JP2023023663A - Medical tissue reconstruction material and method of producing same - Google Patents

Medical tissue reconstruction material and method of producing same Download PDF

Info

Publication number
JP2023023663A
JP2023023663A JP2021129380A JP2021129380A JP2023023663A JP 2023023663 A JP2023023663 A JP 2023023663A JP 2021129380 A JP2021129380 A JP 2021129380A JP 2021129380 A JP2021129380 A JP 2021129380A JP 2023023663 A JP2023023663 A JP 2023023663A
Authority
JP
Japan
Prior art keywords
silver
carbonate
tissue reconstruction
phosphate
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021129380A
Other languages
Japanese (ja)
Inventor
幸壱朗 林
Koichiro Hayashi
将弥 島袋
Masaya Shimabukuro
邦夫 石川
Kunio Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2021129380A priority Critical patent/JP2023023663A/en
Publication of JP2023023663A publication Critical patent/JP2023023663A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

To provide a medical tissue reconstruction material having both antibacterial properties and bone conductivity.SOLUTION: Provided is a medical tissue reconstruction material that is a calcium-based material having silver carbonate and silver phosphate on its surface, with the total content of the silver carbonate and the silver phosphate being 5.0×10-4 to 3.3×10-2 mass% of the total material.SELECTED DRAWING: Figure 10

Description

本発明は、抗菌性及び骨伝導性(骨置換性)を兼ね備えた医用組織再建材料に関する。 TECHNICAL FIELD The present invention relates to a medical tissue reconstruction material having both antibacterial properties and osteoconductivity (bone replacement properties).

超高齢社会を迎えた我国では、骨疾患が増加しており、これに伴い、骨再生用材料が用いられる手術が増加している。この骨再生用材料が用いられる手術では、手術部位感染が頻発しており、一旦感染が生じると治療に難渋し、患肢切断に至ることがあるだけでなく、入院期間の延長や医療費の増加など様々な方面に多大な影響を及ぼす。 In Japan, which has become a super-aged society, the number of bone diseases is increasing, and along with this, the number of surgeries using bone regeneration materials is increasing. In surgery using this bone regeneration material, surgical site infections frequently occur. It has a great impact on various aspects such as increase.

手術部位感染が頻発する手術として、例えば、内側性変形性膝関節症に対する高位脛骨骨切り術(感染率5.1%)が挙げられる(非特許文献1参照)。この変形性膝関節症は、高齢者ほど罹患率が高いことから、今後さらに感染者が増加することが予想される。また、若年層でも頻発する脛骨プラトー骨折手術(感染率12.3%)や、踵骨骨折手術(感染率約4%)も感染率が高い(非特許文献2及び3参照)。
以上より、術後感染の予防は喫緊の課題である。
Surgery in which surgical site infections frequently occur includes, for example, high tibial osteotomy for medial knee osteoarthritis (infection rate 5.1%) (see Non-Patent Document 1). Since the prevalence of knee osteoarthritis increases with age, the number of infected people is expected to increase further in the future. In addition, tibial plateau fracture surgery (infection rate of 12.3%) and calcaneus fracture surgery (infection rate of about 4%), which frequently occur among young people, also have high infection rates (see Non-Patent Documents 2 and 3).
Therefore, prevention of postoperative infection is an urgent issue.

このような状況下、多くの手術で使用される骨再生用材料に抗菌性を付与することが手術部位感染の予防に効果的であると考えられる。骨再生用材料に抗菌性を付与する手段としては、例えば、抗菌効果を有する銀化合物を用いることが提案されている(特許文献1及び2参照)。 Under such circumstances, imparting antibacterial properties to bone regeneration materials used in many surgeries is considered effective in preventing surgical site infections. As means for imparting antibacterial properties to bone regeneration materials, for example, the use of silver compounds having an antibacterial effect has been proposed (see Patent Documents 1 and 2).

特開2019-210251号公報JP 2019-210251 A 国際公開WO2017/150539号International publication WO2017/150539

宮崎ら,整形外科と災害,66,509-512,2017Miyazaki et al., Orthopedics and disasters, 66, 509-512, 2017 Henkelmann et al.BMC Musculoskeletal Disorders,18,481,2017Henkelmann et al. BMC Musculoskeletal Disorders, 18, 481, 2017 鈴木ら,骨折,42,232-235,2020Suzuki et al., Fracture, 42, 232-235, 2020

本発明の課題は、抗菌性及び骨伝導性を兼ね備えた医用組織再建材料を提供することにある。 An object of the present invention is to provide a medical tissue reconstruction material having both antibacterial properties and osteoconductivity.

上記のように、銀化合物を用いて骨再生用材料に抗菌性を付与することが行われているが、細胞毒性や骨伝導性(骨置換性)への影響について必ずしも考慮されているとはいえなかった。すなわち、本発明者らは、過剰な銀化合物の存在は、細胞毒性及び骨形成阻害を引き起こす可能性があることを知見し、銀化合物は必要最小濃度とすると共に、有効に抗菌作用を発揮させるために銀化合物を材料表面に局在させることが重要であることを知見した。また、抗菌効果を発揮するタイミングが異なる銀化合物が表面に局在すると、必要最小濃度で持続的な抗菌効果が期待できることを見いだし、本発明を完成するに至った。 As described above, silver compounds are used to impart antibacterial properties to bone regeneration materials, but the effects on cytotoxicity and osteoconductivity (bone replacement) are not always considered. I couldn't say That is, the present inventors have found that the presence of excessive silver compounds may cause cytotoxicity and bone formation inhibition, and the silver compounds should be kept at the minimum concentration required to effectively exert antibacterial effects. We found that it is important to localize the silver compound on the material surface for this purpose. In addition, they have found that a sustained antibacterial effect can be expected at the minimum required concentration when silver compounds exhibiting antibacterial effects at different timings are localized on the surface, leading to the completion of the present invention.

