JP2023034915A - Carbonation hardening flask for hydraulic fluidized material and hydraulic carbonated structure production method - Google Patents

Carbonation hardening flask for hydraulic fluidized material and hydraulic carbonated structure production method Download PDF

Info

Publication number
JP2023034915A
JP2023034915A JP2021141402A JP2021141402A JP2023034915A JP 2023034915 A JP2023034915 A JP 2023034915A JP 2021141402 A JP2021141402 A JP 2021141402A JP 2021141402 A JP2021141402 A JP 2021141402A JP 2023034915 A JP2023034915 A JP 2023034915A
Authority
JP
Japan
Prior art keywords
hydraulic
fluidized material
carbonation
gas permeable
permeable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021141402A
Other languages
Japanese (ja)
Inventor
健吾 関
Kengo Seki
賢三 渡邉
Kenzo Watanabe
俊成 向
Toshinari Mukai
剛 取違
Takeshi Torii
吾郎 坂井
Goro Sakai
昇 坂田
Noboru Sakata
建治 池松
Kenji Ikematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2021141402A priority Critical patent/JP2023034915A/en
Publication of JP2023034915A publication Critical patent/JP2023034915A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

To provide a carbonation hardening flask for a hydraulic fluidized material capable of easily subjecting a hydraulic fluidized material to carbonation hardening without executing demolding in a short time, and a hydraulic carbonated structure production method.SOLUTION: A carbonation curing flask for a hydraulic fluidized material comprises: a flask member; and a flask-shaped gas permeation member provided at the inside of the flask member, capable of permeating a gas and capable of exposing the gas permeated through the inside to a hydraulic fluidized material that is stored inside.SELECTED DRAWING: Figure 1

Description

本発明は、水硬性流動化物の炭酸化硬化用型枠および水硬性炭酸化構造体の製造方法に関する。 The present invention relates to a mold for carbonation curing of a hydraulic fluidized material and a method for manufacturing a hydraulic carbonation structure.

コンクリートに使用されているセメントは、製造時に原料の脱炭酸および焼成時の燃料より多量の炭酸ガス(二酸化炭素、CO)を排出する。近年の気候変動抑制に対する関心の高まりを受けて、コンクリートの製造時における炭酸ガスの排出量を大きく削減することが求められている。 Cement used in concrete emits a larger amount of carbon dioxide gas (carbon dioxide, CO 2 ) than the decarboxylation of the raw material during production and the fuel during firing. In response to the growing interest in climate change control in recent years, it is required to significantly reduce the amount of carbon dioxide emitted during the production of concrete.

炭酸ガスの排出量を削減する方法の一つとして、高炉水砕スラグ(以下、単に高炉スラグ微粉末という)をセメントに混合した混合セメントが広く用いられている。しかしながら、高炉スラグ微粉末の量を増加させると、硬化が遅くなり脱型までの期間が長くなることや、十分な強度を得るために長時間の湿潤養生が必要になる。このため、工期やコストの面での課題が残る。 As one of the methods for reducing carbon dioxide emissions, mixed cement is widely used in which granulated blast furnace slag (hereinafter simply referred to as ground granulated blast furnace slag) is mixed with cement. However, if the amount of ground granulated blast furnace slag is increased, hardening is slowed down, the period until demolding becomes longer, and wet curing for a long time is required to obtain sufficient strength. For this reason, problems remain in terms of construction period and cost.

また、製鋼スラグ粉末とポルトランドセメントにγ-CS(γ-2CaO・SiO;γビーライトとも呼ばれる)を添加したコンクリート混錬物を硬化させ、その後にコンリートを炭酸化養生したプレキャストコンクリートが開示されている。 In addition, precast concrete is produced by hardening a concrete kneaded product obtained by adding γ-C 2 S (γ-2CaO.SiO 2 ; also called γ belite) to steelmaking slag powder and Portland cement, and then curing the concrete by carbonation. disclosed.

上記のような水硬性流動化物を硬化するための型枠として、例えば特許文献1には、外型枠と内型枠とから構成される型枠が記載されている。 As a formwork for hardening the above hydraulic fluidized material, for example, Patent Document 1 describes a formwork composed of an outer formwork and an inner formwork.

しかしながら、特許文献1などの従来の型枠では、水硬性流動化物の炭酸化養生が容易ではないうえに、水硬性流動化物を炭酸化養生するための専用の型枠は、非常に高価である。また、従来、水硬性流動化物を炭酸化するためには、水硬性流動化物を硬化して得られた水硬性構造体を型枠から脱型した後に、水硬性構造体を炭酸化する必要があるため、工程が煩雑である。 However, with conventional molds such as those disclosed in Patent Document 1, carbonation curing of the hydraulic fluidized product is not easy, and a dedicated mold for carbonation curing of the hydraulic fluidized product is very expensive. . Further, conventionally, in order to carbonate a hydraulic fluidized material, it is necessary to carbonate the hydraulic structure after the hydraulic structure obtained by hardening the hydraulic fluidized material is removed from the formwork. Therefore, the process is complicated.

特開2004-034377号公報Japanese Patent Application Laid-Open No. 2004-034377

本発明の目的は、短時間かつ簡便であり、脱型せずに水硬性流動化物を炭酸化硬化できる水硬性流動化物の炭酸化硬化用型枠および水硬性炭酸化構造体の製造方法を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a carbonation-hardening formwork for a hydraulic fluidized material and a method for manufacturing a hydraulically carbonated structure, which can be carbonation-hardened in a short time and in a simple manner without demolding the hydraulic fluidized material. It is to be.

