JP2023032920A - Vacuum treatment apparatus and substrate treatment method - Google Patents

Vacuum treatment apparatus and substrate treatment method Download PDF

Info

Publication number
JP2023032920A
JP2023032920A JP2021139296A JP2021139296A JP2023032920A JP 2023032920 A JP2023032920 A JP 2023032920A JP 2021139296 A JP2021139296 A JP 2021139296A JP 2021139296 A JP2021139296 A JP 2021139296A JP 2023032920 A JP2023032920 A JP 2023032920A
Authority
JP
Japan
Prior art keywords
substrate
shutter
gas
wafer
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021139296A
Other languages
Japanese (ja)
Inventor
貫人 中村
Tsurahito Nakamura
淳 五味
Atsushi Gomi
直起 ▲高▼橋
Naoki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2021139296A priority Critical patent/JP2023032920A/en
Publication of JP2023032920A publication Critical patent/JP2023032920A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

To provide a vacuum treatment apparatus and a substrate treatment method that can adjust a pressure distribution of a gas supplied to a substrate and containing oxygen.SOLUTION: A vacuum treatment apparatus comprises: a rotatable mount part on which a substrate is mounted; a shutter which can move between a shield position where the substrate mounted on the mount part is shielded and a retraction position where the shutter retracts from the substrate; a drive part which moves the shutter; and a control part which controls the drive part. The shutter has a shield member which forms a treatment space with the mount part and a gas supply part which supplies a gas to the treatment space. The control part moves the shutter to a gas supply position between the shield position and the retraction position, and supplies the gas.SELECTED DRAWING: Figure 7

Description

本発明は、真空処理装置及び基板処理方法に関する。 The present invention relates to a vacuum processing apparatus and a substrate processing method.

特許文献1には、真空容器内の載置部上の基板に向くように配置されたターゲットを、プラズマ発生用のガスをプラズマ化して得たプラズマ中のイオンによりスパッタして基板上に金属膜を形成し、次いでこの金属膜を酸化する真空処理装置において、基板を覆う遮蔽位置と基板を覆う位置から退避した退避位置との間で移動自在な遮蔽部材と、基板の上方位置と上方位置から退避した退避位置との間で移動自在に構成され、酸素を含むガスを供給するための酸素供給部と、を備える真空処理装置が開示されている。 In Patent Document 1, a metal film is formed on a substrate by sputtering a target arranged to face a substrate on a mounting portion in a vacuum chamber with ions in plasma obtained by converting gas for plasma generation into plasma. and then oxidizing this metal film, a shielding member movable between a shielding position covering the substrate and a retracted position retracted from the position covering the substrate; A vacuum processing apparatus is disclosed which is configured to be movable between a retracted retracted position and which includes an oxygen supply section for supplying a gas containing oxygen.

特許第5998654号公報Japanese Patent No. 5998654

ところで、酸素は反応性に富むため、基板から遠い位置から、基板に酸素を含むガスを供給した場合、酸素を含むガスは、基板に到達する前に、例えばターゲットをスパッタして基板上に金属膜を成膜する際にチャンバ内壁等に付着した金属等と反応・吸着することにより、基板上に成膜された金属膜に安定供給ができなくなる。 By the way, since oxygen is highly reactive, when a gas containing oxygen is supplied to the substrate from a position distant from the substrate, the gas containing oxygen will, for example, sputter a target and deposit metal on the substrate before reaching the substrate. When the film is formed, it reacts with and adsorbs the metal adhered to the inner wall of the chamber, etc., and thus the metal film formed on the substrate cannot be stably supplied.

また、特許文献1に開示された真空処理装置に示すように、遮蔽部材を遮蔽位置に移動させるとともに、酸素供給部を上方位置に移動させ、基板に酸素を含むガスを供給した場合、基板の中心付近と外縁との間に圧力差が生じる。 Further, as shown in the vacuum processing apparatus disclosed in Patent Document 1, when the shielding member is moved to the shielding position and the oxygen supply unit is moved to the upper position to supply a gas containing oxygen to the substrate, the substrate is A pressure difference is created between the vicinity of the center and the outer edge.

上記課題に対して、一側面では、基板に供給される酸素を含むガスの圧力分布を調整可能な真空処理装置及び基板処理方法を提供することを目的とする。 An object of one aspect of the present invention is to provide a vacuum processing apparatus and a substrate processing method capable of adjusting the pressure distribution of a gas containing oxygen supplied to a substrate.

上記課題を解決するために、一の態様によれば、基板を載置する回転可能な載置部と、前記載置部に載置された前記基板を遮蔽する遮蔽位置と前記基板から退避する退避位置との間を移動可能なシャッターと、前記シャッターを移動させる駆動部と、前記駆動部を制御する制御部と、を備え、前記シャッターは、前記載置部との間に処理空間を形成する遮蔽部材と、前記処理空間にガスを供給するガス供給部と、を有し、前記制御部は、前記遮蔽位置と前記退避位置の間のガス供給位置に前記シャッターを移動させ、前記ガスを供給する、真空処理装置が提供される。 In order to solve the above problems, according to one aspect, there is provided a rotatable mounting portion for mounting a substrate, a shielding position for shielding the substrate mounted on the mounting portion, and a retracting position from the substrate. A shutter movable between a retracted position, a driving unit for moving the shutter, and a control unit for controlling the driving unit, wherein the shutter forms a processing space between the mounting unit and the mounting unit. and a gas supply unit for supplying gas to the processing space, wherein the control unit moves the shutter to a gas supply position between the shielding position and the retracted position to supply the gas. A vacuum processing apparatus is provided.

一の側面によれば、基板に供給される酸素を含むガスの圧力分布を調整可能な真空処理装置及び基板処理方法を提供することができる。 According to one aspect, it is possible to provide a vacuum processing apparatus and a substrate processing method capable of adjusting the pressure distribution of oxygen-containing gas supplied to the substrate.

基板処理システムの一例の構成を示す平面図である。1 is a plan view showing the configuration of an example of a substrate processing system; FIG. 基板処理システムで形成される素子の断面図の一例である。1 is an example of a cross-sectional view of a device formed in a substrate processing system; FIG. 本実施形態に係る処理室の構成を示す断面図の一例である。It is an example of a cross-sectional view showing the configuration of a processing chamber according to the present embodiment. 本実施形態に係る処理室による成膜処理を説明するフローチャートである。4 is a flow chart for explaining film formation processing in a processing chamber according to the present embodiment; 本実施形態に係る処理室の状態を説明する模式図である。It is a schematic diagram explaining the state of the processing chamber which concerns on this embodiment. 本実施形態に係る処理室が備えるシャッターを下方から見た模式図である。FIG. 3 is a schematic diagram of a shutter provided in the processing chamber according to the present embodiment, viewed from below; 本実施形態に係る処理室における酸素ガスの流れを説明する図である。It is a figure explaining the flow of oxygen gas in the processing chamber concerning this embodiment. シャッターの遮蔽位置と退避位置とを説明する図である。It is a figure explaining the shielding position and retracted position of a shutter. 本実施形態のガス供給時におけるシャッターの位置を説明する図である。It is a figure explaining the position of the shutter at the time of gas supply of this embodiment. 参考例におけるMTJ素子のRA分布を説明するグラフの一例である。It is an example of a graph explaining the RA distribution of the MTJ element in the reference example. 本実施例におけるMTJ素子のRA分布を説明するグラフの一例である。5 is an example of a graph for explaining the RA distribution of the MTJ element in this example.

以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components are denoted by the same reference numerals, and redundant description may be omitted.

