JP2023039174A - Steel material joint body - Google Patents

Steel material joint body Download PDF

Info

Publication number
JP2023039174A
JP2023039174A JP2021146207A JP2021146207A JP2023039174A JP 2023039174 A JP2023039174 A JP 2023039174A JP 2021146207 A JP2021146207 A JP 2021146207A JP 2021146207 A JP2021146207 A JP 2021146207A JP 2023039174 A JP2023039174 A JP 2023039174A
Authority
JP
Japan
Prior art keywords
steel
mass
carbon concentration
joint
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021146207A
Other languages
Japanese (ja)
Inventor
拓哉 鈴木
Takuya Suzuki
真宏 塚原
Masahiro Tsukahara
修 井戸原
Osamu Idohara
節雄 ▲高▼木
Setsuo Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2021146207A priority Critical patent/JP2023039174A/en
Priority to KR1020220111421A priority patent/KR20230036983A/en
Priority to US17/903,168 priority patent/US12011775B2/en
Priority to CN202211098897.7A priority patent/CN115770941A/en
Priority to EP22194137.0A priority patent/EP4148159A1/en
Publication of JP2023039174A publication Critical patent/JP2023039174A/en
Priority to US18/220,649 priority patent/US20230364702A1/en
Priority to US18/439,323 priority patent/US20240181557A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a steel material joint body that is capable of effectively improving the bonding strength between steel materials, and capable of improving also wear resistance of an outer peripheral surface in the vicinity of a joint part.SOLUTION: In a steel material joint body 1, a plurality of steel materials 10, 20 are joined to each other, and a carbon concentration of a joint interface 30 between the steel materials 10, 20 is 0.20 mass% to 2.10 mass%. Further, the steel material joint body 1 includes concentration gradients in which the carbon concentration decreases when alienating from the joint interface 30.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材接合体に関する。 TECHNICAL FIELD The present invention relates to a steel joined body.

従来、熱間鋼材の接合を実際の工場で簡単にかつ能率的に行うことができ、しかも後続の圧延工程に支障のない程度に高い接合強度を得られる技術の開発を課題として、接合面に炭素質物質を塗布または散布して熱間鋼材を重ね合わせ又は突き合わせて、還元雰囲気下で加熱し圧接する鋼材の熱間接合方法が開示されている(特許文献1を参照)。 In the past, the challenge was to develop a technology that would enable the joining of hot steel materials to be performed easily and efficiently in an actual factory, and yet to obtain a high joining strength that would not hinder the subsequent rolling process. A method for hot joining steel materials is disclosed in which hot steel materials are coated or sprayed with a carbonaceous substance, superimposed or butted together, heated in a reducing atmosphere, and pressure-welded (see Patent Document 1).

特開平6-7970号公報JP-A-6-7970

しかしながら、特許文献1に記載の技術で得られる鋼材接合体は、鋼材同士の接合強度が有効に向上したものとはいえなかった。そこで、本発明は、鋼材同士の接合強度を有効に向上させることができ、接合部付近の外周面の耐摩耗性も向上させることができる鋼材接合体を提供することを目的とする。 However, it cannot be said that the steel material joined body obtained by the technique described in Patent Document 1 has an effectively improved joint strength between the steel materials. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a joined steel product that can effectively improve the joint strength between steel members and also improve the wear resistance of the outer peripheral surface near the joint.

本発明に係る鋼材接合体は、複数の鋼材同士が接合された鋼材接合体であって、前記鋼材同士の接合界面の炭素濃度は、0.20mass%以上2.10mass%以下であり、前記接合界面から離間するにしたがい炭素濃度が減少する濃度傾斜層を有することを特徴とする。 A steel joined body according to the present invention is a steel joined body in which a plurality of steel materials are joined together, wherein a carbon concentration at a joint interface between the steel materials is 0.20 mass% or more and 2.10 mass% or less, and the joining It is characterized by having a concentration gradient layer in which the carbon concentration decreases as the distance from the interface increases.

また、本発明に係る鋼材接合体は、中炭素鋼である複数の鋼材同士が接合された鋼材接合体であって、前記鋼材同士の接合界面の炭素濃度は、0.50mass%以上2.10mass%以下であり、前記接合界面から離間するにしたがい炭素濃度が減少する濃度傾斜層を有することを特徴とする。 Further, a steel joined body according to the present invention is a joined steel body in which a plurality of medium carbon steel steel materials are joined together, and the carbon concentration at the joint interface between the steel materials is 0.50 mass% or more and 2.10 mass%. % or less, and has a concentration gradient layer in which the carbon concentration decreases with increasing distance from the bonding interface.

本発明によれば、鋼材同士の接合強度を有効に向上させることができ、接合部付近の外周面の耐摩耗性も向上させることができる鋼材接合体を提供することができる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a steel joined body that can effectively improve the joint strength between steel materials and also improve the wear resistance of the outer peripheral surface in the vicinity of the joint.

本発明の実施形態に係る鋼材接合体を説明するための概念図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram for explaining a steel joined body according to an embodiment of the present invention; 本発明の効果を説明するための鉄-セメンタイト系の状態図である。1 is a phase diagram of an iron-cementite system for explaining the effects of the present invention. FIG. 本発明の効果を説明するための概念図である。It is a conceptual diagram for explaining the effect of the present invention. 鋼材接合体について金属組織の確認を行う箇所を説明する概念図である。FIG. 2 is a conceptual diagram for explaining a portion of a steel joined body at which metal structure is to be checked; 実施例3で作製した試験体(鋼材接合体)に係る図4(b)に示すL断面上のA、B、Cそれぞれの箇所における金属組織画像である。5 shows metallographic images at points A, B, and C on the cross section L shown in FIG.

以下、本発明の実施形態について図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る鋼材接合体を説明するための概念図である。
本実施形態に係る鋼材接合体1は、図1に示すように、複数の鋼材10、20同士が接合されている。また、複数の鋼材10、20(以下「素材」ともいう)同士が接合された接合界面30(図1の斜線部分)の炭素濃度(図1に示す炭素濃度A)は、0.20mass%以上2.10mass%以下である。更に、接合界面30から離間するにしたがい炭素濃度が減少する濃度傾斜層15、25を有している。
FIG. 1 is a conceptual diagram for explaining a steel joined body according to this embodiment.
As shown in FIG. 1, a steel material joined body 1 according to this embodiment includes a plurality of steel materials 10 and 20 joined together. In addition, the carbon concentration (carbon concentration A shown in FIG. 1) at the joint interface 30 (the hatched portion in FIG. 1) where the plurality of steel materials 10 and 20 (hereinafter also referred to as “materials”) are joined together is 0.20 mass% or more. 2. It is 10 mass% or less. Furthermore, it has concentration gradient layers 15 and 25 in which the carbon concentration decreases as the distance from the junction interface 30 increases.