[1] 型枠部材と、前記型枠部材の内側に設けられ、気体を透過可能であり、内側に貯留している水硬性流動化物に対して内部を透過した気体を曝露可能な型枠状の気体透過部材とを備える、水硬性流動化物の炭酸化硬化用型枠。
[2] 前記気体透過部材の気孔率は、60%以上95%以下である、上記[1]に記載の水硬性流動化物の炭酸化硬化用型枠。
[3] 前記気体透過部材は多孔質であり、前記気体透過部材の平均気孔径は80μm以上700μm以下である、上記[1]または[2]に記載の水硬性流動化物の炭酸化硬化用型枠。
[4] 前記気体透過部材は、発泡材料または不織布である、上記[1]~[3]のいずれか1つに記載の水硬性流動化物の炭酸化硬化用型枠。
[5] 前記型枠部材の機械的強度は、前記気体透過部材よりも大きい、上記[1]~[4]のいずれか1つに記載の水硬性流動化物の炭酸化硬化用型枠。
[6] 前記型枠部材の硬度は、前記気体透過部材よりも大きい、上記[1]~[5]のいずれか1つに記載の水硬性流動化物の炭酸化硬化用型枠。
[7] 前記気体透過部材は、外面に複数の凸部を有する、上記[1]~[6]のいずれか1つに記載の水硬性流動化物の炭酸化硬化用型枠。
[8] 前記型枠部材は、上部に開口部を有する、上記[1]~[7]のいずれか1つに記載の水硬性流動化物の炭酸化硬化用型枠。
[9] 上記[1]~[8]のいずれか1つに記載の水硬性流動化物の炭酸化硬化用型枠における前記気体透過部材の内側に水硬性流動化物を打設して貯留する打設工程と、前記気体透過部材に貯留している前記水硬性流動化物を養生しながら、前記気体透過部材の内部を透過した二酸化炭素を含む気体を前記水硬性流動化物に曝露し、前記水硬性流動化物を硬化しながら炭酸化して水硬性炭酸化構造体を得る炭酸化硬化工程とを有する、水硬性炭酸化構造体の製造方法。
[10] 炭酸化硬化工程において、水硬性流動化物を打設して5日以内に、前記水硬性流動化物を炭酸化する、上記[9]に記載の水硬性炭酸化構造体の製造方法。
[11] 炭酸化硬化工程において、水硬性流動化物を打設して2日以内に、前記水硬性流動化物を炭酸化する、上記[9]に記載の水硬性炭酸化構造体の製造方法。
[12] 炭酸化硬化工程において、水硬性流動化物を打設して1日以内に、前記水硬性流動化物を炭酸化する、上記[9]に記載の水硬性炭酸化構造体の製造方法。
[13] 前記水硬性炭酸化構造体を前記気体透過部材から脱型する脱型工程をさらに有する、上記[9]~[12]のいずれか1つに記載の水硬性炭酸化構造体の製造方法。
[1] A formwork member, and a formwork-like form that is provided inside the formwork member, is permeable to gas, and can expose the permeated gas to the hydraulic fluidized material stored inside. and a gas permeable member.
[2] The mold for carbonation hardening of the hydraulic fluidized material according to [1] above, wherein the gas permeable member has a porosity of 60% or more and 95% or less.
[3] The carbonation-hardening mold for a hydraulic fluidized product according to [1] or [2] above, wherein the gas permeable member is porous and has an average pore diameter of 80 μm or more and 700 μm or less. frame.
[4] The mold for carbonation hardening of the hydraulic fluidized material according to any one of [1] to [3] above, wherein the gas permeable member is a foamed material or a non-woven fabric.
[5] The formwork for carbonation hardening of hydraulic fluidized material according to any one of [1] to [4] above, wherein the formwork member has a mechanical strength greater than that of the gas permeable member.
[6] The mold for carbonation hardening of the hydraulic fluidized material according to any one of the above [1] to [5], wherein the hardness of the mold member is higher than that of the gas permeable member.
[7] The mold for carbonation hardening of the hydraulic fluidized material according to any one of [1] to [6], wherein the gas permeable member has a plurality of projections on the outer surface.
[8] The formwork for carbonation hardening of the hydraulic fluidized material according to any one of [1] to [7] above, wherein the formwork member has an opening at the top.
[9] A hammer for placing and storing the hydraulic fluidized material inside the gas permeable member in the carbonation hardening mold for the hydraulic fluidized material according to any one of the above [1] to [8]. and exposing the gas containing carbon dioxide permeated through the gas-permeable member to the hydraulic fluidized material while curing the hydraulic fluidized material stored in the gas-permeable member. A carbonation curing step of carbonating the fluidized material while curing to obtain a hydraulic carbonation structure.
[10] The method for producing a carbonated hydraulic structure according to [9] above, wherein in the carbonation curing step, the hydraulic fluidized material is carbonized within 5 days after casting the hydraulic fluidized material.
[11] The method for producing a carbonated hydraulic structure according to [9] above, wherein in the carbonation curing step, the hydraulic fluidized material is carbonized within two days after casting the hydraulic fluidized material.
[12] The method for producing a carbonated hydraulic structure according to [9] above, wherein in the carbonation hardening step, the hydraulic fluidized material is carbonized within one day after casting the hydraulic fluidized material.
[13] Manufacture of the hydraulic carbonation structure according to any one of the above [9] to [12], further comprising a demolding step of demolding the hydraulic carbonation structure from the gas permeable member. Method.

本発明によれば、短時間かつ簡便であり、脱型せずに水硬性流動化物を炭酸化硬化できる水硬性流動化物の炭酸化硬化用型枠および水硬性炭酸化構造体の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a carbonation-hardening mold for a hydraulic fluidized material and a method for manufacturing a hydraulic carbonation structure are provided, which are quick and easy, and which can carbonation-harden the hydraulic fluidized material without demolding. can do.

図1は、実施形態の水硬性流動化物の炭酸化硬化用型枠の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a mold for carbonation hardening of the hydraulic fluidized material of the embodiment. 図2は、図1の横断面図である。2 is a cross-sectional view of FIG. 1. FIG. 図3は、実施形態の水硬性流動化物の炭酸化硬化用型枠の他の例を示す横断面図である。FIG. 3 is a cross-sectional view showing another example of the carbonation hardening mold for the hydraulic fluidized material of the embodiment. 図4は、実施例1で得られた水硬性炭酸化構造体の炭酸化評価結果を示すデジカメ画像である。4 is a digital camera image showing carbonation evaluation results of the hydraulic carbonation structure obtained in Example 1. FIG. 図5は、比較例1で得られた水硬性炭酸化構造体の炭酸化評価結果を示すデジカメ画像である。5 is a digital camera image showing carbonation evaluation results of the hydraulic carbonation structure obtained in Comparative Example 1. FIG.

以下、実施形態に基づき詳細に説明する。 A detailed description will be given below based on the embodiment.

