JP2023038418A - Method for producing latent heat storage material - Google Patents

Method for producing latent heat storage material Download PDF

Info

Publication number
JP2023038418A
JP2023038418A JP2021145111A JP2021145111A JP2023038418A JP 2023038418 A JP2023038418 A JP 2023038418A JP 2021145111 A JP2021145111 A JP 2021145111A JP 2021145111 A JP2021145111 A JP 2021145111A JP 2023038418 A JP2023038418 A JP 2023038418A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
alloy
antifoaming agent
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021145111A
Other languages
Japanese (ja)
Inventor
和樹 古性
Kazuki Kosho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2021145111A priority Critical patent/JP2023038418A/en
Publication of JP2023038418A publication Critical patent/JP2023038418A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To provide a method for producing, with high productivity, an alloy-based latent heat storage material that can be used at relatively high temperatures and has excellent heat storage density and thermal conductivity.SOLUTION: The present invention provides a method for producing an alloy-based latent heat storage material that comprises a core particle composed of an Al-Si alloy coated with an aluminum oxide coat. The method includes a coat formation step for forming the aluminum oxide coat on the core particle, in which the core particle is added into water containing an antifoamer of 20 ppm or more and 5000 ppm or less. The production method can increase a charge ratio to a reaction container, leading to improved productivity.SELECTED DRAWING: None

Description

本発明は潜熱蓄熱材料に関し、より詳しくは、比較的高温でも利用可能で、蓄熱密度と熱伝導性に優れた、マイクロサイズの潜熱蓄熱材料の製造方法に関する。 TECHNICAL FIELD The present invention relates to a latent heat storage material, and more particularly to a method for producing a micro-sized latent heat storage material that can be used at relatively high temperatures and has excellent heat storage density and thermal conductivity.

熱を貯蔵する方法として、温度変化を利用する顕熱蓄熱(例えば、特許文献1)と、物質の相変化を利用する潜熱蓄熱(例えば、特許文献2)が知られている。 As methods for storing heat, sensible heat storage using temperature change (for example, Patent Document 1) and latent heat storage using phase change of substances (for example, Patent Document 2) are known.

このうち、顕熱蓄熱技術は、高温での蓄熱が可能である反面、物質の温度変化による顕熱のみを利用するものであるため、蓄熱密度が低いという問題があった。斯かる問題を解決する方法として提案されたのが、溶融塩等の潜熱を利用して蓄熱する潜熱蓄熱技術である。 Of these, the sensible heat storage technology is capable of storing heat at high temperatures, but has the problem of low heat storage density because it uses only sensible heat due to temperature changes in substances. A latent heat storage technique for storing heat by utilizing the latent heat of molten salt or the like has been proposed as a method for solving such problems.

潜熱蓄熱技術で用いられる蓄熱体として種々の態様のものが提案されており、例えば、特許文献3には、一層、二層または三層の金属被膜を潜熱蓄熱材の表面に被成したことを特徴とする潜熱蓄熱カプセルや、潜熱蓄熱材に電解めっき法によって金属被膜を被覆することを特徴とする潜熱蓄熱カプセルの製造方法等の発明が開示されている。 Various embodiments have been proposed as a heat storage material used in latent heat storage technology. Inventions such as a characteristic latent heat storage capsule and a method of manufacturing a latent heat storage capsule characterized by coating a latent heat storage material with a metal film by electrolytic plating are disclosed.

また、特許文献4では、コア部と、該コア部を覆うシェルから構成される潜熱蓄熱体において、前記シェルに関して、コア粒子を化成被膜処理し、更に熱酸化処理をすることで酸化被膜を形成することを開示している。 Further, in Patent Document 4, in a latent heat storage body composed of a core portion and a shell covering the core portion, the shell is subjected to a chemical conversion coating treatment on the core particles, and further subjected to a thermal oxidation treatment to form an oxide coating. It discloses that

特開平6-50681号公報JP-A-6-50681 特開平10-238979号公報JP-A-10-238979 特開平11-23172号公報JP-A-11-23172 国際公開2015/162929号パンフレットInternational publication 2015/162929 pamphlet

しかし、特許文献4に開示の合金系潜熱蓄熱マイクロカプセル(Micro-Encapsulated Phase Change Material:以下、MEPCMと略す)の製造において、化成被膜処理の際に発泡が激しく、反応釜から反応液が溢れる恐れがあり、実質的には反応釜に対して、半分以下の仕込み量で反応を行う必要があり、生産性が著しく低いものであった。 However, in the production of the alloy-based latent heat storage microcapsules (Micro-Encapsulated Phase Change Material: hereinafter abbreviated as MEPCM) disclosed in Patent Document 4, there is a risk of severe foaming during the chemical conversion coating treatment and the reaction solution overflowing from the reaction vessel. Therefore, it was necessary to carry out the reaction with less than half the charged amount of the reactor, and the productivity was remarkably low.

