), respectively.

(8)積層体(K)の耐摩耗性の評価
積層体(K)の耐摩耗性の評価は、安田精機株式会社製テーバー式アブレーションテスター(No.101)を用い、ASTM D1044の規格に準拠して行った。すなわち、摩耗輪CS-10F、及び荷重500gの条件でテーバー摩耗試験を実施し、当該試験前のヘイズ、回転数500回におけるヘイズを各々、日本電色工業株式会社製濁度計(品番:NDH5000SP)を用いて、JIS R3212に規定される方法により測定し、試験前のヘイズとの差(ΔHaze)をとることによって耐摩耗性を下記のように評価した。
回転数500回の場合
S:ΔHazeが4以下、
A:ΔHazeが4超10以下、
B:ΔHazeが10超
(8) Evaluation of abrasion resistance of the laminate (K) Evaluation of the abrasion resistance of the laminate (K) uses a Taber type abrasion tester (No. 101) manufactured by Yasuda Seiki Co., Ltd. and conforms to the ASTM D1044 standard. I did. That is, a Taber abrasion test was performed under the conditions of an abrasion wheel CS-10F and a load of 500 g, and the haze before the test and the haze at 500 rotations were measured using a turbidity meter manufactured by Nippon Denshoku Industries Co., Ltd. (product number: NDH5000SP). ) was measured by the method specified in JIS R3212, and the difference (ΔHaze) from the haze before the test was taken to evaluate the abrasion resistance as follows.
For 500 rotations S: ΔHaze is 4 or less,
A: ΔHaze is more than 4 and 10 or less,
B: ΔHaze is over 10

(9)接着層(I)、ハードコート層(J)の密着性評価
<碁盤目試験>
JIS K5600-5-6に規定されるクロスカット法により、積層体のハードコート層側にカッター刃で1mm間隔で25マス切込みを入れ、テープ(ニチバン社製クロスカット試験・碁盤目試験準拠テープ)をマス上に張り付け、剥がした際に塗膜が残存しているマス数から、密着性を下記のように評価した。また、接着層(I)付き基材の接着層(I)側に対して上記と同様の操作を行い、接着層(I)の密着性を下記のように評価した。
S:25マス
A:20~24マス、
B:10~19マス
C:10マス未満
(9) Adhesion Evaluation of Adhesive Layer (I) and Hard Coat Layer (J) <Cross-cut Test>
By the crosscut method specified in JIS K5600-5-6, a cutter blade is used to cut 25 squares at 1mm intervals on the hard coat layer side of the laminate, and tape (Nichiban Co., Ltd. crosscut test / crosscut test compliant tape). was attached to a square, and the adhesion was evaluated as follows from the number of squares where the coating film remained when peeled off. Further, the adhesive layer (I) side of the base material with the adhesive layer (I) was subjected to the same operation as described above, and the adhesiveness of the adhesive layer (I) was evaluated as follows.
S: 25 squares A: 20-24 squares,
B: 10 to 19 squares C: less than 10 squares

(10)耐候性の評価
積層体(K)の耐候性は、積層体のハードコート層側に、キセノンアーク(スガ試験機社製、製品名SX-75)による紫外線照射をANSI/SAE Z26.1の規格の条件に従って行い、2000MJ/m照射前後のΔbで下記のように評価した。
S:Δb<1
A:Δb=1~4
B:Δb>4
(10) Evaluation of weather resistance The weather resistance of the laminate (K) was evaluated by subjecting the hard coat layer side of the laminate to ultraviolet irradiation using a xenon arc (manufactured by Suga Test Instruments Co., Ltd., product name SX-75). 1, and Δb before and after irradiation at 2000 MJ/m 2 was evaluated as follows.
S: Δb<1
A: Δb = 1 to 4
B: Δb>4

(11)耐熱性の評価
積層体(K)の耐熱性の評価は、積層体を120℃の乾燥機内に24時間静置した後の外観変化を、下記のように目視評価した。
S:クラックなし
A:一部にクラックあり
B:全面にクラックあり
C:成膜時にクラックあり
(11) Evaluation of heat resistance Evaluation of the heat resistance of the laminate (K) was carried out by visual evaluation of changes in appearance after the laminate was allowed to stand in a dryer at 120°C for 24 hours, as follows.
S: No cracks A: Partial cracks B: Overall cracks C: Cracks during deposition

(12)耐薬品性の評価
積層体(K)の耐薬品性の評価は、ECE UN R43に従い5種の化学薬品に対する浸漬試験を実施し、化学薬品5種の内で、浸漬試験実施後の積層体(K)に外観変化が見られた化学薬品の数から下記のように評価した。
S: 0種
A: 1種~2種
B: 3種~5種
(12) Evaluation of chemical resistance Evaluation of the chemical resistance of the laminate (K) was performed by conducting an immersion test for five kinds of chemicals according to ECE UN R43. Based on the number of chemicals that changed the appearance of the laminate (K), evaluation was made as follows.
S: 0 types A: 1 to 2 types B: 3 to 5 types

(13)各成分の質量比(含有量)
単位(a)における単位(a-2)の含有量は、メタクリル酸2-ヒドロキシエチルの仕込み量から、仕込み量比より求めた。
単位(a-1)と有機系紫外線吸収剤(D)との質量比は、単量体(a)とD成分との仕込み量比で求めた。
(13) Mass ratio (content) of each component
The content of the unit (a-2) in the unit (a) was obtained from the charged amount ratio based on the charged amount of 2-hydroxyethyl methacrylate.
The mass ratio between the unit (a-1) and the organic ultraviolet absorber (D) was obtained from the charged amount ratio between the monomer (a) and the D component.

(14)NCO/OHモル比
NCO/OHモル比は、メタクリル酸2-ヒドロキシエチルと2-ヒドロキシエチルアクリルアミドの使用量とブロックポリイソシアネート化合物(E)の使用量から算出した。ここでNCOのモル数は仕込み量と有効NCO%から算出した。
(14) NCO/OH molar ratio The NCO/OH molar ratio was calculated from the amount of 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylamide used and the amount of blocked polyisocyanate compound (E) used. Here, the number of moles of NCO was calculated from the charged amount and effective NCO %.

(15)塗料組成物固形分中の無機酸化物(B)の比率
塗料組成物固形分中の無機酸化物(B)の比率は、塗料組成物の仕込み時の全質量から溶媒(M)を除いた質量(塗料組成物の固形分質量)に対するB成分の質量比を仕込み量比から算出した。
(15) Ratio of inorganic oxide (B) in solid content of coating composition The mass ratio of component B to the mass removed (the mass of the solid content of the coating composition) was calculated from the charge ratio.