本発明者らは、鋭意研究を重ねた結果、型枠部材の内側に設けられ、水硬性流動化物を貯留する型枠状の部材が気体透過性を有する気体透過部材であることによって、気体透過部材の内側に貯留している水硬性流動化物を養生中に炭酸化でき、その結果、短時間かつ簡便に、脱型せずに水硬性流動化物を炭酸化硬化できることを見出し、かかる知見に基づき本発明を完成させるに至った。 As a result of intensive research, the present inventors have found that the gas permeable member is a gas permeable member that is provided inside the form member and stores the hydraulic fluidized material. The hydraulic fluidized material stored inside the member can be carbonized during curing, and as a result, the hydraulic fluidized material can be easily carbonated and hardened in a short time without demolding. The present invention has been completed.

本発明の水硬性流動化物の炭酸化硬化用型枠(以下、単に炭酸化硬化用型枠ともいう。)は、型枠部材と、型枠部材の内側に設けられ、気体を透過可能であり、内側に貯留している水硬性流動化物に対して内部を透過した気体を曝露可能な型枠状の気体透過部材(以下、単に気体透過部材ともいう。)とを備える。 The formwork for carbonation hardening of the hydraulic fluidized product of the present invention (hereinafter also simply referred to as the formwork for carbonation hardening) is provided inside the formwork member and the formwork member, and is permeable to gas. and a formwork-like gas permeable member (hereinafter also simply referred to as a gas permeable member) capable of exposing the gas that has permeated the inside to the hydraulic fluidized material stored inside.

図1は、実施形態の水硬性流動化物の炭酸化硬化用型枠の一例を示す斜視図である。図2は、図1の横断面図である。なお、図1~2では、水硬性流動化物Hが炭酸化硬化用型枠1の気体透過部材20に貯留している状態を示す。また、図1~2および後述する図3では、気体透過部材20における気体を透過可能な気孔部を便宜上省略する。 FIG. 1 is a perspective view showing an example of a mold for carbonation hardening of the hydraulic fluidized material of the embodiment. 2 is a cross-sectional view of FIG. 1. FIG. 1 and 2 show a state in which the hydraulic fluidized material H is stored in the gas permeable member 20 of the carbonation curing mold 1. As shown in FIG. 1 and 2 and FIG. 3, which will be described later, the gas permeable pores in the gas permeable member 20 are omitted for convenience.

図1に示すように、炭酸化硬化用型枠1は、型枠部材10と、型枠部材10の内側に設けられる型枠状の気体透過部材20とを備える。炭酸化硬化用型枠1は、気体透過部材20に貯留している水硬性流動化物Hを炭酸化硬化するための型枠である。水硬性流動化物Hの炭酸化硬化とは、水硬性流動化物Hの炭酸化および硬化である。 As shown in FIG. 1 , the carbonation curing mold 1 includes a mold member 10 and a mold-shaped gas permeable member 20 provided inside the mold member 10 . The carbonation hardening mold 1 is a mold for carbonation hardening of the hydraulic fluid H stored in the gas permeable member 20 . Carbonation hardening of the hydraulic fluidized material H means carbonation and hardening of the hydraulic fluidized material H.

炭酸化硬化用型枠1を構成する型枠部材10は、型枠状の気体透過部材20を外側から支持する。例えば、型枠部材10は、従来のような、水硬性流動化物Hを硬化させる、気体を透過しない既存の型枠である。型枠部材10としては、鋼のような金属、木材、樹脂などで形成され、これらの組み合わせで形成されてもよい。 A formwork member 10 constituting the carbonation curing formwork 1 supports a formwork-shaped gas permeable member 20 from the outside. For example, the formwork member 10 is a conventional existing formwork which is impermeable to gases and which hardens the hydraulic fluidize H. As shown in FIG. The form member 10 may be made of metal such as steel, wood, resin, or the like, or may be made of a combination thereof.

炭酸化硬化用型枠1を構成する気体透過部材20は気体を透過可能であり、気体透過部材20の内部を気体が透過する。気体透過部材20には、複数の気孔部が設けられている。気体透過部材20の内部を気体が透過できれば、複数の気孔部の形成状態は特に限定されるものではなく、複数の気孔部同士が互いに連通している状態でもよいし、複数の気孔部同士が互いに連通せずに独立している状態でもよいし、これらの状態が混在してもよい。 The gas permeable member 20 constituting the carbonation curing mold 1 is permeable to gas, and the gas permeates the interior of the gas permeable member 20 . The gas permeable member 20 is provided with a plurality of pores. The formation state of the plurality of pores is not particularly limited as long as the gas can permeate through the interior of the gas permeable member 20. The plurality of pores may be in communication with each other, or the plurality of pores may be in communication with each other. They may be independent without communicating with each other, or these states may be mixed.

また、気体透過部材20は、気体透過部材20の内側Iに貯留している水硬性流動化物Hに対して、気体透過部材20の内部を透過した気体を曝露可能である。例えば、図2に示すように、気体透過部材20の外面は、型枠部材10の内面に設けられる。また、例えば、貯留している水硬性流動化物Hは、気体透過部材20に接触している。型枠部材10の内面と気体透過部材20の外面とは接着剤などで固定されてもよい。 Further, the gas permeable member 20 can expose the gas that has permeated through the inside of the gas permeable member 20 to the hydraulic fluidized material H that is stored inside I of the gas permeable member 20 . For example, as shown in FIG. 2 , the outer surface of the gas permeable member 20 is provided on the inner surface of the form member 10 . Further, for example, the hydraulic fluidized material H that is stored is in contact with the gas permeable member 20 . The inner surface of the formwork member 10 and the outer surface of the gas permeable member 20 may be fixed with an adhesive or the like.

気体を透過可能である気体透過部材20について、気体透過部材20の壁部および底部では、それらの面内方向および面外方向に沿って、気体を透過可能である。外側Uの雰囲気が二酸化炭素を含んでいると、二酸化炭素は、外側Uから気体透過部材20の内部に侵入する。気体透過部材20の内部に侵入した二酸化炭素は、気体透過部材20の壁部および底部を面内方向に沿って透過しながら面外方向に沿って透過し、気体透過部材20の内側に貯留している水硬性流動化物Hに到達する。そのため、気体透過部材20は、気体を透過させない型枠部材10で外側から支持されていても、気体透過部材20の内側に貯留している水硬性流動化物Hを炭酸化できる。すなわち、気体透過部材20とは、二酸化炭素透過部材である。 Regarding the gas permeable member 20 that is permeable to gas, the walls and bottom of the gas permeable member 20 are permeable to gas along their in-plane and out-of-plane directions. If the atmosphere of the outside U contains carbon dioxide, the carbon dioxide enters the inside of the gas permeable member 20 from the outside U. The carbon dioxide that has entered the inside of the gas permeable member 20 permeates the walls and bottom of the gas permeable member 20 along the in-plane direction and the out-of-plane direction, and is stored inside the gas permeable member 20. Hydraulic fluidized material H is reached. Therefore, even if the gas permeable member 20 is supported from the outside by the gas-impermeable form member 10, the hydraulic fluidized material H stored inside the gas permeable member 20 can be carbonated. That is, the gas permeable member 20 is a carbon dioxide permeable member.