本発明はこのような従来の問題点に鑑みてなされたもので、比較的高温でも利用可能な、蓄熱密度と熱伝導性に優れた潜熱蓄熱材料の生産性の高い製造方法を提供することである。 The present invention has been made in view of such conventional problems, and provides a highly productive method for producing a latent heat storage material that can be used even at relatively high temperatures and has excellent heat storage density and thermal conductivity. be.

本発明者は、上記課題を達成する為に種々検討を行ない、本発明に想到した。すなわち、Al-Si合金からなるコア粒子が酸化アルミニウム被膜で被覆された合金系潜熱蓄熱材料の製造方法であって、前記コア粒子に酸化アルミニウム被膜を形成する被膜形成工程において、消泡剤を20ppm以上5000ppm以下含む水中にコア粒子を添加することを特徴とする合金系潜熱蓄熱材料の製造方法である。 In order to achieve the above object, the inventor conducted various studies and came up with the present invention. That is, in a method for producing an alloy-based latent heat storage material in which core particles made of an Al—Si alloy are coated with an aluminum oxide coating, in the coating forming step of forming the aluminum oxide coating on the core particles, 20 ppm of an antifoaming agent is added. A method for producing an alloy-based latent heat storage material, characterized by adding core particles to water containing not less than 5000 ppm.

本発明の製造方法により、従来よりも反応容器に対する仕込み比率を高くすることかでき、合金系潜熱蓄熱材料の生産性を向上することができる。これにより、潜熱蓄熱材料の成形体を、より低コストで供給することが可能となる。 According to the production method of the present invention, it is possible to increase the charging ratio to the reaction vessel compared to the conventional method, and to improve the productivity of the alloy-based latent heat storage material. Thereby, it becomes possible to supply the molded body of the latent heat storage material at a lower cost.

以下、本発明を詳細に説明する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
[本発明の潜熱蓄熱材料の製造方法]
本発明の製造方法は、Al-Si合金からなるコア粒子が酸化アルミニウム被膜で被覆された合金系潜熱蓄熱材料の製造方法であって、前記コア粒子に酸化アルミニウム被膜を形成する被膜形成工程において、消泡剤を20ppm以上5000ppm以下含む水中にコア粒子を添加することを特徴とする合金系潜熱蓄熱材料の製造方法である。
The present invention will be described in detail below.
A combination of two or more of the individual preferred embodiments of the invention described below is also a preferred embodiment of the invention.
[Method for producing the latent heat storage material of the present invention]
The production method of the present invention is a method for producing an alloy-based latent heat storage material in which core particles made of an Al—Si alloy are coated with an aluminum oxide coating, and in the coating forming step of forming the aluminum oxide coating on the core particles, A method for producing an alloy-based latent heat storage material, characterized by adding core particles to water containing 20 ppm or more and 5000 ppm or less of an antifoaming agent.

本発明の被膜形成工程は、コア粒子であるAl-Si合金に対して、ベーマイト処理により、酸化アルミニウム被膜を形成する工程であり、消泡剤を20ppm以上5000ppm以下含む高温の水中でコア粒子の表面に被膜を生成させる方法である。 The film forming step of the present invention is a step of forming an aluminum oxide film on the Al—Si alloy core particles by boehmite treatment, and the core particles are immersed in high-temperature water containing 20 ppm or more and 5000 ppm or less of an antifoaming agent. It is a method of forming a film on the surface.

前記消泡剤の含有量は、20ppm以上であり、50ppm以上が好ましく、100ppm以上がより好ましい。前記消泡剤の含有量が20ppm以上であれば、発泡抑制の効果を期待できるが、含有量が多い方が、発泡の抑制効果は大きい。前記消泡剤の含有量の上限は、5000ppm以下であり、2000ppm以下がより好ましく、1000ppmがさらに好ましい。前記消泡剤の含有量は多い方が、発泡抑制の効果は大きいが、5000ppmを超えて含有しても、発泡抑制の効果はあまり変わらない。上記範囲で、消泡剤を含むことにより、コア粒子を添加した際の発泡が抑制され、効率よく製造することができる。 The content of the antifoaming agent is 20 ppm or more, preferably 50 ppm or more, and more preferably 100 ppm or more. When the content of the antifoaming agent is 20 ppm or more, an effect of inhibiting foaming can be expected, but the larger the content, the greater the effect of inhibiting foaming. The upper limit of the content of the antifoaming agent is 5000 ppm or less, more preferably 2000 ppm or less, and even more preferably 1000 ppm. The larger the content of the antifoaming agent, the greater the effect of suppressing foaming. By containing the antifoaming agent within the above range, foaming is suppressed when the core particles are added, and efficient production can be achieved.

