JP2023027518A - Zn-Al-Mg BASED ALLOY PLATED STEEL PLATE AND METHOD FOR PRODUCING THE SAME - Google Patents

Zn-Al-Mg BASED ALLOY PLATED STEEL PLATE AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2023027518A
JP2023027518A JP2021132660A JP2021132660A JP2023027518A JP 2023027518 A JP2023027518 A JP 2023027518A JP 2021132660 A JP2021132660 A JP 2021132660A JP 2021132660 A JP2021132660 A JP 2021132660A JP 2023027518 A JP2023027518 A JP 2023027518A
Authority
JP
Japan
Prior art keywords
alloy
steel sheet
layer
plated steel
mgzn2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021132660A
Other languages
Japanese (ja)
Inventor
佳子 中原
Yoshiko Nakahara
宏紀 原田
Hiroki Harada
和久 岡井
Kazuhisa Okai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021132660A priority Critical patent/JP2023027518A/en
Publication of JP2023027518A publication Critical patent/JP2023027518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

To provide a Zn-Al-Mg based alloy plated steel plate having excellent flat plate part corrosion resistance, processed part corrosion resistance, slidability and plating peeling resistance.SOLUTION: A Zn-Al-Mg based alloy plated steel plate has, on at least one surface of a steel plate, a Zn-Al-Mg based alloy plated layer. A ternary eutectic structure of Zn/Al/MgZn2 present on the plated layer is 80% or more in an area ratio to the whole surface of the plated layer.SELECTED DRAWING: None

Description

本発明は、Zn-Al-Mg系合金めっき鋼板に関し、特に、自動車、建築、土木、家電等の分野で利用される耐食性、摺動性および耐めっき剥離性に優れたZn-Al-Mg系合金めっき鋼板とその製造方法に関するものである。 The present invention relates to a Zn-Al-Mg-based alloy plated steel sheet, and in particular, a Zn-Al-Mg-based alloy plated steel sheet having excellent corrosion resistance, slidability, and peeling resistance, which is used in the fields of automobiles, construction, civil engineering, home appliances, etc. The present invention relates to an alloy plated steel sheet and its manufacturing method.

Zn-Al系合金めっき鋼板は、Znめっきに比べ優れた耐食性を有することから、従来より、自動車、建築、土木、家電等の分野で広く利用されてきた。このZn-Al系合金めっき鋼板としては、めっき層中のAl含有量が0.30質量%以下の溶融亜鉛めっき鋼板、同Al含有量が約5質量%の溶融亜鉛-5%アルミニウム合金めっき鋼板、同Al含有量が約55質量%の溶融55%アルミニウム-亜鉛合金めっき鋼板が代表的である。一方で近年、耐食性を向上させる目的でZn-Al系合金めっきにMgが添加されており、種々のAl、Mg含有量および金属組織を有するZn-Al-Mg系合金めっき鋼板が開発されている。 Zn—Al alloy-plated steel sheets have been widely used in the fields of automobiles, construction, civil engineering, home appliances, and the like, because they have better corrosion resistance than Zn plating. The Zn-Al alloy plated steel sheet includes a hot-dip galvanized steel sheet with an Al content of 0.30% by mass or less in the coating layer, and a hot-dip zinc-5% aluminum alloy plated steel sheet with an Al content of about 5% by mass. and a hot-dip 55% aluminum-zinc alloy plated steel sheet having an Al content of about 55% by mass. On the other hand, in recent years, Mg has been added to Zn—Al alloy plating for the purpose of improving corrosion resistance, and Zn—Al—Mg alloy plated steel sheets having various Al and Mg contents and metal structures have been developed. .

Zn-Al-Mg系合金めっきは、さらなる耐食性の向上を目的として、めっき層中の組成や組織に着目した研究が行われている。特許文献1には、Al:4.0~10.0重量%、Mg:1.0~4.0重量%、Ti:0.002~0.1重量%、B:0.001~0.045重量%、残部がZnおよび不可避的不純物からなる溶融めっき層が、Al/Zn/ZnMgの三元共晶組織の素地中に初晶Al相が混在した金属組織を有する、耐食性および表面外観の良好な溶融Zn-Al-Mg系めっき鋼板が開示されている。また、特許文献2には、Al:2.0~7.0質量%、Mg:0.5~3.5質量%、残部がZnおよび不可避的不純物よりなり、Zn-Al-Mg三元共晶組織を体積比率で60%以上含む結晶組織を有する溶融めっき皮膜を備えた加工性、耐食性および接着耐久性に優れたZn-Al-Mg合金めっき鋼板が開示されている。一方、特許文献3には、Al:0.5~2.8重量%、Mg:0.5~2.8重量%、残部Znおよび不可避不純物を含む亜鉛合金めっき層の表面組織が、面積率で、Zn単相組織を40%以下、及びZn-Al-Mg系金属間化合物を60%以上含む、リン酸塩処理性及びスポット溶接性に優れた亜鉛合金めっき鋼板が開示されている。 Zn--Al--Mg alloy plating has been studied with a focus on the composition and structure in the plating layer for the purpose of further improving corrosion resistance. In Patent Document 1, Al: 4.0-10.0% by weight, Mg: 1.0-4.0% by weight, Ti: 0.002-0.1% by weight, B: 0.001-0. 045% by weight, the balance being Zn and unavoidable impurities, the hot-dip plated layer has a metal structure in which the primary crystal Al phase is mixed in the base of the ternary eutectic structure of Al/Zn/Zn 2 Mg, corrosion resistance and surface A hot-dip Zn-Al-Mg plated steel sheet with good appearance is disclosed. Further, in Patent Document 2, Al: 2.0 to 7.0% by mass, Mg: 0.5 to 3.5% by mass, the balance being Zn and unavoidable impurities, Zn-Al-Mg ternary A Zn-Al-Mg alloy-plated steel sheet having excellent workability, corrosion resistance and adhesion durability and having a hot-dip coating having a crystal structure containing 60% or more of the crystal structure in volume ratio is disclosed. On the other hand, in Patent Document 3, the surface texture of the zinc alloy plating layer containing Al: 0.5 to 2.8% by weight, Mg: 0.5 to 2.8% by weight, the balance Zn and inevitable impurities is discloses a zinc alloy plated steel sheet that contains 40% or less of a Zn single-phase structure and 60% or more of a Zn-Al-Mg intermetallic compound and has excellent phosphating properties and spot weldability.

特開平10-306357号公報JP-A-10-306357 特開2002-241962号公報Japanese Patent Application Laid-Open No. 2002-241962 特表2018-507321号公報Japanese Patent Publication No. 2018-507321

自動車、建築、土木、家電等の分野では、Zn-Al-Mg系合金めっき鋼板は、加工して用いられることが多く、平板部耐食性に加えて、加工部耐食性、摺動性および耐めっき剥離性が求められる。耐めっき剥離性とは、摺動時にめっきが粉末状に剥離するパウダリングや薄片上に剥離するフレーキングなどを抑制する性能を言う。しかしながら、特許文献1、2および3に記載のZn-Al-Mg系合金めっき鋼板はいずれも摺動性および耐めっき剥離性については検討されておらず、平板部耐食性、加工部耐食性、摺動性および耐めっき剥離性の全てを兼ね備えためっき組成およびめっき組織は明らかではない。 In the fields of automobiles, construction, civil engineering, home appliances, etc., Zn-Al-Mg alloy plated steel sheets are often processed and used. sexuality is required. The term "plating peeling resistance" refers to the ability to suppress powdering, in which the plating peels off in the form of powder during sliding, and flaking, in which the plating peels off on thin pieces. However, the Zn-Al-Mg-based alloy-plated steel sheets described in Patent Documents 1, 2 and 3 have not been examined for slidability and plating peeling resistance, and the flat plate portion corrosion resistance, the worked portion corrosion resistance, the sliding A plating composition and a plating structure that satisfy all of the properties and resistance to peeling of the plating have not been clarified.

本発明はかかる事情に鑑みてなされたものであり、平板部耐食性、加工部耐食性、摺動性および耐めっき剥離性に優れたZn-Al-Mg系合金めっき鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a Zn-Al-Mg alloy-plated steel sheet excellent in corrosion resistance of a flat portion, corrosion resistance of a worked portion, slidability and resistance to peeling of plating, and a method for producing the same. With the goal.