〔重合体粒子(A-1)水分散体の調製〕
後述する実施例において用いた重合体粒子(A-1)水分散体を以下のとおりに合成した。
<重合体粒子(A-1)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水500g、10%ドデシルベンゼンスルホン酸水溶液22g、2%過硫酸アンモニウム水溶液28gと、紫外線吸収性ビニル単量体「RUVA-93」(商品名、大塚化学株式会社製)5.8gをアクリル酸ブチル62.1g、メタクリル酸2-ヒドロキシエチル46.0g、アクリル酸1.2gと1-ドデカンチオール0.58gの混合物に溶解させたモノマー混合液、を用いて、80℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、100メッシュの金網で濾過し、精製水で固形分濃度を15質量%に調整して重合体粒子(A-1)の水分散体を得た。得られた重合体粒子(A-1)の粒子径は39nm、単位(a)の重量平均分子量は60万であった。
[Preparation of polymer particle (A-1) aqueous dispersion]
An aqueous dispersion of polymer particles (A-1) used in Examples described later was synthesized as follows.
<Polymer particle (A-1) aqueous dispersion>
In a reactor equipped with a reflux condenser, a dropping tank, a thermometer and a stirring device, 500 g of ion-exchanged water, 22 g of a 10% dodecylbenzenesulfonic acid aqueous solution, 28 g of a 2% ammonium persulfate aqueous solution, and an ultraviolet-absorbing vinyl monomer "RUVA- 93” (trade name, manufactured by Otsuka Chemical Co., Ltd.) was dissolved in a mixture of 62.1 g of butyl acrylate, 46.0 g of 2-hydroxyethyl methacrylate, 1.2 g of acrylic acid and 0.58 g of 1-dodecanethiol. Polymerization was carried out by a general emulsion polymerization method in an environment of 80° C. using the resulting monomer mixture. After the polymerization, the polymer particles (A-1) were filtered through a wire mesh of 100 mesh and adjusted to a solid concentration of 15% by mass with purified water to obtain an aqueous dispersion of polymer particles (A-1). The particle diameter of the obtained polymer particles (A-1) was 39 nm, and the weight average molecular weight of the unit (a) was 600,000.

[重合体粒子(A)と無機酸化物(B)の複合体(C)の調製]
後述する実施例において用いた複合体(C)水分散体を以下のとおりに合成した。
<複合体(C-1)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水150g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%、動的光散乱法による平均粒子径80nm)1150g、10%ドデシルベンゼンスルホン酸水溶液33g、2%過硫酸アンモニウム水溶液42gと、紫外線吸収性ビニル単量体「RUVA-93」(商品名、大塚化学株式会社製)8.6gをアクリル酸ブチル162.2g、アクリル酸1.7gと1-ドデカンチオール0.86gの混合物に溶解させたモノマー混合液を用いて、80℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、25%アンモニア水溶液でpH8に調整し、100メッシュの金網で濾過し、精製水で固形分濃度を15%に調整して複合体(C-1)の水分散体を得た。得られた複合体(C-1)の平均粒子径は40nm、単位(a)の重量平均分子量は160万であった。
[Preparation of composite (C) of polymer particles (A) and inorganic oxide (B)]
A composite (C) aqueous dispersion used in the examples described later was synthesized as follows.
<Composite (C-1) aqueous dispersion>
A reactor equipped with a reflux condenser, a dropping tank, a thermometer, and a stirrer contains 150 g of ion-exchanged water and water-dispersed colloidal silica "Snowtex PS-SO" (trade name, Nissan Chemical Industries, Ltd.) as an inorganic oxide (B). 15 mass% solid content, average particle size 80 nm by dynamic light scattering method) 1150 g, 33 g of 10% dodecylbenzenesulfonic acid aqueous solution, 42 g of 2% ammonium persulfate aqueous solution, and UV-absorbing vinyl monomer "RUVA-93" (trade name, manufactured by Otsuka Chemical Co., Ltd.) was dissolved in a mixture of 162.2 g of butyl acrylate, 1.7 g of acrylic acid and 0.86 g of 1-dodecanethiol. Polymerization was carried out by a general emulsion polymerization method under the environment. After polymerization, the pH was adjusted to 8 with a 25% aqueous ammonia solution, filtered through a 100-mesh wire mesh, and the solid concentration was adjusted to 15% with purified water to obtain an aqueous dispersion of the composite (C-1). The composite (C-1) thus obtained had an average particle diameter of 40 nm, and the weight average molecular weight of the unit (a) was 1,600,000.

<複合体(C-2)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水150g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)1150g、10%ドデシルベンゼンスルホン酸水溶液33g、2%過硫酸アンモニウム水溶液42gと、紫外線吸収性ビニル単量体「RUVA-93」(商品名、大塚化学株式会社製)8.6gをアクリル酸ブチル144.9g、メタクリル酸2-ヒドロキシエチル17.3g、アクリル酸1.7gと1-ドデカンチオール1.73gの混合物に溶解させたモノマー混合液を用いて、80℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、25%アンモニア水溶液でpH9に調整し、100メッシュの金網で濾過し、精製水で固形分濃度を15%に調整して複合体(C-2)の水分散体を得た。得られた複合体(C-2)の平均粒子径は48nm、単位(a)の重量平均分子量は20万であった。
<Composite (C-2) aqueous dispersion>
A reactor equipped with a reflux condenser, a dropping tank, a thermometer, and a stirrer contains 150 g of ion-exchanged water and water-dispersed colloidal silica "Snowtex PS-SO" (trade name, Nissan Chemical Industries, Ltd.) as an inorganic oxide (B). solid content 15% by mass) 1150 g, 33 g of 10% dodecylbenzenesulfonic acid aqueous solution, 42 g of 2% ammonium persulfate aqueous solution, and UV-absorbing vinyl monomer “RUVA-93” (trade name, manufactured by Otsuka Chemical Co., Ltd.) 8 .6 g was dissolved in a mixture of 144.9 g of butyl acrylate, 17.3 g of 2-hydroxyethyl methacrylate, 1.7 g of acrylic acid and 1.73 g of 1-dodecanethiol. Polymerization was carried out by a general emulsion polymerization method described below. After polymerization, the pH was adjusted to 9 with a 25% aqueous ammonia solution, filtered through a 100-mesh wire mesh, and the solid concentration was adjusted to 15% with purified water to obtain an aqueous dispersion of the composite (C-2). The composite (C-2) thus obtained had an average particle size of 48 nm, and the weight average molecular weight of the unit (a) was 200,000.

<複合体(C-3)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水150g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)1150g、10%ドデシルベンゼンスルホン酸水溶液33g、2%過硫酸アンモニウム水溶液42gと、紫外線吸収性ビニル単量体「RUVA-93」(商品名、大塚化学株式会社製)8.6gをアクリル酸ブチル127.7g、メタクリル酸2-ヒドロキシエチル34.5g、アクリル酸1.7gと1-ドデカンチオール0.43gの混合物に溶解させたモノマー混合液を用いて、80℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、25%アンモニア水溶液でpH9に調整し、100メッシュの金網で濾過し、精製水で固形分濃度を15%に調整して複合体(C-3)の水分散体を得た。得られた複合体(C-3)の平均粒子径は56nm、単位(a)の重量平均分子量は90万であった。
<Composite (C-3) aqueous dispersion>
A reactor equipped with a reflux condenser, a dropping tank, a thermometer, and a stirrer contains 150 g of ion-exchanged water and water-dispersed colloidal silica "Snowtex PS-SO" (trade name, Nissan Chemical Industries, Ltd.) as an inorganic oxide (B). solid content 15 mass%) 1150 g, 33 g of 10% dodecylbenzenesulfonic acid aqueous solution, 42 g of 2% ammonium persulfate aqueous solution, and UV-absorbing vinyl monomer “RUVA-93” (trade name, manufactured by Otsuka Chemical Co., Ltd.) 8 .6 g was dissolved in a mixture of 127.7 g of butyl acrylate, 34.5 g of 2-hydroxyethyl methacrylate, 1.7 g of acrylic acid and 0.43 g of 1-dodecanethiol. Polymerization was carried out by a general emulsion polymerization method described below. After polymerization, the pH was adjusted to 9 with a 25% aqueous ammonia solution, filtered through a 100-mesh wire mesh, and the solid concentration was adjusted to 15% with purified water to obtain an aqueous dispersion of the composite (C-3). The composite (C-3) thus obtained had an average particle size of 56 nm and a weight average molecular weight of the unit (a) of 900,000.