すなわち、本発明は、以下の通りである。
[1]その表面に、炭酸銀及びリン酸銀を備えたカルシウム系材料であって、
炭酸銀及びリン酸銀の合計含有量が、5.0×10-4~3.3×10-2質量%である、医用組織再建材料。
[2]炭酸銀及びリン酸銀の合計含有量が、1.5×10-3~1.0×10-2質量%(未満)であることを特徴とする上記[1]に記載の医用組織再建材料。
[3]炭酸含有リン酸カルシウム、リン酸カルシウムと炭酸含有化合物の混合物、及び骨から選ばれる少なくとも1種の無機化合物を含むことを特徴とする上記[1]又は[2]に記載の医用組織再建材料。
[4]多孔体であることを特徴とする上記[1]~[3]のいずれかに記載の医用組織再建材料。
That is, the present invention is as follows.
[1] A calcium-based material having silver carbonate and silver phosphate on its surface,
A medical tissue reconstruction material having a total content of silver carbonate and silver phosphate of 5.0×10 −4 to 3.3×10 −2 mass %.
[2] The medical product according to [1] above, wherein the total content of silver carbonate and silver phosphate is 1.5×10 −3 to 1.0×10 −2 mass % (less than). tissue reconstruction material.
[3] The medical tissue reconstruction material according to [1] or [2] above, which contains at least one inorganic compound selected from carbonate-containing calcium phosphate, a mixture of calcium phosphate and a carbonate-containing compound, and bone.
[4] The medical tissue reconstruction material according to any one of [1] to [3], which is a porous material.

[5]上記[1]~[4]のいずれか記載の医用組織再建材料を製造する方法であって、
カルシウム系材料を、銀イオンを含む溶液に暴露する、医用組織再建材料の製造方法。
[6]カルシウム系材料を、銀イオンを含む溶液に浸漬することを特徴とする上記[5]記載の医用組織再建材料の製造方法。
[7]銀イオンを含む溶液が、硝酸銀水溶液であることを特徴とする上記[5]又は[6]記載の医用組織再建材料の製造方法。
[5] A method for producing a tissue reconstruction material for medical use according to any one of [1] to [4] above,
A method for producing a medical tissue reconstruction material, comprising exposing a calcium-based material to a solution containing silver ions.
[6] The method for producing a medical tissue reconstruction material according to [5] above, wherein the calcium-based material is immersed in a solution containing silver ions.
[7] The method for producing a medical tissue reconstruction material according to [5] or [6] above, wherein the solution containing silver ions is an aqueous solution of silver nitrate.

[8]カルシウム系材料を、該カルシウム系材料に対して0.6~41.3当量の硝酸銀水溶液に浸漬することを特徴とする上記[5]~[7]のいずれか記載の医用組織再建材料の製造方法。
[9]カルシウム系材料を、該カルシウム系材料に対して1.9~12.5当量の硝酸銀水溶液に浸漬することを特徴とする上記[5]~[8]のいずれか記載の医用組織再建材料の製造方法。
[10]炭酸銀及びリン酸銀を合計で5.0×10-4~3.3×10-2質量%生成させることを特徴とする上記[8]記載の医用組織再建材料の製造方法。
[11]炭酸銀及びリン酸銀を合計で1.5×10-3~1.0×10-2質量%(未満)生成させることを特徴とする上記[9]記載の医用組織再建材料の製造方法。
[12]カルシウム系材料が、炭酸含有リン酸カルシウム、リン酸カルシウムと炭酸含有化合物の混合物、及び骨から選ばれる少なくとも1種の無機化合物であることを特徴とする上記[5]~[11]のいずれか記載の医用組織再建材料の製造方法。
[8] Medical tissue reconstruction according to any one of [5] to [7] above, wherein the calcium-based material is immersed in an aqueous solution of silver nitrate in an amount of 0.6 to 41.3 equivalents to the calcium-based material. How the material is made.
[9] Medical tissue reconstruction according to any one of [5] to [8] above, wherein the calcium-based material is immersed in an aqueous silver nitrate solution of 1.9 to 12.5 equivalents to the calcium-based material. How the material is made.
[10] The method for producing a medical tissue reconstruction material according to [8] above, wherein a total of 5.0×10 −4 to 3.3×10 −2 mass % of silver carbonate and silver phosphate is produced.
[11] The medical tissue reconstruction material according to [9] above, characterized in that a total of 1.5×10 −3 to 1.0×10 −2 mass % (less than) of silver carbonate and silver phosphate is produced. Production method.
[12] Any one of the above [5] to [11], wherein the calcium-based material is at least one inorganic compound selected from carbonate-containing calcium phosphate, a mixture of calcium phosphate and a carbonate-containing compound, and bone. method for producing a tissue reconstruction material for medical use.

本発明の医用組織再建材料は、抗菌性及び骨伝導性を兼ね備える優れた医用組織再建材料である。 The medical tissue reconstruction material of the present invention is an excellent medical tissue reconstruction material having both antibacterial properties and osteoconductivity.