本実施形態に係る鋼材接合体1は、接合界面30の炭素濃度が0.20mass%以上2.10mass%以下であるため、鋼材10、20同士の接合強度を有効に向上させることができ、接合部付近31(濃度傾斜層15、25が形成される範囲内)の外周面の耐摩耗性も向上させることができる。
詳しくは、接合界面30の炭素濃度が2.10mass%以下であるため、接合界面30における凝固組織の晶出が抑制されている。従って、接合界面30において、硬くて脆い凝固組織の晶出を抑制することができるため、鋼材10、20同士の接合強度を有効に向上させることができる。また、接合界面30の炭素濃度が0.20mass%以上であるため、接合界面30の硬さを高めることができる。従って、接合部付近31の外周面の耐摩耗性も向上させることができる。
In the steel material joined body 1 according to the present embodiment, the carbon concentration at the joint interface 30 is 0.20 mass% or more and 2.10 mass% or less, so that the joint strength between the steel materials 10 and 20 can be effectively improved. It is also possible to improve the wear resistance of the outer peripheral surface near the portion 31 (within the range where the concentration gradient layers 15 and 25 are formed).
Specifically, since the carbon concentration at the joint interface 30 is 2.10 mass % or less, crystallization of the solidified structure at the joint interface 30 is suppressed. Therefore, since crystallization of a hard and brittle solidified structure can be suppressed at the joint interface 30, the joint strength between the steel materials 10 and 20 can be effectively improved. Moreover, since the carbon concentration of the bonding interface 30 is 0.20 mass % or more, the hardness of the bonding interface 30 can be increased. Therefore, the wear resistance of the outer peripheral surface in the vicinity of the joint portion 31 can also be improved.

前記炭素濃度は、0.20mass%以上0.90mass%以下であることが好ましい。前記接合界面30の炭素濃度を0.20mass%以上0.90mass%以下とすることで、前記鋼材10、20同士の接合強度をより有効に向上させることができる。
詳しくは、接合界面30の炭素濃度を0.90mass%以下とすることで、オーステナイト粒界でのセメンタイトの析出が抑制される。従って、接合界面30において、硬くて脆いオーステナイト粒界でのセメンタイトの析出を抑制することができるため、鋼材10、20同士の接合強度をより有効に向上させることができる。
The carbon concentration is preferably 0.20 mass% or more and 0.90 mass% or less. By setting the carbon concentration at the joint interface 30 to 0.20 mass % or more and 0.90 mass % or less, the joint strength between the steel materials 10 and 20 can be improved more effectively.
Specifically, by setting the carbon concentration at the joint interface 30 to 0.90 mass % or less, precipitation of cementite at the austenite grain boundaries is suppressed. Therefore, since precipitation of cementite at hard and brittle austenite grain boundaries can be suppressed at the joint interface 30, the joint strength between the steel materials 10 and 20 can be improved more effectively.

本実施形態に係る鋼材接合体1における接合界面30の炭素濃度の測定は、接合界面30に沿って鋼材接合体1を切断し、断面を研磨し、電子線マイクロアナライザー(EPMA)やエネルギー分散型X線分析(EDX)等の元素分布測定装置を用いて測定することができる。本発明において、接合界面30の炭素濃度の数値は、前記研磨した断面の任意の5箇所を測定し、その平均値により算出されるものである。 The carbon concentration at the joint interface 30 in the steel joined body 1 according to the present embodiment is measured by cutting the steel joined body 1 along the joint interface 30, polishing the cross section, and using an electron probe microanalyzer (EPMA) or an energy dispersion type. It can be measured using an elemental distribution analyzer such as X-ray analysis (EDX). In the present invention, the numerical value of the carbon concentration of the bonding interface 30 is calculated by measuring five arbitrary points on the polished cross section and calculating the average value thereof.

また、本実施形態に係る鋼材接合体1は、接合界面30から離間するにしたがい炭素濃度が減少する濃度傾斜層15、25を有している。従って、接合界面30では、炭素濃度が高いため(図1に示す炭素濃度Aを参照)、鋼材10、20同士の接合強度を有効に向上させることができる。また、濃度傾斜層15、25における接合界面30とは反対側(接合前の鋼材同士(素材10、20)側)の炭素濃度(図1中、炭素濃度B)が接合界面30より低いため、素材10、20側は「伸び」を発現することができる。従って、本実施形態に係る鋼材接合体1は、素材10、20側に「伸び」が必要な用途に好適に使用することができる。 Further, the steel material joined body 1 according to the present embodiment has the concentration gradient layers 15 and 25 in which the carbon concentration decreases as the distance from the joining interface 30 increases. Therefore, since the carbon concentration is high at the joint interface 30 (see carbon concentration A shown in FIG. 1), the joint strength between the steel materials 10 and 20 can be effectively improved. In addition, since the carbon concentration (carbon concentration B in FIG. 1) on the side opposite to the bonding interface 30 in the concentration gradient layers 15 and 25 (on the side of the steel materials (materials 10 and 20) before bonding) is lower than the bonding interface 30, The material 10, 20 side can express "elongation". Therefore, the steel material joined body 1 according to the present embodiment can be suitably used for applications requiring "elongation" on the material 10, 20 side.

濃度傾斜層15、25は、図1に示すように、接合界面30から離間するにしたがい炭素濃度が連続的に減少することが好ましい。
本発明でいう「連続的に減少」とは、図1に示すように、接合界面30から複数の鋼材(素材)10、20側に向かって炭素濃度の数値が比例的に減少することをいう。
濃度傾斜層15、25が、このような減少傾向を有しているため、上述した効果に加え、接合界面30での延性・靭性も改善される。
As shown in FIG. 1, the concentration gradient layers 15 and 25 preferably have a carbon concentration that decreases continuously as the distance from the junction interface 30 increases.
The term "continuously decreasing" as used in the present invention means that the numerical value of the carbon concentration decreases proportionally from the joint interface 30 toward the plurality of steel materials (materials) 10 and 20, as shown in FIG. .
Since the concentration graded layers 15 and 25 have such decreasing tendencies, the ductility and toughness at the bonding interface 30 are improved in addition to the effects described above.

本実施形態に係る鋼材接合体1における濃度傾斜層15、25の炭素濃度の測定は、接合界面30に沿って鋼材接合体1を切断後、切断した接合界面30表面から離隔する方向(素材10、20側の方向)に更に切断し、その後、離隔する方向に切断した断面を研磨し、電子線マイクロアナライザー(EPMA)やエネルギー分散型X線分析(EDX)等の元素分布測定装置を用いて測定することができる。
本発明において、濃度傾斜層15、25の減少傾向の測定は、研磨した離隔する方向の断面を接合界面30から素材10、20側の各々の方向に対して、接合界面30の炭素濃度から素材10、20の炭素濃度になるまでの間の直線上の任意の5箇所(計10箇所)の炭素濃度を上記のような元素分布測定装置を用いて測定し、接合界面30からの距離を横軸、炭素濃度を縦軸とし、距離に対する炭素濃度をプロットした図1に示すようなグラフを作成することで、確認することができる。
The carbon concentrations of the concentration gradient layers 15 and 25 in the steel joined body 1 according to the present embodiment are measured by cutting the steel joined body 1 along the joint interface 30, and then separating from the cut joint interface 30 surface (material 10 , 20 side direction), then polish the cross section cut in the separating direction, and use an element distribution measuring device such as an electron probe microanalyzer (EPMA) or an energy dispersive X-ray analysis (EDX). can be measured.
In the present invention, the decreasing tendency of the concentration gradient layers 15 and 25 is measured by measuring the carbon concentration at the bonding interface 30 from the carbon concentration at the bonding interface 30 in each direction from the bonding interface 30 to the materials 10 and 20 side of the polished cross section in the separating direction. Measure the carbon concentration at any five locations (10 locations in total) on the straight line until the carbon concentration reaches 10 and 20 using the above-described element distribution measuring device, and measure the distance from the joint interface 30 horizontally. It can be confirmed by creating a graph as shown in FIG.

