JP2023031235A - マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置 - Google Patents
マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置 Download PDFInfo
- Publication number
- JP2023031235A JP2023031235A JP2022087811A JP2022087811A JP2023031235A JP 2023031235 A JP2023031235 A JP 2023031235A JP 2022087811 A JP2022087811 A JP 2022087811A JP 2022087811 A JP2022087811 A JP 2022087811A JP 2023031235 A JP2023031235 A JP 2023031235A
- Authority
- JP
- Japan
- Prior art keywords
- deflection
- charged particle
- particle beam
- voltage
- deflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electron Beam Exposure (AREA)
Abstract
【課題】二次電子の空間滞留と偏向器電極帯電によるビーム位置の変動を同時に解決する。【解決手段】マルチ荷電粒子ビーム描画方法は、描画対象の基板に照射されるマルチ荷電粒子ビームを形成する工程と、静電型の位置決め偏向器の複数の電極の各々に印加される各偏向電圧の範囲に、全偏向電圧がゼロとなる状態が含まれないように、所定の偏向オフセットを加算した位置に前記マルチ荷電粒子ビームを偏向する工程と、前記マルチ荷電粒子ビームを前記基板に照射する工程と、を備え、前記各偏向電圧に、正の共通電圧を加算して、前記位置決め偏向器の各電極に印加する。【選択図】図13
Description
本発明は、マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置に関する。
LSIの高集積化に伴い、半導体デバイスに要求される回路線幅は年々微細化されてきている。半導体デバイスへ所望の回路パターンを形成するためには、縮小投影型露光装置を用いて、石英上に形成された高精度の原画パターン(マスク、或いは特にステッパやスキャナで用いられるものはレチクルともいう。)をウェーハ上に縮小転写する手法が採用されている。高精度の原画パターンは、電子ビーム描画装置によって描画され、所謂、電子ビームリソグラフィ技術が用いられている。
電子ビーム描画装置の一形態として、マルチビームを使ったマルチ電子ビーム描画装置が知られている。マルチビーム電子ビーム描画装置は、1本の電子ビームで描画する描画装置と比較して、一度に多くのビームを照射できるので、スループットを大幅に向上させることができる。
マルチ電子ビーム描画装置では、各ショットのビームを対物レンズで描画対象である基板の表面に焦点を合わせると共に、静電レンズを使って、基板表面の凹凸に対応するように描画中にダイナミックに焦点補正(ダイナミックフォーカス)を行っている。この静電レンズをマイナスの電圧範囲で運用した場合、電子ビーム描画により発生した二次電子が基板表面に戻ることでレジストの帯電が生じ、描画パターンの寸法精度向上の妨げとなる。
二次電子等の戻りによる影響を抑えるためには、基板表面に対して静電レンズをプラスの電圧範囲で運用し、二次電子を基板表面から上方に誘導することが好ましい。
Hirofumi Morita, Junichi Kato andNobuo Shimazu, Basic characteristics of beam position drift and field stitchingerror caused by electron beam column charging, Japanese Journal of AppliedPhysics Vol.35(1996), Part 1, No.7, July 1996, pp.4121-4127.
しかし、静電レンズをプラスの電圧範囲で運用した場合、基板表面からの二次電子が静電レンズを通過した後に急激に減速してビーム軌道上に高密度に滞留したり、偏向器の電極内面の非導電性の汚れ(コンタミネーション)に帯電したりすることで、電子ビーム近傍の電界が変化し、電子ビームの軌道を変化させ、ビーム位置精度を劣化させるという問題が発生する。
偏向器の電極の帯電の影響によるドリフトについて研究報告した非特許文献1には、偏向を行った先を中心とする狭い領域で偏向(偏向オフセット)を行うことでドリフトが低減されるという現象が記載されている。しかし、非特許文献1で実験対象としている、これまで広く産業で利用されてきた可変成形ビーム描画装置では、描画で利用する偏向領域寸法が描画スループットに大きく影響し、偏向した先の狭い領域のみで描画すると、スループットは大幅に減少するという問題が生じる。このような理由で、非特許文献1に記載された、偏向を行った先を中心とする狭い領域で偏向を行えばドリフトは減少するという現象は、実用上の利用は極めて困難で、実際に産業で利用されることはなかった。