水硬性流動化物Hを短時間で均一に炭酸化する観点から、炭酸化硬化用型枠1は、図1~2に示すように、水硬性流動化物Hを貯留する部分では、型枠部材10の内側全面に気体透過部材20を備えることが好ましい。 From the viewpoint of uniformly carbonating the hydraulic fluidized material H in a short time, as shown in FIGS. It is preferable to provide the gas permeable member 20 on the entire inner surface of the .

また、気体透過部材20の気孔率について、下限値は、好ましくは60%以上、より好ましくは80%以上、さらに好ましくは85%以上であり、上限値は、好ましくは95%以下、より好ましくは91%以下である。気体透過部材20の気孔率が60%以上であると、気体透過部材20の内側に貯留している水硬性流動化物Hを短時間に炭酸化できる。気体透過部材20の気孔率が95%以下であると、気体透過部材20の強度低下を抑制できるため、水硬性流動化物Hの養生後に所望形状の水硬性炭酸化構造体を製造できる。 The lower limit of the porosity of the gas permeable member 20 is preferably 60% or more, more preferably 80% or more, and even more preferably 85% or more, and the upper limit is preferably 95% or less, more preferably 91% or less. When the porosity of the gas permeable member 20 is 60% or more, the hydraulic fluidized material H stored inside the gas permeable member 20 can be carbonated in a short period of time. If the porosity of the gas permeable member 20 is 95% or less, the decrease in strength of the gas permeable member 20 can be suppressed.

また、気体透過部材20は多孔質であることが好ましい。気体透過部材20が多孔質である場合、気体透過部材20の平均気孔径について、下限値は、好ましくは80μm以上、より好ましくは130μm以上、さらに好ましくは150μm以上であり、上限値は、好ましくは700μm以下、より好ましくは300μm以下である。気体透過部材20の平均気孔径が80μm以上であると、気体透過部材20の内側に貯留している水硬性流動化物Hを短時間に炭酸化できる。気体透過部材20の平均気孔径が700μm以下であると、気体透過部材20の強度低下を抑制できるため、水硬性流動化物Hの養生後に所望形状の水硬性炭酸化構造体を製造できる。 Also, the gas permeable member 20 is preferably porous. When the gas permeable member 20 is porous, the lower limit of the average pore diameter of the gas permeable member 20 is preferably 80 μm or more, more preferably 130 μm or more, still more preferably 150 μm or more, and the upper limit is preferably It is 700 μm or less, more preferably 300 μm or less. When the average pore diameter of the gas permeable member 20 is 80 μm or more, the hydraulic fluidized material H stored inside the gas permeable member 20 can be carbonated in a short period of time. When the average pore diameter of the gas permeable member 20 is 700 μm or less, the decrease in strength of the gas permeable member 20 can be suppressed.

水硬性流動化物Hを短時間で均一に炭酸化硬化する観点から、気体透過部材20は、発泡材料または不織布であることが好ましい。発泡材料のなかでも、スポンジであることがより好ましい。 From the viewpoint of uniformly carbonating and hardening the hydraulic fluidized material H in a short time, the gas permeable member 20 is preferably a foam material or a non-woven fabric. Among foamed materials, sponge is more preferable.

水硬性炭酸化構造体の成形性を向上する観点から、気体透過部材20に比べて、型枠部材10の機械的強度が大きいことが好ましい。また、同様の観点から、気体透過部材20に比べて、型枠部材10の硬度が大きいことが好ましい。 From the viewpoint of improving the moldability of the hydraulically carbonated structure, it is preferable that the mechanical strength of the form member 10 is greater than that of the gas permeable member 20 . Moreover, from the same point of view, it is preferable that the hardness of the form member 10 is greater than that of the gas permeable member 20 .

図3は、実施形態の水硬性流動化物の炭酸化硬化用型枠の他の例を示す横断面図である。図3に示すように、気体透過部材20は、外面に複数の凸部21を有することが好ましい。気体透過部材20の外面とは、型枠部材10に支持される面であり、気体透過部材20の内面とは、貯留中の水硬性流動化物Hに接触する面である。複数の凸部21が気体透過部材20の外面、好ましくは気体透過部材20の外面全面に設けられると、気体透過部材20の機械的強度や硬度が非常に小さくても、水硬性炭酸化構造体の成形性が良好である。 FIG. 3 is a cross-sectional view showing another example of the carbonation hardening mold for the hydraulic fluidized material of the embodiment. As shown in FIG. 3, the gas permeable member 20 preferably has a plurality of protrusions 21 on its outer surface. The outer surface of the gas permeable member 20 is the surface supported by the form member 10, and the inner surface of the gas permeable member 20 is the surface that contacts the hydraulic fluidized material H during storage. When the plurality of projections 21 are provided on the outer surface of the gas permeable member 20, preferably on the entire outer surface of the gas permeable member 20, even if the mechanical strength and hardness of the gas permeable member 20 are very small, the hydraulic carbonation structure can be obtained. Good moldability.

図3では、複数の凸部21のみが型枠部材10の内面に接触し、気体透過部材20と型枠部材10との間に隙間が存在している例について示しているが、複数の凸部21が先端側から基端側に向かって窪み、気体透過部材20と型枠部材10との間に隙間が存在せずに互いに接触してもよい。 FIG. 3 shows an example in which only the plurality of protrusions 21 are in contact with the inner surface of the formwork member 10 and a gap exists between the gas permeable member 20 and the formwork member 10. The portion 21 may be recessed from the distal end side to the proximal end side, and the gas permeable member 20 and the formwork member 10 may contact each other without a gap.