炭酸アパタイト多孔体を5×10-2~5×10当量の硝酸銀水溶液に60分間浸漬した場合の炭酸アパタイト多孔体中の銀化合物(リン酸銀及び炭酸銀)濃度を示す図である。FIG. 4 is a diagram showing the concentrations of silver compounds (silver phosphate and silver carbonate) in a carbonate apatite porous body when the carbonate apatite porous body is immersed in an aqueous silver nitrate solution of 5×10 −2 to 5×10 3 equivalents for 60 minutes. 炭酸アパタイト多孔体を0.5及び50当量の硝酸銀水溶液に60分間浸漬した炭酸アパタイト多孔体の走査電子顕微鏡画像及び銀マッピング画像である。画像中、白矢頭は銀化合物を示す。Fig. 2 shows scanning electron microscope images and silver mapping images of carbonated apatite porous bodies obtained by immersing the carbonated apatite porous bodies in aqueous solutions of 0.5 and 50 equivalents of silver nitrate for 60 minutes. White arrowheads in the images indicate silver compounds. 炭酸アパタイト多孔体を5~500当量の硝酸銀に60分間浸漬後の炭酸アパタイト多孔体の粉末X線回折図形である。図中、黒矢頭はリン酸銀の回折線を示す。1 is a powder X-ray diffraction pattern of a carbonate apatite porous material after being immersed in 5 to 500 equivalents of silver nitrate for 60 minutes. In the figure, black arrowheads indicate diffraction lines of silver phosphate. 炭酸アパタイト多孔体を500当量の硝酸銀に7日間浸漬後の炭酸アパタイト多孔体の粉末X線回折図形である。図中、白丸はリン酸銀の回折線、白矢頭は炭酸銀の回折線、黒矢頭は炭酸アパタイトの回折線を示す。1 is a powder X-ray diffraction pattern of a carbonate apatite porous material after being immersed in 500 equivalents of silver nitrate for 7 days. In the figure, the white circle indicates the diffraction line of silver phosphate, the white arrowhead indicates the diffraction line of silver carbonate, and the black arrowhead indicates the diffraction line of carbonate apatite. 炭酸アパタイトディスクとハイドロキシアパタイトディスクを5~5000当量の硝酸銀水溶液に24時間浸漬した後の炭酸アパタイトディスク及びハイドロキシアパタイトディスク中の銀濃度を示す図である。FIG. 3 is a diagram showing silver concentrations in carbonate apatite discs and hydroxyapatite discs after immersing the discs in a silver nitrate aqueous solution of 5 to 5000 equivalents for 24 hours; 炭酸アパタイト多孔体を0.5~5000当量の硝酸銀水溶液に60分間浸漬した後の炭酸アパタイト多孔体のメチシリン耐性黄色ブドウ球菌(MRSA)に対する抗菌効果を示す図である。FIG. 2 shows the antibacterial effect of carbonated apatite porous bodies against methicillin-resistant Staphylococcus aureus (MRSA) after the carbonated apatite porous bodies were immersed in an aqueous silver nitrate solution of 0.5 to 5000 equivalents for 60 minutes. 炭酸アパタイト多孔体を0.5~500当量の硝酸銀水溶液に60分間浸漬した後の炭酸アパタイト多孔体の表皮ブドウ球菌に対する抗菌効果を示す図である。FIG. 2 is a diagram showing the antibacterial effect of a carbonated apatite porous material against Staphylococcus epidermidis after the carbonated apatite porous material has been immersed in an aqueous silver nitrate solution of 0.5 to 500 equivalents for 60 minutes. 炭酸アパタイト多孔体を0.5~5000当量の硝酸銀水溶液に60分間浸漬した後の炭酸アパタイト多孔体の細胞毒性を示す図である。FIG. 3 is a diagram showing the cytotoxicity of a carbonate apatite porous material after immersing the carbonate apatite porous material in an aqueous silver nitrate solution of 0.5 to 5000 equivalents for 60 minutes. 硝酸銀水溶液に未浸漬の炭酸アパタイト及びハイドロキシアパタイト、並びに5~5000当量の硝酸銀水溶液に24時間浸漬した炭酸アパタイト及びハイドロキシアパタイトのMRSAに対する抗菌効果を示す図である。FIG. 2 shows the antibacterial effect against MRSA of carbonate apatite and hydroxyapatite that have not been immersed in a silver nitrate aqueous solution, and carbonate apatite and hydroxyapatite that have been immersed in a silver nitrate aqueous solution of 5 to 5000 equivalents for 24 hours. 5当量の硝酸銀に60分間浸漬した炭酸アパタイト多孔体及び未浸漬の炭酸アパタイト多孔体をMRSA菌液に10分間浸漬し、ウサギ大腿骨内側顆欠損に埋植した2週間後の埋植部位近傍の生菌数を示す図である。A carbonated apatite porous material that had been immersed in 5 equivalents of silver nitrate for 60 minutes and a carbonated apatite porous material that had not been immersed were immersed in the MRSA bacterial solution for 10 minutes. It is a figure which shows viable count. 5当量の硝酸銀に60分間浸漬した炭酸アパタイト多孔体及び未浸漬の炭酸アパタイト多孔体をMRSA菌液に10分間浸漬し、ウサギ大腿骨内側顆欠損に埋植した2週間後の埋植部位近傍の病理組織所見を示す図である。A carbonated apatite porous material that had been immersed in 5 equivalents of silver nitrate for 60 minutes and a carbonated apatite porous material that had not been immersed were immersed in the MRSA bacterial solution for 10 minutes. It is a figure which shows a histopathological finding.

本発明の医用組織再建材料は、その表面に、炭酸銀及びリン酸銀を備えたカルシウム系材料であって、炭酸銀及びリン酸銀の合計含有量が、5.0×10-4~3.3×10-2質量%であることを特徴とする。 The medical tissue reconstruction material of the present invention is a calcium-based material having silver carbonate and silver phosphate on its surface, and the total content of silver carbonate and silver phosphate is 5.0×10 −4 to 3.0×10 −4 . .3×10 −2 mass %.