本発明者らは、上記課題を達成するために検討を行った結果、以下の知見を得た。
(1)Zn-Al-Mg系合金めっき鋼板のめっき層表面に存在するZn/Al/MgZnの三元共晶組織のめっき層の表面全体に対する面積率が80%以上であると、優れた平板部耐食性、加工部耐食性、摺動性、および耐めっき剥離性を示す。
(2)前記Zn/Al/MgZnの三元共晶組織中に含まれるMgZn相の前記Zn/Al/MgZnの三元共晶組織の表面全体に対する面積率が35%以上であると、より優れた平板部耐食性、加工部耐食性、摺動性、および耐めっき剥離性を示す。
(3)前記Zn/Al/MgZnの三元共晶組織の厚み方向断面における平均厚みが0.10μm以上であれば、平板部耐食性、加工部耐食性、摺動性、および耐めっき剥離性がさらに向上する。
(4)前記Zn/Al/MgZnの三元共晶組織を前記Zn-Al-Mg系合金めっき層の表面全体に対する面積率が80%以上で存在させる方法として、Zn-Al系合金めっき鋼板のめっき層上にMgまたはMg-Zn層を形成し、加熱による熱処理を行う方法が好ましい。
(5)前記Zn-Al系合金めっき層上にMgまたはMg-Zn層の付着量が鋼板片面当たり0.1g/m以上となるように形成し、前記Zn-Al系合金めっき層の融点以上の温度で加熱による熱処理を行ったのち、平均冷却速度が10℃/秒以下で冷却することで、めっき層の表面にZn/Al/MgZnの三元共晶組織を、めっき層の表面全体に対する面積率が80%以上で存在させやすくなり、好ましい。
The present inventors have obtained the following findings as a result of investigations to achieve the above-mentioned problems.
(1) Excellent if the area ratio of the Zn/Al/ MgZn ternary eutectic structure present on the surface of the coating layer of the Zn-Al-Mg alloy plated steel sheet to the entire surface of the coating layer is 80% or more. Corrosion resistance of flat part, corrosion resistance of processed part, slidability, and resistance to plating peeling.
(2) The area ratio of the MgZn2 phase contained in the Zn/Al/ MgZn2 ternary eutectic structure to the entire surface of the Zn/Al/ MgZn2 ternary eutectic structure is 35% or more. , exhibiting better corrosion resistance of flat plate parts, corrosion resistance of machined parts, slidability, and resistance to plating peeling.
(3) If the average thickness of the ternary eutectic structure of Zn/Al/ MgZn2 in the cross section in the thickness direction is 0.10 μm or more, the corrosion resistance of the flat plate portion, the corrosion resistance of the processed portion, the slidability, and the resistance to plating peeling are improved. Further improve.
(4) As a method for making the ternary eutectic structure of Zn/Al/ MgZn2 exist at an area ratio of 80% or more with respect to the entire surface of the Zn-Al-Mg-based alloy plating layer, a Zn-Al-based alloy plated steel sheet A preferred method is to form an Mg or Mg--Zn layer on the plated layer of and heat-treat it by heating.
(5) The Mg or Mg-Zn layer is formed on the Zn-Al alloy plating layer so that the adhesion amount of the Mg or Mg-Zn layer is 0.1 g / m 2 or more per side of the steel sheet, and the melting point of the Zn-Al alloy plating layer After heat treatment by heating at the above temperature, cooling is performed at an average cooling rate of 10 ° C./sec or less to form a ternary eutectic structure of Zn / Al / MgZn 2 on the surface of the coating layer. It becomes easy to exist when the area ratio to the whole is 80% or more, which is preferable.

本発明は、上記知見を基になされたものであり、本発明の要旨は次のとおりである。
[1]鋼板の少なくとも一方の表面にZn-Al-Mg系合金めっき層を有するZn-Al-Mg系合金めっき鋼板であって、
前記Zn-Al-Mg系合金めっき層の表面に存在するZn/Al/MgZnの三元共晶組織の前記めっき層の表面全体に対する面積率が80%以上であることを特徴とする、Zn-Al-Mg系合金めっき鋼板。
[2]前記Zn/Al/MgZnの三元共晶組織中に含まれるMgZn相の前記Zn/Al/MgZnの三元共晶組織の表面全体に対する面積率が35%以上であることを特徴とする、[1]に記載のZn-Al-Mg系合金めっき鋼板。
[3]前記Zn/Al/MgZnの三元共晶組織の厚み方向断面における平均厚みが0.10μm以上であることを特徴とする、[1]または[2]に記載のZn-Al-Mg系合金めっき鋼板。
[4]前記Zn-Al-Mg系合金めっき層は、Alを1.0~15質量%含有することを特徴とする、[1]~[3]のいずれかに記載のZn-Al-Mg系合金めっき鋼板。
[5]前記Zn-Al-Mg系合金めっき層は、さらにNiを0.005~0.1質量%含有することを特徴とする、[4]に記載のZn-Al-Mg系合金めっき鋼板。
[6]Zn-Al系合金めっき層を有するZn-Al系合金めっき鋼板の前記Zn-Al系合金めっき層上に、MgまたはMg-Zn層を形成し、前記Zn-Al系合金めっき層の融点以上の加熱温度で加熱する熱処理を行ったのち、
前記加熱温度から、前記Zn-Al系合金めっき層の融点-10℃まで温度域を、平均冷却速度10℃/秒以下で冷却することを特徴とする、Zn-Al-Mg系合金めっき鋼板の製造方法。
[7]前記MgまたはMg-Zn層の付着量が、鋼板片面当たり0.1g/m以上であることを特徴とする、[6]に記載のZn-Al-Mg系合金めっき鋼板の製造方法。
[8]前記Zn-Al系合金めっき層は、Alを1.0~15質量%含有することを特徴とする、[6]または[7]に記載のZn-Al-Mg系合金めっき鋼板の製造方法。
[9]前記Zn-Al系合金めっき層は、さらにNiを0.005~0.1質量%含有することを特徴とする、[8]に記載のZn-Al-Mg系合金めっき鋼板の製造方法。
The present invention was made based on the above findings, and the gist of the present invention is as follows.
[1] A Zn-Al-Mg alloy plated steel sheet having a Zn-Al-Mg alloy plating layer on at least one surface of the steel sheet,
Zn, characterized in that the area ratio of the ternary eutectic structure of Zn/Al/ MgZn2 present on the surface of the Zn-Al-Mg-based alloy plating layer to the entire surface of the plating layer is 80% or more. - Al-Mg alloy plated steel sheet.
[2] The area ratio of the MgZn2 phase contained in the Zn/Al/ MgZn2 ternary eutectic structure to the entire surface of the Zn/Al/ MgZn2 ternary eutectic structure is 35% or more. The Zn-Al-Mg alloy plated steel sheet according to [1], characterized by
[3] Zn-Al- according to [1] or [2], characterized in that the ternary eutectic structure of Zn/Al/ MgZn2 has an average thickness of 0.10 μm or more in a cross section in the thickness direction. Mg-based alloy plated steel sheet.
[4] The Zn-Al-Mg according to any one of [1] to [3], wherein the Zn-Al-Mg alloy plating layer contains 1.0 to 15% by mass of Al. alloy plated steel sheet.
[5] The Zn-Al-Mg alloy plated steel sheet according to [4], wherein the Zn-Al-Mg alloy plating layer further contains 0.005 to 0.1% by mass of Ni. .
[6] Forming an Mg or Mg-Zn layer on the Zn-Al alloy plated layer of a Zn-Al alloy plated steel sheet having a Zn-Al alloy plated layer, After performing heat treatment to heat at a heating temperature above the melting point,
A Zn-Al-Mg alloy-plated steel sheet, characterized in that the temperature range from the heating temperature to the melting point of the Zn-Al-based alloy plating layer -10 ° C. is cooled at an average cooling rate of 10 ° C./sec or less. Production method.
[7] Manufacture of the Zn-Al-Mg alloy plated steel sheet according to [6], wherein the amount of the Mg or Mg-Zn layer deposited is 0.1 g/m 2 or more per side of the steel sheet. Method.
[8] The Zn-Al-Mg alloy-plated steel sheet according to [6] or [7], wherein the Zn-Al-based alloy plating layer contains 1.0 to 15% by mass of Al. Production method.
[9] Manufacture of the Zn-Al-Mg alloy-plated steel sheet according to [8], wherein the Zn-Al-based alloy plating layer further contains 0.005 to 0.1% by mass of Ni. Method.