<複合体(C-4)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水150g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)1150g、10%ドデシルベンゼンスルホン酸水溶液33g、2%過硫酸アンモニウム水溶液42gと、紫外線吸収性ビニル単量体「RUVA-93」(商品名、大塚化学株式会社製)8.6gをアクリル酸ブチル127.7g、メタクリル酸2-ヒドロキシエチル34.5g、アクリル酸1.7gと1-ドデカンチオール0.17gの混合物に溶解させたモノマー混合液を用いて、80℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、25%アンモニア水溶液でpH10に調整し、100メッシュの金網で濾過し、精製水で固形分濃度を15%に調整して複合体(C-4)の水分散体を得た。得られた複合体(C-4)の平均粒子径は54nm、単位(a)の重量平均分子量は440万であった。
<Composite (C-4) aqueous dispersion>
A reactor equipped with a reflux condenser, a dropping tank, a thermometer, and a stirrer contains 150 g of ion-exchanged water and water-dispersed colloidal silica "Snowtex PS-SO" (trade name, Nissan Chemical Industries, Ltd.) as an inorganic oxide (B). solid content 15 mass%) 1150 g, 33 g of 10% dodecylbenzenesulfonic acid aqueous solution, 42 g of 2% ammonium persulfate aqueous solution, and UV-absorbing vinyl monomer “RUVA-93” (trade name, manufactured by Otsuka Chemical Co., Ltd.) 8 .6 g was dissolved in a mixture of 127.7 g of butyl acrylate, 34.5 g of 2-hydroxyethyl methacrylate, 1.7 g of acrylic acid and 0.17 g of 1-dodecanethiol. Polymerization was carried out by a general emulsion polymerization method described below. After polymerization, the pH was adjusted to 10 with a 25% aqueous ammonia solution, filtered through a 100-mesh wire mesh, and the solid concentration was adjusted to 15% with purified water to obtain an aqueous dispersion of the composite (C-4). The resulting composite (C-4) had an average particle size of 54 nm, and the unit (a) had a weight average molecular weight of 4,400,000.

<複合体(C-5)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水150g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)1150g、10%ドデシルベンゼンスルホン酸水溶液22g、2%過硫酸アンモニウム水溶液28gと、紫外線吸収性ビニル単量体「RUVA-93」(商品名、大塚化学株式会社製)5.8gをアクリル酸ブチル62.1g、メタクリル酸2-ヒドロキシエチル46.0g、アクリル酸1.2gと1-ドデカンチオール0.58gの混合物に溶解させたモノマー混合液を用いて、80℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、25%アンモニア水溶液でpH9に調整し、100メッシュの金網で濾過し、精製水で固形分濃度を15%に調整して複合体(C-5)の水分散体を得た。得られた複合体(C-5)の平均粒子径は68nm、単位(a)の重量平均分子量は60万であった。
<Composite (C-5) aqueous dispersion>
A reactor equipped with a reflux condenser, a dropping tank, a thermometer, and a stirrer contains 150 g of ion-exchanged water and water-dispersed colloidal silica "Snowtex PS-SO" (trade name, Nissan Chemical Industries, Ltd.) as an inorganic oxide (B). solid content 15 mass%) 1150 g, 22 g of 10% dodecylbenzenesulfonic acid aqueous solution, 28 g of 2% ammonium persulfate aqueous solution, and UV-absorbing vinyl monomer “RUVA-93” (trade name, manufactured by Otsuka Chemical Co., Ltd.) 5 .8 g was dissolved in a mixture of 62.1 g of butyl acrylate, 46.0 g of 2-hydroxyethyl methacrylate, 1.2 g of acrylic acid and 0.58 g of 1-dodecanethiol. Polymerization was carried out by a general emulsion polymerization method described below. After polymerization, the pH was adjusted to 9 with a 25% aqueous ammonia solution, filtered through a 100-mesh wire mesh, and the solid concentration was adjusted to 15% with purified water to obtain an aqueous dispersion of the composite (C-5). The composite (C-5) thus obtained had an average particle size of 68 nm and a weight average molecular weight of the unit (a) of 600,000.

<複合体(C-6)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水150g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)1150g、10%ドデシルベンゼンスルホン酸水溶液22g、2%過硫酸アンモニウム水溶液28gと、紫外線吸収性ビニル単量体「RUVA-93」(商品名、大塚化学株式会社製)5.8gをアクリル酸ブチル50.6g、メタクリル酸2-ヒドロキシエチル57.5g、アクリル酸1.2gと1-ドデカンチオール0.58gの混合物に溶解させたモノマー混合液を用いて、80℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、25%アンモニア水溶液でpH7.5に調整し、100メッシュの金網で濾過し、精製水で固形分濃度を15%に調整して複合体(C-6)の水分散体を得た。得られた複合体(C-6)の平均粒子径は79nm、単位(a)の重量平均分子量は40万であった。
<Composite (C-6) aqueous dispersion>
A reactor equipped with a reflux condenser, a dropping tank, a thermometer, and a stirrer contains 150 g of ion-exchanged water and water-dispersed colloidal silica "Snowtex PS-SO" (trade name, Nissan Chemical Industries, Ltd.) as an inorganic oxide (B). solid content 15 mass%) 1150 g, 22 g of 10% dodecylbenzenesulfonic acid aqueous solution, 28 g of 2% ammonium persulfate aqueous solution, and UV-absorbing vinyl monomer “RUVA-93” (trade name, manufactured by Otsuka Chemical Co., Ltd.) 5 .8 g was dissolved in a mixture of 50.6 g of butyl acrylate, 57.5 g of 2-hydroxyethyl methacrylate, 1.2 g of acrylic acid and 0.58 g of 1-dodecanethiol. Polymerization was carried out by a general emulsion polymerization method described below. After polymerization, the pH was adjusted to 7.5 with a 25% aqueous ammonia solution, filtered through a 100-mesh wire mesh, and the solid concentration was adjusted to 15% with purified water to obtain an aqueous dispersion of the composite (C-6). . The resulting composite (C-6) had an average particle size of 79 nm and a weight average molecular weight of unit (a) of 400,000.

<複合体(C-7)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水150g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)1150g、10%ドデシルベンゼンスルホン酸水溶液22g、2%過硫酸アンモニウム水溶液28gと、アクリル酸ブチル67.9g、メタクリル酸2-ヒドロキシエチル46.0gとアクリル酸1.2gのモノマー混合液を用いて、80℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、25%アンモニア水溶液でpH9.0に調整し、100メッシュの金網で濾過し、精製水で固形分濃度を15%に調整して複合体(C-7)の水分散体を得た。得られた複合体(C-7)の平均粒子径は65nm、単位(a)の重量平均分子量は720万であった。
<Composite (C-7) aqueous dispersion>
A reactor equipped with a reflux condenser, a dropping tank, a thermometer, and a stirrer contains 150 g of ion-exchanged water and water-dispersed colloidal silica "Snowtex PS-SO" (trade name, Nissan Chemical Industries, Ltd.) as an inorganic oxide (B). 1150 g of 10% dodecylbenzenesulfonic acid aqueous solution, 28 g of 2% ammonium persulfate aqueous solution, 67.9 g of butyl acrylate, 46.0 g of 2-hydroxyethyl methacrylate and 1.2 g of acrylic acid. Using the mixed monomer solution, polymerization was carried out in an environment of 80° C. by a general emulsion polymerization method. After polymerization, the pH was adjusted to 9.0 with a 25% aqueous ammonia solution, filtered through a 100-mesh wire mesh, and the solid concentration was adjusted to 15% with purified water to obtain an aqueous dispersion of the composite (C-7). . The resulting composite (C-7) had an average particle size of 65 nm, and the unit (a) had a weight average molecular weight of 7,200,000.