また、本実施形態に係る鋼材接合体1は、接合界面30の組織形態によらないが、当該接合界面30はパーライトで構成されていることが好ましい。このパーライトは、オーステナイト状態の鋼材接合体1を、空冷又は徐冷することで得ることができる。接合界面30がパーライトで構成されていることで、引張強度及び曲げ強度が高くなるため、接合界面30の接合強度をより有効に向上させることができる。なお、接合界面30の組織形態は、接合界面30に沿って鋼材接合体1を切断し、この切断した断面を研磨後、この研磨した断面にナイタール腐食を施した状態で光学顕微鏡にて確認することができる。 In addition, although the steel material joined body 1 according to the present embodiment does not depend on the structural form of the joining interface 30, it is preferable that the joining interface 30 is made of pearlite. This pearlite can be obtained by air-cooling or slow-cooling the steel material joined body 1 in the austenitic state. Since the joint interface 30 is made of pearlite, the tensile strength and the bending strength are increased, so that the joint strength of the joint interface 30 can be improved more effectively. The structural form of the joint interface 30 is confirmed by cutting the steel joined body 1 along the joint interface 30, polishing the cut cross section, and applying nital corrosion to the polished cross section with an optical microscope. be able to.

接合界面30は、オーステナイト粒界でのセメンタイトを備えていないことが好ましい。粒界セメンタイトが存在すると、それを起点として、引張及び曲げにおいてクラックが入りやすくなる可能性がある。
なお、上記にいう「備えていない」とは、粒界セメンタイトを全く備えていないということではなく、接合界面30における粒界セメンタイトの存在比が10%未満であることをいう。ここで、接合界面30における粒界セメンタイトの存在比の確認は、前記断面にナイタール腐食を施した後、当該断面にJIS G0555に準拠した点算法を用いて行う。
Bond interface 30 is preferably free of cementite at the austenite grain boundaries. The presence of intergranular cementite may serve as a starting point for cracking in tension and bending.
It should be noted that the above-mentioned "not provided" does not mean that the grain boundary cementite is not provided at all, but means that the existence ratio of the grain boundary cementite at the bonding interface 30 is less than 10%. Here, confirmation of the existence ratio of grain boundary cementite at the joint interface 30 is performed by applying nital corrosion to the cross section and then using the point counting method based on JIS G0555 for the cross section.

ちなみに、本実施形態に係る鋼材接合体1において、接合する鋼材(素材)10、20の材質は、任意の鋼材であって、互いに一体化することが可能な金属であれば特に限定されない。また、前記接合界面30や接合前の複数の鋼材(素材)10,20の炭素以外の合金元素については特に限定されず、例えば、JIS G 4051に規定されているような、概ね、Si:1.50mass%以下、Mn:1.00mass%以下を含み、残部Fe及び不可避的不純物からなる組成を有している。接合前の複数の鋼材(素材)10、20の形状は、接合面をそれぞれ有し、この接合面同士を重ね合わせて、互いに一体化することが可能であれば特に限定されない。当該鋼材(素材)10、20は、例えば、円柱形状、角柱形状、ねじ形状、凹凸形状等を採用することができる。 Incidentally, in the steel material joined body 1 according to the present embodiment, the materials of the steel materials (materials) 10 and 20 to be joined are arbitrary steel materials, and are not particularly limited as long as they are metals that can be integrated with each other. In addition, the alloying elements other than carbon in the bonding interface 30 and the plurality of steel materials (raw materials) 10 and 20 before bonding are not particularly limited, and are generally Si:1 as specified in JIS G 4051, for example. 0.50 mass % or less, Mn: 1.00 mass % or less, and the balance being Fe and unavoidable impurities. The shape of the plurality of steel materials (materials) 10 and 20 before joining is not particularly limited as long as they each have a joining surface and can be integrated with each other by overlapping the joining surfaces. For the steel materials (raw materials) 10 and 20, for example, a cylindrical shape, prismatic shape, screw shape, uneven shape, or the like can be adopted.

本実施形態に係る他の鋼材接合体1Aは、図1に示すように、中炭素鋼である複数の鋼材10、20同士が接合されている。また、中炭素鋼である複数の鋼材10、20同士が接合された接合界面30(図1の斜線部分)の炭素濃度(図1に示す炭素濃度A)は、0.50mass%以上2.10mass%以下である。更に、接合界面30から離間するにしたがい炭素濃度が減少する濃度傾斜層15、25を有している。
すなわち、鋼材接合体1Aは、鋼材接合体1と比べて、炭素濃度の範囲が異なる。
Another steel material joined body 1A according to this embodiment, as shown in FIG. In addition, the carbon concentration (carbon concentration A shown in FIG. 1) at the joint interface 30 (hatched portion in FIG. 1) where the plurality of steel materials 10 and 20 of medium carbon steel are joined together is 0.50 mass% or more and 2.10 mass%. % or less. Furthermore, it has concentration gradient layers 15 and 25 in which the carbon concentration decreases as the distance from the junction interface 30 increases.
That is, the steel joined body 1A has a different carbon concentration range than the steel joined body 1 .

このように、接合前の複数の鋼材(素材)として中炭素鋼を用いる場合、前記炭素濃度を0.50mass%以上2.10mass%以下とすることで、本発明の課題を達成する上で有利となる。詳しくは、接合界面30の炭素濃度が2.10mass%以下であるため、接合界面30における凝固組織の晶出が抑制される。従って、接合界面30において、硬くて脆い凝固組織の晶出を抑制することができるため、鋼材10、20同士の接合強度を有効に向上させることができる。
また、接合界面30の炭素濃度が0.50mass%以上であるため、接合界面30の硬さを高めることができる。従って、接合部付近31周面の耐摩耗性を向上させることができる。
Thus, when medium carbon steel is used as a plurality of steel materials (materials) before joining, setting the carbon concentration to 0.50 mass% or more and 2.10 mass% or less is advantageous in achieving the object of the present invention. becomes. Specifically, since the carbon concentration at the joint interface 30 is 2.10 mass % or less, crystallization of the solidified structure at the joint interface 30 is suppressed. Therefore, since crystallization of a hard and brittle solidified structure can be suppressed at the joint interface 30, the joint strength between the steel materials 10 and 20 can be effectively improved.
Moreover, since the carbon concentration of the bonding interface 30 is 0.50 mass % or more, the hardness of the bonding interface 30 can be increased. Therefore, the wear resistance of the peripheral surface 31 near the joint can be improved.