本発明によれば、平板部耐食性、加工部耐食性、摺動性および耐めっき剥離性に優れたZn-Al-Mg系合金めっき鋼板を提供することができる。本発明のZn-Al-Mg系合金めっき鋼板は自動車用途、家電用途、建材用途など、様々な用途に好適である。 According to the present invention, it is possible to provide a Zn--Al--Mg alloy-plated steel sheet which is excellent in corrosion resistance of a flat portion, corrosion resistance of a worked portion, slidability, and resistance to plating peeling. The Zn--Al--Mg alloy-plated steel sheet of the present invention is suitable for various uses such as automobile use, home appliance use and building material use.

以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の好適な一実施態様を示すものであり、本発明は、以下の説明によって何ら限定されるものではない。 Embodiments of the present invention will be described below. The following description shows a preferred embodiment of the present invention, and the present invention is not limited by the following description.

本発明のZn-Al-Mg系合金めっき層の付着量は、優れた平板部耐食性および加工部耐食性を得るために、片面あたり10g/m以上が好ましい。より好ましくは60g/m以上である。 The amount of the Zn--Al--Mg-based alloy plating layer of the present invention is preferably 10 g/m 2 or more per side in order to obtain excellent corrosion resistance of flat parts and processed parts. More preferably, it is 60 g/m 2 or more.

本発明のZn-Al-Mg系合金めっき層は、Zn、Al、Mgおよび不可避的不純物からなり、さらにめっき層の表面において、Zn/Al/MgZnの三元共晶組織が、めっき層の表面全体に対する面積率が80%以上で存在していることを特徴とする。以下、その限定理由について説明する。 The Zn-Al-Mg-based alloy plating layer of the present invention consists of Zn, Al, Mg and unavoidable impurities, and furthermore, on the surface of the plating layer, the ternary eutectic structure of Zn/Al/ MgZn2 It is characterized by having an area ratio of 80% or more with respect to the entire surface. The reason for the limitation will be described below.

本発明者らは、Zn/Al/MgZnの三元共晶組織が、めっき層の表面全体に対する面積率で80%以上であると平板部耐食性および加工部耐食性が著しく向上することを見出した。なお、ここでの平板部耐食性とは、端面を除く平面部における耐食性のことを言う。腐食環境では、Zn/Al/MgZnの三元共晶組織中のMgは、優先溶出し、保護性の高い腐食生成物である塩基性塩化亜鉛中に取り込まれ、生成した腐食生成物を安定化させる効果を示す。さらに、溶出したMgは腐食環境下において、Mg(OH)とMgイオンとして存在し、これらの共存により、酸、アルカリのいずれに対してもpH緩衝効果を示すことで、腐食を遅延させる。一方、Alは難溶性の不動態皮膜からなるバリア層を形成することで、腐食を遅延させる。以上の効果により、平板部耐食性は向上する。一方、めっき鋼板に曲げ加工や張り出し加工などの加工を施すと、めっき層中に存在する硬い合金相の部分でクラックが入り、クラックが地鉄まで到達し、早期に地鉄の腐食が進行する恐れがある。しかし、本発明のZn-Al-Mg系合金めっき層では、硬質相であるMgZn相は、三元共晶組織中で微細に存在しており、かつMgZn相が含まれる三元共晶組織は最表層に存在しているため、微細なクラックが表層でのみ発生する。したがって、地鉄に到達するクラックが抑制できるとともに、微細なクラック部では、Zn/Al/MgZnの三元共晶中のMgが溶出し、上記Mgの作用により加工部耐食性にも優れる。以上より、本発明のZn-Al-Mg系合金めっき鋼板においては、めっき層の表面全体に対するZn/Al/MgZnの三元共晶組織の面積率は80%以上とする。より好ましくは90%以上である。 The present inventors found that when the area ratio of the ternary eutectic structure of Zn/Al/ MgZn2 to the entire surface of the plating layer is 80% or more, the corrosion resistance of the plate portion and the corrosion resistance of the worked portion are significantly improved. . The corrosion resistance of the flat plate portion here means the corrosion resistance of the flat portion excluding the end faces. In a corrosive environment, Mg in the ternary eutectic structure of Zn/Al/ MgZn2 is preferentially eluted and taken into basic zinc chloride, which is a highly protective corrosion product, and stabilizes the generated corrosion product. It shows the effect of making Furthermore, the eluted Mg exists as Mg(OH) 2 and Mg ions in a corrosive environment, and the coexistence of these exhibits a pH buffering effect against both acids and alkalis, thereby retarding corrosion. On the other hand, Al retards corrosion by forming a barrier layer consisting of a poorly soluble passive film. Due to the above effects, the corrosion resistance of the flat plate portion is improved. On the other hand, when a plated steel sheet is subjected to processing such as bending or overhanging, cracks occur in the hard alloy phase part existing in the coating layer, and the cracks reach the base steel, and corrosion of the base steel progresses early. There is fear. However, in the Zn-Al-Mg-based alloy plated layer of the present invention, the MgZn 2 phase, which is a hard phase, exists finely in the ternary eutectic structure, and the ternary eutectic containing the MgZn 2 phase Since the structure exists in the outermost layer, fine cracks occur only in the surface layer. Therefore, cracks reaching the base iron can be suppressed, and Mg in the ternary eutectic of Zn/Al/ MgZn2 is eluted in fine crack portions, and the action of Mg provides excellent corrosion resistance in the worked portion. As described above, in the Zn-Al-Mg alloy plated steel sheet of the present invention, the area ratio of the ternary eutectic structure of Zn/Al/ MgZn2 to the entire surface of the coating layer is set to 80% or more. More preferably, it is 90% or more.

また本発明者らは、Zn/Al/MgZnの三元共晶組織が、めっき層の表面全体に対する面積率で80%以上であると、摺動性および耐めっき剥離性が著しく向上することを見出した。本発明におけるZn/Al/MgZnの三元共晶組織では、Al相およびMgZn相は三元共晶組織中に均一、かつ微細に分布している。そのため、めっき層の表面全体におけるZn/Al/MgZnの三元共晶組織の面積率が80%以上であると、めっき層の最表層のほぼ全面にAl、Mgを含む緻密な酸化物層が形成され、金型による摺動を受けた際には、凝集力の高い金属同士の接触ではなく、凝集力の低い酸化物と金属との接触となり、摩擦係数が低下する。また摺動を受けた後の金型には、Al、Mg系酸化物が移着し、金型が平滑化されるため、摩擦係数はさらに低下し、摺動性が向上する。一方で、めっき層の表面が金型などで摺動を受けると、せん断応力が発生し、めっき層内部を伝搬することでパウダリングやフレーキングが起こると考えられる。そのため上記のように摩擦係数が低下すると、耐めっき剥離性も向上すると考えられる。 In addition, the present inventors have found that when the ternary eutectic structure of Zn/Al/ MgZn2 has an area ratio of 80% or more with respect to the entire surface of the plating layer, the slidability and resistance to plating peeling are significantly improved. I found In the ternary eutectic structure of Zn/Al/ MgZn2 in the present invention, the Al phase and the MgZn2 phase are uniformly and finely distributed in the ternary eutectic structure. Therefore, when the area ratio of the ternary eutectic structure of Zn/Al/ MgZn2 in the entire surface of the plating layer is 80% or more, a dense oxide layer containing Al and Mg is formed on almost the entire surface of the outermost layer of the plating layer. is formed, and when it is slid by a mold, the contact is not between metals with high cohesive force but between oxides with low cohesive force and metal, resulting in a decrease in the coefficient of friction. In addition, Al- and Mg-based oxides are transferred to the mold after being slid, and the mold is smoothed, so that the coefficient of friction is further reduced and the slidability is improved. On the other hand, when the surface of the plating layer is slid by a mold or the like, shear stress is generated and propagates inside the plating layer to cause powdering and flaking. Therefore, it is considered that when the coefficient of friction is lowered as described above, the resistance to peeling of plating is also improved.