〔重合体ナノ粒子(G)水分散体の調製〕
後述する実施例において用いた重合体ナノ粒子(G)水分散体を以下のとおりに合成した。
<重合体ナノ粒子(G-1)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水1500g、10%ドデシルベンゼンスルホン酸水溶液45g、メチルトリメトキシシラン105g、フェニルトリメトキシシラン23g、テトラエトキシシラン27gを用いて、50℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、温度を80℃とした後、更に2%過硫酸アンモニウム水溶液43g、アクリル酸ブチル11g、ジエチルアクリルアミド12g、アクリル酸1g、3-メタクリロキシプロピルトリメトキシシラン1gを用いて、一般的な乳化重合の方法で重合を行い、100メッシュの金網で濾過し、精製水で固形分濃度を5%に調整して重合体ナノ粒子(G-1)の水分散体を得た。得られた重合体ナノ粒子(G-1)はコアシェル構造を有するものであり、その平均粒子径は60nmであった。また、上述の測定方法に従い測定した重合体粒子(G-1)のマルテンス硬度HMGは150N/mm、弾性回復率ηITGは0.70であった。
[Preparation of polymer nanoparticles (G) aqueous dispersion]
An aqueous dispersion of polymer nanoparticles (G) used in Examples described later was synthesized as follows.
<Polymer Nanoparticles (G-1) Aqueous Dispersion>
In a reactor equipped with a reflux condenser, a dropping tank, a thermometer and a stirring device, 1500 g of ion-exchanged water, 45 g of 10% dodecylbenzenesulfonic acid aqueous solution, 105 g of methyltrimethoxysilane, 23 g of phenyltrimethoxysilane and 27 g of tetraethoxysilane were used. Then, polymerization was carried out by a general emulsion polymerization method in an environment of 50°C. After the polymerization, the temperature was raised to 80° C., and then 43 g of a 2% aqueous solution of ammonium persulfate, 11 g of butyl acrylate, 12 g of diethylacrylamide, 1 g of acrylic acid, and 1 g of 3-methacryloxypropyltrimethoxysilane were used for general emulsion polymerization. Polymerization was carried out by the method of No. 2, filtration was performed with a 100-mesh wire mesh, and the solid content concentration was adjusted to 5% with purified water to obtain an aqueous dispersion of polymer nanoparticles (G-1). The resulting polymer nanoparticles (G-1) had a core-shell structure and an average particle size of 60 nm. Further, the polymer particles (G-1) had a Martens hardness HMG of 150 N/mm 3 and an elastic recovery rate η ITG of 0.70, which were measured according to the above-described measurement method.

[マトリクス原料成分(H’)コーティング組成液の調製]
後述する実施例において用いたマトリクス原料成分(H’)コーティング組成液を以下のとおりに調製した。
[Preparation of matrix raw material component (H') coating composition liquid]
A matrix raw material component (H′) coating composition liquid used in Examples described later was prepared as follows.

<マトリクス原料成分(H’-1)コーティング組成液>
加水分解性珪素化合物(h)として、1,2-ビス(トリエトキシシリル)エタン35g、トリス-(トリメトキシシリルプロピル)イソシアヌレート81g、無機酸化物(F)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、TEM観察法による平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(H’-1)のコーティング組成液を得た。上述の測定方法に従い測定したマトリクス原料成分(H’-1)のマルテンス硬度HMH’は420N/mm、弾性回復率ηITH‘は0.71であった。
<Matrix raw material component (H'-1) coating composition liquid>
35 g of 1,2-bis(triethoxysilyl)ethane and 81 g of tris-(trimethoxysilylpropyl) isocyanurate as the hydrolyzable silicon compound (h), and water-dispersed colloidal silica "Snowtex OXS" as the inorganic oxide (F). ” (trade name, manufactured by Nissan Chemical Industries, Ltd., solid content 10% by mass, average particle size 5 nm by TEM observation method) 333 g were mixed at room temperature, and the coating composition liquid of the matrix raw material component (H′-1) was mixed. Obtained. The matrix raw material component (H'-1) had a Martens hardness HMH' of 420 N/mm 3 and an elastic recovery rate η ITH' of 0.71, which were measured according to the above-described measurement method.

[ハードコート層組成液の調製]
<ハードコート層(J-1)組成液>
重合体ナノ粒子(G)とマトリクス成分(H)が固形分質量比で(G-1):(H-1)=100:200となるように、上記で調整した重合体ナノ粒子(G-1)水分散体と、上記で調整したマトリクス原料成分(H’-1)とを混合して混合物を得た。エタノール濃度20質量%の水溶液を溶媒とし、固形分濃度が10質量%となるように混合物を添加し、ハードコート組成液(J-1)を得た。また、上述の測定方法に従い測定したハードコート層(J-1)のマルテンス硬度HMJ’は380N/mm、弾性回復率ηITJは0.70であった。
[Preparation of hard coat layer composition liquid]
<Hard coat layer (J-1) composition liquid>
The polymer nanoparticles (G- 1) A mixture was obtained by mixing the aqueous dispersion and the matrix raw material component (H'-1) prepared above. An aqueous solution having an ethanol concentration of 20% by mass was used as a solvent, and the mixture was added so that the solid content concentration was 10% by mass to obtain a hard coat composition liquid (J-1). The hard coat layer (J-1) had a Martens hardness HMJ' of 380 N/mm 3 and an elastic recovery rate η ITJ of 0.70, which were measured according to the above-described measurement method.

[実施例1]
重合体粒子(A-1)を15g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)19g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.52g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.07g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)2.15g、水12.86g、エタノール10gを室温条件下で混合し、25%アンモニア水溶液でpH10.0に調整し、実施例1の塗料組成物を得た。塗料組成物の固形分濃度は12質量%であった。
次いで、実施例1の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例1の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例1の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例1の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表1に示す。
[Example 1]
15 g of polymer particles (A-1), 19 g of water-dispersed colloidal silica "Snowtex PS-SO" (trade name, manufactured by Nissan Chemical Industries, Ltd., solid content 15% by mass) as inorganic oxide (B), organic Tinuvin400 (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) 0.52 g as an ultraviolet absorber, Tinuvin123 (trade name, manufactured by BASF Japan Ltd.) 0.07 g as a light stabilizer, WM44-L70G as a curing agent (trade name, manufactured by Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 2.15 g, water 12.86 g, ethanol 10 g were mixed at room temperature, and pH was 10.0 with 25% ammonia aqueous solution. to obtain a coating composition of Example 1. The solid content concentration of the coating composition was 12% by mass.
Then, the coating composition of Example 1 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, the substrate with an adhesive layer of Example 1 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 1 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained.
Table 1 shows the results of various evaluations of the coating composition of Example 1, the substrate with an adhesive layer, and the laminate.

[実施例2]
複合体(C-1)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.51g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.07g、水3.90g、エタノール6.91gを室温条件下で混合し、実施例2の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは7.5であった。
次いで、実施例2の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例2の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例2の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例2の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表1に示す。
[Example 2]
30 g of the composite (C-1) aqueous dispersion, 0.51 g of Tinuvin400 (trade name, manufactured by BASF Japan Co., Ltd., solid content concentration 85%) as an organic ultraviolet absorber, and Tinuvin123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.), 3.90 g of water, and 6.91 g of ethanol were mixed at room temperature to obtain a coating composition of Example 2. The coating composition had a solid content concentration of 12% by mass and a pH of 7.5.
Then, the coating composition of Example 2 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 2 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 2 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained.
Table 1 shows the results of various evaluations of the coating composition of Example 2, the substrate with an adhesive layer, and the laminate.