<基板処理システム100>
基板処理システム100の全体構成の一例について、図1を用いて説明する。図1は、基板処理システム100の一例の構成を示す平面図である。
<Substrate processing system 100>
An example of the overall configuration of the substrate processing system 100 will be described with reference to FIG. FIG. 1 is a plan view showing an example configuration of a substrate processing system 100. As shown in FIG.

図1に示す基板処理システム100は、クラスタ構造(マルチチャンバタイプ)のシステムである。基板処理システム100は、複数の処理室111~115、真空搬送室120、ロードロック室131,132、大気搬送室140、ロードポート150及び制御部200を備えている。 The substrate processing system 100 shown in FIG. 1 is a cluster structure (multi-chamber type) system. The substrate processing system 100 includes a plurality of processing chambers 111 to 115, a vacuum transfer chamber 120, load lock chambers 131 and 132, an atmospheric transfer chamber 140, a load port 150 and a controller 200.

処理室(真空処理装置)111~115は、所定の真空雰囲気に減圧され、その内部にてウエハ(基板)Wに所望の処理(クリーニング処理、エッチング処理、成膜処理等)を施す。処理室111~115は、真空搬送室120に隣接して配置される。処理室111~115と真空搬送室120とは、ゲートバルブ(図2で後述するゲートバルブ24参照)の開閉により連通する。処理室111~115は、ウエハWを載置する載置部(図2で後述する載置部6参照)を有する。なお、処理室111~115における処理のための各部の動作は、制御部200によって制御される。 The processing chambers (vacuum processing apparatuses) 111 to 115 are depressurized to a predetermined vacuum atmosphere, and perform desired processing (cleaning processing, etching processing, film forming processing, etc.) on the wafer (substrate) W therein. Processing chambers 111 - 115 are arranged adjacent to vacuum transfer chamber 120 . The processing chambers 111 to 115 and the vacuum transfer chamber 120 communicate with each other by opening and closing a gate valve (see gate valve 24 described later in FIG. 2). Each of the processing chambers 111 to 115 has a mounting section (see mounting section 6 described later with reference to FIG. 2) on which the wafer W is mounted. The operation of each unit for processing in the processing chambers 111 to 115 is controlled by the control unit 200. FIG.

真空搬送室120は、ゲートバルブを介して、複数の室(処理室111~115、ロードロック室131,132)と連結され、所定の真空雰囲気に減圧されている。また、真空搬送室120の内部には、ウエハWを搬送する真空搬送装置121が設けられている。真空搬送装置121は、処理室111~115のゲートバルブの開閉に応じて、処理室111~115と真空搬送室120との間でウエハWの搬入及び搬出を行う。また、真空搬送装置121は、ロードロック室131,132のゲートバルブの開閉に応じて、ロードロック室131,132と真空搬送室120との間でウエハWの搬入及び搬出を行う。なお、真空搬送装置121の動作、ゲートバルブの開閉は、制御部200によって制御される。 The vacuum transfer chamber 120 is connected to a plurality of chambers (processing chambers 111 to 115, load lock chambers 131 and 132) through gate valves, and is decompressed to a predetermined vacuum atmosphere. A vacuum transfer device 121 for transferring the wafer W is provided inside the vacuum transfer chamber 120 . The vacuum transfer device 121 loads and unloads the wafer W between the processing chambers 111 to 115 and the vacuum transfer chamber 120 according to the opening and closing of the gate valves of the processing chambers 111 to 115 . In addition, the vacuum transfer device 121 loads and unloads the wafer W between the load lock chambers 131 and 132 and the vacuum transfer chamber 120 according to the opening and closing of the gate valves of the load lock chambers 131 and 132 . The operation of the vacuum transfer device 121 and the opening and closing of the gate valve are controlled by the controller 200 .

ロードロック室131,132は、真空搬送室120と大気搬送室140との間に設けられている。ロードロック室131,132は、ウエハWを載置する載置部(図示せず)を有する。ロードロック室131,132は、大気雰囲気と真空雰囲気とを切り替えることができるようになっている。ロードロック室131,132と真空雰囲気の真空搬送室120とは、ゲートバルブの開閉により連通する。ロードロック室131,132と大気雰囲気の大気搬送室140とは、ドアバルブの開閉により連通する。なお、ロードロック室131,132内の真空雰囲気または大気雰囲気の切り替えは、制御部200によって制御される。 The load lock chambers 131 and 132 are provided between the vacuum transfer chamber 120 and the atmosphere transfer chamber 140 . The load lock chambers 131 and 132 have mounting portions (not shown) on which the wafers W are mounted. The load-lock chambers 131 and 132 can switch between an atmospheric atmosphere and a vacuum atmosphere. The load lock chambers 131 and 132 and the vacuum transfer chamber 120 having a vacuum atmosphere communicate with each other by opening and closing gate valves. The load-lock chambers 131 and 132 and the atmospheric transfer chamber 140 having an atmospheric atmosphere communicate with each other by opening and closing a door valve. Switching between the vacuum atmosphere and the air atmosphere in the load lock chambers 131 and 132 is controlled by the control unit 200 .

大気搬送室140は、大気雰囲気となっており、例えば清浄空気のダウンフローが形成されている。また、大気搬送室140の内部には、ウエハWを搬送する大気搬送装置141が設けられている。また、大気搬送室140には、ウエハWの位置合わせを行うアライナ142が設けられている。 The atmospheric transfer chamber 140 has an atmospheric atmosphere, and for example, a down flow of clean air is formed. An atmospheric transfer device 141 for transferring the wafer W is provided inside the atmospheric transfer chamber 140 . An aligner 142 for aligning the wafer W is provided in the atmospheric transfer chamber 140 .

また、大気搬送室140の壁面には、ロードポート150が設けられている。ロードポート150は、ウエハWが収容されたキャリアF又は空のキャリアFが取り付けられる。キャリアFとしては、例えば、FOUP(Front Opening Unified Pod)等を用いることができる。 A load port 150 is provided on the wall surface of the atmosphere transfer chamber 140 . A carrier F containing wafers W or an empty carrier F is attached to the load port 150 . As the carrier F, for example, a FOUP (Front Opening Unified Pod) or the like can be used.

大気搬送装置141は、ドアバルブの開閉に応じて、ロードロック室131,132と大気搬送室140との間でウエハWの搬入及び搬出を行う。また、大気搬送装置141は、アライナ142と大気搬送室140との間でウエハWの搬入及び搬出を行う。また、
大気搬送装置141は、ロードポート150に取り付けられたキャリアFと大気搬送室140との間でウエハWの搬入及び搬出を行う。なお、大気搬送装置141の動作、ドアバルブの開閉は、制御部200によって制御される。
The atmospheric transfer device 141 carries in and out the wafers W between the load lock chambers 131 and 132 and the atmospheric transfer chamber 140 according to the opening and closing of the door valve. Also, the atmospheric transfer device 141 carries in and out the wafer W between the aligner 142 and the atmospheric transfer chamber 140 . again,
The atmospheric transfer device 141 loads and unloads the wafer W between the carrier F attached to the load port 150 and the atmospheric transfer chamber 140 . Note that the operation of the atmosphere transfer device 141 and the opening and closing of the door valve are controlled by the controller 200 .

制御部200は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)及びHDD(Hard Disk Drive)を有する。制御部200は、HDDに限らずSSD(Solid State Drive)等の他の記憶領域を有してもよい。HDD、RAM等の記憶領域には、プロセスの手順、プロセスの条件、搬送条件が設定されたレシピが格納されている。 The control unit 200 has a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and HDD (Hard Disk Drive). The control unit 200 may have other storage areas such as an SSD (Solid State Drive) in addition to the HDD. A storage area such as an HDD or RAM stores recipes in which process procedures, process conditions, and transfer conditions are set.