前記、消泡剤としては、シリコーン系消泡剤、アルコール系消泡剤、ポリエーテル系消泡剤等が挙げられ、シリコーン系消泡剤がより好ましい。 Examples of the antifoaming agent include silicone antifoaming agents, alcohol antifoaming agents, polyether antifoaming agents and the like, with silicone antifoaming agents being more preferred.

前記Al-Si合金は、アルミニウムとシリコンからなる合金であればよく、シリコンの含有量は4%~40%の範囲が好ましく、10%~30%の範囲がさらに好ましく、12%~25%の範囲が特に好ましい。前記範囲内であれば、共晶温度である580℃で大きな吸熱、発熱が行われるため、蓄熱量の高い蓄熱材として機能しつつも、固相から液相に相変化のする際の体積膨張率を低く抑制できることから、MEPCMとしての耐久性を高くすることができる。 The Al—Si alloy may be an alloy composed of aluminum and silicon, and the content of silicon is preferably in the range of 4% to 40%, more preferably in the range of 10% to 30%, and more preferably 12% to 25%. Ranges are particularly preferred. Within the above range, large heat absorption and heat generation occur at the eutectic temperature of 580 ° C., so that while functioning as a heat storage material with a high heat storage amount, the volume expansion occurs when the phase changes from the solid phase to the liquid phase. Since the modulus can be kept low, the durability of the MEPCM can be increased.

前記被膜形成工程において、熱酸化処理工程の際に、MEPCM同士が焼結し凝集することを防ぐ目的で、コア粒子を添加する前に水酸化アルミニウムを添加することが好ましい。添加する水酸化アルミニウムの量は、コア粒子100質量部に対し、0.5質量部~25質量部であり、より好ましくは1質量部~20質量部である。0.5質量部以上添加すれば、凝集を防ぐことができ、添加量が多いほど、熱酸化処理工程の際の凝集を防ぐことができるが、25質量部以上添加しても、凝集に対する効果はあまり変わらない。一方で、25質量部以上添加すると、熱酸化処理工程後に、合金に対して、酸化アルミニウムとなる量が増えるため、蓄熱量を減少させてしまうことから、上記範囲が好適である。 In the film forming step, it is preferable to add aluminum hydroxide before adding the core particles for the purpose of preventing MEPCM from sintering and agglomerating during the thermal oxidation treatment step. The amount of aluminum hydroxide to be added is 0.5 to 25 parts by mass, preferably 1 to 20 parts by mass, per 100 parts by mass of the core particles. Aggregation can be prevented by adding 0.5 parts by mass or more, and the larger the amount added, the more likely it is to prevent aggregation during the thermal oxidation treatment process. does not change much. On the other hand, if 25 parts by mass or more is added, the amount of aluminum oxide in the alloy increases after the thermal oxidation treatment step, and the amount of heat storage decreases, so the above range is preferable.

前記水酸化アルミニウムの結晶構造は特に限定されず、バイヤライト、ギブサイト、べーマイト等が挙げられ、ギブサイト、べーマイトが好ましく、中でも熱酸化処理工程の際に重量変化が小さく、欠陥を少なくできることから、べーマイトが特に好ましい。 The crystal structure of the aluminum hydroxide is not particularly limited, and examples thereof include bayerite, gibbsite, boehmite, etc. Among them, gibbsite and boehmite are preferable, since weight change is small during the thermal oxidation treatment step and defects can be reduced. , and boehmite are particularly preferred.

前記被膜形成工程は、少量のアンモニア等を添加して処理してもよい。ベーマイト処理の溶液のpH値が高くなるにつれて得られる酸化アルミニウム被膜は良質となる傾向が確認されており、特に、6.0以上11.0未満の範囲に設定することが好ましく、7.0~10.0がより好ましく、最も好ましくは8.5~9.5である。 In the film forming step, a small amount of ammonia or the like may be added for treatment. It has been confirmed that the higher the pH value of the solution for boehmite treatment, the better the quality of the aluminum oxide film obtained. 10.0 is more preferred, and 8.5-9.5 is most preferred.