また、型枠部材10は、図1に示すように、上部に開口部11を有することが好ましい。型枠部材10の開口部11から、気体透過部材20の内側Iに水硬性流動化物Hを打設できる。また、水硬性流動化物Hの養生状態を開口部11から目視で容易に確認できる。 Moreover, as shown in FIG. 1, the form member 10 preferably has an opening 11 at the top. From the opening 11 of the formwork member 10 , the hydraulic fluidized material H can be poured into the inner side I of the gas permeable member 20 . Also, the cured state of the hydraulic fluidized material H can be easily confirmed visually from the opening 11 .

なお、型枠部材10の上部には、開口部11の代わりに、型枠部材10に対して着脱可能または開閉可能な不図示の蓋部を設けてもよい。この場合、不図示の蓋部を構成する型枠部材の内側には、上記と同様に、気体透過部材を設けることが好ましい。また、蓋部を構成する型枠部材には、外側Uと内側Iとを連通し、気体を侵入可能な貫通孔を設けてもよい。 Instead of the opening 11 , a cover (not shown) that can be attached to and removed from the formwork member 10 or that can be opened and closed may be provided on the upper part of the formwork member 10 . In this case, it is preferable to provide a gas-permeable member inside the formwork member that constitutes the lid portion (not shown) in the same manner as described above. Further, the formwork member forming the lid portion may be provided with a through-hole that allows the outside U and the inside I to communicate with each other and allows gas to enter.

炭酸化硬化用型枠1の気体透過部材20に貯留する水硬性流動化物Hは、炭酸化できるもの、すなわち硬化後に内部に二酸化炭素を固定化できるものである。水硬性流動化物Hの種類としては、好ましくはコンクリート、モルタルである。また、炭酸化を良好に実施する観点から、水硬性流動化物Hは、炭酸化成分として、γ-CS、普通ポルトランドセメント、消石灰、高炉水砕スラグ、膨張材、およびフライアッシュからなる群より選択される1種以上の物質を含むことが好ましい。 The hydraulic fluidized material H stored in the gas permeable member 20 of the carbonation curing mold 1 can be carbonated, that is, it can fix carbon dioxide inside after curing. Preferred types of the hydraulic fluidized material H are concrete and mortar. From the viewpoint of good carbonation, the hydraulic fluidized material H contains, as carbonation components, a group consisting of γ-C 2 S, ordinary Portland cement, slaked lime, granulated blast furnace slag, expansive agent, and fly ash. It preferably contains one or more selected substances.

水硬性流動化物Hの炭酸化のときに用いられる二酸化炭素源としては、二酸化炭素ボンベ、分離回収した二酸化炭素、火力発電所の排ガス、ボイラーからの排ガス、他の製品の製造工程で排出される二酸化炭素を含む排ガスのような各種排ガスが好ましい。また、排ガスを湿度や温度を調整したうえで、調整済みの排ガスを二酸化炭素源として使用してもよい。 Carbon dioxide sources used for carbonation of the hydraulic fluidized material H include carbon dioxide cylinders, separated and recovered carbon dioxide, exhaust gas from thermal power plants, exhaust gas from boilers, and other product manufacturing processes. Various exhaust gases are preferred, such as exhaust gases containing carbon dioxide. Alternatively, after adjusting the humidity and temperature of the exhaust gas, the adjusted exhaust gas may be used as the carbon dioxide source.

上記のように、炭酸化硬化用型枠1は、型枠部材10と、気体が内部を透過可能であり、内側に水硬性流動化物Hを打設して貯留する型枠状の気体透過部材20とを備える。気体透過部材20は、水硬性流動化物Hを貯留しながら、外側Uから内部に侵入して内側Iに排出する二酸化炭素を水硬性流動化物Hに曝すことができる。そのため、炭酸化硬化用型枠1は、気体透過部材20の内側で水硬性流動化物Hを炭酸化硬化できる。このように、炭酸化硬化用型枠1は、脱型作業が不要になり、短時間で簡便に炭酸化硬化できる。 As described above, the carbonation hardening mold 1 includes a mold member 10 and a mold-shaped gas permeable member through which gas can permeate and in which the hydraulic fluidized material H is placed and stored. 20. The gas permeable member 20 can expose the hydraulic fluidized material H to the carbon dioxide that enters from the outside U and is discharged to the inside I while retaining the hydraulic fluidized material H. Therefore, the carbonation hardening mold 1 can carbonation harden the hydraulic fluid H inside the gas permeable member 20 . In this way, the mold 1 for carbonation curing does not require demolding work, and carbonation curing can be easily performed in a short time.

また、水硬性流動化物Hを硬化した水硬性構造体に比べて、水硬性流動化物Hでは、内部全体に亘って多くの気体を短時間で侵入できる。そのため、従来に比べて、炭酸化硬化用型枠1は水硬性流動化物Hを内部全体に亘って均一的に短時間で炭酸化できる。 In addition, compared to the hydraulic structure obtained by hardening the hydraulic fluidized material H, the hydraulic fluidized material H allows a large amount of gas to enter the entire interior in a short time. Therefore, the carbonation curing mold 1 can uniformly carbonate the hydraulic fluid H throughout the entire interior in a short time compared to the conventional carbonation curing mold.

一方で、従来では、型枠に打設した水硬性流動化物Hを養生して水硬性構造物を作成し、水硬性構造物を型枠から脱型した後、水硬性構造物を炭酸化する。そのため、水硬性構造物を脱型する煩雑な作業が必要である。また、従来では、本発明のような硬化前の水硬性流動化物を炭酸化するのではなく、硬化後の水硬性構造物を炭酸化する。水硬性流動化物Hと異なり、水硬性構造物では、二酸化炭素は表面から浅い深さまでしか侵入せず、さらには侵入時間も遅い。そのため、水硬性構造物を炭酸化しても、内部は炭酸化せず、表面から浅い深さまでしか炭酸化しないうえに、炭酸化の時間は遅い。 On the other hand, conventionally, a hydraulic structure is produced by curing the hydraulic fluidized material H placed in a formwork, and after the hydraulic structure is removed from the formwork, the hydraulic structure is carbonated. . Therefore, complicated work is required to demold the hydraulic structure. Further, conventionally, instead of carbonating the hydraulic fluidized material before hardening as in the present invention, the hydraulic structure after hardening is carbonated. Unlike the hydraulic fluidized material H, in the hydraulic structure, carbon dioxide penetrates only to a shallow depth from the surface, and the penetration time is slow. Therefore, even if the hydraulic structure is carbonized, the inside is not carbonized, carbonation occurs only from the surface to a shallow depth, and the carbonation takes a long time.