CPUは、レシピに従って各処理室111~115におけるウエハWの処理を制御し、ウエハWの搬送を制御する。HDDやRAMには、各処理室111~115におけるウエハWの処理やウエハWの搬送を実行するためのプログラムが記憶されてもよい。プログラムは、記憶媒体に格納して提供されてもよいし、ネットワークを通じて外部装置から提供されてもよい。 The CPU controls the processing of the wafer W in each of the processing chambers 111 to 115 according to the recipe, and controls the transfer of the wafer W. FIG. The HDD and RAM may store a program for executing the processing of the wafer W in each of the processing chambers 111 to 115 and the transfer of the wafer W. FIG. The program may be stored in a storage medium and provided, or may be provided from an external device through a network.

図2は、本実施形態に係る基板処理システム100で形成される素子の断面図の一例である。ここでは、垂直磁化型MTJ(Magnetic Tunnel Junction:磁気トンネル接合)素子(磁気抵抗素子)を形成する場合を例に説明する。 FIG. 2 is an example of a cross-sectional view of elements formed in the substrate processing system 100 according to this embodiment. Here, a case of forming a perpendicular magnetization type MTJ (Magnetic Tunnel Junction) element (magnetoresistive element) will be described as an example.

基板301は、例えばSi基板である。下部電極302は、基板301の上に形成される。下地層303は、下部電極302の上に形成される。下地層303は、例えばTa膜、Ru膜を積層して形成される。 The substrate 301 is, for example, a Si substrate. A lower electrode 302 is formed on the substrate 301 . An underlying layer 303 is formed on the lower electrode 302 . The underlying layer 303 is formed by stacking, for example, a Ta film and a Ru film.

下地層303の上には、SAF(Synthetic Antiferromagnet:人工反強磁性体)構造の固定層307が形成される。固定層307は、第1磁性層304と、スペーサー層305と、第2磁性層306と、を有する。 A fixed layer 307 having an SAF (Synthetic Antiferromagnet) structure is formed on the underlayer 303 . The fixed layer 307 has a first magnetic layer 304 , a spacer layer 305 and a second magnetic layer 306 .

第1磁性層304は、下地層303の上に形成される。第1磁性層304は、非磁性のスペーサー層305を介して、第2磁性層306と反強磁性結合を形成し、第2磁性層306の磁化方向を固定する。第1磁性層304は、例えばCo膜とPt膜を交互に積層した多層膜として形成される。 A first magnetic layer 304 is formed on the underlayer 303 . The first magnetic layer 304 forms antiferromagnetic coupling with the second magnetic layer 306 through the nonmagnetic spacer layer 305 to fix the magnetization direction of the second magnetic layer 306 . The first magnetic layer 304 is formed as a multilayer film in which Co films and Pt films are alternately laminated, for example.

非磁性のスペーサー層305は、第1磁性層304の上に形成される。スペーサー層305は、例えばRu、Rh、Ir等で形成される。 A non-magnetic spacer layer 305 is formed on the first magnetic layer 304 . The spacer layer 305 is made of Ru, Rh, Ir, or the like, for example.

第2磁性層306は、スペーサー層305の上に形成される。第2磁性層306は、例えばCoFeB膜で形成される。また、第2磁性層306は、例えばCo膜とPt膜を交互に積層した多層膜、Ta膜、CoFeB膜を積層して形成される。 A second magnetic layer 306 is formed on the spacer layer 305 . The second magnetic layer 306 is made of, for example, a CoFeB film. The second magnetic layer 306 is formed by laminating, for example, a multilayer film in which Co films and Pt films are alternately laminated, a Ta film, and a CoFeB film.

トンネルバリア層310は、第2磁性層306の上に形成される。トンネルバリア層310は、MgO膜で形成される。 A tunnel barrier layer 310 is formed over the second magnetic layer 306 . The tunnel barrier layer 310 is made of an MgO film.

自由層321は、トンネルバリア層310の上に形成される。自由層321は、例えばCoFeB膜で形成される。これにより、固定層307(第2磁性層306)のCoFeB膜、トンネルバリア層310のMgO膜、自由層321のCoFeB膜で、MTJ素子が形成される。 A free layer 321 is formed over the tunnel barrier layer 310 . The free layer 321 is made of, for example, a CoFeB film. Thus, the CoFeB film of the fixed layer 307 (second magnetic layer 306), the MgO film of the tunnel barrier layer 310, and the CoFeB film of the free layer 321 form the MTJ element.

キャップ層322は、自由層321の上に形成される。キャップ層322は、例えばTa膜、Ru膜を積層して形成される。 A cap layer 322 is formed over the free layer 321 . The cap layer 322 is formed by laminating a Ta film and a Ru film, for example.

図1に示す基板処理システム100において、処理室111は、下部電極302が形成されたウエハWに対して、プリクリーン処理(エッチング処理)を施す処理室である。また、処理室112は、処理室111で処理が施されたウエハWに対して、下地層303、第1磁性層304、スペーサー層305を形成する処理室である。また、処理室113は、処理室112で処理が施されたウエハWに対して、第2磁性層306を形成する処理室である。また、処理室114は、トンネルバリア層310を形成する処理室である。また、処理室115は、自由層321及びキャップ層322を形成する処理室である。 In the substrate processing system 100 shown in FIG. 1, the processing chamber 111 is a processing chamber that performs preclean processing (etching processing) on the wafer W on which the lower electrode 302 is formed. The processing chamber 112 is a processing chamber for forming the underlying layer 303 , the first magnetic layer 304 and the spacer layer 305 on the wafer W processed in the processing chamber 111 . The processing chamber 113 is a processing chamber for forming the second magnetic layer 306 on the wafer W processed in the processing chamber 112 . Also, the processing chamber 114 is a processing chamber for forming the tunnel barrier layer 310 . Also, the processing chamber 115 is a processing chamber for forming the free layer 321 and the cap layer 322 .

この様な基板処理システム100において、制御部200は、大気搬送装置141及び真空搬送装置121を制御して、ロードポート150に取り付けられたキャリアFに収容されたウエハWを、アライナ142で位置調整を行い、ロードロック室131,132を介して、処理室111に搬送する。次に、制御部200は、処理室111を制御して、ウエハWにプリクリーン処理を施す。次に、制御部200は、真空搬送装置121を制御して、処理室111で処理が施されたウエハWを、処理室111から処理室112に搬送する。次に、制御部200は、処理室112を制御して、ウエハWに下地層303、第1磁性層304及びスペーサー層305を形成する。次に、制御部200は、真空搬送装置121を制御して、処理室112で処理が施されたウエハWを、処理室112から処理室113に搬送する。次に、制御部200は、処理室113を制御して、ウエハWに第2磁性層306を形成する。 In the substrate processing system 100 as described above, the control unit 200 controls the atmospheric transfer device 141 and the vacuum transfer device 121 to position the wafer W accommodated in the carrier F attached to the load port 150 with the aligner 142 . and transported to the processing chamber 111 via the load lock chambers 131 and 132 . Next, the control unit 200 controls the processing chamber 111 to subject the wafer W to preclean processing. Next, the control unit 200 controls the vacuum transfer device 121 to transfer the wafer W processed in the processing chamber 111 from the processing chamber 111 to the processing chamber 112 . Next, the controller 200 controls the processing chamber 112 to form the underlying layer 303 , the first magnetic layer 304 and the spacer layer 305 on the wafer W. FIG. Next, the control unit 200 controls the vacuum transfer device 121 to transfer the wafer W processed in the processing chamber 112 from the processing chamber 112 to the processing chamber 113 . Next, the control unit 200 controls the processing chamber 113 to form the second magnetic layer 306 on the wafer W. FIG.