前記被膜形成工程の反応温度は、60℃~100℃が好ましく、70℃以上がより好ましく、80℃以上がさらに好ましく、90℃以上が特に好ましい。温度の上限は水溶液の沸点であり、常圧下では100℃である。反応時間は、0.25~24時間が好ましく、0.5~5時間がより好ましい。温度が高く、反応時間を長くする方が、良好な被膜の形成を行うことができることから、熱酸化処理工程後の酸化アルミニウム被膜も良好なものとなり、耐久性の高い被膜を得ることができる。 The reaction temperature in the film forming step is preferably 60° C. to 100° C., more preferably 70° C. or higher, still more preferably 80° C. or higher, and particularly preferably 90° C. or higher. The upper limit of the temperature is the boiling point of the aqueous solution, which is 100°C under normal pressure. The reaction time is preferably 0.25 to 24 hours, more preferably 0.5 to 5 hours. A higher temperature and a longer reaction time result in a better film formation, so the aluminum oxide film after the thermal oxidation treatment step is also better, and a highly durable film can be obtained.

本発明の製造方法は、さらに熱酸化処理工程を有することが好ましい。これにより、前記被膜形成工程で形成された酸化アルミニウム被膜がより酸化され、結晶質のAlであるMEPCMとすることができる。 Preferably, the production method of the present invention further includes a thermal oxidation treatment step. As a result, the aluminum oxide film formed in the film forming step is further oxidized, and MEPCM of crystalline Al 2 O 3 can be obtained.

熱酸化処理工程の温度は、コア部の成分となるAl-Si合金の融点よりも高い温度で実行することが好ましい。シリコンの含有量が25wt%の合金の場合、融点が580℃であり、それ以上の温度(例えば700℃以上)で加熱することが好ましい。より好ましくは800℃以上、さらに好ましくは900℃以上で処理することが好ましい。この理由としては、熱処理により形成される酸化アルミニウム被膜は、800℃以下の比較的低温ではγ-Alの結晶構造をとり、化学的に安定とされるα-Alの結晶構造をもつ被膜は880℃以上の比較的高温で得られるからである。上限値は特に限定されないが、1300℃以下とすることが好ましい。熱酸化処理工程の温度が1300℃を超えると、MEPCMにおける、酸化アルミニウム被膜とAl-Si合金との割合のうち、酸化アルミニウム被膜の厚みが厚くなるため、Al-Si合金の割合が減少し、蓄熱量が減少するためである。熱処理の時間は、0.5時間~12時間が好ましく、より好ましくは2時間~5時間である。上記、熱酸化処理工程をすることにより、繰り返し安定性の高いMEPCMとすることができる。 The temperature of the thermal oxidation treatment process is preferably higher than the melting point of the Al--Si alloy that is the component of the core portion. An alloy with a silicon content of 25 wt % has a melting point of 580° C., and is preferably heated at a temperature higher than that (for example, 700° C. or higher). It is more preferable to treat at 800° C. or higher, still more preferably at 900° C. or higher. The reason for this is that the aluminum oxide film formed by heat treatment has a crystal structure of γ-Al 2 O 3 at a relatively low temperature of 800° C. or less, and is a chemically stable α-Al 2 O 3 crystal. This is because a structured film can be obtained at a relatively high temperature of 880° C. or higher. Although the upper limit is not particularly limited, it is preferably 1300° C. or less. When the temperature of the thermal oxidation treatment process exceeds 1300 ° C., the thickness of the aluminum oxide film increases in the ratio of the aluminum oxide film and the Al-Si alloy in MEPCM, so the ratio of the Al-Si alloy decreases. This is because the heat storage amount decreases. The heat treatment time is preferably 0.5 to 12 hours, more preferably 2 to 5 hours. By performing the above thermal oxidation treatment step, MEPCM with high repetitive stability can be obtained.

上記工程で得られた熱酸化被膜の上に更に被膜を形成して強度を強化してもよい。例えば、化学的処理又は物理的処理を行って、金属被膜及び/又はセラミック被膜を形成してもよい。例えば、化学的手法としては、ゾル・ゲル法、CVD、電気めっき、無電解めっき等が挙げられ、物理的手法としては、PVD等が挙げられる。金属被膜及び/又はセラミック被膜の上塗りを行うことで、カプセルの機械的強度の強化が可能である。 A further coating may be formed on the thermally oxidized coating obtained in the above steps to enhance strength. For example, chemical or physical treatments may be performed to form metallic and/or ceramic coatings. For example, chemical methods include sol-gel method, CVD, electroplating, electroless plating and the like, and physical methods include PVD and the like. The mechanical strength of the capsule can be enhanced by applying a metal coating and/or a ceramic coating over the capsule.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited only to these examples. Unless otherwise specified, "part" means "mass part" and "%" means "mass %".