[実施例3]
複合体(C-2)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.51g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.07g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)0.53g、水6.06g、エタノール7.45gを室温条件下で混合し、実施例3の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.5であった。
次いで、実施例3の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例3の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例3の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例3の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表1に示す。
[Example 3]
30 g of the composite (C-2) aqueous dispersion, 0.51 g of Tinuvin 400 (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) as an organic ultraviolet absorber, and Tinuvin 123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.) 0.07 g, WM44-L70G as a curing agent (trade name, Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 0.53 g, water 6.06 g, ethanol 7. 45 g were mixed under room temperature conditions to obtain the coating composition of Example 3. The coating composition had a solid content concentration of 12% by mass and a pH of 8.5.
Next, the coating composition of Example 3 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 3 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 3 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained.
Table 1 shows the results of various evaluations of the coating composition of Example 3, the substrate with an adhesive layer, and the laminate.

[実施例4]
複合体(C-3)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.52g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.07g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.07g、水8.29g、エタノール8.01gを室温条件下で混合し、実施例4の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.3であった。
次いで、実施例4の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例4の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例4の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例4の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表1に示す。
[Example 4]
30 g of the composite (C-3) aqueous dispersion, 0.52 g of Tinuvin 400 (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) as an organic ultraviolet absorber, and Tinuvin 123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.) 0.07 g, WM44-L70G as a curing agent (trade name, Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 1.07 g, water 8.29 g, ethanol 8. 01 g were mixed at room temperature to obtain a coating composition of Example 4. The coating composition had a solid content concentration of 12% by mass and a pH of 8.3.
Next, the coating composition of Example 4 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 4 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 4 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained.
Table 1 shows the results of various evaluations of the coating composition of Example 4, the substrate with an adhesive layer, and the laminate.

[実施例5]
複合体(C-4)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.52g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.07g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.07g、水8.30g、エタノール8.01gを室温条件下で混合し、実施例5の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは9.4であった。
次いで、実施例5の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例5の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例5の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例5の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表1に示す。
[Example 5]
30 g of the composite (C-4) aqueous dispersion, 0.52 g of Tinuvin 400 (trade name, manufactured by BASF Japan Co., Ltd., solid content concentration 85%) as an organic ultraviolet absorber, and Tinuvin 123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.) 0.07 g, WM44-L70G as a curing agent (trade name, Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 1.07 g, water 8.30 g, ethanol 8. 01 g were mixed at room temperature to obtain a coating composition of Example 5. The coating composition had a solid content concentration of 12% by mass and a pH of 9.4.
Then, the coating composition of Example 5 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 5 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 5 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained.
Table 1 shows the results of various evaluations of the coating composition of Example 5, the substrate with an adhesive layer, and the laminate.

[実施例6]
複合体(C-5)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.41g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.06g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.71g、水10.30g、エタノール8.60gを室温条件下で混合し、実施例6の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.1であった。
次いで、実施例6の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例6の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例6の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例6の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表1に示す。
[Example 6]
30 g of the composite (C-5) aqueous dispersion, 0.41 g of Tinuvin400 (trade name, manufactured by BASF Japan Co., Ltd., solid content concentration 85%) as an organic ultraviolet absorber, and Tinuvin123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.) 0.06 g, WM44-L70G as a curing agent (trade name, Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 1.71 g, water 10.30 g, ethanol 8. 60 g were mixed under room temperature conditions to obtain the coating composition of Example 6. The coating composition had a solid content concentration of 12% by mass and a pH of 8.1.
Next, the coating composition of Example 6 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 6 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with an adhesive layer of Example 6 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained.
Table 1 shows the results of various evaluations of the coating composition of Example 6, the substrate with an adhesive layer, and the laminate.

[実施例7]
複合体(C-5)水分散体を30g、紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)とTinuvin479(商品名、BASFジャパン株式会社製、固形分濃度100%)の混合物(表1中「U1」、固形分比85/15、固形分濃度87.0%)0.40g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.06g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.71g、水10.24g、エタノール8.59gを室温条件下で混合し、実施例7の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.3であった。
次いで、実施例7の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例7の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例7の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例7の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表1に示す。
[Example 7]
30 g of the composite (C-5) aqueous dispersion, Tinuvin400 (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) and Tinuvin479 (trade name, manufactured by BASF Japan Ltd., solid content concentration 100) as ultraviolet absorbers %) mixture (“U1” in Table 1, solid content ratio 85/15, solid content concentration 87.0%) 0.40 g, Tinuvin 123 as a light stabilizer (trade name, manufactured by BASF Japan Ltd.) 0.06 g, As a curing agent, 1.71 g of WM44-L70G (trade name, manufactured by Asahi Kasei Corporation, solid content concentration of 70% by mass, effective NCO of 5.3% by mass), 10.24 g of water, and 8.59 g of ethanol were mixed at room temperature, A coating composition of Example 7 was obtained. The coating composition had a solid content concentration of 12% by mass and a pH of 8.3.
Next, the coating composition of Example 7 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 7 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 7 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained.
Table 1 shows the results of various evaluations of the coating composition of Example 7, the substrate with an adhesive layer, and the laminate.

[実施例8]
複合体(C-6)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.41g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.06g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)2.13g、水12.05g、エタノール9.04gを室温条件下で混合し、実施例8の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは7.1であった。
次いで、実施例8の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例8の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例8の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例8の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表1に示す。
[Example 8]
30 g of the composite (C-6) aqueous dispersion, Tinuvin400 (trade name, manufactured by BASF Japan Co., Ltd., solid concentration 85%) as an organic ultraviolet absorber 0.41 g, Tinuvin123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.) 0.06 g, WM44-L70G as a curing agent (trade name, Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 2.13 g, water 12.05 g, ethanol 9. 04 g were mixed at room temperature to obtain a coating composition of Example 8. The coating composition had a solid content concentration of 12% by mass and a pH of 7.1.
Then, the coating composition of Example 8 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 8 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 8 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a film thickness of 3.0 μm. A laminate having layers was obtained.
Table 1 shows the results of various evaluations of the coating composition of Example 8, the substrate with an adhesive layer, and the laminate.

[実施例9]
複合体(C-5)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.10g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.01g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)3.41g、水15.50g、エタノール10.16gを室温条件下で混合し、実施例9の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.2であった。
次いで、実施例9の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例9の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例9の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例9の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表2に示す。
[Example 9]
30 g of the composite (C-5) aqueous dispersion, Tinuvin400 (trade name, manufactured by BASF Japan Co., Ltd., solid content concentration 85%) as an organic ultraviolet absorber 0.10 g, Tinuvin123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.) 0.01 g, WM44-L70G as a curing agent (trade name, Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 3.41 g, water 15.50 g, ethanol 10. 16 g were mixed under room temperature conditions to obtain the coating composition of Example 9. The coating composition had a solid content concentration of 12% by mass and a pH of 8.2.
Then, the coating composition of Example 9 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 9 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 9 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained.
Table 2 shows the results of various evaluations of the coating composition of Example 9, the substrate with an adhesive layer, and the laminate.

[実施例10]
複合体(C-5)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.21g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.03g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)3.41g、水16.10g、エタノール10.23gを室温条件下で混合し、実施例10の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.3であった。
次いで、実施例10の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例10の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例10の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。
実施例10の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表2に示す。
[Example 10]
30 g of the composite (C-5) aqueous dispersion, Tinuvin400 (trade name, manufactured by BASF Japan Co., Ltd., solid concentration 85%) as an organic ultraviolet absorber 0.21 g, Tinuvin123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.) 0.03 g, WM44-L70G as a curing agent (trade name, Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 3.41 g, water 16.10 g, ethanol 10. 23 g were mixed under room temperature conditions to obtain the coating composition of Example 10. The coating composition had a solid content concentration of 12% by mass and a pH of 8.3.
Next, the coating composition of Example 10 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 10 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 10 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained.
Table 2 shows the results of various evaluations of the coating composition of Example 10, the substrate with an adhesive layer, and the laminate.