また、本実施形態に係る他の鋼材接合体1Aにおける前記炭素濃度は、0.50mass%以上0.90mass%以下であることが好ましい。前記接合界面30の炭素濃度を0.50mass%以上0.90mass%以下とすることで、前記鋼材10、20同士の接合強度をより有効に向上させることができる。
詳しくは、接合界面30の炭素濃度を0.90mass%以下とすることで、オーステナイト粒界でのセメンタイトの析出が抑制される。従って、接合界面30において、硬くて脆いオーステナイト粒界でのセメンタイトの析出を抑制することができるため、鋼材10、20同士の接合強度をより有効に向上させることができる。
Further, the carbon concentration in the other steel joined body 1A according to the present embodiment is preferably 0.50 mass% or more and 0.90 mass% or less. By setting the carbon concentration at the joint interface 30 to 0.50 mass % or more and 0.90 mass % or less, the joint strength between the steel materials 10 and 20 can be improved more effectively.
Specifically, by setting the carbon concentration at the joint interface 30 to 0.90 mass % or less, precipitation of cementite at the austenite grain boundaries is suppressed. Therefore, since precipitation of cementite at hard and brittle austenite grain boundaries can be suppressed at the joint interface 30, the joint strength between the steel materials 10 and 20 can be improved more effectively.

また、本実施形態に係る他の鋼材接合体1A、接合界面30から離間するにしたがい炭素濃度が減少する濃度傾斜層15、25を有している。従って、接合界面30では、炭素濃度が高いため(図1に示す炭素濃度Aを参照)、鋼材10、20同士の接合強度を有効に向上させることができる。また、濃度傾斜層15、25における接合界面30とは反対側同士合前の鋼材(素材10、20)側)の炭素濃度(図1中、炭素濃度B)が接合界面30より低いため、素材10、20側は「伸び」を発現することができる。従って、本実施形態に係る鋼材接合体1A、素材10、20側に「伸び」が必要な用途に好適に使用することができる。 Further, another steel joined body 1A according to this embodiment has concentration gradient layers 15 and 25 in which the carbon concentration decreases as the distance from the joining interface 30 increases. Therefore, since the carbon concentration is high at the joint interface 30 (see carbon concentration A shown in FIG. 1), the joint strength between the steel materials 10 and 20 can be effectively improved. In addition, since the carbon concentration (carbon concentration B in FIG. The 10th and 20th sides can express "elongation". Therefore, the steel joined body 1A according to the present embodiment and the materials 10 and 20 can be suitably used for applications requiring "elongation".

本実施形態に係る他の鋼材接合体1Aも同様に濃度傾斜層15、25は、同様に、図1に示すように、接合界面30から離間するにしたがい、炭素濃度が連続的に減少することが好ましい。
濃度傾斜層15、25が、このような減少傾向を有しているため、上述した効果に加え、接合界面30での延性・靭性も改善される。
ちなみに、これら接合界面30や濃度傾斜層15、25の炭素濃度の測定は、上述した本実施形態に係る鋼材接合体1と同じ条件・方法を採用することができる。
Similarly, in the other steel material joined body 1A according to the present embodiment, the concentration gradient layers 15 and 25 similarly have a carbon concentration that decreases continuously as the distance from the joining interface 30 increases, as shown in FIG. is preferred.
Since the concentration graded layers 15 and 25 have such decreasing tendencies, the ductility and toughness at the bonding interface 30 are improved in addition to the effects described above.
Incidentally, the same conditions and methods as those of the steel material joined body 1 according to the present embodiment described above can be used for measuring the carbon concentration of the joint interface 30 and the concentration gradient layers 15 and 25 .

なお、本発明でいう中炭素鋼とは、炭素濃度が0.30mass%以上0.50mass%以下の鋼材をいう。参考までに、低炭素鋼とは、炭素濃度が0.30mass%未満の鋼材をいい、高炭素鋼とは、炭素濃度が0.50mass%を超える鋼材をいう。また、前記本実施形態に係る他の鋼材接合体1Aの接合界面30の金属組織は、上述した本実施形態に係る鋼材接合体1と同じであるためここでの説明を省略する。 In addition, the medium carbon steel referred to in the present invention refers to a steel material having a carbon concentration of 0.30 mass% or more and 0.50 mass% or less. For reference, low-carbon steel refers to steel with a carbon concentration of less than 0.30 mass%, and high-carbon steel refers to steel with a carbon concentration of more than 0.50 mass%. Also, since the metal structure of the joint interface 30 of the other steel joined body 1A according to the present embodiment is the same as that of the steel joined body 1 according to the above-described present embodiment, description thereof will be omitted here.

以下に、本実施形態に係る鋼材接合体1、1Aにおいて、鋼材同士の接合力が高められるメカニズムについて図面を用いて説明する。
図2は、本発明の効果を説明するための鉄-セメンタイト系の状態図である。図3は、本発明の効果を説明するための概念図であり、詳しくは、接合界面で起こる反応を示す概念図である。本実施形態に係る鋼材接合体1、1Aの製造方法としては、接合する鋼材同士の少なくともどちらか一方の接合面に炭素粉(炭素質物質)を配置し、この炭素質物質を介して接合する鋼材の接合面同士を重ね合わせた鋼材を所定の雰囲気下(例えば、大気雰囲気下)、最高到達温度1150℃以上1500℃以下(好ましくは、1150℃以上1300℃以下)で加熱する(図3(a)を参照)。
The mechanism by which the joining force between the steel materials is enhanced in the steel joined bodies 1 and 1A according to the present embodiment will be described below with reference to the drawings.
FIG. 2 is a phase diagram of an iron-cementite system for explaining the effects of the present invention. FIG. 3 is a conceptual diagram for explaining the effect of the present invention, and more specifically, a conceptual diagram showing reactions that occur at the bonding interface. As a method for manufacturing the steel material joined bodies 1 and 1A according to the present embodiment, carbon powder (carbonaceous substance) is placed on at least one of the joining surfaces of the steel materials to be joined, and joining is performed via this carbonaceous substance. The steel material in which the joint surfaces of the steel material are overlapped is heated under a predetermined atmosphere (for example, in an air atmosphere) at a maximum temperature of 1150 ° C. or higher and 1500 ° C. or lower (preferably 1150 ° C. or higher and 1300 ° C. or lower) (Fig. 3 ( a)).

鋼材同士の接合面の温度が例えば1250℃に達すると、鋼材と炭素質物質との界面において炭素濃度が3.5mass%の液相Lが生成する(図2中□で示す部分を参照)。この液相Lは、炭素質物質が無くなるまで増加する(図3(b)を参照)。 When the temperature of the joint surface between the steel materials reaches, for example, 1250° C., a liquid phase L with a carbon concentration of 3.5 mass % is generated at the interface between the steel material and the carbonaceous substance (see the portion indicated by □ in FIG. 2). This liquid phase L increases until the carbonaceous substance disappears (see FIG. 3(b)).

なお、1250℃における、「オーステナイト相γ」領域と「オーステナイト相γ+液相L」領域との界面(図2中〇で示す部分を参照)の炭素濃度は1.6mass%である(図2を参照)。1250℃での炭素の拡散は極めて速く、この温度に保持すると、炭素は、鋼材の接合面から内部のオーステナイト相γ内に速い速度で拡散していく。その結果、この液相Lとオーステナイトγ界面において、オーステナイト相γ側は炭素濃度を1.6mass%に保とうとして液相L側から炭素を奪い取る。一方、液相Lは炭素濃度を3.5mass%に保とうとするため液相Lが減少する(図3(c)を参照)。最終的に、液相Lは消滅して鋼材同士の接合が完了する(図3(d)を参照)。 In addition, the carbon concentration at the interface between the "austenite phase γ" region and the "austenite phase γ + liquid phase L" region (see the part indicated by ○ in FIG. 2) at 1250 ° C. is 1.6 mass% (see FIG. 2 reference). Diffusion of carbon at 1250° C. is extremely rapid, and when this temperature is maintained, carbon diffuses at a high rate from the joining surface of the steel material into the austenite phase γ inside. As a result, at the interface between the liquid phase L and the austenite γ, the austenite phase γ side takes away carbon from the liquid phase L side in an attempt to keep the carbon concentration at 1.6 mass%. On the other hand, since the liquid phase L tries to keep the carbon concentration at 3.5 mass%, the liquid phase L decreases (see FIG. 3(c)). Finally, the liquid phase L disappears and the joining of the steel materials is completed (see FIG. 3(d)).