<平均粒子径の測定>
HORIBA製 レーザー回折式粒度分布計 LA-950V2を用いて測定を行なった。具体的には、ピロリン酸ナトリウム(富士フィルム和光純薬株式会社製)を0.2%溶解させた水溶液中にAl-Si合金を分散させ、粒度分布計で測定を行い、累積50%体積径の値を平均粒子径とした。
<Measurement of average particle size>
Measurement was performed using a laser diffraction particle size distribution analyzer LA-950V2 manufactured by HORIBA. Specifically, the Al—Si alloy is dispersed in an aqueous solution in which 0.2% sodium pyrophosphate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is dissolved, and the measurement is performed with a particle size distribution meter, and the cumulative 50% volume diameter was taken as the average particle size.

<Al-Si合金>
Alの重量比が75%でSiの重量比が25%のAl-Si合金(Al-25wt%Si)から成るコア粒子を準備した。これらのコア粒子の直径は38μm未満であり、平均直径は36.3μmであった。
<Al—Si alloy>
A core particle made of an Al--Si alloy (Al-25 wt % Si) having a weight ratio of Al of 75% and a weight ratio of Si of 25% was prepared. These core particles had a diameter of less than 38 μm and an average diameter of 36.3 μm.

[実施例1]
φ8.5cm、高さ25cmのフラスコに、シリコーンを主成分とする自己乳化型の消泡剤(信越化学工業製:KS-538)を、水に対して200ppmになるように添加し、次いで水500gを入れた。撹拌翼により150rpmで撹拌させながらオイルバスを用いて加熱した。水温を測定し100℃に到達した後、結晶構造がベーマイト構造である水酸化アルミニウム(大明化学工業製)を5g添加し、分散させた。その後、1Mに調整したアンモニア水を添加し、分散液のpHが、常温で計測した際に、9.0~9.5の範囲になるように調整を行った。
pH調整を行った後の分散液にAl-Si合金:50gを投入した。投入後、pH調整を行いながら2時間撹拌し続け、その後、冷却を行なった。Al-Si合金を投入後より、発生した泡による液面の高さについて記録を行い、その最高値:20cmと、冷却後に静置した状態での液面の高さ:10.5cmとの差:9.5cmを、泡高さとした。
冷却後の反応液をデカンテーションして、余分な水酸化アルミニウムを取り除き、濾過、乾燥して、粉体の潜熱蓄熱材料を得た。
[Example 1]
A self-emulsifying antifoaming agent (manufactured by Shin-Etsu Chemical Co., Ltd.: KS-538) containing silicone as a main component was added to a flask with a diameter of 8.5 cm and a height of 25 cm so as to be 200 ppm with respect to water, and then water. 500 g was added. The mixture was heated using an oil bath while stirring at 150 rpm with a stirring blade. After measuring the water temperature and reaching 100° C., 5 g of aluminum hydroxide having a boehmite crystal structure (manufactured by Taimei Chemical Industry Co., Ltd.) was added and dispersed. After that, ammonia water adjusted to 1M was added, and the pH of the dispersion liquid was adjusted to be in the range of 9.0 to 9.5 when measured at room temperature.
Al--Si alloy: 50 g was added to the dispersion after pH adjustment. After the addition, the mixture was continuously stirred for 2 hours while adjusting the pH, and then cooled. After the Al—Si alloy was added, the height of the liquid surface due to the generated bubbles was recorded, and the difference between the highest value: 20 cm and the height of the liquid surface after cooling: 10.5 cm. : 9.5 cm was taken as the foam height.
After cooling, the reaction liquid was decanted to remove excess aluminum hydroxide, filtered, and dried to obtain a powdery latent heat storage material.

[実施例2]
消泡剤としてポリシロキサンを主成分とする自己乳化型の消泡剤(共栄社化学製:アクアレンSB-630)を200ppm添加して用いた以外は実施例1と同様にして反応を行ったところ、泡高さは10cmであった。
[Example 2]
A reaction was carried out in the same manner as in Example 1, except that 200 ppm of a self-emulsifying antifoaming agent (manufactured by Kyoeisha Chemical Co., Ltd.: Aqualen SB-630) containing polysiloxane as a main component was used as an antifoaming agent. The foam height was 10 cm.

[実施例3]
消泡剤としてポリシロキサンを主成分とするエマルションタイプの消泡剤(日新化学研究所製:ビスフォームFSR-4)を200ppm添加して用いた以外は実施例1と同様にして反応を行ったところ、泡高さは9.5cmであった。
[Example 3]
The reaction was carried out in the same manner as in Example 1, except that 200 ppm of an emulsion-type antifoaming agent (manufactured by Nisshin Chemical Laboratory Co., Ltd.: Bisfoam FSR-4) containing polysiloxane as a main component was used as the antifoaming agent. At the time, the foam height was 9.5 cm.