本発明の医用組織再建材料は、炭酸銀及びリン酸銀といった異なる種類の銀化合物を備えることから、抗菌性を持続させることができる。すなわち、医用組織再建材料を体内組織に適用した当初、炭酸銀が抗菌作用を示し、その後、リン酸銀が抗菌作用を示すことで、長期にわたって抗菌性を持続させることができる。また、銀化合物が再建材料の表面のみに存在することから、必要最小限の銀化合物を付与することで十分な抗菌性を発揮することができる。さらに、銀化合物の含有量が、特定の範囲であることから、抗菌性と共に、細胞毒性及び骨形成阻害を防止して効果的に組織再建を行うことができる。 Since the medical tissue reconstruction material of the present invention comprises different kinds of silver compounds such as silver carbonate and silver phosphate, it can maintain its antibacterial properties. That is, when the medical tissue reconstruction material is first applied to body tissue, silver carbonate shows antibacterial action, and then silver phosphate shows antibacterial action, so that antibacterial activity can be maintained over a long period of time. In addition, since the silver compound exists only on the surface of the reconstruction material, sufficient antibacterial properties can be exhibited by applying the minimum amount of silver compound. Furthermore, since the content of the silver compound is within a specific range, it is possible to prevent cytotoxicity and osteogenesis inhibition as well as antibacterial properties and effectively perform tissue reconstruction.

本発明の医用組織再建材料は、医療分野又は医療に関係する分野で、骨などの組織再建術式や、再生医療のスキャッフォールドなどに用いることができる。 INDUSTRIAL APPLICABILITY The medical tissue reconstruction material of the present invention can be used in the medical field or in fields related to medicine, such as tissue reconstruction procedures for bones and the like, regenerative medicine scaffolds, and the like.

本発明の医用組織再建材料の炭酸銀及びリン酸銀(以下、両者を指す場合、単に銀化合物ということがある)の合計含有量としては、上記のように、材料中、5.0×10-4~3.3×10-2質量%であるが、抗菌性の点から、1.5×10-3質量%以上であることが好ましく、2.0×10-3質量%以上であることがより好ましく、3.0×10-3質量%以上であることがさらに好ましく、4.0×10-3質量%以上であることが特に好ましく、5.0×10-3質量%以上であることが最も好ましい。また、細胞毒性等の影響を考慮すると、2.8×10-2質量%以下であることが好ましく、1.0×10-2質量%未満であることがより好ましく、9.0×10-3質量%以下であることがさらに好ましい。 The total content of silver carbonate and silver phosphate (hereinafter sometimes simply referred to as silver compounds when referring to both) in the medical tissue reconstruction material of the present invention is, as described above, 5.0×10 -4 to 3.3×10 -2 % by mass, but from the viewpoint of antibacterial properties, it is preferably 1.5×10 -3 % by mass or more, and is 2.0×10 -3 % by mass or more. is more preferably 3.0×10 −3 mass% or more, more preferably 4.0×10 −3 mass% or more, particularly preferably 4.0×10 −3 mass% or more, and 5.0×10 −3 mass% or more Most preferably there is. In addition, considering the effects of cytotoxicity, etc., it is preferably 2.8×10 −2 mass% or less, more preferably less than 1.0×10 −2 mass%, and 9.0×10 It is more preferably 3 % by mass or less.

本発明の医用組織再建材料(カルシウム系材料)は、無機化合物を主成分とする。かかる無機化合物としては、銀イオンを含む溶液に暴露することにより炭酸銀とリン酸銀の両方を生成するもの、すなわち、リン酸成分と炭酸成分を含むものであれば特に制限されるものではなく、具体的に例えば、炭酸含有リン酸カルシウム、リン酸カルシウムと炭酸含有化合物の混合物、骨等が挙げられ、炭酸含有リン酸カルシウムが好ましい。炭酸含有リン酸カルシウムとしては、ヒト骨無機成分であり、高い骨伝導性を有して、最終的に骨と置換することから、炭酸アパタイトが特に好ましい。例えば、炭酸銀を生成しないハイドロキシアパタイト等は抗菌効果が不十分となり、本発明の範囲に含まれない。 The medical tissue reconstruction material (calcium-based material) of the present invention contains an inorganic compound as a main component. Such an inorganic compound is not particularly limited as long as it produces both silver carbonate and silver phosphate when exposed to a solution containing silver ions, that is, as long as it contains a phosphoric acid component and a carbonic acid component. Specific examples thereof include carbonate-containing calcium phosphate, a mixture of calcium phosphate and a carbonate-containing compound, and bones, with carbonate-containing calcium phosphate being preferred. As the carbonate-containing calcium phosphate, carbonate apatite is particularly preferred because it is an inorganic component of human bones, has high osteoconductivity, and eventually replaces bones. For example, hydroxyapatite, which does not form silver carbonate, has insufficient antibacterial effect and is not included in the scope of the present invention.

本発明の医用組織再建材料(銀化合物を除くカルシウム系材料)における無機化合物の含有量としては、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、実質的に100質量%であることが最も好ましい。上記無機化合物以外の材料としては、例えば、コラーゲン、キトサンや、乳酸、グリコール酸、ポリ乳酸、カプロラクトン、グリセロールセバシン酸、ヒドロキシ酪酸、ジオキサノン等の重合体又はこれらの共重合体を挙げることができる。 The content of inorganic compounds in the medical tissue reconstruction material (calcium-based material excluding silver compounds) of the present invention is preferably 70% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more. is more preferable, 95% by mass or more is particularly preferable, and substantially 100% by mass is most preferable. Materials other than the above inorganic compounds include, for example, collagen, chitosan, polymers such as lactic acid, glycolic acid, polylactic acid, caprolactone, glycerol sebacic acid, hydroxybutyric acid, dioxanone, and copolymers thereof.