次に、本発明の水硬性炭酸化構造体の製造方法について説明する。本発明の水硬性炭酸化構造体の製造方法では、上記の炭酸化硬化用型枠1を使用する。具体的には、水硬性炭酸化構造体の製造方法は、打設工程と炭酸化硬化工程とを有する。 Next, the method for producing the hydraulic carbonation structure of the present invention will be described. In the method for manufacturing a hydraulic carbonation structure of the present invention, the carbonation curing mold 1 described above is used. Specifically, the manufacturing method of the hydraulic carbonation structure has a casting step and a carbonation curing step.

打設工程では、炭酸化硬化用型枠1における気体透過部材20の内側Iに水硬性流動化物Hを打設して貯留する。水硬性流動化物Hは、例えば開口部11から気体透過部材20に打設される。 In the placing step, the hydraulic fluidized material H is placed and stored in the inside I of the gas permeable member 20 of the carbonation curing mold 1 . The hydraulic fluidized material H is driven into the gas permeable member 20 from the opening 11, for example.

打設工程の後に実施する炭酸化硬化工程では、気体透過部材20に貯留している水硬性流動化物Hを養生しながら、気体透過部材20の内部を透過した二酸化炭素を含む気体を水硬性流動化物Hに曝露し、水硬性流動化物Hを硬化しながら炭酸化して水硬性炭酸化構造体を得る。こうして、水硬性流動化物Hを気体透過部材20に貯留している状態で、炭酸化硬化用型枠1を炭酸環境下にすることで、炭酸化硬化用型枠1は気体透過部材20によって水硬性流動化物Hを炭酸化硬化できる。 In the carbonation hardening step performed after the placing step, the gas containing carbon dioxide permeated through the gas permeable member 20 is hydraulically flowed while curing the hydraulic fluidized material H stored in the gas permeable member 20. exposing to the compound H and carbonating the hydraulic fluidized compound H while hardening to obtain a hydraulically carbonated structure. In this way, in a state where the hydraulic fluidized material H is stored in the gas permeable member 20, the carbonation hardening mold 1 is exposed to the carbonic acid environment, so that the carbonation hardening mold 1 is exposed to the water by the gas permeable member 20. The hard fluidized material H can be carbonation hardened.

炭酸化および硬化の時期は、炭酸化の程度、水硬性炭酸化構造体の所望の性質などに応じて適宜選択でき、炭酸化は、硬化前に実施してもよいし、硬化後に実施してもよいし、硬化中に実施してもよい。そのなかでも、炭酸化硬化工程において、水硬性流動化物Hを打設して、好ましくは5日以内、より好ましくは2日以内、さらに好ましくは1日以内に水硬性流動化物Hを炭酸化すると、水硬性流動化物Hを均一に炭酸化できる。 The timing of carbonation and curing can be appropriately selected depending on the degree of carbonation, the desired properties of the hydraulic carbonation structure, etc. Carbonation may be performed before curing or after curing. or during curing. Among them, in the carbonation hardening step, when the hydraulic fluidized material H is placed, preferably within 5 days, more preferably within 2 days, and further preferably within 1 day, carbonation of the hydraulic fluidized material H is carried out. , the hydraulic fluidized material H can be uniformly carbonated.

また、本発明の水硬性炭酸化構造体の製造方法は、脱型工程をさらに有してもよい。脱型工程は、炭酸化硬化工程後に実施される。脱型工程では、水硬性炭酸化構造体を気体透過部材20から脱型する。また、気体透過部材20から脱型した水硬性炭酸化構造体は、必要に応じて、加熱処理を行ってもよい。 Moreover, the method for producing a hydraulically carbonated structure of the present invention may further include a demolding step. The demolding step is performed after the carbonation curing step. In the demolding step, the hydraulic carbonation structure is demolded from the gas permeable member 20 . Moreover, the hydraulic carbonation structure demolded from the gas permeable member 20 may be subjected to a heat treatment, if necessary.

以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。 Although the embodiments have been described above, the present invention is not limited to the above embodiments, and includes all aspects included in the concept and claims of the present disclosure, and can be variously modified within the scope of the present disclosure. be able to.

次に、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Next, examples and comparative examples will be described, but the present invention is not limited to these examples.

(実施例1)
まず、水硬性流動化物を調製した。具体的には、水道水175kg/m、普通ポルトランドセメント105kg/m、高炉水砕スラグ140kg/m、ビーライトγ型105kg/m、砕砂733kg/m、砕石1015kg/mをコンクリートミキサにより混錬して、水硬性流動化物を得た。
(Example 1)
First, a hydraulic fluidized material was prepared. Specifically, 175 kg/m 3 of tap water, 105 kg/m 3 of ordinary portland cement, 140 kg/m 3 of granulated blast furnace slag, 105 kg/m 3 of belite gamma type, 733 kg/m 3 of crushed sand, and 1015 kg/m 3 of crushed stone. The mixture was kneaded with a concrete mixer to obtain a hydraulic fluidized material.

続いて、図3に示すような蓋部を具備しない炭酸化硬化用型枠に、水硬性流動化物を打設した。炭酸化硬化用型枠として、型枠部材は鋼製のものを用い、気体透過部材は、複数の凸部を外面に備えるスポンジを用いた。 Subsequently, the hydraulic fluidized material was placed in a mold for carbonation curing without a lid as shown in FIG. As the mold for carbonation curing, the mold member was made of steel, and the gas permeable member was sponge having a plurality of projections on its outer surface.

続いて、水硬性流動化物を打設後、ただちに水硬性流動化物を炭酸化硬化した。炭酸化の条件は、温度20℃、二酸化炭素濃度80%、7日間とした。このような条件で水硬性流動化物を炭酸化硬化することによって、水硬性炭酸化構造体を得た。 Immediately after placing the hydraulic fluidized material, the hydraulic fluidized material was carbonized and hardened. Carbonation conditions were a temperature of 20° C., a carbon dioxide concentration of 80%, and 7 days. A hydraulically carbonated structure was obtained by carbonating and hardening the hydraulic fluidized material under these conditions.