[実施例4]
消泡剤として高級アルコールを主成分とするエマルションタイプの消泡剤(日新化学研究所製:ビスフォームTDI-1)を200ppm添加して用いた以外は実施例1と同様にして反応を行ったところ、泡高さは10cmであった。
[Example 4]
The reaction was carried out in the same manner as in Example 1, except that 200 ppm of an emulsion-type antifoaming agent (manufactured by Nisshin Kagaku Kenkyusho Co., Ltd.: Bisfoam TDI-1) containing higher alcohol as the main component was used as the antifoaming agent. At the time, the foam height was 10 cm.

[実施例5]
実施例1において、結晶構造がギブサイト構造である水酸化アルミ(日本軽金属製)5gを用いた以外は実施例1と同様にして反応を行ったところ、泡高さは10cmであった。
[Example 5]
The reaction was carried out in the same manner as in Example 1 except that 5 g of aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd.) having a gibbsite crystal structure was used, and the foam height was 10 cm.

[実施例6]
実施例1において、シリコーンを主成分とする自己乳化型の消泡剤(信越化学工業製:KS-538)を1000ppm用いた以外は、実施例1と同様に反応を行ったところ、泡高さは8cmであった。
[Example 6]
In Example 1, the reaction was carried out in the same manner as in Example 1, except that 1000 ppm of a self-emulsifying antifoaming agent (manufactured by Shin-Etsu Chemical Co., Ltd.: KS-538) containing silicone as a main component was used. was 8 cm.

[実施例7]
消泡剤としてシリコーンを主成分とする自己乳化型の消泡剤(信越化学工業製:KS-538)を100ppm、ポリシロキサンを主成分とする自己乳化型の消泡剤(共栄社化学製:アクアレンSB-630)を100ppm用いた以外は、実施例1と同様に反応を行ったところ、泡高さは9.5cmであった。
[Example 7]
100 ppm of a self-emulsifying antifoaming agent mainly composed of silicone as an antifoaming agent (manufactured by Shin-Etsu Chemical Co., Ltd.: KS-538), a self-emulsifying antifoaming agent mainly composed of polysiloxane (manufactured by Kyoeisha Chemical: Aqualen The reaction was carried out in the same manner as in Example 1 except that SB-630) was used at 100 ppm, resulting in a foam height of 9.5 cm.

[実施例8]
消泡剤としてシリコーンを主成分とする自己乳化型の消泡剤(信越化学工業製:KS-538)を100ppm、高級アルコールを主成分とするエマルションタイプの消泡剤(日新化学研究所製:ビスフォームTDI-1)を100ppm用いた以外は、実施例1と同様に反応を行ったところ、泡高さは10cmであった。
[Example 8]
As an antifoaming agent, a self-emulsifying antifoaming agent mainly composed of silicone (manufactured by Shin-Etsu Chemical Co., Ltd.: KS-538) is used at 100 ppm, and an emulsion type antifoaming agent mainly composed of higher alcohol (manufactured by Nisshin Chemical Laboratory : The foam height was 10 cm when the reaction was carried out in the same manner as in Example 1 except that 100 ppm of bisfoam TDI-1) was used.

[比較例1]
実施例1において、シリコーンを主成分とする消泡剤を添加せずに処理した以外は、実施例1と同様に反応を行ったところ、泡高さは15cmを越えて、反応容器の上面にまで達した。
[Comparative Example 1]
The reaction was carried out in the same manner as in Example 1, except that the silicone-based antifoaming agent was not added. reached.

[比較例2]
実施例1において、シリコーンを主成分とする自己乳化型の消泡剤(信越化学工業製:KS-538)を10ppm用いた以外は、実施例1と同様に反応を行ったところ、泡高さは15cmを超えて、反応容器の上面にまで達した。
[Comparative Example 2]
In Example 1, the reaction was carried out in the same manner as in Example 1, except that 10 ppm of a self-emulsifying antifoaming agent (manufactured by Shin-Etsu Chemical Co., Ltd.: KS-538) containing silicone as a main component was used. exceeded 15 cm and reached the upper surface of the reaction vessel.