次に、制御部200は、真空搬送装置121を制御して、処理室113で処理が施されたウエハWを、処理室113から処理室114に搬送する。制御部200は、処理室114を制御して、ウエハWにトンネルバリア層310を形成する。 Next, the control unit 200 controls the vacuum transfer device 121 to transfer the wafer W processed in the processing chamber 113 from the processing chamber 113 to the processing chamber 114 . The control unit 200 controls the processing chamber 114 to form the tunnel barrier layer 310 on the wafer W. FIG.

次に、制御部200は、真空搬送装置121を制御して、処理室114で処理が施されたウエハWを、処理室114から処理室115に搬送する。次に、制御部200は、処理室115を制御して、ウエハWに自由層321及びキャップ層322を形成する。これにより、ウエハWに図2に示す垂直磁化型MTJ素子が形成される。最後に、制御部200は、真空搬送装置121及び大気搬送装置141を制御して、処理室115で処理が施されたウエハWを、ロードロック室131,132を介して、ロードポート150に取り付けられたキャリアFに収容する。 Next, the control unit 200 controls the vacuum transfer device 121 to transfer the wafer W processed in the processing chamber 114 from the processing chamber 114 to the processing chamber 115 . Next, the controller 200 controls the processing chamber 115 to form the free layer 321 and the cap layer 322 on the wafer W. FIG. As a result, the perpendicular magnetization type MTJ element shown in FIG. 2 is formed on the wafer W. As shown in FIG. Finally, the control unit 200 controls the vacuum transfer device 121 and the atmospheric transfer device 141 to attach the wafer W processed in the processing chamber 115 to the load port 150 through the load lock chambers 131 and 132. stored in the carrier F.

<処理室114>
次に、ウエハWに金属酸化膜を成膜する処理室(真空処理装置)114について、図3を用いて更に説明する。図3は、本実施形態に係る処理室(真空処理装置)114の構成を示す断面図の一例である。ここでは、処理室114は、ウエハWにトンネルバリア層310としてのMgO膜を成膜するものとして説明する。
<Processing chamber 114>
Next, the processing chamber (vacuum processing apparatus) 114 for forming a metal oxide film on the wafer W will be further described with reference to FIG. FIG. 3 is an example of a cross-sectional view showing the configuration of the processing chamber (vacuum processing apparatus) 114 according to this embodiment. Here, the processing chamber 114 is described as a device for depositing an MgO film as the tunnel barrier layer 310 on the wafer W. FIG.

真空容器2は、ステンレス等の導電性の素材で形成され、接地されている。真空容器2は、円筒部2aと、突出部2bと、を有する。 The vacuum container 2 is made of a conductive material such as stainless steel and is grounded. The vacuum vessel 2 has a cylindrical portion 2a and a projecting portion 2b.

真空容器2の突出部2bの底部には、排気路21が接続されている。排気路21は、圧力調整部21aを介して、真空排気装置22に接続されている。また、真空容器2の円筒部2aの側面部には、ウエハWの搬入出口23を開閉するゲートバルブ24が設けられている。なお、処理室114は、ゲートバルブ24を介して、真空搬送室120(図1参照)と接続されている。 An exhaust path 21 is connected to the bottom of the projecting portion 2b of the vacuum container 2 . The exhaust path 21 is connected to a vacuum evacuation device 22 via a pressure adjustment section 21a. A gate valve 24 for opening and closing a loading/unloading port 23 for the wafer W is provided on the side surface of the cylindrical portion 2a of the vacuum vessel 2. As shown in FIG. Note that the processing chamber 114 is connected to the vacuum transfer chamber 120 (see FIG. 1) through the gate valve 24 .

真空容器2の円筒部2aの天井部には、ターゲット電極32a,32bが設けられている。ターゲット電極32a,32bは、平面視して円形に形成され、大きさも略同一である。また、ターゲット電極32a,32bは、左右に並んで(X軸方向に並んで)水平に設けられている。 Target electrodes 32 a and 32 b are provided on the ceiling of the cylindrical portion 2 a of the vacuum chamber 2 . The target electrodes 32a and 32b are formed in a circular shape in plan view, and have substantially the same size. The target electrodes 32a and 32b are arranged horizontally side by side (in the X-axis direction).

ターゲット電極32aは、リング状の保持体33aに保持される。保持体33aは、リング状の絶縁体25aを介して、円筒部2aの天井部に接合される。同様に、ターゲット電極32bは、リング状の保持体33bに保持される。保持体33bは、リング状の絶縁体25bを介して、円筒部2aの天井部に接合される。これにより、ターゲット電極32a,32bは、真空容器2とは電気的に絶縁された状態で、円筒部2aの上面より低く落とし込まれた位置に配置されている。 The target electrode 32a is held by a ring-shaped holder 33a. The holder 33a is joined to the ceiling of the cylindrical portion 2a via a ring-shaped insulator 25a. Similarly, the target electrode 32b is held by a ring-shaped holder 33b. The holder 33b is joined to the ceiling of the cylindrical portion 2a via a ring-shaped insulator 25b. As a result, the target electrodes 32a and 32b are arranged in a position lowered below the upper surface of the cylindrical portion 2a while being electrically insulated from the vacuum chamber 2. FIG.

ターゲット電極32aは、スイッチ35aを介して、電源部34aと接続される。ターゲット31aのスパッタリング実行時において、電源部34aは、ターゲット電極32aに対して、例えば負の直流電圧を印加する。同様に、ターゲット電極32bは、スイッチ35bを介して、電源部34bと接続される。ターゲット31bのスパッタリング実行時に、電源部34bは、ターゲット電極32bに対して、例えば負の直流電圧を印加する。 The target electrode 32a is connected to the power source section 34a via the switch 35a. During sputtering of the target 31a, the power supply unit 34a applies, for example, a negative DC voltage to the target electrode 32a. Similarly, the target electrode 32b is connected to the power supply section 34b via the switch 35b. When sputtering the target 31b, the power supply unit 34b applies, for example, a negative DC voltage to the target electrode 32b.

ターゲット電極32aの下面には、ターゲット31aが接合されている。ターゲット31aの材料としては、例えば、酸素や水分を吸収する部材(以下、ゲッタリング部材とも称する。)からなり、例えばチタン(Ti)、クロム(Cr)、タンタル(Ta)、ジルコニウム(Zr)、マグネシウム(Mg)またはハフニウム(Hf)、あるいはこれらの合金などが用いられる。 A target 31a is bonded to the lower surface of the target electrode 32a. Materials for the target 31a include, for example, a member that absorbs oxygen and moisture (hereinafter also referred to as a gettering member), such as titanium (Ti), chromium (Cr), tantalum (Ta), zirconium (Zr), Magnesium (Mg), hafnium (Hf), or alloys thereof are used.

ターゲット電極32bの下面には、ターゲット31bが接合されている。ターゲット31bの材料としては、ウエハWに成膜される金属膜(MgO膜、トンネルバリア層310)の成膜材であるマグネシウム(Mg)が用いられる。 A target 31b is bonded to the lower surface of the target electrode 32b. As a material of the target 31b, magnesium (Mg), which is a material for forming a metal film (MgO film, tunnel barrier layer 310) to be formed on the wafer W, is used.