マルチビーム描画装置では、可変成形ビーム装置とは異なり、偏向領域寸法は小さくてもスループット低下の懸念は殆どないので、上記の現象を利用できる可能性が生まれる。
しかし、ドリフト低減の為の偏向(偏向オフセット)を行うことで、アレイ歪(個別ビーム相互間の理想位置からの変位)が増加するという問題が新たに生じる。アレイ歪低減はマルチビーム光学系で新規に生じた要求課題である。マルチビーム光学系は、例えば縦横100μm程度の、寸法の非常に大きいアレイビームを形成するので、1μm程度以下の小さいビームを形成する可変成形ビーム光学系とは異なり、アレイ歪は増加しやすく、設計においてアレイ歪の低減は非常に難しく重要である。ここで、ドリフト低減の為の偏向オフセットを行うと、偏向で生じるアレイ歪が増加し、描画精度を劣化させる。
偏向で生じるアレイ歪を低減させるには、偏向器をレンズ磁界の中に配置する構成(いわゆるインレンズ配置)が有効である事が知られている。偏向で生じるアレイ歪を低減させるには、また、偏向器を多段に配置し、各偏向器の偏向量と偏向方向を最適化する事が多く行われるが、マルチビーム描画装置に要求される高度な歪低減においては、最適化の前提として、1つの偏向器はレンズ磁界の中に配置する事(インレンズ配置)が実際上必要となる。一方、静電補正レンズは、レンズ磁界の中に配置する事(同様にインレンズ配置)が、実用上十分な補正感度(焦点補正感度や回転補正感度)を得るために必須である(特開昭61-101944号公報、特開2013-197289号公報参照)。その結果、補正レンズを磁極の中心付近に配置し、偏向器は補正レンズ直上に近接させレンズ磁界の存在する所に配置する事が必要となる。
しかし、偏向器を静電補正レンズに近接させると、試料面からの二次電子が補正レンズを通過して偏向器に入った所で、減速し滞留する事が原因となりビーム(一次ビーム)の不安定性(ドリフト)が生じるという問題が新たに生じる。二次電子の減速で生じる滞留によるドリフトを対策する技術として、特開2018-170435号公報には、静電補正レンズの直上にプラス電圧を印加した電極を配置する技術が開示されている。また、特開2019-212766号公報には、プラス印加した静電補正レンズの電極を上流方向にレンズ磁界が減衰する所まで延長する技術が開示されている。しかし、これらの技術を使用すると、追加した電極や延長した補正レンズ電極が存在することで、偏向器を、レンズ磁極から上流方向に離れて磁界が減衰した所に配置せざるをえず(すなわち、インレンズ配置には出来ず)、偏向で生じるアレイ歪の低減が困難になるという問題が生じる。
上記のように、マルチビーム光学系において、従来は、二次電子の偏向器帯電によるビーム位置変動低減、二次電子滞留によるビーム位置変動低減、マルチビームアレイ歪低減を、同時に実現する事はできなかった。
本発明は、上記問題に鑑みてなされたものであり、二次電子の空間滞留と偏向器電極帯電によるビーム位置の変動を、アレイ歪の増加を抑えながら、同時に解決することが可能なマルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置を提供することを課題とする。
本発明の一態様によるマルチ荷電粒子ビーム描画方法は、描画対象の基板に照射されるマルチ荷電粒子ビームを形成する工程と、静電型の位置決め偏向器の複数の電極の各々に印加される各偏向電圧の範囲に、全偏向電圧がゼロとなる状態が含まれないように、所定の偏向オフセットを加算した位置に前記マルチ荷電粒子ビームを偏向する工程と、前記マルチ荷電粒子ビームを前記基板に照射する工程と、を備え、前記各偏向電圧に、正の共通電圧を加算して、前記位置決め偏向器の各電極に印加するものである。
本発明の一態様によるマルチ荷電粒子ビーム描画装置は、複数の電極を有し、描画対象の基板に照射されるマルチ荷電粒子ビームを偏向する静電型の位置決め偏向器と、前記複数の電極の各々に印加される各偏向電圧の範囲に、全偏向電圧がゼロとなる状態が含まれないように所定の偏向オフセットを加算した位置に前記マルチ荷電粒子ビームを偏向制御する偏向制御回路と、を備え、前記各偏向電圧に、正の共通電圧を加算して、前記位置決め偏向器の各電極に印加するものである。
本発明によれば、二次電子の空間滞留と偏向器電極帯電によるビーム位置の変動を、アレイ歪の増加を抑えながら、同時に解決することができる。
以下、本発明の実施の形態を図面に基づいて説明する。実施の形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは電子ビームに限るものでなく、イオンビーム等でもよい。