[実施例9]
3Lの反応容器に、実施例1と同様に、シリコーンを主成分とする自己乳化型の消泡剤(信越化学工業製:KS-538)を、水に対して200ppmになるように添加し、次いで水を2.4kg投入した。撹拌翼により150rpmで撹拌させながらオイルバスを用いて加熱し、水温が80℃に達した段階で、結晶構造がベーマイト構造である水酸化アルミニウム(大明化学工業製)を24g添加して分散した。その後、1Mに調整したアンモニア水を添加し、分散液のpHが、常温で計測した際に、9.0~9.5の範囲になるように調整を行った。
pH調整を行った後の分散液にAl-Si合金:240gを投入した。投入後、水温を100まで上昇させ、pH調整を行いながら2時間撹拌し続け、その後、冷却を行なった。
冷却後の反応液をデカンテーションして、余分な水酸化アルミニウムを取り除き、濾過、乾燥して、粉体の潜熱蓄熱材料を得た。
反応容器から反応液が溢れることはなかった。
[Example 9]
In a 3 L reaction vessel, in the same manner as in Example 1, a silicone-based self-emulsifying antifoaming agent (manufactured by Shin-Etsu Chemical Co., Ltd.: KS-538) was added to 200 ppm with respect to water, Then, 2.4 kg of water was added. The mixture was heated using an oil bath while being stirred at 150 rpm with a stirring blade, and when the water temperature reached 80°C, 24 g of aluminum hydroxide having a boehmite crystal structure (manufactured by Taimei Chemical Industry Co., Ltd.) was added and dispersed. After that, ammonia water adjusted to 1M was added, and the pH of the dispersion liquid was adjusted to be in the range of 9.0 to 9.5 when measured at room temperature.
Al--Si alloy: 240 g was added to the dispersion after pH adjustment. After the addition, the water temperature was raised to 100, and the mixture was stirred for 2 hours while adjusting the pH, and then cooled.
After cooling, the reaction liquid was decanted to remove excess aluminum hydroxide, filtered, and dried to obtain a powdery latent heat storage material.
The reaction liquid did not overflow from the reaction vessel.

[比較例3]
消泡剤を使用しなかったこと以外は実施例9と同様の方法により反応を行ったが、Al-Si合金を投入後、発生した泡が反応容器から溢れたため反応を中断した。このため、被覆形成工程を完了することができなかった。
[Comparative Example 3]
A reaction was carried out in the same manner as in Example 9 except that no antifoaming agent was used, but after the Al--Si alloy was added, the reaction was interrupted because the generated bubbles overflowed from the reaction vessel. Therefore, the coating forming process could not be completed.

<蓄熱量測定>
TG-DSC(TAインスツルメンツ社製SDT650)により、蓄熱量の測定を行った。各実施例で得られた粉体の潜熱蓄熱材料をアルミナ製サンプルパン内に入れ、空気:200ml/min流通下、昇温速度:10℃/min、焼成条件:1150℃、3hで酸化処理を行い、MEPCMとした。その後、室温まで放冷をない、再度、窒素:20ml/min流通下、昇温速度:10℃/minで700℃まで昇温を行い、蓄熱量(潜熱量/吸熱量)を測定した(1回目)。その後、降温速度:5℃/minで100℃以下になるまで降温し、放熱量(潜熱量/発熱量)を測定した(1回目)。再度、昇温速度:10℃/minで700℃まで昇温を行い、蓄熱量(潜熱量/吸熱量)を測定した(2回目)。その後、降温速度:5℃/minで100℃以下になるまで降温し、放熱量(潜熱量/発熱量)を測定した。(2回目)。結果を表に示す。
<Measurement of heat storage amount>
The heat storage amount was measured by TG-DSC (SDT650 manufactured by TA Instruments). The powdery latent heat storage material obtained in each example was placed in an alumina sample pan, and oxidized at a rate of temperature increase of 10°C/min under air flow of 200ml/min, firing conditions of 1150°C for 3h. and designated as MEPCM. After that, without cooling to room temperature, the temperature was again raised to 700 ° C. at a temperature increase rate of 10 ° C./min under nitrogen flow of 20 ml / min, and the heat storage amount (latent heat amount / heat absorption amount) was measured (1 second time). Thereafter, the temperature was lowered at a rate of 5° C./min until the temperature reached 100° C. or less, and the amount of heat release (latent heat amount/calorific value) was measured (first time). Again, the temperature was raised to 700° C. at a rate of temperature increase of 10° C./min, and the heat storage amount (latent heat amount/heat absorption amount) was measured (second time). After that, the temperature was lowered at a cooling rate of 5°C/min until the temperature reached 100°C or lower, and the amount of heat release (latent heat amount/calorific value) was measured. (2nd time). The results are shown in the table.

Figure 2023038418000001
Figure 2023038418000001

これらの結果から、実施例1~6および9の反応により得られた潜熱蓄熱材料は、蓄熱体として繰り返し機能することを確認できた。 From these results, it was confirmed that the latent heat storage materials obtained by the reactions of Examples 1 to 6 and 9 function repeatedly as heat storage bodies.