なお、液相Lが消滅した直後は、この接合面の炭素濃度が高い場合がある。また、上述した粒界セメンタイトの析出を抑制する場合は、鋼材接合体1では、この接合界面の炭素濃度を0.20mass%以上0.90mass%以下に低下させる必要がある。また、鋼材接合体1Aでは、当該炭素濃度を0.50mass%以上0.90mass%以下に低下させる必要がある。この接合界面における炭素濃度の低下は、前記最高到達温度での加熱維持時間を長くすることで制御することができる。 Immediately after the liquid phase L disappears, the carbon concentration of this joint surface may be high. Further, in order to suppress the precipitation of intergranular cementite as described above, in the steel joined body 1, it is necessary to reduce the carbon concentration at the joining interface to 0.20 mass% or more and 0.90 mass% or less. Further, in the steel joined body 1A, it is necessary to reduce the carbon concentration to 0.50 mass% or more and 0.90 mass% or less. This decrease in carbon concentration at the bonding interface can be controlled by lengthening the heating and maintaining time at the highest temperature.

なお、ここでいう炭素質物質は、接合する鋼材の少なくともどちらか一方の接合面に配置し、この接合面同士が一体化することができれば、材質、形状は、特に限定されない。炭素質物質は、例えば、平均粒径が1μmのグラファイト粒子の粉体(炭素粉)を用いることができる。 The carbonaceous substance referred to here is not particularly limited in material and shape as long as it is disposed on at least one of the joint surfaces of the steel materials to be joined and the joint surfaces can be integrated with each other. As the carbonaceous substance, for example, a powder of graphite particles (carbon powder) having an average particle size of 1 μm can be used.

実施例1では、図1に示すような円柱状(長さX:150mm、直径φ:15mm(接合面の直径))の大きさで、炭素濃度が0.045mass%の鋼材(低炭素鋼)を2個用意した。そして、試験体として、これら2個の鋼材同士を接合し、図1の符号1で示すような鋼材接合体を作製した。この際、2個の鋼材各々の接合面に炭素粉(炭素質物質)を配置し、この炭素質物質を介して接合する鋼材の接合面同士を重ね合わせた。次いで、大気雰囲気下にて、最高到達温度1250℃で高周波誘導加熱を行い、その後、徐冷した。ここで、2個の鋼材各々の接合面に配置する炭素粉の質量は、図2及び図3に示すような接合界面の反応が起こりうる質量になるように調整した。また、最高到達温度での加熱維持時間を制御することにより、高周波誘導加熱後の接合界面の炭素濃度が0.20mass%になるように調整した。 In Example 1, a steel material (low carbon steel) having a cylindrical shape (length X: 150 mm, diameter φ: 15 mm (diameter of joint surface)) as shown in FIG. 1 and having a carbon concentration of 0.045 mass% were prepared. Then, as a test piece, these two steel materials were joined together to produce a steel joined body as indicated by reference numeral 1 in FIG. At this time, carbon powder (carbonaceous substance) was placed on the joint surface of each of the two steel materials, and the joint surfaces of the steel materials to be joined via the carbonaceous substance were overlapped. Next, high-frequency induction heating was performed at a maximum temperature of 1250° C. in an air atmosphere, followed by slow cooling. Here, the mass of the carbon powder placed on the joint surface of each of the two steel materials was adjusted so that the reaction at the joint interface as shown in FIGS. 2 and 3 could occur. In addition, the carbon concentration at the bonding interface after high-frequency induction heating was adjusted to 0.20 mass% by controlling the heating maintenance time at the highest temperature.

実施例1では、作製した試験体(鋼材接合体)について、以下に示す「接合強度及び耐摩耗性の確認」を行った。
(濃度傾斜層の有無、接合界面の主な組織構造、接合強度及び耐摩耗性の確認)
作製した試験体(鋼材接合体)について、濃度傾斜層(接合界面から離間するにしたがい炭素濃度が減少する濃度傾斜層)の有無、接合界面の主な組織構造、接合強度(〇高い、△低い)、耐摩耗性(〇高い、△低い)を確認した。濃度傾斜層の有無は、上述した距離に対する炭素濃度をプロットした図1に示すようなグラフを作成した上で、炭素濃度の減少傾向があるかないかで判断した。接合界面の主な組織構造(金属組織)の確認は、作製した鋼材接合体の接合界面の所定箇所を、ナイタール腐食した状態で、光学顕微鏡にて観察した。図4には、金属組織の確認を行う箇所を説明する図を示す。なお、図4(b)に示す鋼材接合体は、図4(a)に示す如く鋼材接合体をL断面で切断した状態のものであり、このL断面上のA、B、Cそれぞれの箇所における金属組織画像を画像処理することで、各画像における金属組織(パーライト等)の存在の有無の確認を行った。接合強度は、引張強度として測定を行い評価した。この引張強度はJIS9号A(G.L100mm)を用いて試験を行った。また、耐摩耗性は、摩耗試験機を用いて、乾式環境下で速度及び最終荷重を調整し、相手材には粒度番号400番の立方晶系窒化ケイ素からなる砥石を用い、接合部外周面の比摩耗量により評価した。以下に示す表1には、上記確認事項について確認した結果を示す。
In Example 1, the following "confirmation of bonding strength and wear resistance" was performed on the prepared specimen (steel material joined body).
(Presence or absence of concentration gradient layer, confirmation of main structure of bonding interface, bonding strength and wear resistance)
Presence or absence of a concentration gradient layer (a concentration gradient layer in which the carbon concentration decreases as the distance from the bonding interface increases), the main structural structure of the bonding interface, and bonding strength (○ high, △ low ) and wear resistance (○ high, △ low) were confirmed. The presence or absence of the concentration gradient layer was determined by creating a graph such as that shown in FIG. 1, in which the carbon concentration is plotted against the distance described above, and by determining whether or not there is a tendency for the carbon concentration to decrease. To confirm the main structural structure (metallic structure) of the joint interface, a predetermined portion of the joint interface of the manufactured steel joined body was observed with an optical microscope in a state of nital corrosion. FIG. 4 shows a diagram for explaining locations where the metal structure is to be confirmed. The steel joined body shown in FIG. 4(b) is obtained by cutting the steel joined body along the L cross section as shown in FIG. 4(a). The presence or absence of the metal structure (perlite, etc.) in each image was confirmed by image processing the metal structure image in . Bonding strength was measured and evaluated as tensile strength. This tensile strength was tested using JIS No. 9A (GL100 mm). In addition, wear resistance was evaluated by using a wear tester to adjust the speed and final load in a dry environment, using a grindstone made of cubic silicon nitride with a grain size number of 400 as the mating material, and measuring the outer peripheral surface of the joint. was evaluated by the specific wear amount. Table 1 below shows the results of confirmation of the above confirmation items.