ターゲット31a,31bの直下には、シャッター41が備え付けられている。シャッター41は、両方のターゲット31a,31bの投影領域をカバーする大きさを持つ円形の板であり、円筒部2aの上面中心部に回転軸43を介して回転自在に取り付けられている。真空容器2の天井部上方における回転軸43と対応する位置にはマグネット44aを有する回転駆動部44が設けられ、このマグネット44aと回転軸43側に設けられたマグネット43aとの間の磁気結合により、回転軸43が回転するようになっている。 A shutter 41 is provided directly below the targets 31a and 31b. The shutter 41 is a circular plate large enough to cover the projection areas of both targets 31a and 31b, and is rotatably attached to the center of the upper surface of the cylindrical portion 2a via a rotating shaft 43. As shown in FIG. A rotation drive unit 44 having a magnet 44a is provided at a position corresponding to the rotating shaft 43 above the ceiling of the vacuum vessel 2. By magnetic coupling between the magnet 44a and the magnet 43a provided on the rotating shaft 43 side, , the rotating shaft 43 rotates.

また、シャッター41には、ターゲット31a,31bよりも少し大きいサイズの開口部42が1つ形成されている。一方のターゲット31a(または31b)に臨む領域にシャッター41の開口部42を位置させた際、他方のターゲット31b(または31a)はシャッター41により覆われる。これにより、一方のターゲット31a(または31b)にてスパッタリングを実行しているときに、スパッタリングによって発した粒子が他方のターゲット31b(または31a)に付着することを防止できる。 The shutter 41 also has one opening 42 that is slightly larger than the targets 31a and 31b. When the opening 42 of the shutter 41 is positioned in a region facing one target 31a (or 31b), the other target 31b (or 31a) is covered by the shutter 41. FIG. This can prevent particles emitted by sputtering from adhering to the other target 31b (or 31a) while sputtering is being performed with one of the targets 31a (or 31b).

ターゲット電極32aの上部には、ターゲット電極32aに近接してマグネット配列体51aが設けられている。マグネット配列体51aは、ターゲット31aのエロージョンの均一性を高める役割を果たす。マグネット配列体51aは、透磁性の高い素材、例えば鉄(Fe)のベース体にN極マグネット群及びS極マグネット群を配列して駆動機構52aによって、回転運動や直進運動(往復運動)をするように構成されている。 Above the target electrode 32a, a magnet array 51a is provided close to the target electrode 32a. The magnet array 51a serves to improve the uniformity of erosion of the target 31a. The magnet array body 51a has a base body made of a highly magnetically permeable material such as iron (Fe), and a group of N-pole magnets and a group of S-pole magnets are arranged on the base body. is configured as

また、真空容器2内のターゲット31a,31bと対向する位置には、ウエハWを水平に載置する載置部6が設けられている。載置部6は、軸部材6aを介して真空容器2の下方側に配置された駆動機構61に接続されている。駆動機構61は、載置部6を回転させる機能を有している。また、駆動機構61は、昇降ピン63を介して真空搬送装置121と載置部6との間でウエハWの受け渡しを行う際の受渡位置と、スパッタ時における処理位置との間で、載置部6を昇降させる機能を有している。 Further, at a position facing the targets 31a and 31b inside the vacuum vessel 2, a mounting section 6 for horizontally mounting the wafer W is provided. The mounting section 6 is connected to a drive mechanism 61 arranged below the vacuum chamber 2 via a shaft member 6a. The drive mechanism 61 has a function of rotating the placement section 6 . Further, the drive mechanism 61 moves between the transfer position for transferring the wafer W between the vacuum transfer device 121 and the mounting section 6 via the lifting pins 63 and the processing position for sputtering. It has a function of raising and lowering the portion 6 .

軸部材6aは、真空容器2の底部を貫通して、駆動機構61に接続されている。軸部材6aが真空容器2を貫通する位置には真空容器2内を気密に保つシール部62が設けられている。 The shaft member 6 a penetrates through the bottom of the vacuum vessel 2 and is connected to the drive mechanism 61 . A seal portion 62 is provided at a position where the shaft member 6a penetrates the vacuum vessel 2 to keep the inside of the vacuum vessel 2 airtight.

昇降ピン63は、ウエハWの下面から3ヶ所で支持するように3本設けられ、昇降部64により支持部材65を介して昇降する。 Three elevating pins 63 are provided so as to support the wafer W at three positions from the lower surface thereof, and elevate via a support member 65 by an elevating section 64 .

また、載置部6内には、加熱機構(図示せず)が設けられており、スパッタ時にウエハWを加熱できるように構成されている。 A heating mechanism (not shown) is provided in the mounting portion 6 so as to heat the wafer W during sputtering.

また、真空容器2内部には、ウエハWよりもサイズの大きい円形状のシャッター7が設けられている。シャッター7は、端部に設けられた支柱7aを中心に水平方向に旋回可能に構成され、載置部6に載置されたウエハWを覆う遮蔽位置と、遮蔽位置(ウエハWを覆う位置)から退避した退避位置(二点鎖線参照)との間で旋回する。支柱7aは真空容器2の底部を貫通し、回転駆動部71を介して回転支持部72により回転自在に支持されている。 A circular shutter 7 larger than the wafer W is provided inside the vacuum vessel 2 . The shutter 7 is rotatable in the horizontal direction around a column 7a provided at an end, and has a shielding position covering the wafer W mounted on the mounting section 6 and a shielding position (a position covering the wafer W). to the retracted position (see two-dot chain line). The column 7a penetrates the bottom of the vacuum vessel 2 and is rotatably supported by a rotation support section 72 via a rotation drive section 71. As shown in FIG.

支柱7aは、真空容器2の底部を貫通して、回転駆動部71に接続されている。支柱7aが真空容器2を貫通する位置には真空容器2内を気密に保つシール部73が設けられている。 The column 7a penetrates through the bottom of the vacuum vessel 2 and is connected to a rotation drive section 71. As shown in FIG. A seal portion 73 for keeping the inside of the vacuum vessel 2 airtight is provided at a position where the column 7a penetrates the vacuum vessel 2 .

また、シャッター7は、遮蔽機能に加えて、酸素(O)ガスをウエハWに供給する機能を有している。なお、酸素ガスを供給する機能については、図6及び図7を用いて後述する。 Further, the shutter 7 has a function of supplying oxygen (O 2 ) gas to the wafer W in addition to the shielding function. The function of supplying oxygen gas will be described later with reference to FIGS. 6 and 7. FIG.

また、シャッター7内には、シャッター7を加熱するヒータ(図示せず)が設けられている。電源部72aは、回転支持部72に設けられたスリップリング(図示せず)を介して、シャッター7内のヒータに電力を供給する。これにより、シャッター7は、予備加熱した酸素ガスをウエハWに供給することができる。 A heater (not shown) for heating the shutter 7 is provided in the shutter 7 . The power supply unit 72 a supplies power to the heater inside the shutter 7 via a slip ring (not shown) provided on the rotation support unit 72 . Thereby, the shutter 7 can supply the preheated oxygen gas to the wafer W. As shown in FIG.

また、真空容器2の上部側壁には、プラズマ発生用のガスである不活性ガス、例えばArガスを真空容器2内に供給するためのArガス供給路28が設けられている。このArガス供給路28は、バルブやフローメータ等のガス制御機器群27を介してArガス供給源26に接続されている。 An Ar gas supply path 28 is provided on the upper side wall of the vacuum vessel 2 for supplying an inert gas, such as an Ar gas, to the inside of the vacuum vessel 2 as a gas for generating plasma. This Ar gas supply path 28 is connected to an Ar gas supply source 26 via a group of gas control devices 27 such as valves and flow meters.