(比較例1)
気体透過部材を設けない以外は実施例1と同様にして、水硬性炭酸化構造体を得た。
(Comparative example 1)
A hydraulic carbonation structure was obtained in the same manner as in Example 1, except that no gas permeable member was provided.

[評価]
上記実施例および比較例で得られた水硬性炭酸化構造体について、炭酸化の評価を行った。具体的には、水硬性炭酸化構造体を切断して横断面を切り出し、フェノールフタレイン試薬を水硬性炭酸化構造体の断面に噴霧した。続いて、フェノールフタレイン試薬を噴霧した断面をデジカメ画像で観察した。デジカメ画像において、濃い部分(赤色部分)は炭酸化されずにアルカリ性が維持された部分であり、薄い部分は炭酸化された部分である。
[evaluation]
Carbonation was evaluated for the hydraulic carbonation structures obtained in the above examples and comparative examples. Specifically, the hydraulic carbonation structure was cut to obtain a cross section, and the phenolphthalein reagent was sprayed on the cross section of the hydraulic carbonation structure. Subsequently, the section sprayed with the phenolphthalein reagent was observed with a digital camera image. In the digital camera image, dark portions (red portions) are portions where alkalinity is maintained without being carbonated, and light portions are portions which are carbonated.

図4は、実施例1で得られた水硬性炭酸化構造体の炭酸化評価結果を示すデジカメ画像である。図5は、比較例1で得られた水硬性炭酸化構造体の炭酸化評価結果を示すデジカメ画像である。なお、図4~5の上側は、型枠部材の開口部側である。 4 is a digital camera image showing carbonation evaluation results of the hydraulic carbonation structure obtained in Example 1. FIG. 5 is a digital camera image showing carbonation evaluation results of the hydraulic carbonation structure obtained in Comparative Example 1. FIG. The upper side of FIGS. 4 and 5 is the side of the opening of the form member.

図4に示すように、実施例1で得られた水硬性炭酸化構造体では、横断面の全周に亘り、表面から所定深さまで、均一な炭酸化を確認できた。このことから、気体透過部材内に侵入した二酸化炭素が、気体透過部材の内側に貯留している水硬性流動化物の表面全体に亘って短時間に均一に到達し、その後、二酸化炭素が水硬性流動化物と反応したことが示唆された。 As shown in FIG. 4, in the hydraulic carbonation structure obtained in Example 1, uniform carbonation was confirmed from the surface to a predetermined depth over the entire circumference of the cross section. For this reason, the carbon dioxide that has entered the gas permeable member uniformly reaches the entire surface of the hydraulic fluidized material stored inside the gas permeable member in a short time, and then the carbon dioxide is released into the hydraulic fluidized material. It was suggested that it reacted with the fluidized material.

一方、図5に示すように、比較例1で得られた水硬性炭酸化構造体では、型枠部材の開口部側である水硬性炭酸化構造体の上部のみで炭酸化を確認した。このことから、比較例1では気体透過部材を用いなかったため、型枠部材の開口部から侵入した二酸化炭素は、型枠部材の内側に貯留している水硬性流動化物に対して、表面全体には到達せずに、開口部側の上部のみに到達し、その後、二酸化炭素が水硬性流動化物の上部のみと反応したことが示唆された。 On the other hand, as shown in FIG. 5, in the hydraulic carbonation structure obtained in Comparative Example 1, carbonation was confirmed only in the upper part of the hydraulic carbonation structure, which is the opening side of the form member. For this reason, since the gas permeable member was not used in Comparative Example 1, the carbon dioxide that entered from the opening of the formwork member spreads over the entire surface of the hydraulic fluidized material stored inside the formwork member. It was suggested that carbon dioxide reached only the upper part of the opening side without reaching, and then carbon dioxide reacted only with the upper part of the hydraulic fluidized material.

1 水硬性流動化物の炭酸化硬化用型枠(炭酸化硬化用型枠)
10 型枠部材
11 開口部
20 気体透過部材
21 凸部
H 水硬性流動化物
U 外側
I 内側
1 Formwork for carbonation hardening of hydraulic fluidized material (formwork for carbonation hardening)
REFERENCE SIGNS LIST 10 form member 11 opening 20 gas permeable member 21 convex portion H hydraulic fluidized material U outside I inside

Claims (13)