本発明の医用組織再建材料の形状やサイズは特に制限されるものではないが、材料表面への銀化合物の付与や組織再建の点から、緻密体よりも多孔体が好ましい。多孔体としては、例えば、一方向に延びる貫通孔を有するハニカム構造体や、発泡体のようにランダムに多数の細孔を有する多孔体が挙げられ、より効果的に組織再建を行うことができることから、前者のハニカム構造体が好ましい。 The shape and size of the medical tissue reconstruction material of the present invention are not particularly limited, but a porous material is preferable to a dense material in terms of imparting a silver compound to the surface of the material and tissue reconstruction. Examples of the porous body include a honeycomb structure having through holes extending in one direction, and a porous body having a large number of pores at random, such as a foam, which enables tissue reconstruction to be performed more effectively. Therefore, the former honeycomb structure is preferable.

なお、本発明の医用組織再建材料は、上記のように、無機化合物を主成分とし、その表面に炭酸銀及びリン酸銀を備えるものであり、無機化合物を主成分とするコア部と、その表面の炭酸銀及びリン酸銀を含むシェル部を有する構造体と捉えることもできる。 As described above, the medical tissue reconstruction material of the present invention contains an inorganic compound as a main component and has silver carbonate and silver phosphate on its surface. It can also be regarded as a structure having a shell portion containing silver carbonate and silver phosphate on the surface.

本発明の医用組織再建材料は、カルシウム系材料を、銀イオンを含む溶液に暴露することにより製造することができる。カルシウム系材料は、上記本発明の医用組織再建材料で説明したのと同様、無機化合物を主成分とする材料である。 The medical tissue reconstruction material of the present invention can be produced by exposing a calcium-based material to a solution containing silver ions. The calcium-based material is a material containing an inorganic compound as a main component, as described in the medical tissue reconstruction material of the present invention.

カルシウム系材料が銀イオンを含む溶液に暴露されることにより、カルシウム系材料中の陰イオンと銀イオンが反応し、カルシウム系材料表面に炭酸銀及びリン酸銀が生成する。カルシウム系材料を、銀イオンを含む溶液に暴露する方法としては、カルシウム系材料を溶液に浸漬させる方法や、カルシウム系材料に対して溶液を噴霧等により付与する方法等を挙げることができ、より効率的に銀化合物を付与できる点から、前者の浸漬法が好ましい。銀イオンを含む溶液としては、硝酸銀水溶液が好ましい。 When the calcium-based material is exposed to a solution containing silver ions, the anions and silver ions in the calcium-based material react with each other to produce silver carbonate and silver phosphate on the surface of the calcium-based material. Examples of the method of exposing the calcium-based material to the solution containing silver ions include a method of immersing the calcium-based material in the solution and a method of applying the solution to the calcium-based material by spraying or the like. The former immersion method is preferable because the silver compound can be applied efficiently. As the solution containing silver ions, an aqueous solution of silver nitrate is preferable.

硝酸銀水溶液における硝酸銀の濃度としては、原材料であるカルシウム系材料に対して0.6~41.3当量であることが好ましい。下限側としては、カルシウム系材料に対して1.9当量以上であることが好ましく、2.5当量以上であることがより好ましく、3.8当量以上であることがさらに好ましく、5.0当量以上であることが特に好ましく、6.3当量以上であることが最も好ましい。また、上限側としては、カルシウム系材料に対して35当量以下であることが好ましく、12.5当量未満であることがより好ましく、11.3当量以下であることがさらに好ましい。 The concentration of silver nitrate in the silver nitrate aqueous solution is preferably 0.6 to 41.3 equivalents with respect to the raw material calcium-based material. The lower limit is preferably 1.9 equivalents or more, more preferably 2.5 equivalents or more, even more preferably 3.8 equivalents or more, and 5.0 equivalents relative to the calcium-based material. It is particularly preferably 6.3 equivalents or more, and most preferably 6.3 equivalents or more. As for the upper limit, it is preferably 35 equivalents or less, more preferably less than 12.5 equivalents, and even more preferably 11.3 equivalents or less with respect to the calcium-based material.

具体的に、浸漬法においては、カルシウム系材料を、カルシウム系材料に対して0.6~41.3当量の硝酸銀水溶液に浸漬し、炭酸銀及びリン酸銀を合計で5.0×10-4~3.3×10-2質量%生成させることが好ましい。また、カルシウム系材料を、カルシウム系材料に対して1.9~12.5当量の硝酸銀水溶液に浸漬し、炭酸銀及びリン酸銀を合計で1.5×10-3~1.0×10-2質量%(未満)生成させることがより好ましい。 Specifically, in the immersion method, the calcium-based material is immersed in an aqueous silver nitrate solution of 0.6 to 41.3 equivalents to the calcium-based material, and the total amount of silver carbonate and silver phosphate is 5.0×10 It is preferable to generate 4 to 3.3×10 −2 mass %. Further, the calcium-based material is immersed in an aqueous silver nitrate solution of 1.9 to 12.5 equivalents to the calcium-based material, and the total amount of silver carbonate and silver phosphate is 1.5×10 −3 to 1.0×10. It is more preferable to generate -2 % by mass (less than).