制御部200は、電源部34a,34bからの電源供給動作、Arガス供給源26からのArガスの供給動作、駆動機構61による載置部6の昇降動作及び回転動作、シャッター7の回転動作及び酸素ガス供給動作、マグネット配列体51a,51bの回転動作、シャッター41の回転動作、真空排気装置22による真空容器2内部の排気動作、その他の処理室114に関する動作を制御する。そして制御部200は、ウエハW上に金属酸化膜の成膜を行うために必要な制御について命令群が組まれたプログラムが、外部記憶媒体、例えばハードディスク、テープストレージ、コンパクトディスク、光磁気ディスク、メモリーカードなどを介して読み込まれ、当該真空処理装置全体の制御を行う。 The control unit 200 controls the power supply operation from the power supply units 34a and 34b, the Ar gas supply operation from the Ar gas supply source 26, the lifting operation and rotation operation of the mounting unit 6 by the drive mechanism 61, the rotation operation of the shutter 7, and the rotation operation of the shutter 7. It controls the operation of supplying oxygen gas, the rotation of the magnet arrays 51a and 51b, the rotation of the shutter 41, the evacuation of the inside of the vacuum chamber 2 by the evacuation device 22, and other operations related to the processing chamber 114. FIG. The control unit 200 stores a program in which a group of instructions for controlling necessary control for forming a metal oxide film on the wafer W is stored in an external storage medium such as a hard disk, a tape storage, a compact disk, a magneto-optical disk, or the like. It is read via a memory card or the like, and controls the entire vacuum processing apparatus.

図4は、本実施形態に係る処理室114による成膜処理を説明するフローチャートである。図5は、本実施形態に係る処理室114の状態を説明する模式図である。ここでは、金属酸化膜の一例として、MgO膜をウエハWに成膜する。 FIG. 4 is a flow chart for explaining film formation processing by the processing chamber 114 according to this embodiment. FIG. 5 is a schematic diagram illustrating the state of the processing chamber 114 according to this embodiment. Here, an MgO film is formed on the wafer W as an example of the metal oxide film.

ステップS101において、ウエハWを準備する。ここでは、処理室113(図1参照)で処理された第2磁性層306まで製膜されたウエハWを処理室114の載置部6に載置する。 In step S101, a wafer W is prepared. Here, the wafer W on which up to the second magnetic layer 306 has been processed in the processing chamber 113 (see FIG. 1) is placed on the mounting portion 6 of the processing chamber 114 .

ステップS102において、Mg膜成膜処理を行う。図5(a)に示すように、制御部200は、回転駆動部44を制御して、シャッター41の開口部42をターゲット31bに臨む領域に位置させる。また、制御部200は、回転駆動部71を制御して、シャッター7を退避位置に移動させる。そして、制御部200は、ガス制御機器群27を制御してArガス供給路28から真空容器2内にArガスを供給する。また、制御部200は、スイッチ35bを制御して、ターゲット電極32bに電圧を印加する。また、制御部200は、駆動機構52bを制御して、マグネット配列体51bを回転させる。また、制御部200は、駆動機構61を制御して、載置部6を回転させる。これにより、Arガスがプラズマ化し、ターゲット31bがスパッタされ、Mg粒子がウエハW上に付着して、Mg膜が成膜される。 In step S102, a Mg film forming process is performed. As shown in FIG. 5A, the control unit 200 controls the rotation driving unit 44 to position the opening 42 of the shutter 41 in a region facing the target 31b. Further, the control unit 200 controls the rotation driving unit 71 to move the shutter 7 to the retracted position. The control unit 200 controls the gas control device group 27 to supply Ar gas from the Ar gas supply path 28 into the vacuum chamber 2 . Also, the control unit 200 controls the switch 35b to apply a voltage to the target electrode 32b. The control unit 200 also controls the drive mechanism 52b to rotate the magnet array 51b. Further, the control section 200 controls the drive mechanism 61 to rotate the mounting section 6 . As a result, the Ar gas is turned into plasma, the target 31b is sputtered, Mg particles adhere to the wafer W, and an Mg film is formed.

Mg膜成膜処理が終了すると、制御部200は、ガス制御機器群27を制御して、Arガスの供給を停止する。また、制御部200は、スイッチ35bを制御して、ターゲット電極32bへの電圧の印加を停止する。また、制御部200は、駆動機構52bを制御して、マグネット配列体51bを停止させる。 When the Mg film deposition process is completed, the control unit 200 controls the gas control device group 27 to stop the supply of Ar gas. The control unit 200 also controls the switch 35b to stop applying the voltage to the target electrode 32b. The control unit 200 also controls the drive mechanism 52b to stop the magnet array 51b.

ステップS103において、Mg膜酸化処理を行う。図5(b)に示すように、制御部200は、回転駆動部44を制御して、シャッター41の開口部42がターゲット31a,31bに臨まない領域に位置させ、換言すれば、シャッター41がターゲット31a,31bを覆うように位置させる。制御部200は、回転駆動部71を制御して、シャッター7を遮蔽位置に移動させる。これにより、シャッター7と載置部6との間に処理空間を形成する。また、制御部200は、駆動機構61を制御して、載置部6を回転させる。そして、制御部200は、酸素ガス制御機器群(図6で後述する酸素ガス制御機器群82,84)を制御して、処理空間に酸素ガスを供給する。これにより、ウエハWに成膜されたMg膜が酸化されてMgO膜を形成するMg膜酸化処理が終了すると、制御部200は、酸素ガス制御機器群を制御して、ガスの供給を停止させる。 In step S103, an Mg film oxidation process is performed. As shown in FIG. 5(b), the control unit 200 controls the rotation driving unit 44 to position the opening 42 of the shutter 41 in a region not facing the targets 31a and 31b. It is positioned so as to cover the targets 31a and 31b. The control unit 200 controls the rotation driving unit 71 to move the shutter 7 to the blocking position. Thereby, a processing space is formed between the shutter 7 and the mounting section 6 . Further, the control section 200 controls the driving mechanism 61 to rotate the mounting section 6 . The control unit 200 then controls an oxygen gas control device group (oxygen gas control device groups 82 and 84 described later with reference to FIG. 6) to supply oxygen gas to the processing space. Thus, when the Mg film oxidation process for forming the MgO film by oxidizing the Mg film formed on the wafer W is completed, the control unit 200 controls the oxygen gas control device group to stop the gas supply. .

ステップS104において、制御部200は、所定回数繰り返したか否かを判定する。所定回数繰り返していない場合(S104・No)、制御部200の処理はステップS102に戻る。所定回数繰り返した場合(S104・Yes)、駆動機構61を制御して、載置部6の回転を停止させ、制御部200の処理を終了する。その後、ウエハWは、処理室115(図1参照)に搬送される。 In step S104, the control unit 200 determines whether or not the process has been repeated a predetermined number of times. If the process has not been repeated a predetermined number of times (S104, No), the process of the control unit 200 returns to step S102. If the process has been repeated a predetermined number of times (S104, Yes), the drive mechanism 61 is controlled to stop the rotation of the placement section 6, and the processing of the control section 200 is terminated. After that, the wafer W is transferred to the processing chamber 115 (see FIG. 1).

なお、処理室114による成膜処理は、図5に示すものに限られない。処理室114による成膜処理は、ゲッタリング部材からなるターゲット31aをスパッタして、真空容器2内の酸素や水分を吸収する工程を含んでいてもよい。 Note that the film forming process in the processing chamber 114 is not limited to that shown in FIG. The film forming process in the processing chamber 114 may include a step of sputtering the target 31 a made of a gettering member to absorb oxygen and moisture in the vacuum vessel 2 .