図1に示す描画装置は、マスクやウェーハ等の対象物に電子ビームを照射して所望のパターンを描画する描画部10と、描画部10の動作を制御する制御部60とを備える。描画部10は、電子光学鏡筒12及び描画室40を有した、マルチビーム描画装置の一例である。
電子光学鏡筒12内には、電子銃14、照明レンズ16、成形アパーチャアレイ基板18、ブランキングアパーチャアレイ基板20、投影レンズ22、ストッピングアパーチャ(制限アパーチャ部材)24、第1対物レンズ26、位置決め偏向器28、第2対物レンズ30、及び焦点補正レンズ32が配置されている。描画室40内には、XYステージ42が配置される。XYステージ42上には、描画対象となる基板44であるマスクブランクが載置されている。
基板44には、例えば、ウェーハや、ウェーハにエキシマレーザを光源としたステッパやスキャナ等の縮小投影型露光装置や極端紫外線露光装置を用いてパターンを転写する露光用のマスクが含まれる。また、基板44には、既にパターンが形成されているマスクも含まれる。例えば、レベンソン型マスクは2回の描画を必要とするため、1度描画されマスクに加工された物に2度目のパターンを描画することもある。
図2に示すように、成形アパーチャアレイ基板18には、縦m列×横n列(m,n≧2)の開口(第1開口)18Aが所定の配列ピッチで形成されている。各開口18Aは、共に同じ寸法形状の矩形で形成される。開口18Aの形状は、円形であっても構わない。これらの複数の開口18Aを電子ビームBの一部がそれぞれ通過することで、マルチビームMBが形成される。
ブランキングアパーチャアレイ基板20は、成形アパーチャアレイ基板18の下方に設けられ、成形アパーチャアレイ基板18の各開口18Aに対応する通過孔20A(第2開口)が形成されている。各通過孔20Aには、対となる2つの電極の組からなるブランカ(図示略)が配置される。ブランカの一方はグラウンド電位で固定されており、他方をグラウンド電位と別の電位に切り替える。各通過孔20Aを通過する電子ビームは、ブランカに印加される電圧によってそれぞれ独立に偏向される。このように、複数のブランカが、成形アパーチャアレイ基板18の複数の開口18Aを通過したマルチビームMBのうち、それぞれ対応するビームのブランキング偏向を行う。
ストッピングアパーチャ24は、ブランカにより偏向されたビームを遮蔽する。ブランカにより偏向されなかったビームは、ストッピングアパーチャ24の中心部に形成された開口24A(第3開口)を通過する。ストッピングアパーチャ24は、ブランキングアパーチャアレイ基板20による個別ブランキング時のビームの漏れを少なくするために、ビームの拡がりの小さくなるクロスオーバ(光源像)の結像面に配置される。
制御部60は、制御計算機62、偏向制御回路64、及びレンズ制御回路66を有する。偏向制御回路64は、ブランキングアパーチャアレイ基板20に設けられたブランカや、位置決め偏向器28の電極への印加電圧を制御する。レンズ制御回路66は、照明レンズ16、投影レンズ22、第1対物レンズ26、第2対物レンズ30及び焦点補正レンズ32への印加電圧を制御する。例えば、レンズ制御回路66は、Zセンサ(図示略)で検出された基板44の表面高さに基づいて、焦点補正レンズ32に印加する電圧を制御し、焦点補正(ダイナミックフォーカス)を行う。
電子銃14(放出部)から放出された電子ビームBは、照明レンズ16によりほぼ垂直に成形アパーチャアレイ基板18全体を照明する。電子ビームBが成形アパーチャアレイ基板18の複数の開口18Aを通過することによって、複数の電子ビームからなるマルチビームMBが形成される。マルチビームMBは、ブランキングアパーチャアレイ20のそれぞれ対応するブランカ内を通過する。
ブランキングアパーチャアレイ基板20を通過したマルチビームMBは、投影レンズ22によって縮小され、ストッピングアパーチャ24の中心の開口24Aに向かって進む。ここで、ブランキングアパーチャアレイ基板20のブランカによって偏向された電子ビームは、ストッピングアパーチャ24の開口24Aから位置がはずれ、ストッピングアパーチャ24によって遮蔽される。一方、ブランカによって偏向されなかった電子ビームは、ストッピングアパーチャ24の開口24Aを通過する。ブランカのオン/オフによって、ブランキング制御が行われ、ビームのオン/オフが制御される。
このように、ストッピングアパーチャ24は、ブランキングアパーチャアレイ基板20のブランカによってビームOFFの状態になるように偏向された各ビームを遮蔽する。
ストッピングアパーチャ24を通過したマルチビームMBは、第1対物レンズ26、第2対物レンズ30及び焦点補正レンズ32により焦点が合わされ、所望の縮小率のパターン像となり、基板44上に照射される。
第1対物レンズ26と第2対物レンズ30との間に配置された位置決め偏向器28は、連続的に移動するXYステージ42上に載置された基板44の所望の位置にマルチビームMBを偏向照射する。位置決め偏向器28は、複数の電極を有するものであり、例えば4個の電極を有する四極偏向器や8個の電極を有する八極偏向器を用いることができる。位置決め偏向器28の各電極への印加電圧を変えることで、ビーム偏向位置(基板44におけるビーム照射位置)を変化させることができる。