さらに本発明者らは、めっき層の表面におけるZn/Al/MgZnの三元共晶組織中のMgZn相が、Zn/Al/MgZnの三元共晶組織の表面全体に対する面積率で35%以上であると、平板部耐食性、加工部耐食性、摺動性、および耐めっき剥離性がより向上することを見出した。 Furthermore, the present inventors have found that the MgZn2 phase in the ternary eutectic structure of Zn/Al/ MgZn2 on the surface of the plating layer is the area ratio of the ternary eutectic structure of Zn/Al/ MgZn2 to the entire surface. It has been found that when the content is 35% or more, the corrosion resistance of the flat portion, the corrosion resistance of the worked portion, the slidability, and the resistance to peeling of the plating are further improved.

Zn/Al/MgZnの三元共晶組織中のMgZn相がZn/Al/MgZnの三元共晶組織の表面全体に対する面積率で35%以上であれば、平部、加工部ともに腐食環境中に溶出するMg量が増加するため、上記Mgの効果が大きくなり、平板部耐食性および加工部耐食性がさらに向上する。Zn/Al/MgZnの三元共晶組織中のMgZn相の前記面積率は好ましくは50%以上である。 If the area ratio of the MgZn2 phase in the ternary eutectic structure of Zn/Al/ MgZn2 to the entire surface of the ternary eutectic structure of Zn/Al/MgZn2 is 35% or more, both the flat part and the processed part Since the amount of Mg eluted into the corrosive environment increases, the effect of Mg is enhanced, and the corrosion resistance of the flat portion and the corrosion resistance of the processed portion are further improved. The area ratio of the MgZn2 phase in the ternary eutectic structure of Zn/Al/ MgZn2 is preferably 50% or more.

また、Zn/Al/MgZnの三元共晶組織中のMgZn相がZn/Al/MgZnの三元共晶組織の表面全体に対する面積率で35%以上であると、めっき層の表面硬度が高くなる結果、摩擦係数は低下し、摺動性および耐めっき剥離性はさらに向上する。 In addition, when the MgZn2 phase in the ternary eutectic structure of Zn/Al/ MgZn2 has an area ratio of 35% or more with respect to the entire surface of the ternary eutectic structure of Zn/Al/MgZn2, the surface of the plating layer As a result of the higher hardness, the coefficient of friction is lowered, and the slidability and resistance to plating peeling are further improved.

なお、めっき層の表面におけるZn/Al/MgZnの三元共晶組織は微細組織であるため、MgZn相の面積率を算出する際には、表面のSEM像を倍率10000倍以上で取得し、画像解析ソフトを用いて面積率を算出するのが好ましい。 In addition, since the ternary eutectic structure of Zn/Al/ MgZn2 on the surface of the plating layer is a fine structure, when calculating the area ratio of the MgZn2 phase, an SEM image of the surface is obtained at a magnification of 10000 times or more. Then, it is preferable to calculate the area ratio using image analysis software.

さらに本発明者らは、めっき層の表面に存在しているZn/Al/MgZnの三元共晶組織が、厚み方向断面における平均厚みで0.10μm以上であると平板部耐食性、加工部耐食性、摺動性、および耐めっき剥離性がさらに向上することを見出した。 Furthermore, the present inventors found that the ternary eutectic structure of Zn/Al/ MgZn2 present on the surface of the plating layer has an average thickness of 0.10 μm or more in the cross section in the thickness direction. It was found that corrosion resistance, slidability, and resistance to plating peeling are further improved.

Zn/Al/MgZnの三元共晶組織が、厚み方向断面における平均厚みで0.10μm以上であると、めっき層の表層でのMgによる腐食遅延効果が持続的に発揮されるため、耐食性は向上する。前記平均厚みは、好ましくは0.50μm以上である。 When the ternary eutectic structure of Zn/Al/ MgZn2 has an average thickness of 0.10 μm or more in the cross section in the thickness direction, the corrosion retarding effect of Mg on the surface layer of the plating layer is continuously exhibited, so corrosion resistance improves. The average thickness is preferably 0.50 μm or more.

また、Zn/Al/MgZnの三元共晶組織が、厚み方向断面における平均厚みで0.10μm以上であると、めっき層の表層に存在するAl、Mg系酸化物が摺動時に欠損しても、新たなAl、Mg系酸化物が生成するため、長い距離の摺動や繰り返しの摺動においても摩擦係数が低減され、優れた摺動性および耐めっき剥離性を示す。 In addition, when the ternary eutectic structure of Zn/Al/ MgZn2 has an average thickness of 0.10 μm or more in the cross section in the thickness direction, the Al and Mg oxides present on the surface layer of the plating layer are damaged during sliding. However, since new Al- and Mg-based oxides are generated, the friction coefficient is reduced even in long-distance sliding and repeated sliding, and excellent slidability and plating peeling resistance are exhibited.

本発明のZn-Al-Mg系合金めっき鋼板のめっき層中のAl含有量は1.0~15質量%とすることが好ましい。Al含有量が1.0質量%以上であると、めっき層の最表層に形成されるAl酸化物の量が増大するため、摺動性および耐めっき剥離性をより向上しやすくなる。Al含有量は、好ましくは4.0質量%以上とする。一方で、Al含有量が15質量%以下であると、めっき層の表面においてZn/Al二元共晶の割合が増加するのを抑制でき、Zn/Al/MgZnの三元共晶組織の面積率を確保しやすくなるため、耐食性、摺動性、および耐めっき剥離性をより向上しやすくなる。Al含有量は、好ましくは10質量%以下である。 The Al content in the plating layer of the Zn-Al-Mg alloy plated steel sheet of the present invention is preferably 1.0 to 15% by mass. When the Al content is 1.0% by mass or more, the amount of Al oxide formed on the outermost layer of the plating layer increases, so that the slidability and the resistance to peeling of the plating can be improved more easily. The Al content is preferably 4.0% by mass or more. On the other hand, when the Al content is 15% by mass or less, it is possible to suppress the increase in the ratio of the Zn/Al binary eutectic on the surface of the plating layer, and the ternary eutectic structure of Zn/Al/ MgZn2 can be suppressed. Since it becomes easier to secure the area ratio, it becomes easier to improve corrosion resistance, slidability, and resistance to peeling of plating. The Al content is preferably 10% by mass or less.

また、上記Zn-Al-Mg系合金めっき鋼板は耐黒変性を向上させる目的でNiを含有してもよい。Niを含有する場合は0.005~0.1質量%とする。Ni含有量が0.005質量%未満では、優れた耐黒変性が得られにくい。一方で、Ni含有量が0.1質量%を超えると、後述するが、MgまたはMg-Zn層を形成する前のZn-Al系合金めっき鋼板を製造する際に、めっき浴にNiを含有するAl-Mg系ドロスが発生し、ドロス付着によってめっき外観が損なわれてしまうおそれがあるので、好ましくない。 In addition, the Zn-Al-Mg alloy plated steel sheet may contain Ni for the purpose of improving blackening resistance. When Ni is contained, it is 0.005 to 0.1% by mass. If the Ni content is less than 0.005% by mass, it is difficult to obtain excellent blackening resistance. On the other hand, if the Ni content exceeds 0.1% by mass, as will be described later, Ni is added to the plating bath when producing a Zn-Al alloy plated steel sheet before forming the Mg or Mg-Zn layer. Al--Mg-based dross is produced, and the adhesion of the dross may impair the appearance of the plating.

本発明のZn-Al-Mg系合金めっき鋼板は、Zn-Al系合金めっき層を有するZn-Al系合金めっき鋼板のめっき層上に、MgまたはMg-Zn層を形成し、前記Zn-Al系合金めっき層の融点以上の加熱温度で加熱したのち、平均冷却速度10℃/秒以下で冷却することにより製造されることが好ましい。 The Zn-Al-Mg alloy plated steel sheet of the present invention is obtained by forming a Mg or Mg-Zn layer on the plating layer of a Zn-Al alloy plated steel sheet having a Zn-Al alloy plating layer, and forming the Zn-Al It is preferable to manufacture by heating at a heating temperature equal to or higher than the melting point of the base alloy plating layer and then cooling at an average cooling rate of 10° C./sec or less.

本発明の鋼板に関しては特に限定されず、冷延鋼板や熱延鋼板を用いることができる。 The steel sheet of the present invention is not particularly limited, and cold-rolled steel sheets and hot-rolled steel sheets can be used.