実施例2では、図1に示すような円柱状(長さX:150mm、直径φ:15mm(接合面の直径))の大きさで、炭素濃度が0.450mass%の鋼材(中炭素鋼)を2個用意した。そして、最高到達温度での加熱維持時間を制御することにより、高周波誘導加熱後の接合界面の炭素濃度が0.50mass%になるように調整した。これ以外は、実施例1と同じ条件・方法で試験体(鋼材接合体)を作製した。 In Example 2, a steel material (medium carbon steel) having a cylindrical shape (length X: 150 mm, diameter φ: 15 mm (diameter of joint surface)) as shown in FIG. 1 and having a carbon concentration of 0.450 mass% were prepared. The carbon concentration at the bonding interface after high-frequency induction heating was adjusted to 0.50 mass % by controlling the heating maintenance time at the highest temperature. A test body (steel joined body) was produced under the same conditions and method as in Example 1 except for this.

実施例2では、実施例1と同様に、「濃度傾斜層の有無、接合界面の主な組織構造、接合強度及び耐摩耗性の確認」を行った。ここで、本確認を行うに際して、実施例1と同じ条件・方法を採用した。そのため、これら条件及び方法に関する説明は省略する。以下に示す表1には、実施例2の確認結果を、実施例1の確認結果と併せて示す。 In Example 2, in the same manner as in Example 1, "presence or absence of a concentration gradient layer, main structure of the joint interface, confirmation of joint strength and wear resistance" were performed. Here, the same conditions and method as in Example 1 were adopted when performing the final confirmation. Therefore, descriptions of these conditions and methods are omitted. Table 1 below shows the confirmation results of Example 2 together with the confirmation results of Example 1.

実施例3では、図1に示すような円柱状(長さX:150mm、直径φ:15mm(接合面の直径))の大きさで、炭素濃度が0.450mass%の鋼材(中炭素鋼)を2個用意した。そして、最高到達温度での加熱維持時間を制御することにより、高周波誘導加熱後の接合界面の炭素濃度が0.90mass%になるように調整した。これ以外は、実施例1と同じ条件・方法で試験体(鋼材接合体)を作製した。 In Example 3, a steel material (medium carbon steel) having a cylindrical shape (length X: 150 mm, diameter φ: 15 mm (diameter of joint surface)) as shown in FIG. 1 and having a carbon concentration of 0.450 mass% were prepared. The carbon concentration at the bonding interface after high-frequency induction heating was adjusted to 0.90 mass % by controlling the heating maintenance time at the highest temperature. A test body (steel joined body) was produced under the same conditions and method as in Example 1 except for this.

実施例3では、実施例1と同様に、「濃度傾斜層の有無、接合界面の主な組織構造、接合強度及び耐摩耗性の確認」を行った。ここで、本確認を行うに際して、実施例1と同じ条件・方法を採用した。そのため、これら条件及び方法に関する説明は省略する。以下に示す表1には、実施例3の確認結果を、実施例1の確認結果と併せて示す。
なお、参考として、実施例3で作製した試験体(鋼材接合体)に係る図4(b)に示すL断面上のA、B、Cそれぞれの箇所における金属組織画像を図5に示す。
In Example 3, in the same manner as in Example 1, "presence or absence of a concentration gradient layer, main structure of the joint interface, confirmation of joint strength and wear resistance" were performed. Here, the same conditions and method as in Example 1 were adopted when performing the final confirmation. Therefore, descriptions of these conditions and methods are omitted. Table 1 below shows the confirmation results of Example 3 together with the confirmation results of Example 1.
As a reference, FIG. 5 shows metallographic images at points A, B, and C on the cross section L shown in FIG.

実施例4では、図1に示すような円柱状(長さX:150mm、直径φ:15mm(接合面の直径))の大きさで、炭素濃度が0.450mass%の鋼材(中炭素鋼)を2個用意した。そして、最高到達温度での加熱維持時間を制御することにより、高周波誘導加熱後の接合界面の炭素濃度が1.30mass%になるように調整した。これ以外は、実施例1と同じ条件・方法で試験体(鋼材接合体)を作製した。 In Example 4, a steel material (medium carbon steel) having a cylindrical shape (length X: 150 mm, diameter φ: 15 mm (diameter of joint surface)) as shown in FIG. 1 and having a carbon concentration of 0.450 mass% were prepared. The carbon concentration at the bonding interface after high-frequency induction heating was adjusted to 1.30 mass % by controlling the heating maintenance time at the highest temperature. A test body (steel joined body) was produced under the same conditions and method as in Example 1 except for this.

実施例4では、実施例1と同様に、「濃度傾斜層の有無、接合界面の主な組織構造、接合強度及び耐摩耗性の確認」を行った。ここで、本確認を行うに際して、実施例1と同じ条件・方法を採用した。そのため、これら条件及び方法に関する説明は省略する。以下に示す表1には、実施例4の確認結果を、実施例1の確認結果と併せて示す。 In Example 4, in the same manner as in Example 1, "presence or absence of a gradient concentration layer, main structure of the joint interface, confirmation of joint strength and wear resistance" were performed. Here, the same conditions and method as in Example 1 were adopted when performing the final confirmation. Therefore, descriptions of these conditions and methods are omitted. Table 1 below shows the confirmation results of Example 4 together with the confirmation results of Example 1.

実施例5では、図1に示すような円柱状(長さX:150mm、直径φ:15mm(接合面の直径))の大きさで、炭素濃度が0.450mass%の鋼材(中炭素鋼)を2個用意した。そして、最高到達温度での加熱維持時間を制御することにより、高周波誘導加熱後の接合界面の炭素濃度が1.70mass%になるように調整した。これ以外は、実施例1と同じ条件・方法で試験体(鋼材接合体)を作製した。 In Example 5, a steel material (medium carbon steel) having a cylindrical shape (length X: 150 mm, diameter φ: 15 mm (diameter of joint surface)) as shown in FIG. 1 and having a carbon concentration of 0.450 mass% were prepared. The carbon concentration at the bonding interface after high-frequency induction heating was adjusted to 1.70 mass % by controlling the heating maintenance time at the highest temperature. A test body (steel joined body) was produced under the same conditions and method as in Example 1 except for this.

実施例5では、実施例1と同様に、「濃度傾斜層の有無、接合界面の主な組織構造、接合強度及び耐摩耗性の確認」を行った。ここで、本確認を行うに際して、実施例1と同じ条件・方法を採用した。そのため、これら条件及び方法に関する説明は省略する。以下に示す表1には、実施例5の確認結果を、実施例1の確認結果と併せて示す。 In Example 5, in the same manner as in Example 1, "presence or absence of a gradient concentration layer, main structure of the joint interface, confirmation of joint strength and wear resistance" were performed. Here, the same conditions and method as in Example 1 were adopted when performing the final confirmation. Therefore, descriptions of these conditions and methods are omitted. Table 1 below shows the confirmation results of Example 5 together with the confirmation results of Example 1.