[実施例11]
複合体(C-5)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.62g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.09g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.28g、水9.75g、エタノール8.29gを室温条件下で混合し、実施例11の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.6であった。
次いで、実施例11の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例11の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例11の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。実施例11の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表2に示す。
[Example 11]
30 g of the composite (C-5) aqueous dispersion, 0.62 g of Tinuvin 400 (trade name, manufactured by BASF Japan Co., Ltd., solid content concentration 85%) as an organic ultraviolet absorber, and Tinuvin 123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.) 0.09 g, WM44-L70G as a curing agent (trade name, Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 1.28 g, water 9.75 g, ethanol 8. 29 g were mixed under room temperature conditions to obtain the coating composition of Example 11. The coating composition had a solid content concentration of 12% by mass and a pH of 8.6.
Next, the coating composition of Example 11 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 11 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with an adhesive layer of Example 11 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained. Table 2 shows the results of various evaluations of the coating composition of Example 11, the substrate with an adhesive layer, and the laminate.

[実施例12]
複合体(C-5)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)1.03g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.15g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.28g、水12.15g、エタノール8.54gを室温条件下で混合し、実施例12の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.4であった。
次いで、実施例12の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例12の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例12の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。実施例12の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表2に示す。
[Example 12]
30 g of the composite (C-5) aqueous dispersion, 1.03 g of Tinuvin 400 (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) as an organic ultraviolet absorber, and Tinuvin 123 (trade name, BASF) as a light stabilizer Japan Co., Ltd.) 0.15 g, WM44-L70G as a curing agent (trade name, Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 1.28 g, water 12.15 g, ethanol 8. 54 g were mixed under room temperature conditions to obtain the coating composition of Example 12. The coating composition had a solid content concentration of 12% by mass and a pH of 8.4.
Next, the coating composition of Example 12 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 12 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 12 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a film thickness of 3.0 μm. A laminate having layers was obtained. Table 2 shows the results of various evaluations of the coating composition of Example 12, the substrate with an adhesive layer, and the laminate.

[実施例13]
重合体粒子(A-1)を16g、複合体(C-5)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.96g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.14g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)3.98g、水23.31g、エタノール14.79gを室温条件下で混合し、実施例13の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは7.2であった。
次いで、実施例13の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例13の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例13の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。実施例13の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表2に示す。
[Example 13]
16 g of polymer particles (A-1), 30 g of composite (C-5) aqueous dispersion, Tinuvin 400 as an organic UV absorber (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) 0.96 g , Tinuvin 123 as a light stabilizer (trade name, manufactured by BASF Japan Co., Ltd.) 0.14 g, WM44-L70G as a curing agent (trade name, manufactured by Asahi Kasei Corporation, solid content concentration 70% by weight, effective NCO 5.3% by weight) 3 .98 g, 23.31 g of water, and 14.79 g of ethanol were mixed under room temperature conditions to obtain a coating composition of Example 13. The coating composition had a solid content concentration of 12% by mass and a pH of 7.2.
Next, the coating composition of Example 13 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 13 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with an adhesive layer of Example 13 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained. Table 2 shows the results of various evaluations of the coating composition of Example 13, the substrate with an adhesive layer, and the laminate.

[実施例14]
重合体粒子(A-1)を6g、複合体(C-5)水分散体を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.62g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.09g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)2.56g、水15.18g、エタノール10.92gを室温条件下で混合し、実施例14の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.0であった。
次いで、実施例14の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例14の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例14の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。実施例14の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表2に示す。
[Example 14]
6 g of polymer particles (A-1), 30 g of composite (C-5) aqueous dispersion, Tinuvin 400 as an organic UV absorber (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) 0.62 g , Tinuvin 123 as a light stabilizer (trade name, manufactured by BASF Japan Co., Ltd.) 0.09 g, WM44-L70G as a curing agent (trade name, manufactured by Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 2 0.56 g, 15.18 g of water and 10.92 g of ethanol were mixed under room temperature conditions to obtain the coating composition of Example 14. The coating composition had a solid content concentration of 12% by mass and a pH of 8.0.
Then, the coating composition of Example 14 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 14 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 14 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained. Table 2 shows the results of various evaluations of the coating composition of Example 14, the substrate with an adhesive layer, and the laminate.

[実施例15]
複合体(C-5)水分散体を30g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)5g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.41g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.06g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.71g、水10.45g、エタノール9.70gを室温条件下で混合し、実施例15の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.4であった。
次いで、実施例15の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例15の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例15の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。実施例15の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表2に示す。
[Example 15]
Composite (C-5) 30 g of aqueous dispersion, 5 g of water-dispersed colloidal silica “Snowtex PS-SO” (trade name, manufactured by Nissan Chemical Industries, Ltd., solid content 15% by mass) as inorganic oxide (B), Tinuvin400 (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) 0.41 g as an organic UV absorber, Tinuvin123 (trade name, manufactured by BASF Japan Ltd.) 0.06 g as a light stabilizer, WM44 as a curing agent -L70G (trade name, manufactured by Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 1.71 g, water 10.45 g, ethanol 9.70 g were mixed under room temperature conditions. A coating composition was obtained. The coating composition had a solid content concentration of 12% by mass and a pH of 8.4.
Then, the coating composition of Example 15 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 15 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with an adhesive layer of Example 15 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a film thickness of 3.0 μm. A laminate having layers was obtained. Table 2 shows the results of various evaluations of the coating composition of Example 15, the substrate with an adhesive layer, and the laminate.

[実施例16]
複合体(C-5)水分散体を30g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)16g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.41g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.06g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.71g、水10.78g、エタノール12.12gを室温条件下で混合し、実施例16の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは7.6であった。
次いで、実施例16の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして実施例16の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を実施例16の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。実施例16の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表2に示す。
[Example 16]
Composite (C-5) 30 g of aqueous dispersion, 16 g of water-dispersed colloidal silica “Snowtex PS-SO” (trade name, manufactured by Nissan Chemical Industries, Ltd., solid content 15% by mass) as inorganic oxide (B), Tinuvin400 (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) 0.41 g as an organic UV absorber, Tinuvin123 (trade name, manufactured by BASF Japan Ltd.) 0.06 g as a light stabilizer, WM44 as a curing agent -L70G (trade name, manufactured by Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 1.71 g, water 10.78 g, ethanol 12.12 g are mixed under room temperature conditions. A coating composition was obtained. The coating composition had a solid content concentration of 12% by mass and a pH of 7.6.
Then, the coating composition of Example 16 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a substrate with an adhesive layer of Example 16 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Example 16 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a film thickness of 3.0 μm. A laminate having layers was obtained. Table 2 shows the results of various evaluations of the coating composition of Example 16, the substrate with an adhesive layer, and the laminate.