MgまたMg-Zn層を形成する前のZn-Al系合金めっき層は、Al:1.0~15質量%、Mg:0~10質量%を含有することが好ましい。また、前記成分以外の残部がZnおよび不可避的不純物からなることが好ましい。Zn-Al系合金めっき鋼板のめっき層は、Zn相、Zn/Al共晶を含有する。また、Zn-Al系合金めっき鋼板のめっき層がMgを含む場合、該めっき層は、Zn相、Zn/Al共晶、Zn/Al/ZnMg三元共晶を含有する。 The Zn--Al alloy plated layer before forming the Mg or Mg--Zn layer preferably contains Al: 1.0 to 15% by mass and Mg: 0 to 10% by mass. Moreover, it is preferable that the balance other than the above components consists of Zn and unavoidable impurities. The plating layer of the Zn-Al alloy plated steel sheet contains a Zn phase and a Zn/Al eutectic. Further, when the plating layer of the Zn—Al alloy-plated steel sheet contains Mg, the plating layer contains a Zn phase, a Zn/Al eutectic, and a ternary eutectic of Zn/Al/Zn 2 Mg.

MgまたMg-Zn層を形成する前のZn-Al系合金めっき層のAl含有量は1.0~15質量%であることが好ましい。Al含有量の上下限の限定理由については上述の通りである。さらに、Alが15質量%を超えると、めっき浴中にAlを主体としたトップドロスが発生しやすくなり、めっき外観を損なうおそれも生じるため、上限は15質量%が好ましい。 The Al content of the Zn--Al alloy plating layer before forming the Mg or Mg--Zn layer is preferably 1.0 to 15% by mass. The reasons for limiting the upper and lower limits of the Al content are as described above. Furthermore, when Al exceeds 15% by mass, top dross mainly composed of Al tends to occur in the plating bath, which may impair the appearance of the plating. Therefore, the upper limit is preferably 15% by mass.

上記Zn-Al系合金めっき層のMg含有量は、0~10質量%とすることが好ましい。10質量%を超えると、ドロスの発生が顕著であり、めっき外観が劣化するおそれが生じるため、10質量%を上限とすることが好ましい。 The Mg content of the Zn—Al alloy plating layer is preferably 0 to 10% by mass. If the amount exceeds 10% by mass, dross is generated significantly, and the appearance of the plating may deteriorate. Therefore, the upper limit is preferably 10% by mass.

また、上記Zn-Al系合金めっき層は耐黒変性を向上させる目的でNiを含有してもよい。Niを含有する場合は0.005~0.1質量%とする。Ni含有量の上下限の設定理由については上述の通りである。 In addition, the Zn—Al alloy plated layer may contain Ni for the purpose of improving blackening resistance. When Ni is contained, it is 0.005 to 0.1% by mass. The reasons for setting the upper and lower limits of the Ni content are as described above.

本発明において、Zn-Al系合金めっき層上にMgまたはMg-Zn層を形成するにあたり、真空蒸着法、熱蒸発法、電磁浮揚誘導加熱蒸発法、スパッタリング法、電子ビーム蒸発法、イオンプレーティング法、または電磁浮揚物理気相蒸着法などいずれの方法をも選択できる。 In the present invention, in forming the Mg or Mg-Zn layer on the Zn-Al alloy plated layer, a vacuum deposition method, a thermal evaporation method, an electromagnetic levitation induction heating evaporation method, a sputtering method, an electron beam evaporation method, and an ion plating method are used. method, or electromagnetic levitation physical vapor deposition method can be selected.

本発明ではZn-Al系合金めっき層上にMg層を形成する場合は片面当たりの付着量が0.1~10g/mであるのが好ましい。付着量が0.1g/m以上であればめっき層の表面にZn/Al/MgZnの三元共晶組織を面積率で80%以上としやすくなる。好ましくは0.5g/m以上である。 In the present invention, when the Mg layer is formed on the Zn--Al alloy plating layer, it is preferable that the deposition amount per side is 0.1 to 10 g/m 2 . If the coating amount is 0.1 g/m 2 or more, the ternary eutectic structure of Zn/Al/MgZn 2 tends to be 80% or more in area ratio on the surface of the plating layer. It is preferably 0.5 g/m 2 or more.

めっき層上にMg-Zn層を形成する場合は、組成の制御が容易であるように、Mg-Zn層中のMg組成が10質量%以上であることが好ましく、またMg量が0.1g/m以上となるように、Mg組成に応じてMg-Zn層の付着量を決定するのが好ましい。 When the Mg--Zn layer is formed on the plated layer, the Mg composition in the Mg--Zn layer is preferably 10% by mass or more so that the composition can be easily controlled, and the Mg amount is 0.1 g. /m 2 or more.

本発明のZn-Al-Mg系合金めっき鋼板は、Zn-Al系合金めっき層上に、MgまたはMg-Zn層を形成し、前記Zn-Al系合金めっき層の融点以上の温度で加熱したのち、冷却することにより製造される。Zn-Al系合金めっき層の融点(℃)は、Zn-Al-Mg状態図から読み取るのが好ましい。Zn-Al系合金めっき層の融点以上の加熱温度(℃)で加熱し、Zn-Al系合金めっき層およびMgまたはMg-Zn層全体が溶融した後、前記加熱温度から、(Zn-Al系合金めっき層の融点-10℃)までの温度域を、平均冷却速度を10℃/秒以下と比較的遅く冷却することで、初晶がめっき内部でゆっくりと成長、肥大化するとともに、未凝固の融液はめっき層の表層に流れ、Zn/Al/MgZnの三元共晶として最終凝固するために、めっき層の表面においてZn/Al/MgZnの三元共晶組織の面積率が高いめっき組織を形成することができる。前記平均冷却速度は好ましくは5℃/秒以下である。ここで、MgまたはMg-Zn層を形成することにより、めっき層全体が溶融した際にめっき層の表層のMg濃度が高められるため、めっき層の表面全体に対するZn/Al/MgZnの三元共晶組織の面積率が80%以上となり、溶融めっき法によって製造した場合に比べ、めっき層の表面全体に対するZn/Al/MgZnの三元共晶組織の面積率が高いめっき組織が得られる。また、MgまたはMg-Zn層を形成することにより、Zn/Al/MgZnの三元共晶組織中のMgZn相が、Zn/Al/MgZnの三元共晶組織の表面全体に対する面積率で35%以上とすることができる。 The Zn-Al-Mg-based alloy plated steel sheet of the present invention is obtained by forming an Mg or Mg-Zn layer on the Zn-Al-based alloy plated layer and heating at a temperature equal to or higher than the melting point of the Zn-Al-based alloy plated layer. After that, it is manufactured by cooling. The melting point (° C.) of the Zn—Al alloy plating layer is preferably read from the Zn—Al—Mg phase diagram. After heating at a heating temperature (° C.) above the melting point of the Zn-Al alloy plating layer, the Zn-Al alloy plating layer and the entire Mg or Mg-Zn layer are melted, from the heating temperature, (Zn-Al system By cooling the temperature range up to the melting point of the alloy plating layer -10 ° C) at a relatively slow average cooling rate of 10 ° C / sec or less, the primary crystals slowly grow and enlarge inside the plating, and the unsolidified The melt flows to the surface layer of the plating layer and finally solidifies as a ternary eutectic of Zn/Al/ MgZn2 , so that the area ratio of the ternary eutectic structure of Zn/Al/ MgZn2 A high plating structure can be formed. The average cooling rate is preferably 5° C./sec or less. Here, by forming the Mg or Mg-Zn layer, the Mg concentration in the surface layer of the plating layer is increased when the entire plating layer melts, so the ternary Zn/Al/MgZn2 over the entire surface of the plating layer The area ratio of the eutectic structure is 80% or more, and a plating structure with a high area ratio of the ternary eutectic structure of Zn/Al/ MgZn2 with respect to the entire surface of the plating layer can be obtained compared to the case of manufacturing by the hot dip plating method. . In addition, by forming the Mg or Mg—Zn layer, the MgZn 2 phase in the ternary eutectic structure of Zn/Al/MgZn 2 has an area of the ternary eutectic structure of Zn/Al/MgZn 2 with respect to the entire surface. The ratio can be 35% or more.

なお、一般にはAl:1.0~15質量%、Mg:0~10質量%の組成のZn-Al系合金めっきの融点は340℃~420℃である。 In general, the melting point of Zn-Al alloy plating with a composition of Al: 1.0 to 15% by mass and Mg: 0 to 10% by mass is 340°C to 420°C.