実施例6では、図1に示すような円柱状(長さX:150mm、直径φ:15mm(接合面の直径))の大きさで、炭素濃度が0.450mass%の鋼材(中炭素鋼)を2個用意した。そして、最高到達温度での加熱維持時間を制御することにより、高周波誘導加熱後の接合界面の炭素濃度が2.10mass%になるように調整した。これ以外は、実施例1と同じ条件・方法で試験体(鋼材接合体)を作製した。 In Example 6, a steel material (medium carbon steel) having a cylindrical shape (length X: 150 mm, diameter φ: 15 mm (diameter of joint surface)) and a carbon concentration of 0.450 mass% as shown in FIG. were prepared. The carbon concentration at the bonding interface after high-frequency induction heating was adjusted to 2.10 mass % by controlling the heating maintenance time at the highest temperature. A test body (steel joined body) was produced under the same conditions and method as in Example 1 except for this.

実施例6では、実施例1と同様に、「濃度傾斜層の有無、接合界面の主な組織構造、接合強度及び耐摩耗性の確認」を行った。ここで、本確認を行うに際して、実施例1と同じ条件・方法を採用した。そのため、これら条件及び方法に関する説明は省略する。以下に示す表1には、実施例6の確認結果を、実施例1の確認結果と併せて示す。 In Example 6, in the same manner as in Example 1, "presence or absence of a concentration gradient layer, main structure of the joint interface, confirmation of joint strength and wear resistance" were performed. Here, the same conditions and method as in Example 1 were adopted when performing the final confirmation. Therefore, descriptions of these conditions and methods are omitted. Table 1 below shows the confirmation results of Example 6 together with the confirmation results of Example 1.

比較例Comparative example

[比較例1]
比較例1では、図1に示すような円柱状(長さX:150mm、直径φ:15mm(接合面の直径))の大きさで、炭素濃度が0.045mass%の鋼材(低炭素鋼)を2個用意した。そして、最高到達温度での加熱維持時間を制御することにより、高周波誘導加熱後の接合界面の炭素濃度が0.10mass%になるように調整した。これ以外は、実施例1と同じ条件・方法で試験体(鋼材接合体)を作製した。
[Comparative Example 1]
In Comparative Example 1, a steel material (low carbon steel) having a cylindrical shape (length X: 150 mm, diameter φ: 15 mm (diameter of joint surface)) as shown in FIG. 1 and having a carbon concentration of 0.045 mass% were prepared. The carbon concentration at the bonding interface after high-frequency induction heating was adjusted to 0.10 mass% by controlling the heating maintenance time at the highest temperature. A test body (steel joined body) was produced under the same conditions and method as in Example 1 except for this.

比較例1では、実施例1と同様に、「濃度傾斜層の有無、接合界面の主な組織構造、接合強度及び耐摩耗性の確認」を行った。ここで、本確認を行うに際して、実施例1と同じ条件・方法を採用した。そのため、これら条件及び方法に関する説明は省略する。以下に示す表1には、比較例1の確認結果を、実施例1の確認結果と併せて示す。 In Comparative Example 1, in the same manner as in Example 1, "presence or absence of a gradient concentration layer, confirmation of the main structural structure of the bonding interface, bonding strength, and wear resistance" were performed. Here, the same conditions and method as in Example 1 were adopted when performing the final confirmation. Therefore, descriptions of these conditions and methods are omitted. Table 1 shown below shows the confirmation results of Comparative Example 1 together with the confirmation results of Example 1.

[比較例2]
比較例2では、図1に示すような円柱状(長さX:150mm、直径φ:15mm(接合面の直径))の大きさで、炭素濃度が0.450mass%の鋼材(中炭素鋼)を2個用意した。そして、最高到達温度での加熱維持時間を制御することにより、高周波誘導加熱後の接合界面の炭素濃度が2.30mass%になるように調整した。これ以外は、実施例1と同じ条件・方法で試験体(鋼材接合体)を作製した。
[Comparative Example 2]
In Comparative Example 2, a steel material (medium carbon steel) having a cylindrical shape (length X: 150 mm, diameter φ: 15 mm (diameter of joint surface)) and a carbon concentration of 0.450 mass% as shown in FIG. were prepared. The carbon concentration at the bonding interface after high-frequency induction heating was adjusted to 2.30 mass % by controlling the heating maintenance time at the highest temperature. A test body (steel joined body) was produced under the same conditions and method as in Example 1 except for this.

比較例2では、実施例1と同様に、「濃度傾斜層の有無、接合界面の主な組織構造、接合強度及び耐摩耗性の確認」を行った。ここで、本確認を行うに際して、実施例1と同じ条件・方法を採用した。そのため、これら条件及び方法に関する説明は省略する。以下に示す表1には、比較例2の確認結果を、実施例1の確認結果と併せて示す。 In Comparative Example 2, in the same manner as in Example 1, "presence or absence of a concentration gradient layer, main structure of the joint interface, confirmation of joint strength and wear resistance" were performed. Here, the same conditions and method as in Example 1 were adopted when performing the final confirmation. Therefore, descriptions of these conditions and methods are omitted. In Table 1 shown below, the confirmation results of Comparative Example 2 are shown together with the confirmation results of Example 1.

Figure 2023039174000002
Figure 2023039174000002

(結果及び考察)
表1の結果からわかるように、試験体(鋼材接合体)の接合界面の炭素濃度が0.20mass%以上2.10mass%以下である場合(実施例1から実施例6)では、接合強度及び耐摩耗性が高いことが確認された。一方で、比較例1では、当該接合界面の炭素濃度が低いため、耐摩耗性が低下することが確認された。また、比較例2では、当該接合界面の組織として凝固組織の晶出が確認されたため、接合強度が低下することが確認された。
(Results and discussion)
As can be seen from the results in Table 1, when the carbon concentration at the joint interface of the test piece (steel material joint) is 0.20 mass% or more and 2.10 mass% or less (Examples 1 to 6), the joint strength and It was confirmed that the wear resistance is high. On the other hand, in Comparative Example 1, it was confirmed that the wear resistance decreased because the carbon concentration at the joint interface was low. In addition, in Comparative Example 2, since crystallization of solidified structure was confirmed as the structure of the joint interface, it was confirmed that the joint strength was lowered.

また、実施例4から実施例6の鋼材接合体では、その接合界面の主な組織として、パーライトに加え、セメンタイト(オーステナイト粒界でのセメンタイトを含む)も確認された。一方で、実施例1から実施例3の鋼材接合体では、その接合界面の主な組織として、パーライトが確認され、セメンタイトは確認されなかった。そのため、硬くて脆いセメンタイトが確認されなかった実施例1から実施例3の鋼材接合体(接合界面の炭素濃度が0.20mass%以上0.90mass%以下である場合)では、接合強度及び耐摩耗性がより高くなると考えられる。更に、この確認結果より、接合する鋼材に中炭素鋼を用いる場合、接合界面の炭素濃度が0.50mass%以上0.90mass%以下であることが、本発明の課題を達成する上でより有利になると考えられる。 Moreover, in the steel material joined bodies of Examples 4 to 6, in addition to pearlite, cementite (including cementite at austenite grain boundaries) was confirmed as a main structure at the joining interface. On the other hand, in the steel material joined bodies of Examples 1 to 3, pearlite was confirmed as the main structure of the joint interface, and cementite was not confirmed. Therefore, in the steel joined bodies of Examples 1 to 3 in which hard and brittle cementite was not confirmed (when the carbon concentration at the joint interface is 0.20 mass% or more and 0.90 mass% or less), the joint strength and wear resistance likely to be more sexual. Furthermore, from this confirmation result, when medium carbon steel is used as the steel material to be joined, it is more advantageous for achieving the object of the present invention that the carbon concentration at the joining interface is 0.50 mass% or more and 0.90 mass% or less. is considered to be