型枠部材と、
前記型枠部材の内側に設けられ、気体を透過可能であり、内側に貯留している水硬性流動化物に対して内部を透過した気体を曝露可能な型枠状の気体透過部材と
を備える、水硬性流動化物の炭酸化硬化用型枠。
a formwork member;
a formwork-like gas permeable member that is provided inside the formwork member, is permeable to gas, and can expose the gas that has permeated the interior to the hydraulic fluidized material stored inside; Formwork for carbonation hardening of hydraulic fluids.
前記気体透過部材の気孔率は、60%以上95%以下である、請求項1に記載の水硬性流動化物の炭酸化硬化用型枠。 2. The mold for carbonation hardening of hydraulic fluidized material according to claim 1, wherein said gas permeable member has a porosity of 60% or more and 95% or less. 前記気体透過部材は多孔質であり、前記気体透過部材の平均気孔径は80μm以上700μm以下である、請求項1または2に記載の水硬性流動化物の炭酸化硬化用型枠。 3. The mold for carbonation hardening of hydraulic fluidized material according to claim 1, wherein said gas permeable member is porous and has an average pore diameter of 80 [mu]m or more and 700 [mu]m or less. 前記気体透過部材は、発泡材料または不織布である、請求項1~3のいずれか1項に記載の水硬性流動化物の炭酸化硬化用型枠。 The mold for carbonation curing of a hydraulic fluidized product according to any one of claims 1 to 3, wherein the gas permeable member is a foamed material or a non-woven fabric. 前記型枠部材の機械的強度は、前記気体透過部材よりも大きい、請求項1~4のいずれか1項に記載の水硬性流動化物の炭酸化硬化用型枠。 5. The mold for carbonation hardening of the hydraulic fluidized material according to claim 1, wherein the mechanical strength of the mold member is greater than that of the gas permeable member. 前記型枠部材の硬度は、前記気体透過部材よりも大きい、請求項1~5のいずれか1項に記載の水硬性流動化物の炭酸化硬化用型枠。 The mold for carbonation hardening of hydraulic fluidized material according to any one of claims 1 to 5, wherein the hardness of the mold member is higher than that of the gas permeable member. 前記気体透過部材は、外面に複数の凸部を有する、請求項1~6のいずれか1項に記載の水硬性流動化物の炭酸化硬化用型枠。 The mold for carbonation hardening of hydraulic fluidized material according to any one of claims 1 to 6, wherein said gas permeable member has a plurality of protrusions on its outer surface. 前記型枠部材は、上部に開口部を有する、請求項1~7のいずれか1項に記載の水硬性流動化物の炭酸化硬化用型枠。 The formwork for carbonation hardening of hydraulic fluidized material according to any one of claims 1 to 7, wherein said formwork member has an opening at the top. 請求項1~8のいずれか1項に記載の水硬性流動化物の炭酸化硬化用型枠における前記気体透過部材の内側に水硬性流動化物を打設して貯留する打設工程と、
前記気体透過部材に貯留している前記水硬性流動化物を養生しながら、前記気体透過部材の内部を透過した二酸化炭素を含む気体を前記水硬性流動化物に曝露し、前記水硬性流動化物を硬化しながら炭酸化して水硬性炭酸化構造体を得る炭酸化硬化工程と
を有する、水硬性炭酸化構造体の製造方法。
A placing step of placing and storing the hydraulic fluidized material inside the gas permeable member in the carbonation hardening mold for the hydraulic fluidized material according to any one of claims 1 to 8;
While curing the hydraulic fluidized material stored in the gas permeable member, the gas containing carbon dioxide permeated through the gas permeable member is exposed to the hydraulic fluidized material to harden the hydraulic fluidized material. and a carbonation curing step of carbonating to obtain a hydraulic carbonation structure.
炭酸化硬化工程において、水硬性流動化物を打設して5日以内に、前記水硬性流動化物を炭酸化する、請求項9に記載の水硬性炭酸化構造体の製造方法。 10. The method for producing a hydraulically carbonated structure according to claim 9, wherein in the carbonation hardening step, the hydraulic fluidized material is carbonized within 5 days after casting the hydraulic fluidized material. 炭酸化硬化工程において、水硬性流動化物を打設して2日以内に、前記水硬性流動化物を炭酸化する、請求項9に記載の水硬性炭酸化構造体の製造方法。 10. The method for producing a carbonated hydraulic structure according to claim 9, wherein in the carbonation hardening step, the hydraulic fluidized material is carbonized within two days after casting the hydraulic fluidized material. 炭酸化硬化工程において、水硬性流動化物を打設して1日以内に、前記水硬性流動化物を炭酸化する、請求項9に記載の水硬性炭酸化構造体の製造方法。 10. The method for producing a hydraulically carbonated structure according to claim 9, wherein in the carbonation hardening step, the hydraulic fluidized material is carbonized within one day after casting the hydraulic fluidized material. 前記水硬性炭酸化構造体を前記気体透過部材から脱型する脱型工程をさらに有する、請求項9~12のいずれか1項に記載の水硬性炭酸化構造体の製造方法。 The method for producing a hydraulically carbonated structure according to any one of claims 9 to 12, further comprising a demolding step of demolding the hydraulically carbonated structure from the gas permeable member.
JP2021141402A 2021-08-31 2021-08-31 Carbonation hardening flask for hydraulic fluidized material and hydraulic carbonated structure production method Pending JP2023034915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021141402A JP2023034915A (en) 2021-08-31 2021-08-31 Carbonation hardening flask for hydraulic fluidized material and hydraulic carbonated structure production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021141402A JP2023034915A (en) 2021-08-31 2021-08-31 Carbonation hardening flask for hydraulic fluidized material and hydraulic carbonated structure production method

Publications (1)

Publication Number Publication Date
JP2023034915A true JP2023034915A (en) 2023-03-13

Family

ID=85504575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021141402A Pending JP2023034915A (en) 2021-08-31 2021-08-31 Carbonation hardening flask for hydraulic fluidized material and hydraulic carbonated structure production method

Country Status (1)

Country Link
JP (1) JP2023034915A (en)

Similar Documents

Publication Publication Date Title
CN114873979B (en) Low-carbon cement concrete and preparation method thereof
US20130087075A1 (en) Process for the Manufacture of Aerated Concrete Construction Materials and Construction Materials Obtained Thereof
KR101713828B1 (en) Cementless promotion-type admixture, and cementless composition comprising it
CN114290511B (en) Method for enhancing carbon dioxide solid existence in cement-based material
CN108640598A (en) A kind of preparation method of carbon sequestration precast concrete
JP2000281467A (en) Curing of concrete
JP5189262B2 (en) Carbon dioxide fixed concrete structure
JP2002012480A (en) Method of manufacturing carbonated solid
CN108714962A (en) A method of preparing carbon sequestration precast concrete using discarded concrete
JP2023034915A (en) Carbonation hardening flask for hydraulic fluidized material and hydraulic carbonated structure production method
FI72965C (en) FOERFARANDE FOER SNABB HAERDNING AV BETONG VID SPRUTNING AV BETONG.
JP6846744B2 (en) Precast cement panel for residual formwork and its manufacturing method
JP2001253785A (en) Method of producing porous solidified body by carbon dioxide fixation
JP7076704B2 (en) Cement composition for centrifugal molding, manufacturing method of tubular molded body
JP2023032401A (en) Carbonation curing flask for hydraulic fluidized material and method for producing hydraulic carbonated structure
CN113526937B (en) Method for improving strength of calcium hydroxide carbonized hardened body and product
KR102646857B1 (en) Curing method of cementitious materials using alkanol amine
JP2002003921A (en) Method for producing fixed carbonic
JP4549293B2 (en) Carbon dioxide fixed retaining wall
JP2007008748A (en) Concrete composition for forming carbon dioxide fixing formed body, carbon dioxide fixing formed body made of the composition, and method of manufacturing the formed body
KR101032636B1 (en) The insulating material with a decompression device for light weight aggregate and the making method thereof
JP2005125135A (en) Method for improving byproduct slaked lime
US11814322B1 (en) Metal-organic frameworks: a platform for reducing the carbon footprint of cement-based composites and the method for making the same
DE1646512B2 (en) MOLDING DIMENSIONS WITH REDUCED VOLUME
JP7312385B1 (en) Method for producing concrete composition and method for producing concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240220