熱処理における加熱方法は、特に限定されず、加熱炉および通電加熱を用いることができるが、めっき層および蒸着膜を十分に溶融させることが有効なため、炉加熱を用いるのが好ましい。炉加熱の場合、熱処理時間に関しては特に限定されないが、鋼板が設定温度に到達し、所定温度に保持される時間も考慮すると、炉に投入してから取り出すまでの時間を15分以上とするのが好ましい。長時間加熱を行うと、母材鋼板とめっき層との間のFeAlなどの形成が促進され、めっき層の表面におけるZn/Al/MgZnの三元共晶組織の面積率が低下してしまうため、前記加熱温度での加熱時間の上限は1時間とする。通電加熱を行う場合は、めっき層およびMgまたはMg-Zn層を十分に溶融させるため、炉加熱の場合よりも到達温度を高めに設定するのが好ましい。なお、めっき層中のMg、Alの酸化を抑制するために、N、Ar等の不活性ガス雰囲気下で加熱を行うこともできる。
また、熱処理における冷却方法も特に限定されないが、空冷やミスト冷却、ガス冷却などを適用することができる。
A heating method in the heat treatment is not particularly limited, and a heating furnace and electric heating can be used. However, since it is effective to sufficiently melt the plated layer and the deposited film, it is preferable to use furnace heating. In the case of furnace heating, the heat treatment time is not particularly limited, but considering the time it takes for the steel plate to reach the set temperature and to be held at the predetermined temperature, the time from putting it in the furnace to taking it out should be 15 minutes or more. is preferred. When heated for a long time, the formation of Fe 2 Al 5 and the like between the base steel sheet and the coating layer is promoted, and the area ratio of the ternary eutectic structure of Zn/Al/MgZn 2 on the surface of the coating layer decreases. Therefore, the upper limit of the heating time at the heating temperature is set to 1 hour. In the case of electric heating, it is preferable to set the reaching temperature higher than in the case of furnace heating in order to sufficiently melt the plating layer and the Mg or Mg--Zn layer. In addition, in order to suppress the oxidation of Mg and Al in the plating layer, heating may be performed in an atmosphere of an inert gas such as N 2 or Ar.
Also, the cooling method in the heat treatment is not particularly limited, but air cooling, mist cooling, gas cooling, or the like can be applied.

以下、本発明を実施例に基づいて具体的に説明する。下記の実施例は本発明を限定するものではなく、要旨構成の範囲内で適宜変更することは、本発明の範囲に含まれるものとする。 EXAMPLES The present invention will be specifically described below based on examples. The following examples are not intended to limit the present invention, and appropriate modifications within the scope of the gist and configuration are included in the scope of the present invention.

鋼板表面に表1に示す組成、付着量となるように溶融Zn-Al系合金めっき層(ただし、No.12は、Alを含有しない溶融Zn系合金めっき層)を形成した。真空蒸着法によって表1に示す量のMgまたはMg-Zn層を形成し、加熱炉を用いて表1に示す加熱温度、時間で加熱した後、所定の冷却速度で冷却し、Zn-Al-Mg系合金めっき鋼板を作製した(ただし、No.12は、Alを含有しないZn-Mg系合金めっき鋼板)。なお、表1中の付着量は、鋼板片面当たりの付着量を示す。また、表1中の平均冷却速度は、加熱温度から、(Zn-Al系合金めっき層の融点-10℃)までの温度域における平均冷却速度を示す。 A hot-dip Zn-Al alloy plating layer (No. 12 is a hot-dip Zn-based alloy plating layer containing no Al) was formed on the surface of the steel sheet so as to have the composition and coating amount shown in Table 1. A Mg or Mg—Zn layer of the amount shown in Table 1 is formed by a vacuum deposition method, heated at the heating temperature and time shown in Table 1 using a heating furnace, cooled at a predetermined cooling rate, and Zn—Al— Mg-based alloy-plated steel sheets were produced (No. 12 is a Zn--Mg-based alloy-plated steel sheet containing no Al). In addition, the adhesion amount in Table 1 indicates the adhesion amount per one side of the steel plate. The average cooling rate in Table 1 indicates the average cooling rate in the temperature range from the heating temperature to (the melting point of the Zn--Al alloy plating layer -10°C).

作製しためっき鋼板の任意の位置から20mmx20mmのサイズで10サンプルを採取し、薄膜X線回折法でZn-Mg金属間化合物相を同定した。次に、各サンプル表面について、走査型電子顕微鏡(SEM)を用い、加速電圧15kVで、125μmx95μmの視野の二次電子像(SEM像)を1000倍の倍率で取得するとともに、同エリアについてSEM-EDX面分析を行い、SEM像内のZn/Al/MgZnの三元共晶組織を識別した。次に、画像解析ソフトを用いて、Zn/Al/MgZnの三元共晶組織の面積率(めっき層の表面全体に対する面積率)を算出し、3視野×10サンプルの平均値を、Zn/Al/MgZnの三元共晶組織の面積率とした。また、加速電圧15kVで、13μmx10μmの視野のSEM像を10000倍の倍率で取得するとともに、同エリアについてSEM-EDX面分析を行い、Zn/Al/MgZnの三元共晶組織中におけるMgZn相の、Zn/Al/MgZnの三元共晶組織の表面全体に対する面積率を算出し、3視野×10サンプルの平均値をMgZnの面積率とした。 Ten samples with a size of 20 mm×20 mm were taken from arbitrary positions of the produced plated steel sheet, and the Zn—Mg intermetallic compound phase was identified by the thin film X-ray diffraction method. Next, for each sample surface, using a scanning electron microscope (SEM), at an acceleration voltage of 15 kV, a secondary electron image (SEM image) of a field of view of 125 μm×95 μm is obtained at a magnification of 1000 times, and the same area is SEM- EDX surface analysis was performed to identify the ternary eutectic structure of Zn/Al/ MgZn2 in the SEM images. Next, using image analysis software, the area ratio of the ternary eutectic structure of Zn / Al / MgZn 2 (area ratio with respect to the entire surface of the plating layer) is calculated, and the average value of 3 fields of view × 10 samples is The area ratio of the ternary eutectic structure of /Al/ MgZn2 . In addition, at an acceleration voltage of 15 kV, an SEM image of a field of view of 13 μm × 10 μm was acquired at a magnification of 10000 times, and SEM-EDX surface analysis was performed on the same area . The area ratio of the Zn/Al/ MgZn2 ternary eutectic structure of the phase to the entire surface was calculated, and the average value of 3 fields of view×10 samples was taken as the area ratio of MgZn2 .

続いて、表面観察した10サンプルについて、樹脂断面埋め込み研磨を行い、加速電圧15kVで、幅50μmのSEM像を2500倍の倍率で取得するとともに、同エリアについてSEM-EDX面分析を行い、SEM像内のZn/Al/MgZnの三元共晶組織を識別し、Zn/Al/MgZnの三元共晶組織の厚み(めっき層の厚み方向断面における厚み)を10点測り、3視野×10サンプルの平均値をZn/Al/MgZnの三元共晶組織の平均厚みとした。 Subsequently, 10 samples whose surface was observed were subjected to resin cross-section embedding polishing, and an SEM image with a width of 50 μm was obtained at a magnification of 2500 times at an acceleration voltage of 15 kV. Identify the ternary eutectic structure of Zn / Al / MgZn 2 inside, measure the thickness of the ternary eutectic structure of Zn / Al / MgZn 2 (thickness in the thickness direction cross section of the plating layer) at 10 points, 3 fields of view × The average value of 10 samples was taken as the average thickness of the ternary eutectic structure of Zn/Al/ MgZn2 .