マルチビームMBが基板44に照射される寸法は100マイクロメートル角程度と広いので、位置決め偏向器28が偏向すべき領域(描画偏向領域)の寸法が前記マルチビームMBの寸法と比較して狭くても、描画スループット上の問題は生じない。例えば、数マイクロメートル角から10マイクロメートル角程度で十分である。これは、可変成形型電子ビーム描画装置が、描画スループットを達成するために100マイクロメートル角程度と広い描画偏向領域を必要とすることと、大きく異なる点である。
焦点補正レンズ32は、位置決め偏向器28よりも、マルチビームMBの進行方向の下流側に配置される。
照明レンズ16、投影レンズ22、第1対物レンズ26及び第2対物レンズ30には、電磁レンズ(磁界型レンズ)が用いられるが、一部または全部を静電レンズとしてもかまわない。焦点補正レンズ32は基板44の表面の高さ変動に対するダイナミックフォーカス調整を行うものであり、静電レンズが用いられるが、電磁レンズ(軸対称磁界を発生させるコイルを含む)を用いてもよい。また、各印加電圧や励磁電流が一定の関係で連動して変化する多段のレンズ系で構成してもよい。あるいは、第2対物レンズ30が焦点補正レンズ32の機能を合わせて備えてもよいし、第2対物レンズ30と焦点補正レンズ32とが一定の関係で連動することでフォーカス調整を行う構成としてもよい。
第2対物レンズ30は電磁レンズであり、図3に示すように、コイル30aと、コイル30aを収容するヨーク30bとを有する。ヨーク30bは鉄などの透磁率の高い材料で構成され、一部に切り欠き(ポールピース30c)が設けられている。
コイル30aに電流を流して作られた磁力線が、ポールピース30cを介して空間に漏洩し、磁界が作られる。
焦点補正レンズ32は、例えば第2対物レンズ30の内部、例えばポールピース30cの高さに合わせて配置される。焦点補正レンズ32は静電レンズであり、リング状の電極を有する。この電極には基板表面に対して正の電圧が印加され、焦点補正レンズ32は基板表面に対してプラスの電圧範囲で運用される。
マルチビームMB(一次ビーム)が基板44に照射されると、基板面から二次電子が放出される。焦点補正レンズ32をプラスの電圧範囲で運用することにより、二次電子は、基板面から上方へ誘導され、電子光学鏡筒12内を上方へ進む。二次電子が基板面へ戻ることを抑制し、レジストの帯電による位置変動を抑えることができる。
描画処理では、基板44表面のレジストがビーム照射により蒸発し、位置決め偏向器28の複数の電極の表面にコンタミネーション(汚れ)が付着することがある。電子光学鏡筒12内を上方へ進む二次電子は、位置決め偏向器28の電極表面のコンタミネーションに到達して帯電し、マルチビームMBの軌道を変化させ得る。
従来の描画装置では、ビーム偏向位置(基板44におけるビーム照射位置)を変化させる動作において、図4(a)(b)に示すように、位置決め偏向器28の各電極に印加する偏向電圧の極性が変わっていた。偏向電圧の極性が変わると、位置決め偏向器28内の電界の強度と方向が大きく変わり、二次電子の到達位置、すなわち帯電位置が、電極を跨いで大きく変わる。帯電位置が大きく変わることで、ビーム近傍の電界の大きな変化が生じ、その結果、大きなビーム照射位置変動(ドリフト)が生じる。
そこで、本実施形態では、位置決め偏向器28の偏向位置にオフセット(偏向オフセット)を加えて、すなわち偏向位置をシフトさせて動作させることで、二次電子をビーム中心付近から除去され横向きのほぼ一定方向に移動し、偏向器表面等の限定された領域に導かれ到達する。例えば、図5に示すように、描画偏向領域R1内に偏向電圧の原点、すなわち、位置決め偏向器28の全電極の偏向電圧が0(全偏向電圧が0)となる状態を含まないように、偏向可能範囲R0内で描画偏向領域R1をシフトさせる。ここで、偏向可能範囲R0は、偏向制御回路64に含まれる偏向アンプの最大出力で偏向が可能な範囲である。描画偏向領域R1は、描画処理で必要な偏向領域である。描画偏向領域R1内に偏向電圧の原点を含まないようにすることで、図12(a)(b)に示すように、偏向位置の変化に対する二次電子の到達位置、すなわち帯電位置の変化が抑えられるので、ビーム照射位置変動(ドリフト)が抑えられる。
さらに、位置決め偏向器28の各電極(個々の電極)の偏向電圧の極性が一定で変わらないように偏向オフセットを設定すると、より効果的である。各電極の偏向電圧の極性が一定となるようにするには、四極偏向器においては、図6(a)~図6(d)に示す領域R11~R14のいずれかに描画偏向領域R1を収めるようにすればよい。これにより、二次電子が偏向電極に当たる領域がより限定されるので、帯電の発生する位置の範囲もより限定される。その結果、位置決め偏向器28内の電界の強度及び方向の変化が抑えられ、ビーム照射位置変動(ドリフト)が抑制され、ビーム位置精度は向上する。