図6は、本実施形態に係る処理室114が備えるシャッター7を下方から見た模式図である。図7は、本実施形態に係る処理室114における酸素ガスの流れを説明する図である。 FIG. 6 is a schematic diagram of the shutter 7 provided in the processing chamber 114 according to this embodiment, viewed from below. FIG. 7 is a diagram illustrating the flow of oxygen gas in the processing chamber 114 according to this embodiment.

シャッター7は、遮蔽部材701と、ガス供給部材702と、回転軸703と、を有する。遮蔽部材701は板状の部材である。ガス供給部材702は、ガス供給口702aを有する。また、ガス供給部材702は、遮蔽部材701を支持する支持部材を兼ねる。回転軸703は、遮蔽部材701及びガス供給部材702を回転(揺動)させる。 The shutter 7 has a shielding member 701 , a gas supply member 702 and a rotating shaft 703 . The shielding member 701 is a plate-like member. The gas supply member 702 has a gas supply port 702a. Also, the gas supply member 702 also serves as a support member that supports the shield member 701 . The rotary shaft 703 rotates (swings) the shielding member 701 and the gas supply member 702 .

図7に示すように、遮蔽部材701を載置部6の上方に配置することにより、遮蔽部材701と載置部6との間に酸素ガスが供給される処理空間を形成する。ウエハWを載置した載置部6は、駆動機構61によって回転する。ガス供給部材702は、処理空間内に酸素ガスを供給する。 As shown in FIG. 7, a processing space to which oxygen gas is supplied is formed between the shielding member 701 and the mounting section 6 by arranging the shielding member 701 above the mounting section 6 . The mounting section 6 on which the wafer W is mounted is rotated by the drive mechanism 61 . A gas supply member 702 supplies oxygen gas into the processing space.

図8は、シャッター7の遮蔽位置と退避位置とを説明する図である。なお、図8において、遮蔽位置に配置されたシャッター7Aを実線で図示し、退避位置に配置されたシャッター7Bを二点鎖線で図示している。シャッター7は、回転駆動部71によって駆動され、遮蔽位置と退避位置との間を移動可能に構成されている。ここで、遮蔽位置は、上方から見て、載置部6に載置されたウエハWをシャッター7が覆う位置である。換言すれば、遮蔽位置は、上方から見て、円形の載置部6の中心と円形のシャッター7の中心とが一致する位置である。退避位置は、遮蔽位置から退避した位置である。換言すれば、退避位置は、上方から見て、載置部6に載置されたウエハWをシャッター7が覆わない位置である。 FIG. 8 is a diagram for explaining the shielding position and retracted position of the shutter 7. As shown in FIG. In FIG. 8, the shutter 7A arranged at the shielding position is indicated by a solid line, and the shutter 7B arranged at the retracted position is indicated by a chain double-dashed line. The shutter 7 is driven by a rotary drive unit 71 and is configured to be movable between a shielding position and a retracted position. Here, the shielding position is a position where the shutter 7 covers the wafer W mounted on the mounting portion 6 as viewed from above. In other words, the shielding position is a position where the center of the circular mounting portion 6 and the center of the circular shutter 7 match when viewed from above. The retracted position is a position retracted from the shielding position. In other words, the retracted position is a position where the shutter 7 does not cover the wafer W mounted on the mounting portion 6 when viewed from above.

図9は、本実施形態のガス供給位置におけるシャッター7の位置を説明する図である。図9において、ガス供給位置に配置されたシャッター7Cを実線で図示し、遮蔽位置に配置されたシャッター7Aを二点鎖線で図示している。ガス供給時において、シャッター7は、遮蔽位置から開度θで回転したガス供給位置に位置する。なお、図9の例において、開度θ=0°が遮蔽位置に相当し、開度θ=90°が退避位置に相当する。ガス供給位置において、上方から見て、載置部6に載置されたウエハWの一部がシャッター7(7C)で覆われ、ウエハWの残部はシャッター7(7C)から露出するように配置される。また、換言すれば、ガス供給位置において、ガス供給部材702のガス供給口702aがウエハWのエッジ近傍に配置される。 FIG. 9 is a diagram illustrating the position of the shutter 7 at the gas supply position of this embodiment. In FIG. 9, the shutter 7C arranged at the gas supply position is illustrated with a solid line, and the shutter 7A arranged at the shielding position is illustrated with a two-dot chain line. At the time of gas supply, the shutter 7 is positioned at the gas supply position rotated by the opening degree θ from the shielding position. In the example of FIG. 9, opening θ=0° corresponds to the shielding position, and opening θ=90° corresponds to the retracted position. At the gas supply position, a portion of the wafer W placed on the placement portion 6 is covered with the shutter 7 (7C), and the rest of the wafer W is exposed from the shutter 7 (7C) when viewed from above. be done. In other words, the gas supply port 702a of the gas supply member 702 is arranged near the edge of the wafer W at the gas supply position.

図10は、参考例におけるMTJ素子のRA分布を説明するグラフの一例である。図10に示す参考例においては、シャッター7を遮蔽位置に配置してOガスの供給を行った。図10において、横軸はウエハWの中心からの径方向距離である。縦軸は正規化された抵抗面積積(RA)の分布を示す。 FIG. 10 is an example of a graph explaining the RA distribution of the MTJ element in the reference example. In the reference example shown in FIG. 10, the O 2 gas was supplied with the shutter 7 placed at the shielding position. 10, the horizontal axis is the radial distance from the center of the wafer W. In FIG. The vertical axis indicates the distribution of normalized resistance area product (RA).

図10に示すように、RA分布は、ウエハWの外周側よりもウエハWの中心側が高くなる傾向を有する。図10に示す例において、RA分布(1σ,%)は、2.1%となった。なお、RA分布(1σ,%)は、RAの偏差(1σ)をRAの平均で除算して正規化し、100倍してパーセント表示した値である。 As shown in FIG. 10, the RA distribution tends to be higher on the center side of the wafer W than on the outer peripheral side of the wafer W. FIG. In the example shown in FIG. 10, the RA distribution (1σ, %) was 2.1%. The RA distribution (1σ, %) is a value obtained by dividing the deviation (1σ) of RA by the average of RA, normalizing it, multiplying it by 100, and expressing it as a percentage.

図11は、本実施例におけるMTJ素子のRA分布を説明するグラフの一例である。図11に示す本実施例においては、シャッター7を開度θを15°、20°、25°とするガス供給位置に配置してOガスの供給を行った。図11において、横軸はウエハWの中心からの径方向距離である。縦軸は正規化された抵抗面積積(RA)の分布を示す。 FIG. 11 is an example of a graph explaining the RA distribution of the MTJ element in this example. In the present embodiment shown in FIG. 11, the O 2 gas was supplied by arranging the shutter 7 at the gas supply positions with the opening degrees θ of 15°, 20°, and 25°. In FIG. 11, the horizontal axis is the radial distance from the center of the wafer W. In FIG. The vertical axis indicates the distribution of normalized resistance area product (RA).

図11に示すように、シャッター7の開度θを調整することで、RA分布を向上させることができる。図11に示す例において、開度θが15°におけるRA分布(1σ,%)は、1.7%となった。開度θが20°におけるRA分布(1σ,%)は、0.96%となった。開度θが25°におけるRA分布(1σ,%)は、1.2%となった。いずれも図10に示す参考例と比較してRA分布を向上させることができた。 As shown in FIG. 11, the RA distribution can be improved by adjusting the opening degree θ of the shutter 7 . In the example shown in FIG. 11, the RA distribution (1σ, %) at the opening θ of 15° was 1.7%. The RA distribution (1σ, %) at an opening degree θ of 20° was 0.96%. The RA distribution (1σ, %) at the opening degree θ of 25° was 1.2%. In all cases, the RA distribution could be improved as compared with the reference example shown in FIG.