(1)平板部耐食性
作製しためっき鋼板から150mm×50mmサイズのサンプルを切り出し、端面および裏面をテープシールしたのち、JIS Z 2371規格に従って塩水噴霧試験を行い、表面に赤錆が発生した時間を以下の判定基準で評価した。
<判定基準>
◎:赤錆発生時間4000時間以上
〇:赤錆発生時間3500時間以上4000時間未満
〇-:赤錆発生時間3000時間以上3500時間未満
△:赤錆発生時間2000時間以上3000時間未満
×:赤錆発生時間2000時間未満
(1) Corrosion resistance of flat plate portion A sample of 150 mm x 50 mm size was cut out from the produced plated steel sheet, the end surface and the back surface were tape-sealed, and then a salt spray test was performed according to JIS Z 2371 standard. Evaluated according to the criteria.
<Judgment Criteria>
◎: Red rust generation time 4000 hours or more ○: Red rust generation time 3500 hours or more and less than 4000 hours ○-: Red rust generation time 3000 hours or more and less than 3500 hours △: Red rust generation time 2000 hours or more and less than 3000 hours ×: Red rust generation time less than 2000 hours

(2)加工部耐食性
作製しためっき鋼板から150mm×50mmサイズのサンプルを切り出し、90℃曲げを行い、端面および裏面をテープシールしたのち、JIS Z 2371規格に従って、塩水噴霧試験を2000時間行い、曲げ部に赤錆が発生した時間によって耐食性を評価した。
<判定基準>
◎:赤錆発生時間3000時間以上
〇:赤錆発生時間2500時間以上3000時間未満
〇-:赤錆発生時間2000時間以上2500時間未満
△:赤錆発生時間1000時間以上2000時間未満
×:赤錆発生時間1000時間未満
(2) Corrosion resistance of processed part Cut out a 150 mm × 50 mm size sample from the produced plated steel sheet, bend it at 90 ° C., seal the end face and back surface with tape, and then perform a salt spray test for 2000 hours according to the JIS Z 2371 standard. Corrosion resistance was evaluated by the time for red rust to occur on the part.
<Judgment Criteria>
◎: Red rust generation time 3000 hours or more ○: Red rust generation time 2500 hours or more and less than 3000 hours ○-: Red rust generation time 2000 hours or more and less than 2500 hours △: Red rust generation time 1000 hours or more and less than 2000 hours ×: Red rust generation time less than 1000 hours

(3)摺動性
潤滑油を塗布したサンプルを取り付け、金型を一定荷重Nで試験片に押付けながら、以下に示す条件で、一定速度で試験片を引抜くときの引抜き荷重Fを測定し,F/Nより摩擦係数を求め、摺動性を評価した。潤滑油は、粘度が40℃において2.0cStの市販の一般洗浄油を用いた。同一サンプルで3回連続摩擦係数測定を行い、2回目と3回目の摩擦係数の平均値を算出した。
金型形状:ビード(先端4.5R)
金型材質:SKD11(JIS)
接触面積:3×10mm
摺動長さ:100mm
面圧:130.4MPa
摺動速度:1m/min
<判定基準>
◎:摩擦係数0.1未満
〇:0.1以上0.2未満
〇-:0.2以上0.25未満
△:0.25以上0.3未満
×:0.3以上
(3) Sliding property Attach a sample coated with lubricating oil, press the mold against the test piece with a constant load N, and measure the pull-out load F when pulling out the test piece at a constant speed under the conditions shown below. , F/N to determine the coefficient of friction, and evaluated the slidability. A commercially available general cleaning oil having a viscosity of 2.0 cSt at 40° C. was used as the lubricating oil. The same sample was continuously measured for the coefficient of friction three times, and the average value of the second and third coefficients of friction was calculated.
Mold shape: bead (tip 4.5R)
Mold material: SKD11 (JIS)
Contact area: 3x10mm
Sliding length: 100mm
Surface pressure: 130.4 MPa
Sliding speed: 1m/min
<Judgment Criteria>
◎: less than 0.1 coefficient of friction ○: 0.1 or more and less than 0.2 ○ -: 0.2 or more and less than 0.25 △: 0.25 or more and less than 0.3 ×: 0.3 or more

(4)耐めっき剥離性
非摺動面のめっき層を剥離した後に、上記の条件で摺動試験を行い、摺動前後での重量変化を求めた。さらに摺動後の摺動部に対し、テープ剥離を行い、剥離前後の重量変化を求めた。摺動前後、およびテープ剥離前後での重量変化の合計値をめっき剥離量とし、耐めっき剥離性を評価した。なお試験は、異なるサンプルを用いて3回試験を行い、平均値を算出した。
<判定基準>
◎:めっき剥離量0.5g/m未満
〇:0.5g/m以上1.0g/m未満
〇-:1.0g/m以上1.5g/m未満
△:1.5g/m以上2.0g/m未満
×:2.0g/m以上
(4) Resistance to peeling of plating After peeling off the plating layer on the non-sliding surface, a sliding test was performed under the above conditions to determine the weight change before and after sliding. Further, the tape was peeled off from the sliding portion after sliding, and the change in weight before and after the peeling was determined. The total weight change before and after sliding and before and after tape peeling was taken as the amount of peeled plating, and resistance to peeling of plating was evaluated. The test was performed three times using different samples, and the average value was calculated.
<Judgment Criteria>
◎: Less than 0.5 g/m 2 of plating peeling ○: 0.5 g/m 2 or more and less than 1.0 g/m 2 ○ -: 1.0 g/m 2 or more and less than 1.5 g/m 2 △: 1.5 g /m 2 or more and less than 2.0 g/m 2 ×: 2.0 g/m 2 or more

(5)耐黒変性
作製しためっき鋼板から50×50mmサイズのサンプルを切り出し、温度:80℃、相対湿度:98%の雰囲気に制御された恒温恒湿機に24時間静置した際の明度(L値)の変化(ΔL=試験後のL値-試験前のL値)で算出した。評価基準は以下のとおりである。L値は、日本電色工業(株)製のSR2000を使用し、SCIモード(正反射光込み)で測定した。
<判定基準>
○:-10<△L、かつ、ムラが無い均一な外観
○-:-14<△L≦-10、かつ、ムラが無い均一な外観
△:-14<△L≦-10、かつ、軽微なムラのある外観
×:△L≦-14、または、顕著にムラのある外観
(5) Blackening resistance A 50 × 50 mm size sample was cut from the prepared plated steel sheet, and the brightness when left for 24 hours in a constant temperature and humidity machine controlled at a temperature of 80 ° C. and a relative humidity of 98% ( L value)) (ΔL = L value after test - L value before test). Evaluation criteria are as follows. The L value was measured using SR2000 manufactured by Nippon Denshoku Industries Co., Ltd. in SCI mode (including specular reflection light).
<Judgment Criteria>
○: -10 < △L, and uniform appearance without unevenness ○-: -14 < △L ≤ -10, and uniform appearance without unevenness △: -14 < △L ≤ -10, and slight Appearance with slight unevenness ×: △L ≤ -14, or appearance with noticeable unevenness

(6)外観
230×350mmサイズのサンプルに対し、目視により、不めっき、めっき剥離、亀裂などの欠陥部の数を評価することで、外観評価を行った。
<判定基準>
○:欠陥部なし
○-:欠陥部1~2か所
△:欠陥部3~10か所
×:欠陥部11か所以上
(6) Appearance Appearance was evaluated by visually evaluating the number of defects such as non-plating, peeling of plating, and cracks on a sample of 230×350 mm.
<Judgment Criteria>
○: No defects ○-: 1 to 2 defects △: 3 to 10 defects ×: 11 or more defects

Figure 2023027518000001
Figure 2023027518000001

Zn-Al-Mg系合金めっき層の表面において、Zn/Al/MgZnの三元共晶組織が表面面積率80%以上で存在していると、優れた平板部耐食性、加工部耐食性、摺動性および耐めっき剥離性を示す。さらに、Zn/Al/MgZnの三元共晶組織中のMgZn相が三元共晶組織全体に対する面積率で35%以上であると、平板部耐食性、加工部耐食性、摺動性および耐めっき剥離性はさらに向上する。また、Zn/Al/MgZnの三元共晶組織が厚み方向断面において、平均厚み0.10μm以上であると、平板部耐食性、加工部耐食性、摺動性、および耐めっき剥離性がさらに向上する。 If the ternary eutectic structure of Zn/Al/ MgZn2 exists at a surface area ratio of 80% or more on the surface of the Zn-Al-Mg-based alloy plating layer, excellent corrosion resistance of the plate part, corrosion resistance of the processed part, and abrasion resistance can be obtained. It exhibits kinetics and resistance to plating peeling. Furthermore, when the area ratio of the MgZn2 phase in the ternary eutectic structure of Zn/Al/ MgZn2 to the entire ternary eutectic structure is 35% or more, the corrosion resistance of the plate part, the corrosion resistance of the processed part, the slidability and the resistance are improved. Plating releasability is further improved. In addition, when the ternary eutectic structure of Zn/Al/ MgZn2 has an average thickness of 0.10 μm or more in the cross section in the thickness direction, the corrosion resistance of the flat plate portion, the corrosion resistance of the processed portion, the slidability, and the resistance to plating peeling are further improved. do.