Claims (6)

Al-Si合金からなるコア粒子が酸化アルミニウム被膜で被覆された合金系潜熱蓄熱材料の製造方法であって、
前記コア粒子に酸化アルミニウム被膜を形成する被膜形成工程において、消泡剤を20ppm以上5000ppm以下含む水中にコア粒子を添加することを特徴とする合金系潜熱蓄熱材料の製造方法。
A method for producing an alloy-based latent heat storage material in which core particles made of an Al—Si alloy are coated with an aluminum oxide coating,
A method for producing an alloy-based latent heat storage material, wherein the core particles are added to water containing 20 ppm or more and 5000 ppm or less of an antifoaming agent in the film forming step of forming the aluminum oxide film on the core particles.
上記水の温度が70℃以上で前記コア粒子を添加することを特徴とする請求項1に記載の製造方法。 2. The production method according to claim 1, wherein the core particles are added when the temperature of the water is 70[deg.] C. or higher. 前記被膜形成工程が、pH8以上で行われることを特徴とする請求項1または2に記載の製造方法。 3. The manufacturing method according to claim 1, wherein the film forming step is performed at pH 8 or higher. 前記消泡剤が、シリコーンまたはシロキサンを主成分とする消泡剤である請求項1から3いずれかに記載の製造方法。 4. The production method according to any one of claims 1 to 3, wherein the antifoaming agent is an antifoaming agent containing silicone or siloxane as a main component. 前記消泡剤が高級アルコールを主成分とする消泡剤である請求項1から3のいずれかに記載の製造方法。 4. The production method according to any one of claims 1 to 3, wherein the antifoaming agent is a high alcohol-based antifoaming agent. 前記被膜形成工程後、900℃以上1300℃以下で焼成することを特徴とする請求項1から5いずれかに記載の製造方法。 6. The manufacturing method according to any one of claims 1 to 5, characterized in that after the film forming step, the substrate is baked at a temperature of 900°C or higher and 1300°C or lower.
JP2021145111A 2021-09-07 2021-09-07 Method for producing latent heat storage material Pending JP2023038418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021145111A JP2023038418A (en) 2021-09-07 2021-09-07 Method for producing latent heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021145111A JP2023038418A (en) 2021-09-07 2021-09-07 Method for producing latent heat storage material

Publications (1)

Publication Number Publication Date
JP2023038418A true JP2023038418A (en) 2023-03-17

Family

ID=85514683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021145111A Pending JP2023038418A (en) 2021-09-07 2021-09-07 Method for producing latent heat storage material

Country Status (1)

Country Link
JP (1) JP2023038418A (en)

Similar Documents

Publication Publication Date Title
JP7149474B2 (en) Latent heat storage microcapsules and method for producing latent heat storage microcapsules
JP6967790B2 (en) Latent heat storage microcapsules, methods for manufacturing latent heat storage, heat exchange materials, and catalytic functional latent heat storage
Xi et al. Improved corrosion and wear resistance of micro-arc oxidation coatings on the 2024 aluminum alloy by incorporation of quasi-two-dimensional sericite microplates
JP7339645B2 (en) Latent heat storage material, method for producing latent heat storage material, and heat exchange material
TWI686509B (en) Steel sheet with molten aluminum based plating and method for producing same
JP6699027B2 (en) Heat resistant gas barrier coating
JP6927646B2 (en) Method for forming a coating layer of a semiconductor reactor and a metal base material for a semiconductor reactor
CN107164662B (en) Surface structure of aluminum member
JP2023038418A (en) Method for producing latent heat storage material
Wu et al. Effect of SiC addition in electrolyte on the microstructure and tribological properties of micro-arc oxidation coatings on Al-Mg-Sc alloy
JPH03173798A (en) Formation of high temperature gas corrosion layer deposited electrically
JP2004060044A (en) Surface treatment method for aluminum and aluminum material
Srikomol et al. Electrochemical codeposition and heat treatment of nickel-titanium alloy layers
JP2015183208A (en) composite hard film
CN113974410B (en) Cooking utensil and forming method thereof
JP2023038417A (en) Method for producing latent heat storage material
JP6374633B1 (en) Method for producing member for molten metal bath
JP2023038416A (en) Method for producing latent heat storage material
Bianchin et al. Influence of the anodization process on zamak 5 corrosion resistance
Chęcmanowski et al. High-temperature oxidation of FeCrAl alloy with alumina–silica–ceria coatings deposited by sol–gel method
KR20110016048A (en) Method for treating the surface of metals
JP2023128245A (en) Latent-heat heat-storage material molded body and method for producing the same
Yinning et al. Formation of a composite anodic oxidation film containing Al2O3 particles on the AZ31 magnesium alloy
US20040074337A1 (en) Preparation and controlled oxidation of an active nickel catalyst particulate
KR100610821B1 (en) Surface treatment method of Carbon Melting pot for Liquid Metal Ingot and Slip composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240607