溶液の温度としては、銀イオン含有水溶液が凍結又は沸騰しない温度であれば特に制限されるものではなく、10~80℃が好ましく、10~30℃がより好ましい。浸漬時間としては、所望量の炭酸銀及びリン酸銀が生成する時間であれば特に制限されるものではなく、10分~7日間が好ましく、60分~24時間がより好ましい。 The temperature of the solution is not particularly limited as long as it does not freeze or boil the aqueous solution containing silver ions, and is preferably 10 to 80°C, more preferably 10 to 30°C. The immersion time is not particularly limited as long as the desired amount of silver carbonate and silver phosphate is formed, and is preferably 10 minutes to 7 days, more preferably 60 minutes to 24 hours.

以下、実施例により本発明を具体的に説明するが、本発明の技術的範囲は、実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the technical scope of the present invention is not limited to the examples.

[試験例1]
炭酸アパタイト多孔体として、一方向に延びる正四角柱状の貫通孔を多数備えた直径約10mm高さ約10mmの円柱状ハニカム構造体を用いた。貫通孔の一辺の長さは約300μmであった。試験例1以降の例における炭酸アパタイト多孔体も同様である。
[Test Example 1]
As the carbonated apatite porous body, a cylindrical honeycomb structure having a diameter of about 10 mm and a height of about 10 mm and having a large number of square prism-shaped through holes extending in one direction was used. The length of one side of the through-hole was about 300 μm. The same applies to the carbonated apatite porous bodies in the examples after Test Example 1.

炭酸アパタイト多孔体を5×10-2~5×10当量の硝酸銀水溶液に20℃で60分間浸漬した。浸漬後の試料中の銀濃度を高周波誘導結合プラズマ発光分光分析により測定した。測定結果を図1に示す。 The carbonated apatite porous material was immersed in an aqueous silver nitrate solution of 5×10 −2 to 5×10 3 equivalents at 20° C. for 60 minutes. The silver concentration in the sample after immersion was measured by high frequency inductively coupled plasma emission spectroscopy. The measurement results are shown in FIG.

図1に示すように、硝酸銀濃度が増加するにつれて、試料中の銀含有量が増加することが明らかになった。後述の試験例3及び4に示すように、これらの銀は、リン酸銀及び炭酸銀に由来するものである。硝酸銀濃度が炭酸アパタイトに対して5×10-2、5×10-1、1.5、2.5、3.5、5、15、25、35、5×10、5×10、5×10当量のとき、それぞれ全体の質量に対して約5.5×10-4、9.9×10-4、1.2×10-3、2.0×10-3、2.8×10-3、6.1×10-3、1.2×10-2、2.0×10-2、2.8×10-2、3.8×10-2、3.6×10-1、4.1質量%のリン酸銀及び炭酸銀が生成していた。つまり、硝酸銀濃度により、リン酸銀及び炭酸銀濃度を制御できることが分かる。 As shown in FIG. 1, it was found that the silver content in the samples increased as the silver nitrate concentration increased. As shown in Test Examples 3 and 4 below, these silvers are derived from silver phosphate and silver carbonate. Silver nitrate concentration relative to carbonate apatite is 5×10 −2 , 5×10 −1 , 1.5, 2.5, 3.5, 5, 15, 25, 35, 5×10 1 , 5×10 2 , At 5×10 3 equivalents, about 5.5×10 −4 , 9.9×10 −4 , 1.2×10 −3 , 2.0×10 −3 , 2.0×10 −3 , respectively, relative to the total mass. 8×10 −3 , 6.1×10 −3 , 1.2×10 −2 , 2.0×10 −2 , 2.8×10 −2 , 3.8×10 −2 , 3.6× 10 −1 , 4.1 mass % of silver phosphate and silver carbonate were produced. In other words, it can be seen that the concentrations of silver phosphate and silver carbonate can be controlled by the concentration of silver nitrate.

また、後述の試験例5に示すように、炭酸イオンを含まないハイドロキシアパタイトを炭酸アパタイトと同条件で硝酸銀水溶液に浸漬した場合、ハイドロキシアパタイトは炭酸アパタイトに比べて銀化合物の生成が少ない。これは、ハイドロキシアパタイトを用いた場合、炭酸銀が生成しないためである。 Further, as shown in Test Example 5 described later, when hydroxyapatite containing no carbonate ions is immersed in an aqueous solution of silver nitrate under the same conditions as carbonated apatite, hydroxyapatite produces less silver compounds than carbonated apatite. This is because silver carbonate does not form when hydroxyapatite is used.

[試験例2]
炭酸アパタイト多孔体を0.5及び50当量の硝酸銀水溶液に20℃で60分間浸漬した。浸漬後の試料表面の微構造を走査電子顕微鏡で観察し、エネルギー分散型X線分析装置で試料表面の銀をマッピングした。比較として、硝酸銀水溶液に浸漬する前の炭酸アパタイト多孔体についても同様の解析を行った。解析結果を図2に示す。
[Test Example 2]
The carbonated apatite porous material was immersed in aqueous silver nitrate solutions of 0.5 and 50 equivalents at 20° C. for 60 minutes. The microstructure of the sample surface after immersion was observed with a scanning electron microscope, and silver on the sample surface was mapped with an energy dispersive X-ray spectrometer. For comparison, the same analysis was performed on the carbonate apatite porous material before being immersed in the silver nitrate aqueous solution. The analysis results are shown in FIG.

図2に示すように、硝酸銀水溶液に浸漬前には確認されなかった銀化合物(白矢頭)が浸漬後には確認された。硝酸銀濃度が高くなるにつれて、銀化合物量が増加していることが分かる。 As shown in FIG. 2, silver compounds (white arrowheads) that were not observed before immersion in the aqueous solution of silver nitrate were observed after immersion. It can be seen that the silver compound amount increases as the silver nitrate concentration increases.