なお、「各電極の偏向電圧の極性が一定となるように偏向オフセットを設定する」と、自動的に(必ず)、「全偏向電圧が0となる状態を含まない」は満足される。従って、「極性が一定となる」は「全偏向電圧が0を含まない」をより限定した条件となっている。
なお、偏向器に印加する電圧に関する条件が、ドリフト低減においては、より直接的に寄与するものである。あくまでも、その結果として基板面上のビーム偏向位置や偏向領域がシフトするものであり、必ずしも基板面上のビーム偏向位置や偏向領域自体がドリフト低減に直接寄与しているとはいえない。
ここで、描画時は常に一定の偏向オフセットをかけ、描画時の偏向の原点を偏向オフセットによりシフトした位置とするように動作パラメータ上で設定することで、基板44上の所望の位置にビームを照射することができる。偏向オフセットにより使用できる描画偏向領域は狭くなるが、マルチビーム描画装置では広い描画偏向領域を必要としないので、実用上問題にはならない。また、偏向オフセットは、描画動作中に一定とすることがドリフト低減の面から最も効果的である。なお、上述したように「偏向電圧が0を含まない」または「極性が一定となる」という条件を満たす範囲であれば、描画動作中に偏向オフセットを若干変化させてもよい。この場合には、XYステージ42の位置を偏向オフセットの変化量に応じて修正する必要がある。
図7は、位置決め偏向器28の構成の一例を示す。図7に示す例では、位置決め偏向器28は、4個の電極28a~28dを有する静電型の四極偏向器である。偏向オフセットを(X0、Y0)、描画データのパターン位置に基づくパターン描画用の偏向量を(X、Y)、偏向感度係数をkとした場合、電極28a~28dに印加する偏向電圧V1~V4は以下のようになる。
V1=k(X0+X)
V2=k(Y0+Y)
V3=k(-X0-X)
V4=k(-Y0-Y)
V1=k(X0+X)
V2=k(Y0+Y)
V3=k(-X0-X)
V4=k(-Y0-Y)
x方向の偏向可能範囲を-XMからXMまで、y方向の偏向可能範囲を-YMからYMまで、x方向の描画偏向領域を-XWからXWまで、y方向の偏向偏向領域を-YWからYWまでとした場合について考える。図5に示すように、描画偏向領域R1内に偏向電圧の原点を含まないように、かつ位置決め偏向器28の各電極の偏向電圧の極性が一定となるための偏向オフセット(X0、Y0)は、以下の条件式を満足すればよい。
XW<|X0|≦XM-XW
YW<|Y0|≦YM-YW
XW<|X0|≦XM-XW
YW<|Y0|≦YM-YW
上記の条件式を満たす偏向オフセット(X0、Y0)を事前に求め、制御部60のメモリ(図示略)に記憶させる。
描画処理時、制御計算機62は、記憶装置から描画データを読み出し、複数段のデータ変換処理を行って装置固有のショットデータを生成する。ショットデータには、各ショットの照射量及び照射位置座標等が定義される。照射位置座標は、上述の偏向オフセット(X0、Y0)を偏向の原点として算出する。
制御計算機62は、ショットデータに基づき各ショットの照射量を偏向制御回路64に出力する。偏向制御回路64は、入力された照射量を電流密度で割って照射時間tを求める。そして、偏向制御回路64は、対応するショットを行う際、照射時間tだけブランカがビームONするように、ブランキングアパーチャアレイ基板20の対応するブランカに偏向電圧を印加する。
また、偏向制御回路64は、ショットデータで示される照射位置にビームが照射されるように描画用偏向量(X、Y)を求め、これに偏向オフセット(X0、Y0)を加算又は減算し、偏向感度係数kを乗じた上記の偏向電圧V1~V4を、位置決め偏向器28の各電極28a~28dに印加する。なお、前記描画用偏向量を求める際には、XYステージ42の位置情報をレーザー測長装置等の位置測定器(図示せず)から取得し利用する。
このように、位置決め偏向器28の各偏向電極の偏向電圧の極性が一定となるようにして、二次電子を位置決め偏向器28の限られた領域に導き、偏向器帯電の変化を抑制することで、ビームを安定化させることができる。
位置決め偏向器28は、図8(a)(b)に示すような、8個の電極28a~28hを有する八極偏向器を用いてもよい。図8(a)(b)に示す偏向器は設置角が22.5度異なり、本明細書では、(a)のように偏向座標軸が偏向電極の間隙の中心を通るように配置したものを22.5度回転配置と呼び、(b)のように偏向座標軸が偏向電極の中心を通るように配置したものを0度回転配置と呼ぶ。
図8(a)に示す22.5度回転配置では、電極28a~28hに印加される偏向電圧V1~V8は、偏向オフセット(X0、Y0)、描画用偏向量(X、Y)、偏向感度係数kを用いて、以下のように表される。
V1=k{(X0+X)+a(Y0+Y)}
V2=k{(Y0+Y)+a(X0+X)}
V3=k{(Y0+Y)-a(X0+X)}
V4=k{-(X0+X)+a(Y0+Y)}
V5=k{-(X0+X)-a(Y0+Y)}
V6=k{-(Y0+Y)-a(X0+X)}
V7=k{-(Y0+Y)+a(X0+X)}
V8=k{(X0+X)-a(Y0+Y)}
a=√2-1≒0.414