1、1A 鋼材接合体
10 鋼材(素材)
15 濃度傾斜層
20 鋼材
25 濃度傾斜層
30 接合界面
31 接合部
A 炭素濃度(接合界面)
B 炭素濃度(濃度傾斜層の接合界面とは反対側)
X 長さ(鋼材)
φ 直径(鋼材)
γ オーステナイト相
L 液相
1, 1A Steel joined body 10 Steel (material)
15 Gradient concentration layer 20 Steel material 25 Gradient concentration layer 30 Joint interface 31 Joint A Carbon concentration (joint interface)
B Carbon concentration (on the side opposite to the bonding interface of the concentration gradient layer)
X length (steel)
φ diameter (steel)
γ Austenite phase L Liquid phase

Claims (5)

複数の鋼材同士が接合された鋼材接合体であって、
前記鋼材同士の接合界面の炭素濃度は、0.20mass%以上2.10mass%以下であり、
前記接合界面から離間するにしたがい炭素濃度が減少する濃度傾斜層を有する鋼材接合体。
A steel joined body in which a plurality of steel materials are joined together,
The carbon concentration at the joint interface between the steel materials is 0.20 mass% or more and 2.10 mass% or less,
A steel joined body having a concentration gradient layer in which the carbon concentration decreases with increasing distance from the joining interface.
前記炭素濃度は、0.20mass%以上0.90mass%以下である請求項1に記載の鋼材接合体。 The steel joined body according to claim 1, wherein the carbon concentration is 0.20 mass% or more and 0.90 mass% or less. 中炭素鋼である複数の鋼材同士が接合された鋼材接合体であって、
前記鋼材同士の接合界面の炭素濃度は、0.50mass%以上2.10mass%以下であり、
前記接合界面から離間するにしたがい炭素濃度が減少する濃度傾斜層を有する鋼材接合体。
A steel joined body in which a plurality of medium carbon steel steel materials are joined together,
The carbon concentration at the joint interface between the steel materials is 0.50 mass% or more and 2.10 mass% or less,
A steel joined body having a concentration gradient layer in which the carbon concentration decreases with increasing distance from the joining interface.
前記炭素濃度は、0.50mass%以上0.90mass%以下である請求項3に記載の鋼材接合体。 The steel joined body according to claim 3, wherein the carbon concentration is 0.50 mass% or more and 0.90 mass% or less. 前記濃度傾斜層は、前記接合界面から離間するにしたがい炭素濃度が連続的に減少する請求項1乃至4いずれかに記載の鋼材接合体。 5. The steel material joined body according to claim 1, wherein said concentration gradient layer has a carbon concentration that decreases continuously as the distance from said joining interface increases.
JP2021146207A 2021-09-08 2021-09-08 Steel material joint body Pending JP2023039174A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021146207A JP2023039174A (en) 2021-09-08 2021-09-08 Steel material joint body
KR1020220111421A KR20230036983A (en) 2021-09-08 2022-09-02 Steel joined body and method for manufacturing the same
US17/903,168 US12011775B2 (en) 2021-09-08 2022-09-06 Steel joined body and method for manufacturing the same
CN202211098897.7A CN115770941A (en) 2021-09-08 2022-09-06 Steel material joined body and method for producing same
EP22194137.0A EP4148159A1 (en) 2021-09-08 2022-09-06 Steel joined body and method for manufacturing the same
US18/220,649 US20230364702A1 (en) 2021-09-08 2023-07-11 Steel joined body and method for manufacturing the same
US18/439,323 US20240181557A1 (en) 2021-09-08 2024-02-12 Steel joined body and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021146207A JP2023039174A (en) 2021-09-08 2021-09-08 Steel material joint body

Publications (1)

Publication Number Publication Date
JP2023039174A true JP2023039174A (en) 2023-03-20

Family

ID=85600386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021146207A Pending JP2023039174A (en) 2021-09-08 2021-09-08 Steel material joint body

Country Status (1)

Country Link
JP (1) JP2023039174A (en)

Similar Documents

Publication Publication Date Title
Wang et al. Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content
CN104204268B (en) Cast product having alumina barrier layer, and method for manufacturing same
Dong et al. Effect of post-weld heat treatment on properties of friction welded joint between TC4 titanium alloy and 40Cr steel rods
Vigraman et al. Diffusion bonding of AISI 304L steel to low-carbon steel with AISI 304L steel interlayer
EP3812083A1 (en) Steel sheet, tailored blank, hot-press formed article, steel pipe, hollow quenching formed article, method for manufacturing steel sheet, method for manufacturing tailored blank, method for manufacturing hot-press formed article, method for manufacturing steel pipe, and method for manufacturing hollow quenching formed article
JP6309576B2 (en) Reaction tube for ethylene production having an alumina barrier layer
Chun et al. Influence of heat-treated Al–Si coating on the weldability and microstructural inhomogeneity for hot stamped steel resistance nut projection welds
Rahimi et al. Development of microstructure and crystallographic texture in a double-sided friction stir welded microalloyed steel
US20200271247A1 (en) Steel sheet, tailored blank, hot stamped product, steel pipe, hollow hot stamped product, method of manufacturing steel sheet, method of manufacturing tailored blank, method of manufacturing hot stamped product, method of manufacturing steel pipe, and method of manufacturing hollow hot stamped product
Lunde et al. Microstructure and mechanical properties of AISI 420 stainless steel produced by wire arc additive manufacturing
WO2020184123A1 (en) Steel for solid-state welding, steel material for solid-state welding, solid-state welded joint, and solid-state welded structure
US20240181557A1 (en) Steel joined body and method for manufacturing the same
Orzolek et al. Microstructural evolution of dissimilar metal welds involving grade 91
Mudhaffar et al. Influence of hot clad rolling process parameters on life cycle of reinforced bar of stainless steel carbon steel bars
Ghosh et al. Effect of welding parameters on microstructure and mechanical properties of friction stir welded plain carbon steel
JP2023039174A (en) Steel material joint body
Kong et al. A novel bonding method of pure aluminum and SUS304 stainless steel using barrel nitriding
Ayan et al. Fabrication and fatigue properties of dissimilar steel functionally graded material structure through wire arc additive manufacturing
JP2023176786A (en) Steel material bonded body
Ye et al. Microstructure and Mechanical Properties of 10CrNi3MoV Steel-SS304L Composite Bimetallic Plates Butt Joint by Shielded Metal Arc Welding
Kumar et al. Characterization of surface properties of TiC ceramic coating developed on AISI 1020 steel
Pouriamanesh et al. Friction stir welding of API X70 steel incorporating Ti-dioxide
Makarov et al. Reconditioning of continuous casting machine rollers by laser cladding
JP5977054B2 (en) Method for producing a cast product having an alumina barrier layer
Tan et al. Improving the microstructures and mechanical properties of U71Mn rail steel liner friction welded joint by normalizing treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240828