[試験例3]
炭酸アパタイト多孔体を、5~500当量の硝酸銀に20℃で60分間浸漬し、浸漬後の結晶相を粉末X線回折法により評価した。浸漬前後の試料およびリン酸銀(AgPO)の粉末X線回折図形を図3に示す。
[Test Example 3]
The carbonated apatite porous material was immersed in 5 to 500 equivalents of silver nitrate at 20° C. for 60 minutes, and the crystal phase after immersion was evaluated by powder X-ray diffraction method. FIG. 3 shows powder X-ray diffraction patterns of the sample before and after immersion and of silver phosphate (Ag 3 PO 4 ).

図3に示すように、500当量の硝酸銀に浸漬した場合、試料中にリン酸銀のX線回折線が確認されたが、硝酸銀が50当量以下の場合、リン酸銀の回折線は確認されなかった。本解析法の検出限界は0.1~1質量%であること、試験例1から50当量以下では銀濃度が全体の質量に対して0.1質量%未満であることを考慮すると、リン酸銀の回折線が確認されなかったことは妥当である。X線回折法では、50当量以下ではリン酸銀の回折線は確認されなかったが、試験例1(図1)及び試験例2(図2)から銀化合物の生成は明らかである。 As shown in FIG. 3, when immersed in 500 equivalents of silver nitrate, the X-ray diffraction line of silver phosphate was confirmed in the sample, but when the silver nitrate was 50 equivalents or less, the diffraction line of silver phosphate was confirmed. I didn't. Considering that the detection limit of this analysis method is 0.1 to 1% by mass, and that the silver concentration is less than 0.1% by mass with respect to the total mass at 50 equivalents or less from Test Example 1, phosphoric acid It is reasonable that no silver diffraction lines were identified. In the X-ray diffraction method, no diffraction line of silver phosphate was confirmed at 50 equivalents or less, but it is clear from Test Example 1 (Fig. 1) and Test Example 2 (Fig. 2) that a silver compound was produced.

[試験例4]
炭酸アパタイト多孔体を、500当量の硝酸銀に20℃で7日間浸漬し、浸漬後の結晶相を粉末X線回折法により評価した。浸漬前後の試料、リン酸銀(AgPO)及び炭酸銀(AgCO)の粉末X線回折図形を図4に示す。
[Test Example 4]
The carbonated apatite porous body was immersed in 500 equivalents of silver nitrate at 20° C. for 7 days, and the crystal phase after immersion was evaluated by powder X-ray diffraction method. FIG. 4 shows the powder X-ray diffraction patterns of the sample, silver phosphate (Ag 3 PO 4 ) and silver carbonate (Ag 2 CO 3 ) before and after immersion.

図4に示すように、浸漬後のサンプルには炭酸銀及びリン酸銀の回折線が確認され、これらの結晶相が形成されたことが明らかになった。 As shown in FIG. 4, diffraction lines of silver carbonate and silver phosphate were confirmed in the sample after immersion, and it became clear that these crystal phases were formed.

[試験例5]
炭酸含有リン酸カルシウムである炭酸アパタイトディスク(φ8mm×1.5mm)と炭酸非含有リン酸カルシウムであるハイドロキシアパタイトディスク(φ8mm×1.5mm)を5~5000当量の硝酸銀水溶液に20℃で24時間浸漬した。用いた炭酸アパタイトとハイドロキシアパタイトの比表面積は共に4m-1で同じである。浸漬後の試料中の銀濃度を高周波誘導結合プラズマ発光分光分析により測定した。測定結果を図5に示す。
[Test Example 5]
A carbonate apatite disc (φ8 mm×1.5 mm), which is a carbonate-containing calcium phosphate, and a hydroxyapatite disc (φ8 mm×1.5 mm), which is a carbonate-free calcium phosphate, were immersed in an aqueous silver nitrate solution of 5 to 5000 equivalents at 20° C. for 24 hours. The specific surface areas of the used carbonate apatite and hydroxyapatite are the same, 4 m 2 g −1 . The silver concentration in the sample after immersion was measured by high frequency inductively coupled plasma emission spectroscopy. The measurement results are shown in FIG.

図5に示すように、全ての硝酸銀濃度において、炭酸アパタイトの方がハイドロキシアパタイトよりも銀含有量が高いことが明らかになった。これは前述のように、炭酸アパタイトからは炭酸銀とリン酸銀が生成するが、ハイドロキシアパタイトからはリン酸銀のみが生成するためである。 As shown in FIG. 5, it was found that carbonate apatite has a higher silver content than hydroxyapatite at all silver nitrate concentrations. This is because, as described above, carbonate apatite produces silver carbonate and silver phosphate, but hydroxyapatite produces only silver phosphate.

[実施例1]
炭酸アパタイト多孔体を、0.5~5000当量の硝酸銀水溶液に20℃で60分間浸漬した試料のメチシリン耐性黄色ブドウ球菌(MRSA)に対する抗菌効果をJIS Z 2801:2010に準拠して評価した。比較として、硝酸銀に未浸漬の試料の抗菌効果も同様の方法で評価した。硝酸銀濃度とMRSA生存率の関係を図6に示す。
[Example 1]
The antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA) was evaluated in accordance with JIS Z 2801:2010 by immersing the carbonated apatite porous material in an aqueous silver nitrate solution of 0.5 to 5000 equivalents for 60 minutes at 20°C. For comparison, the antibacterial effect of a sample not immersed in silver nitrate was also evaluated in the same manner. FIG. 6 shows the relationship between silver nitrate concentration and MRSA survival rate.