V1=k{(X0+X)+a(Y0+Y)}
V2=k{(Y0+Y)+a(X0+X)}
V3=k{(Y0+Y)-a(X0+X)}
V4=k{-(X0+X)+a(Y0+Y)}
V5=k{-(X0+X)-a(Y0+Y)}
V6=k{-(Y0+Y)-a(X0+X)}
V7=k{-(Y0+Y)+a(X0+X)}
V8=k{(X0+X)-a(Y0+Y)}
a=√2-1≒0.414
22.5度回転配置において、位置決め偏向器28の各電極の偏向電圧の極性が一定となるようにするためには、描画偏向領域が、図9(a)に示す22.5度~67.5度、及びそこから90度毎の領域Ra(Ra1~Ra4)、図9(b)に示す-22.5度~22.5度、及びそこから180度回転した領域Rb(Rb1,Rb2)、又は図9(c)に示す67.5度~112.5度、及びそこから180度回転した領域Rc(Rc1,Rc2)のいずれかに収まっていればよい。
描画偏向領域を領域Raに収めるためには、偏向オフセット(X0、Y0)が、以下の条件式を満足すればよい。
|Y0|+YW<(√2+1)(|X0|-XW)
|Y0|-YW>(√2-1)(|X0|+XW)
|X0|≦XM-XW
|Y0|≦YM-YW
|Y0|+YW<(√2+1)(|X0|-XW)
|Y0|-YW>(√2-1)(|X0|+XW)
|X0|≦XM-XW
|Y0|≦YM-YW
描画偏向領域を領域Rbに収めるためには、偏向オフセット(X0、Y0)が、以下の条件式を満足すればよい。
|Y0|+YW<(√2-1)(|X0|-XW)
|Y0|-YW>-(√2-1)(|X0|-XW)
|X0|≦XM-XW
|Y0|≦YM-YW
|Y0|+YW<(√2-1)(|X0|-XW)
|Y0|-YW>-(√2-1)(|X0|-XW)
|X0|≦XM-XW
|Y0|≦YM-YW
描画偏向領域を領域Rcに収めるためには、偏向オフセット(X0、Y0)が、以下の条件式を満足すればよい。
|X0|+XW<(√2-1)(|Y0|-YW)
|X0|-XW>-(√2-1)(|Y0|-YW)
|X0|≦XM-XW
|Y0|≦YM-YW
|X0|+XW<(√2-1)(|Y0|-YW)
|X0|-XW>-(√2-1)(|Y0|-YW)
|X0|≦XM-XW
|Y0|≦YM-YW
図8(b)に示す0度回転配置では、電極28a~28hに印加される偏向電圧V1~V8は、偏向オフセット(X0、Y0)、描画用偏向量(X、Y)、偏向感度係数k´を用いて、以下のように表される。
V1=k´(X0+X)
V2=k´b{(X0+X)+(Y0+Y)}
V3=k´(Y0+Y)
V4=k´b{-(X0+X)+(Y0+Y)}
V5=-k´(X0+X)
V6=-k´b{(X0+X)+(Y0+Y)}
V7=-k´(Y0+Y)
V8=-k´b{-(X0+X)+(Y0+Y)}
b=1/√2≒0.707
V1=k´(X0+X)
V2=k´b{(X0+X)+(Y0+Y)}
V3=k´(Y0+Y)
V4=k´b{-(X0+X)+(Y0+Y)}
V5=-k´(X0+X)
V6=-k´b{(X0+X)+(Y0+Y)}
V7=-k´(Y0+Y)
V8=-k´b{-(X0+X)+(Y0+Y)}
b=1/√2≒0.707
0度回転配置において、位置決め偏向器28の各電極の偏向電圧の極性が一定となるようにするためには、描画偏向領域が、図10(a)に示す0度~45度、及びx軸、y軸、原点に関して対称な領域Rd(Rd1~Rd4)、又は図10(b)に示す45度~90度、及びx軸、y軸、原点に関して対称な領域Re(Re1~Re4)のいずれかに収まっていればよい。
描画偏向領域を領域Rdに収めるためには、偏向オフセット(X0、Y0)が、以下の条件式を満足すればよい。
|Y0|+YW<|X0|-XW
|X0|≦XM-XW
|Y0|≦YM-YW
|Y0|>YW
|Y0|+YW<|X0|-XW
|X0|≦XM-XW
|Y0|≦YM-YW
|Y0|>YW
描画偏向領域を領域Reに収めるためには、偏向オフセット(X0、Y0)が、以下の条件式を満足すればよい。
|X0|+XW<|Y0|-YW
|X0|≦XM-XW
|Y0|≦YM-YW
|X0|>XW
|X0|+XW<|Y0|-YW
|X0|≦XM-XW
|Y0|≦YM-YW
|X0|>XW
図13に示すように、位置決め偏向器28の各電極への印加電圧に、基板表面に対してプラスの共通電圧Vcを加算すれば、より確実にドリフトを低減する事が出来る。この共通電圧Vcは、焦点補正レンズ32へ印加される正の電圧VFの上限値以上の値とすることが好ましい。これにより、焦点補正レンズ32を通過した二次電子が減速せずに位置決め偏向器28へ移動するため、焦点補正レンズ32と位置決め偏向器28との間での二次電子の滞留を防止し、ビーム照射位置精度を向上できる。静電偏向器を焦点補正レンズに近接して配置しているが、二次電子滞留によるドリフトが生じないので、レンズ磁界が存在する所への偏向器配置が可能となり、偏向で生じるアレイ歪を低減する事ができ、偏向オフセットを掛けてもアレイ歪の増加を抑えることができる。さらに、図14に示す例のように、位置決め偏向器を2段とし、一方の位置決め偏向器28は焦点補正レンズに近接して配置し、2つの位置決め偏向器28、28′の偏向量と偏向方向を最適化する事で、偏向オフセットによるアレイ歪の増加をより低減する事が出来る。