本発明のZn-Al-Mg系めっき鋼板は、平板部耐食性、加工部耐食性、摺動性、および耐めっき剥離性に優れ、自動車、電機、建材など幅広い分野に適用可能である。 INDUSTRIAL APPLICABILITY The Zn-Al-Mg-based plated steel sheet of the present invention is excellent in corrosion resistance of flat parts, corrosion resistance of worked parts, slidability, and resistance to plating peeling, and can be applied to a wide range of fields such as automobiles, electrical machinery, and building materials.

Claims (9)

鋼板の少なくとも一方の表面にZn-Al-Mg系合金めっき層を有するZn-Al-Mg系合金めっき鋼板であって、
前記Zn-Al-Mg系合金めっき層の表面に存在するZn/Al/MgZnの三元共晶組織の前記めっき層の表面全体に対する面積率が80%以上であることを特徴とする、Zn-Al-Mg系合金めっき鋼板。
A Zn-Al-Mg alloy plated steel sheet having a Zn-Al-Mg alloy plating layer on at least one surface of the steel sheet,
Zn, characterized in that the area ratio of the ternary eutectic structure of Zn/Al/ MgZn2 present on the surface of the Zn-Al-Mg-based alloy plating layer to the entire surface of the plating layer is 80% or more. - Al-Mg alloy plated steel sheet.
前記Zn/Al/MgZnの三元共晶組織中に含まれるMgZn相の前記Zn/Al/MgZnの三元共晶組織の表面全体に対する面積率が35%以上であることを特徴とする、請求項1に記載のZn-Al-Mg系合金めっき鋼板。 The area ratio of the MgZn2 phase contained in the Zn/Al/ MgZn2 ternary eutectic structure to the entire surface of the Zn/Al/MgZn2 ternary eutectic structure is 35% or more. The Zn-Al-Mg alloy plated steel sheet according to claim 1. 前記Zn/Al/MgZnの三元共晶組織の厚み方向断面における平均厚みが0.10μm以上であることを特徴とする、請求項1または2に記載のZn-Al-Mg系合金めっき鋼板。 3. The Zn-Al-Mg alloy plated steel sheet according to claim 1 or 2, wherein the ternary eutectic structure of Zn/Al/MgZn2 has an average thickness of 0.10 μm or more in a cross section in the thickness direction. . 前記Zn-Al-Mg系合金めっき層は、Alを1.0~15質量%含有することを特徴とする、請求項1~3のいずれか一項に記載のZn-Al-Mg系合金めっき鋼板。 The Zn-Al-Mg alloy plating according to any one of claims 1 to 3, wherein the Zn-Al-Mg alloy plating layer contains 1.0 to 15% by mass of Al. steel plate. 前記Zn-Al-Mg系合金めっき層は、さらにNiを0.005~0.1質量%含有することを特徴とする、請求項4に記載のZn-Al-Mg系合金めっき鋼板。 The Zn-Al-Mg alloy plated steel sheet according to claim 4, wherein the Zn-Al-Mg alloy plated layer further contains 0.005 to 0.1% by mass of Ni. Zn-Al系合金めっき層を有するZn-Al系合金めっき鋼板の前記Zn-Al系合金めっき層上に、MgまたはMg-Zn層を形成し、前記Zn-Al系合金めっき層の融点以上の加熱温度で加熱する熱処理を行ったのち、
前記加熱温度から、前記Zn-Al系合金めっき層の融点-10℃まで温度域を、平均冷却速度10℃/秒以下で冷却することを特徴とする、Zn-Al-Mg系合金めっき鋼板の製造方法。
A Mg or Mg-Zn layer is formed on the Zn-Al alloy plated layer of a Zn-Al alloy plated steel sheet having a Zn-Al alloy plated layer, and the temperature is higher than the melting point of the Zn-Al alloy plated layer. After performing heat treatment to heat at the heating temperature,
A Zn-Al-Mg alloy-plated steel sheet characterized by cooling the temperature range from the heating temperature to the melting point of the Zn-Al-based alloy plating layer -10 ° C. at an average cooling rate of 10 ° C./sec or less. Production method.
前記MgまたはMg-Zn層の付着量が、鋼板片面当たり0.1g/m以上であることを特徴とする、請求項6に記載のZn-Al-Mg系合金めっき鋼板の製造方法。 7. The method for producing a Zn-Al-Mg alloy-plated steel sheet according to claim 6, wherein the amount of the Mg or Mg-Zn layer deposited is 0.1 g/m 2 or more per side of the steel sheet. 前記Zn-Al系合金めっき層は、Alを1.0~15質量%含有することを特徴とする、請求項6または7に記載のZn-Al-Mg系合金めっき鋼板の製造方法。 The method for producing a Zn-Al-Mg alloy-plated steel sheet according to claim 6 or 7, wherein the Zn-Al-based alloy plated layer contains 1.0 to 15% by mass of Al. 前記Zn-Al系合金めっき層は、さらにNiを0.005~0.1質量%含有することを特徴とする、請求項8に記載のZn-Al-Mg系合金めっき鋼板の製造方法。 The method for producing a Zn-Al-Mg alloy-plated steel sheet according to claim 8, wherein the Zn-Al-based alloy plated layer further contains 0.005 to 0.1% by mass of Ni.
JP2021132660A 2021-08-17 2021-08-17 Zn-Al-Mg BASED ALLOY PLATED STEEL PLATE AND METHOD FOR PRODUCING THE SAME Pending JP2023027518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021132660A JP2023027518A (en) 2021-08-17 2021-08-17 Zn-Al-Mg BASED ALLOY PLATED STEEL PLATE AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021132660A JP2023027518A (en) 2021-08-17 2021-08-17 Zn-Al-Mg BASED ALLOY PLATED STEEL PLATE AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2023027518A true JP2023027518A (en) 2023-03-02

Family

ID=85330414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021132660A Pending JP2023027518A (en) 2021-08-17 2021-08-17 Zn-Al-Mg BASED ALLOY PLATED STEEL PLATE AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2023027518A (en)

Similar Documents

Publication Publication Date Title
CN110268087B (en) Plated steel material
JP6346972B6 (en) Zn-Mg alloy plated steel sheet and method for producing the same
JP6715400B1 (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same
JP4584179B2 (en) Method for producing hot-dip Zn-Al alloy-plated steel sheet with excellent corrosion resistance and workability
US9080231B2 (en) Hot-dipped steel and method of producing same
JP6715399B1 (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing the same
AU2010205171B2 (en) Hot-dip Zn-Al-Mg-Si-Cr alloy coated steel material with excellent corrosion resistance
AU2012276644B2 (en) High-corrosion-resistance hot-dip galvanized steel sheet having excellent appearance uniformity and manufacturing method thereof
TW201835359A (en) Coated steel
CA2911442C (en) Galvannealed steel sheet and manufacturing method thereof
EP3502299B1 (en) Hot-rolled galvanizing steel sheet having excellent galling resistance, formability and sealer-adhesion property and method for manufacturing same
WO2020179148A1 (en) Hot-dip al−zn−mg−si−sr plated steel sheet and production method therefor
WO2020179147A1 (en) Hot-dip al-zn-mg-si-sr-plated steel sheet and method for manufacturing same
AU2012263323B2 (en) Molten Zn-Al-based alloy-plated steel sheet having excellent corrosion resistance and workability, and method for producing same
AU2014212962A1 (en) Hot-dip Al-Zn galvanized steel plate and method for producing same
JP4751168B2 (en) Fused Al-based plated steel sheet with excellent workability and method for producing the same
JP2804167B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
AU2015362106A1 (en) Plating composition, method for manufacturing plated steel material by using same, and plated steel material coated with plating composition
JP2003253416A (en) Hot-dip zincing steel sheet
JPH09111433A (en) Aluminum-zinc alloy plated steel sheet excellent in workability and its production
JP5359501B2 (en) Alloy hot-dip galvanized steel sheet
JP4555491B2 (en) Hot-dip zinc-aluminum alloy-plated steel sheet with excellent chemical conversion and its manufacturing method
JP2023027518A (en) Zn-Al-Mg BASED ALLOY PLATED STEEL PLATE AND METHOD FOR PRODUCING THE SAME
JP7453583B2 (en) Al-plated hot stamping steel material
JP7393551B2 (en) Aluminum alloy plated steel sheet with excellent workability and corrosion resistance and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240528