即ち、シャッター7の開度θを制御することで、遮蔽部材701と載置部6との間に形成される処理空間の位置及びOガスを吐出するガス供給口702aの位置を調整する。これにより、ウエハW上に吐出させるOガスの圧力分布を調整することができる。これにより、ウエハWの径方向における酸化処理を調整することができる。また、載置部6が回転することにより、ウエハWの周方向における酸化処理の均一性を確保することができる。 That is, by controlling the opening degree .theta. of the shutter 7, the position of the processing space formed between the shielding member 701 and the mounting portion 6 and the position of the gas supply port 702a for discharging the O.sub.2 gas are adjusted. Thereby, the pressure distribution of the O 2 gas discharged onto the wafer W can be adjusted. Thereby, the oxidation treatment in the radial direction of the wafer W can be adjusted. Further, the uniformity of the oxidation treatment in the circumferential direction of the wafer W can be ensured by rotating the mounting part 6 .

以上、基板処理システム及び真空処理装置を上記実施形態により説明したが、本発明に係る基板処理システム及び真空処理装置は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で組み合わせることができる。 Although the substrate processing system and the vacuum processing apparatus have been described above with reference to the above embodiments, the substrate processing system and the vacuum processing apparatus according to the present invention are not limited to the above embodiments, and various modifications can be made within the scope of the present invention. and improvements are possible. The matters described in the above multiple embodiments can be combined within a consistent range.

真空処理装置(処理室114)は、ウエハWにMgO膜を成膜するものとして説明したが、これに限られるものではない。真空処理装置(処理室114)は、ウエハWに金属酸化膜を成膜する構成であってもよい。また、シャッター7からウエハWに供給されるガスは、Oガスであるものとして説明したが、これに限られるものではなく、他の酸化ガスであってもよい。 Although the vacuum processing apparatus (processing chamber 114) has been described as forming an MgO film on the wafer W, it is not limited to this. The vacuum processing apparatus (processing chamber 114) may be configured to form a metal oxide film on the wafer W. FIG. Also, the gas supplied from the shutter 7 to the wafer W has been described as O 2 gas, but the gas is not limited to this and may be another oxidizing gas.

6 載置部
7 シャッター
71 回転駆動部(駆動部)
701 遮蔽部材
702 ガス供給部材
702a ガス供給口
703 回転軸
81,83 酸素ガス供給源
82,84 酸素ガス制御機器群
91~93 ガスの流れ
100 基板処理システム
111~115 処理室(真空処理装置)
200 制御部
310 トンネルバリア層
W ウエハ
F キャリア
6 placement section 7 shutter 71 rotation drive section (drive section)
701 Shield member 702 Gas supply member 702a Gas supply port 703 Rotating shafts 81, 83 Oxygen gas supply sources 82, 84 Oxygen gas control equipment group 91-93 Gas flow 100 Substrate processing system 111-115 Processing chamber (vacuum processing apparatus)
200 control unit 310 tunnel barrier layer W wafer F carrier

Claims (4)

基板を載置する回転可能な載置部と、
前記載置部に載置された前記基板を遮蔽する遮蔽位置と前記基板から退避する退避位置との間を移動可能なシャッターと、
前記シャッターを移動させる駆動部と、
前記駆動部を制御する制御部と、を備え、
前記シャッターは、
前記載置部との間に処理空間を形成する遮蔽部材と、
前記処理空間にガスを供給するガス供給部と、を有し、
前記制御部は、
前記遮蔽位置と前記退避位置の間のガス供給位置に前記シャッターを移動させ、前記ガスを供給する、
真空処理装置。
a rotatable mounting portion for mounting the substrate;
a shutter movable between a shielding position for shielding the substrate placed on the mounting portion and a retraction position for retracting from the substrate;
a driving unit for moving the shutter;
A control unit that controls the driving unit,
The shutter
a shielding member that forms a processing space between itself and the placing unit;
a gas supply unit that supplies gas to the processing space;
The control unit
moving the shutter to a gas supply position between the shielding position and the retracted position to supply the gas;
Vacuum processing equipment.
前記制御部は、前記ガスを供給する際、
前記基板の一部が前記シャッターで覆われ、前記基板の残部は前記シャッターから露出する、
請求項1に記載の真空処理装置。
When supplying the gas, the control unit
a portion of the substrate is covered by the shutter and the remainder of the substrate is exposed from the shutter;
The vacuum processing apparatus according to claim 1.
前記制御部は、前記ガスを供給する際、
前記ガス供給部が前記基板のエッジ近傍に配置される、
請求項2に記載の真空処理装置。
When supplying the gas, the control unit
the gas supply is arranged near the edge of the substrate;
The vacuum processing apparatus according to claim 2.
基板を載置する回転可能な載置部と、前記載置部との間に処理空間を形成する遮蔽部材、前記処理空間にガスを供給するガス供給部を有し、前記載置部に載置された前記基板を遮蔽する遮蔽位置と前記基板から退避する退避位置との間を移動可能なシャッターと、前記シャッターを移動させる駆動部と、前記駆動部を制御する制御部と、を備える真空処理装置の基板処理方法であって、
前記シャッターの開閉度を制御し、前記基板上へ噴出させるガスの圧力分布を調整する、
基板処理方法。
a rotatable mounting portion for mounting a substrate thereon, a shielding member forming a processing space between the mounting portion and a gas supply portion for supplying gas to the processing space; a shutter movable between a shielding position for shielding the placed substrate and a retraction position for retracting from the substrate; a drive section for moving the shutter; and a control section for controlling the drive section. A substrate processing method for a processing apparatus, comprising:
controlling the opening/closing degree of the shutter to adjust the pressure distribution of the gas ejected onto the substrate;
Substrate processing method.
JP2021139296A 2021-08-27 2021-08-27 Vacuum treatment apparatus and substrate treatment method Pending JP2023032920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021139296A JP2023032920A (en) 2021-08-27 2021-08-27 Vacuum treatment apparatus and substrate treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021139296A JP2023032920A (en) 2021-08-27 2021-08-27 Vacuum treatment apparatus and substrate treatment method

Publications (1)

Publication Number Publication Date
JP2023032920A true JP2023032920A (en) 2023-03-09

Family

ID=85415872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021139296A Pending JP2023032920A (en) 2021-08-27 2021-08-27 Vacuum treatment apparatus and substrate treatment method

Country Status (1)

Country Link
JP (1) JP2023032920A (en)

Similar Documents

Publication Publication Date Title
JP5998654B2 (en) Vacuum processing apparatus, vacuum processing method, and storage medium
US10468237B2 (en) Substrate processing apparatus
JP5650760B2 (en) manufacturing device
JP5745699B2 (en) Tunnel magnetoresistive element manufacturing equipment
TWI435946B (en) Magnetron sputtering device and magnetron sputtering method
JP2013147704A (en) Magnetron sputtering apparatus and film forming method
JP5731085B2 (en) Deposition equipment
KR102304166B1 (en) Oxidation processing module, substrate processing system, and oxidation processing method
JP5190316B2 (en) High frequency sputtering equipment
JP2023032920A (en) Vacuum treatment apparatus and substrate treatment method
US20220341028A1 (en) Vacuum processing apparatus
US20170117460A1 (en) Method of manufacturing magnetoresistive element and system for manufacturing magnetoresistive element
WO2021021343A1 (en) Additive patterning of semiconductor film stacks
JP7325278B2 (en) Sputtering method and sputtering apparatus
US20220270866A1 (en) Apparatus for performing sputtering process and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240410