なお、一般的には静電偏向器と焦点補正レンズの電圧を印加する電極の間にリング状のアース電極を配置する場合があるが、このようなアース電極を配置せず、両者の(電圧を印加する)電極を近接して配置すれば、アース電極付近の短い区間での一時的減速(二次電子の減速)も生じないので、滞留によるドリフトをさらに確実に低減できる。
例えば、図7に示した四極偏向器で構成する位置決め偏向器の場合、各電極への印加電圧を以下のようにする。
V1=Vc+k(X0+X)
V2=Vc+k(Y0+Y)
V3=Vc+k(-X0-X)
V4=Vc+k(-Y0-Y)
V1=Vc+k(X0+X)
V2=Vc+k(Y0+Y)
V3=Vc+k(-X0-X)
V4=Vc+k(-Y0-Y)
上記式において、左辺が各電極への印加電圧、右辺第1項(Vc)が共通電圧、右辺第二項(kの掛かる項)が既に説明した偏向電圧である。なお、本明細書においては、偏向器への「印加電圧」と「偏向電圧」とを区別している。「印加電圧」は各電極に印加される電圧であり、共通電圧と偏向電圧とを加算した物である。「偏向電圧」は偏向電界の生成に寄与する電圧であり、これにより入射ビームと二次電子は偏向される。なお、共通電圧を印加しない場合は、偏向器への「印加電圧」と「偏向電圧」は一致する。
図11のように静電型の位置決め偏向器28の近傍に磁界偏向器29を設けてもよい。磁界偏向器29を、位置決め偏向器28の偏向オフセットと逆向きの偏向オフセットが生じるように励磁することで、入射ビーム(マルチビームMB)の基板面での偏向オフセットの一部または全部を打ち消し、入射ビームの歪みや収差をさらに低減できる。磁界偏向器29の励磁量は位置決め偏向器28の偏向オフセットに応じて設定すればよく、偏向位置決め動作と連動して変化させる必要はない。あるいは、位置決め偏向器28の偏向オフセットを打ち消した上で、偏向位置決め動作と連動して励磁量の一部を変化させてもよい。磁界偏向器29が位置決め偏向器28の偏向オフセットの全部を打ち消す場合は、基板面上の描画偏向領域(図5のR1)の中心は0となり偏向位置のオフセットは実際上生じないが、上述した通り、基板面上の偏向位置や偏向領域自体がドリフト低減に直接寄与するわけではない。すなわち、上述した偏向電圧に関する条件を満たすことでドリフト低減の効果は得られる。なお、磁界偏向は、ビームの進行方向に応じて偏向方向が逆転するため、入射ビームとは逆方向に進む二次電子の偏向は阻害されない。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
10 描画部
12 電子光学鏡筒
14 電子銃
16 照明レンズ
18 成形アパーチャアレイ基板
20 ブランキングアパーチャアレイ基板
22 投影レンズ
24 ストッピングアパーチャ
26 第1対物レンズ
28 位置決め偏向器
29 磁界偏向器
30 第2対物レンズ
32 焦点補正レンズ
40 描画室
42 XYステージ
44 基板
60 制御部
12 電子光学鏡筒
14 電子銃
16 照明レンズ
18 成形アパーチャアレイ基板
20 ブランキングアパーチャアレイ基板
22 投影レンズ
24 ストッピングアパーチャ
26 第1対物レンズ
28 位置決め偏向器
29 磁界偏向器
30 第2対物レンズ
32 焦点補正レンズ
40 描画室
42 XYステージ
44 基板
60 制御部
Claims (5)
- 描画対象の基板に照射されるマルチ荷電粒子ビームを形成する工程と、
静電型の位置決め偏向器の複数の電極の各々に印加される各偏向電圧の範囲に、全偏向電圧がゼロとなる状態が含まれないように、所定の偏向オフセットを加算した位置に前記マルチ荷電粒子ビームを偏向する工程と、
前記マルチ荷電粒子ビームを前記基板に照射する工程と、
を備え、
前記各偏向電圧に、正の共通電圧を加算して、前記位置決め偏向器の各電極に印加する、マルチ荷電粒子ビーム描画方法。 - 前記各偏向電圧の範囲において、各電極の電圧の極性が一定となるように、所定の偏向オフセットを加算した位置に前記マルチ荷電粒子ビームを偏向する工程、を備える、請求項1に記載のマルチ荷電粒子ビーム描画方法。
- 前記位置決め偏向器より前記マルチ荷電粒子ビームの進行方向の下流側に配置された焦点補正レンズを正の電圧範囲で動作させる、請求項1又は2に記載のマルチ荷電粒子ビーム描画方法。
- 磁界偏向器を用いて、前記偏向オフセットとは逆方向の偏向を生じさせる、請求項1又は2に記載のマルチ荷電粒子ビーム描画方法。
- 複数の電極を有し、描画対象の基板に照射されるマルチ荷電粒子ビームを偏向する静電型の位置決め偏向器と、
前記複数の電極の各々に印加される各偏向電圧の範囲に、全偏向電圧がゼロとなる状態が含まれないように所定の偏向オフセットを加算した位置に前記マルチ荷電粒子ビームを偏向制御する偏向制御回路と、