[比較例1]
無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.62g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.09g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.28g、水9.75g、エタノール8.29gを室温条件下で混合し、25%アンモニア水溶液でpH9.0に調整し、比較例1の塗料組成物を得た。塗料組成物の固形分濃度は12質量%であった。
次いで、比較例1の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層を形成しようとしたが、評価可能な膜を形成することができなかった。比較例1の塗料組成物について各種評価を行った結果を表3に示す。
[Comparative Example 1]
Water-dispersed colloidal silica “Snowtex PS-SO” (trade name, manufactured by Nissan Chemical Industries, Ltd., solid content 15% by mass) as inorganic oxide (B) 30 g, Tinuvin 400 as organic UV absorber (trade name, BASF Japan Co., Ltd., solid content concentration 85%) 0.62 g, Tinuvin 123 (trade name, manufactured by BASF Japan Co., Ltd.) 0.09 g as a light stabilizer, WM44-L70G as a curing agent (trade name, manufactured by Asahi Kasei Corporation, solid content Concentration 70% by mass, effective NCO 5.3% by mass) 1.28 g, water 9.75 g, and ethanol 8.29 g are mixed at room temperature, and the pH is adjusted to 9.0 with a 25% aqueous ammonia solution. A composition was obtained. The solid content concentration of the coating composition was 12% by mass.
Next, the coating composition of Comparative Example 1 was applied onto a polycarbonate substrate using a bar coater and dried at 130°C for 1 hour to form an adhesive layer having a thickness of 5.0 µm. It was not possible to form a viable film. Table 3 shows the results of various evaluations of the coating composition of Comparative Example 1.

[比較例2]
重合体粒子(A-1)を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)1.54g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.22g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)3.20g、水23.02g、エタノール10.82gを室温条件下で混合し、25%アンモニア水溶液でpH9.0に調整し、比較例2の塗料組成物を得た。塗料組成物の固形分濃度は12質量%であった。
次いで、比較例2の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして比較例2の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を比較例2の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。比較例2の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表3に示す。
[Comparative Example 2]
30 g of polymer particles (A-1), 1.54 g of Tinuvin 400 (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) as an organic ultraviolet absorber, Tinuvin 123 (trade name, BASF Japan Co., Ltd.) as a light stabilizer Company) 0.22 g, WM44-L70G (trade name, manufactured by Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) as a curing agent 3.20 g, water 23.02 g, ethanol 10.82 g. The mixture was mixed at room temperature and adjusted to pH 9.0 with a 25% aqueous ammonia solution to obtain a coating composition of Comparative Example 2. The solid content concentration of the coating composition was 12% by mass.
Then, the coating composition of Comparative Example 2 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a base material with an adhesive layer of Comparative Example 2 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Comparative Example 2 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a thickness of 3.0 μm. A laminate having layers was obtained. Table 3 shows the results of various evaluations of the coating composition of Comparative Example 2, the substrate with an adhesive layer, and the laminate.

[比較例3]
重合体粒子(A-1)を15g、無機酸化物(B)として水分散コロイダルシリカ「スノーテックスPS-SO」(商品名、日産化学工業株式会社製、固形分15質量%)19g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.77g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.11g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.60g、水12.08g、エタノール9.59gを室温条件下で混合し、25%アンモニア水溶液でpH6.0に調整し、比較例3の塗料組成物を得た。塗料組成物の固形分濃度は12質量%であった。
次いで、比較例3の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして比較例3の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を比較例3の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。比較例3の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表3に示す。
[Comparative Example 3]
15 g of polymer particles (A-1), 19 g of water-dispersed colloidal silica "Snowtex PS-SO" (trade name, manufactured by Nissan Chemical Industries, Ltd., solid content 15% by mass) as inorganic oxide (B), organic Tinuvin400 (trade name, manufactured by BASF Japan Co., Ltd., solid content concentration 85%) 0.77 g as an ultraviolet absorber, Tinuvin123 (trade name, manufactured by BASF Japan Ltd.) 0.11 g as a light stabilizer, WM44-L70G as a curing agent (trade name, manufactured by Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) 1.60 g, water 12.08 g, and ethanol 9.59 g were mixed at room temperature, and pH was 6 with a 25% ammonia aqueous solution. 0 to obtain a coating composition of Comparative Example 3. The solid content concentration of the coating composition was 12% by mass.
Then, the coating composition of Comparative Example 3 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a base material with an adhesive layer of Comparative Example 3 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Comparative Example 3 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a film thickness of 3.0 μm. A laminate having layers was obtained. Table 3 shows the results of various evaluations of the coating composition of Comparative Example 3, the substrate with an adhesive layer, and the laminate.

[比較例4]
複合体(C-7)を30g、有機系紫外線吸収剤としてTinuvin400(商品名、BASFジャパン株式会社製、固形分濃度85%)0.62g、光安定剤としてTinuvin123(商品名、BASFジャパン株式会社製)0.09g、硬化剤としてWM44-L70G(商品名、旭化成株式会社製、固形分濃度70質量%、有効NCO5.3質量%)1.29g、水9.79g、エタノール8.30gを室温条件下で混合し、比較例4の塗料組成物を得た。塗料組成物の固形分濃度は12質量%、pHは8.4であった。
次いで、比較例4の塗料組成物を、バーコーターを用いてポリカーボネート基材上に塗布し、130℃で1時間乾燥することで、膜厚5.0μmの接着層をポリカーボネート基材上に形成した。このようにして比較例4の接着層付き基材を得た。
さらに、バーコーターを用いてハードコート層組成液(J-1)を比較例4の接着層付き基材へ塗布した後、130℃で1.5時間乾燥し、膜厚3.0μmのハードコート層を有する、積層体を得た。比較例4の塗料組成物、接着層付き基材、及び、積層体について各種評価を行った結果を表3に示す。
[Comparative Example 4]
30 g of the composite (C-7), Tinuvin 400 (trade name, manufactured by BASF Japan Ltd., solid content concentration 85%) as an organic ultraviolet absorber 0.62 g, Tinuvin 123 (trade name, BASF Japan Ltd.) as a light stabilizer ) 0.09 g, WM44-L70G (trade name, manufactured by Asahi Kasei Corporation, solid content concentration 70% by mass, effective NCO 5.3% by mass) as a curing agent 1.29 g, water 9.79 g, ethanol 8.30 g at room temperature After mixing under these conditions, a coating composition of Comparative Example 4 was obtained. The coating composition had a solid content concentration of 12% by mass and a pH of 8.4.
Then, the coating composition of Comparative Example 4 was applied onto a polycarbonate substrate using a bar coater and dried at 130° C. for 1 hour to form an adhesive layer having a thickness of 5.0 μm on the polycarbonate substrate. . Thus, a base material with an adhesive layer of Comparative Example 4 was obtained.
Furthermore, after applying the hard coat layer composition liquid (J-1) to the substrate with the adhesive layer of Comparative Example 4 using a bar coater, it was dried at 130 ° C. for 1.5 hours to obtain a hard coat with a film thickness of 3.0 μm. A laminate having layers was obtained. Table 3 shows the results of various evaluations of the coating composition of Comparative Example 4, the substrate with an adhesive layer, and the laminate.

実施例1~16及び比較例1~4の各種評価結果を表1~3に示す。 Various evaluation results of Examples 1-16 and Comparative Examples 1-4 are shown in Tables 1-3.

Figure 2023039944000001
Figure 2023039944000001
Figure 2023039944000002
Figure 2023039944000002
Figure 2023039944000003
Figure 2023039944000003

[評価結果]
表1~3より、本実施形態の塗料組成物は、透明性、密着性及び耐候性に優れる被膜を形成できることがわかった。また、上記のとおり、実施例1~16の積層体は、高いレベルでの透明性と耐摩耗性、さらには高いレベルでの耐候性をも発現するため、自動車用の窓材として好ましく適用できるものと評価された。
[Evaluation results]
From Tables 1 to 3, it was found that the coating composition of this embodiment can form a coating excellent in transparency, adhesion and weather resistance. In addition, as described above, the laminates of Examples 1 to 16 exhibit high levels of transparency and abrasion resistance as well as high levels of weather resistance, and therefore can be preferably applied as window materials for automobiles. evaluated as a thing.