を備え、
前記各偏向電圧に、正の共通電圧を加算して、前記位置決め偏向器の各電極に印加する、マルチ荷電粒子ビーム描画装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111123446A TWI854246B (zh) | 2021-08-23 | 2022-06-23 | 多帶電粒子束描繪方法及多帶電粒子束描繪裝置 |
KR1020220086381A KR20230029508A (ko) | 2021-08-23 | 2022-07-13 | 멀티 하전 입자 빔 묘화 방법 및 멀티 하전 입자 빔 묘화 장치 |
US17/819,048 US20230055778A1 (en) | 2021-08-23 | 2022-08-11 | Multi charged particle beam writing method and multi charged particle beam writing apparatus |
CN202211011589.6A CN115938899A (zh) | 2021-08-23 | 2022-08-23 | 多带电粒子束描绘方法以及多带电粒子束描绘装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021135680 | 2021-08-23 | ||
JP2021135680 | 2021-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023031235A true JP2023031235A (ja) | 2023-03-08 |
Family
ID=85414012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022087811A Pending JP2023031235A (ja) | 2021-08-23 | 2022-05-30 | マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023031235A (ja) |
-
2022
- 2022-05-30 JP JP2022087811A patent/JP2023031235A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5970213B2 (ja) | マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法 | |
JP6057700B2 (ja) | マルチ荷電粒子ビーム描画装置 | |
US8884254B2 (en) | Charged particle beam writing apparatus | |
JP6262024B2 (ja) | マルチ荷電粒子ビーム描画装置 | |
US20070085033A1 (en) | Electron beam column for writing shaped electron beams | |
US10504686B2 (en) | Charged particle beam writing method and charged particle beam writing apparatus | |
TWI840768B (zh) | 帶電粒子束描圖裝置 | |
JP2023031235A (ja) | マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置 | |
JP7192254B2 (ja) | マルチ荷電粒子ビーム描画装置及びその調整方法 | |
US20230055778A1 (en) | Multi charged particle beam writing method and multi charged particle beam writing apparatus | |
TWI854246B (zh) | 多帶電粒子束描繪方法及多帶電粒子束描繪裝置 | |
JP7480918B1 (ja) | マルチ荷電粒子ビーム描画装置 | |
JP7480917B1 (ja) | マルチ荷電粒子ビーム描画装置 | |
JP7468795B1 (ja) | マルチ荷電粒子ビーム描画装置 | |
WO2024154184A1 (ja) | マルチ荷電粒子ビーム描画装置 | |
US6326629B1 (en) | Projection lithography device utilizing charged particles | |
JP2001244186A (ja) | 電子ビーム描画装置及び方法 | |
TW202431373A (zh) | 多帶電粒子束描繪裝置 | |
TW202431325A (zh) | 多帶電粒子束描繪裝置 | |
TW202431374A (zh) | 多帶電粒子束描繪裝置 | |
TW202431326A (zh) | 多帶電粒子束描繪裝置 |