本発明によって提供される、塗料組成物、接着層付き基材及び積層体は、建材、自動車部材や電子機器や電機製品などのハードコートとして有用である。 The coating composition, adhesive layer-attached substrate, and laminate provided by the present invention are useful as hard coats for building materials, automobile members, electronic devices, and electrical products.

Claims (14)

ビニル単量体(a)に由来する単位(a)を有する重合体粒子(A)と無機酸化物(B)との混合物、及び/又は、当該重合体粒子(A)と無機酸化物(B)との複合体(C)を含む塗料組成物であって、
前記単位(a)の重量平均分子量が1万~500万であり、
前記塗料組成物のpHが7~11である、塗料組成物。
A mixture of polymer particles (A) having units (a) derived from a vinyl monomer (a) and an inorganic oxide (B), and/or the polymer particles (A) and an inorganic oxide (B ) A coating composition comprising a complex (C) with
The unit (a) has a weight average molecular weight of 10,000 to 5,000,000,
A coating composition, wherein the coating composition has a pH of 7 to 11.
前記単位(a)が、紫外線吸収性ビニル単量体(a-1)に由来する単位(a-1)を含む、請求項1に記載の塗料組成物。 The coating composition according to claim 1, wherein the unit (a) comprises a unit (a-1) derived from an ultraviolet absorbing vinyl monomer (a-1). 前記単位(a)が、水酸基含有ビニル単量体(a-2)に由来する単位(a-2)を含み、
前記単位(a)における前記単位(a-2)の含有量が、10~40質量%である、請求項1に記載の塗料組成物。
The unit (a) comprises a unit (a-2) derived from a hydroxyl group-containing vinyl monomer (a-2),
The coating composition according to claim 1, wherein the content of said unit (a-2) in said unit (a) is 10 to 40% by mass.
有機系紫外線吸収剤(D)をさらに含む、請求項1に記載の塗料組成物。 The coating composition according to claim 1, further comprising an organic ultraviolet absorber (D). ブロックポリイソシアネート化合物(E)をさらに含む、請求項1に記載の塗料組成物。 The coating composition according to Claim 1, further comprising a blocked polyisocyanate compound (E). 前記単位(a)の重量平均分子量が10万~100万である、請求項1に記載の塗料組成物。 The coating composition according to claim 1, wherein the unit (a) has a weight average molecular weight of 100,000 to 1,000,000. 前記塗料組成物の全固形分に対する前記無機酸化物(B)の質量比が25%~60%である、請求項1に記載の塗料組成物。 The coating composition according to claim 1, wherein the mass ratio of said inorganic oxide (B) to the total solid content of said coating composition is 25% to 60%. 前記単位(a-1)と前記有機系紫外線吸収剤(D)との質量比が、1:0.5~1:40である、請求項4に記載の塗料組成物。 5. The coating composition according to claim 4, wherein the unit (a-1) and the organic ultraviolet absorber (D) have a mass ratio of 1:0.5 to 1:40. 前記無機酸化物(B)が、球状及び/又は連結構造のシリカである、請求項1に記載の塗料組成物。 The coating composition according to claim 1, wherein the inorganic oxide (B) is spherical and/or interconnected silica. 連鎖移動剤をさらに含む、請求項1に記載の塗料組成物。 The coating composition of Claim 1, further comprising a chain transfer agent. 前記重合体粒子(A)が、前記単位(a)を有するエマルション粒子を含む、請求項1に記載の塗料組成物。 The coating composition according to claim 1, wherein said polymer particles (A) comprise emulsion particles having said units (a). 基材と、
前記基材上に配される接着層と、
を備える接着層付き基材であって、
前記接着層が、請求項1~11のいずれか1項に記載の塗料組成物を含む、接着層付き基材。
a base material;
an adhesive layer disposed on the substrate;
A base material with an adhesive layer comprising
A substrate with an adhesive layer, wherein the adhesive layer comprises the coating composition according to any one of claims 1 to 11.
請求項12に記載の接着層付き基材と、
前記接着層付き基材上に配されるハードコート層と、
を備える積層体であって、
前記ハードコート層が、無機酸化物(F)と重合体ナノ粒子(G)とを含有するマトリクス成分(H)を含み、
前記重合体ナノ粒子(G)のマルテンス硬度HMGと、前記マトリクス成分(H)のマルテンス硬度HMHとが、HMH/HMG>1の関係を満たす、積層体。
A substrate with an adhesive layer according to claim 12;
a hard coat layer disposed on the adhesive layer-attached substrate;
A laminate comprising
The hard coat layer contains a matrix component (H) containing an inorganic oxide (F) and polymer nanoparticles (G),
A laminate in which the Martens hardness HMG of the polymer nanoparticles (G) and the Martens hardness HMH of the matrix component (H) satisfy the relationship HMH/HMG>1.
前記接着層付き基材のヘイズ値H1が、前記積層体のヘイズ値H2よりも大きい、請求項13に記載の積層体。 The laminate according to claim 13, wherein the haze value H1 of the adhesive layer-attached substrate is higher than the haze value H2 of the laminate.
JP2022143687A 2021-09-09 2022-09-09 Coating composition, substrate with adhesive layer, and laminate Pending JP2023039944A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021146683 2021-09-09
JP2021146683 2021-09-09

Publications (1)

Publication Number Publication Date
JP2023039944A true JP2023039944A (en) 2023-03-22

Family

ID=85613953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022143687A Pending JP2023039944A (en) 2021-09-09 2022-09-09 Coating composition, substrate with adhesive layer, and laminate

Country Status (2)

Country Link
JP (1) JP2023039944A (en)
CN (1) CN117836138A (en)

Also Published As

Publication number Publication date
CN117836138A (en) 2024-04-05

Similar Documents

Publication Publication Date Title
EP1990386B1 (en) Primer compositions their use and coated articles
EP1914259B1 (en) Primer composition and coated article
CN108699392B (en) High-durability antifogging coating film and coating composition
CN111684030B (en) High-durability antifogging coating film and coating composition
EP2161297B1 (en) Method for preparing a primer composition and coated product
WO2012086659A1 (en) Resin substrate with a hard coat film and production method thereof
EP2808368A1 (en) Coating composition and antireflection film
US20130309509A1 (en) Resin substrate provided with hard coating film, and process for its production
WO2017115819A1 (en) Method for manufacturing laminate
EP1826239B1 (en) Curable composition and coated article
WO2021177425A1 (en) Laminate, hard-coat coating film, and coating material composition
WO2012046784A1 (en) Resin substrate having hard coat film attached thereto, and process for production thereof
JP5366440B2 (en) Cover material for solar cells
JP7280271B2 (en) Hard coat film, substrate with hard coat film, coating composition and window material
JP2023039944A (en) Coating composition, substrate with adhesive layer, and laminate
JP2021138830A (en) Clear coat agent, and substrate and laminate with clear coat film
WO2023038123A1 (en) Adhesive-layer-equipped substrate, laminate, and coating composition
JP2023039943A (en) Adhesive-layer-equipped substrate, laminate, and coating composition
JP2023039523A (en) Aqueous coating composition, method for producing the same, substrate with adhesive layer, laminate, and composition set
JP2024002168A (en) Coating composition, hard coating film, and substrate with hard coating film
JP2023066032A (en) Coating composition, hard coating film, and substrate with hard coating film
JP2023142879A (en) Coating composition, hard coating film, and substrate with hard coating film
JP7209525B2 (en) Water-based compositions, water-based paints, coatings, composite coatings, and coated products
JP2024056917A (en) Highly durable anti-fog coatings and coating compositions