図6に示すように、炭酸アパタイト多孔体を0.5当量及び1.5当量の硝酸銀溶液に浸漬した場合MRSAの生存率はそれぞれ7.7%及び7.3%であり、2.5当量以上の硝酸銀溶液に浸漬した場合MRSAの生存率は0%であった。試験例1から、2.5当量の硝酸銀溶液に浸漬した場合は、2.0×10-3質量%のリン酸銀及び炭酸銀が生成し、1.5当量の硝酸銀溶液に浸漬した場合は、全質量の1.2×10-3質量%のリン酸銀及び炭酸銀が生成することが分かっているため、完全にMRSAを殺傷するための全質量に対するリン酸銀及び炭酸銀濃度の閾値は1.2×10-3から2.0×10-3質量%の間に存在することが分かる。また、リン酸銀及び炭酸銀濃度が9.9×10-4から1.2×10-3質量%の場合は菌数を約7.5%にまで減少させることができているため、殺菌効果を示すのはリン酸銀及び炭酸銀濃度が9.9×10-4質量%でも殺菌効果を示すことが分かる。 As shown in FIG. 6, when the carbonate apatite porous material was immersed in silver nitrate solutions of 0.5 equivalent and 1.5 equivalent, the survival rate of MRSA was 7.7% and 7.3%, respectively. When immersed in the above silver nitrate solution, the survival rate of MRSA was 0%. From Test Example 1, when immersed in a 2.5 equivalent silver nitrate solution, 2.0×10 −3 mass % of silver phosphate and silver carbonate are generated, and when immersed in a 1.5 equivalent silver nitrate solution, , 1.2×10 −3 wt. is present between 1.2×10 −3 and 2.0×10 −3 mass %. In addition, when the concentration of silver phosphate and silver carbonate is 9.9 × 10 -4 to 1.2 × 10 -3 mass%, the number of bacteria can be reduced to about 7.5%, so sterilization It can be seen that even silver phosphate and silver carbonate concentrations of 9.9×10 −4 mass % exhibit bactericidal effects.

[実施例2]
炭酸アパタイト多孔体を、0.5~500当量の硝酸銀水溶液に20℃で60分間浸漬した試料の表皮ブドウ球菌に対する抗菌効果をJIS Z 2801:2010に準拠して評価した。比較として硝酸銀水溶液に未浸漬の試料の表皮ブドウ球菌に対する抗菌効果を同様の方法で評価した。結果を図7に示す。
[Example 2]
A carbonated apatite porous material was immersed in an aqueous solution of silver nitrate of 0.5 to 500 equivalents at 20° C. for 60 minutes, and the antibacterial effect against Staphylococcus epidermidis was evaluated according to JIS Z 2801:2010. For comparison, the antibacterial effect against Staphylococcus epidermidis of a sample that had not been immersed in the aqueous solution of silver nitrate was evaluated in the same manner. The results are shown in FIG.

図7に示すように、硝酸銀濃度が0.5当量の時、表皮ブドウ球菌のコロニー数は7×10個/mLであった。硝酸銀濃度が5当量以上の時、表皮ブドウ球菌のコロニー数は0個/mLであった。完全に表皮ブドウ球菌を殺傷するための全質量に対するリン酸銀及び炭酸銀濃度の閾値は9.9×10-4から6.1×10-3質量%の間に存在することが分かり、この結果は実施例1で記したMRSAを用いた抗菌試験と同様である。 As shown in FIG. 7, when the silver nitrate concentration was 0.5 equivalent, the number of colonies of Staphylococcus epidermidis was 7×10 7 /mL. When the silver nitrate concentration was 5 equivalents or more, the number of colonies of Staphylococcus epidermidis was 0/mL. It was found that the threshold concentration of silver phosphate and silver carbonate relative to the total mass for complete killing of Staphylococcus epidermidis lies between 9.9×10 −4 and 6.1×10 −3 wt %. The results are similar to the antibacterial test using MRSA described in Example 1.

[実施例3]
炭酸アパタイト多孔体を、5~5000当量の硝酸銀に20℃で60分間浸漬した試料のマウス頭蓋冠由来骨芽細胞様細胞(MC3T3-E1)に対する細胞毒性を評価した。比較として、硝酸銀に未浸漬の試料の細胞毒性も評価した。細胞毒性試験結果を図8に示す。
[Example 3]
The cytotoxicity of a sample obtained by immersing the porous carbonate apatite in 5 to 5000 equivalents of silver nitrate at 20° C. for 60 minutes against mouse calvaria-derived osteoblast-like cells (MC3T3-E1) was evaluated. As a comparison, the cytotoxicity of samples not soaked in silver nitrate was also evaluated. The cytotoxicity test results are shown in FIG.

図8に示すように、炭酸アパタイト多孔体を35当量以下の硝酸銀溶液に浸漬した場合、細胞毒性は認められなかった。50当量以上の硝酸銀溶液に浸漬した場合、細胞生存率は劇的に低下し、細胞毒性が確認された。試験例1から、50当量硝酸銀溶液に浸漬した場合のリン酸銀及び炭酸銀濃度は全質量の3.8×10-2質量%であり、35当量の硝酸銀溶液に浸漬した場合のリン酸銀及び炭酸銀濃度は全質量の2.8×10-2質量%である。つまり、細胞毒性を示すリン酸銀及び炭酸銀濃度の閾値は全質量の2.8×10-2から3.8×10-2質量%の間に存在する。 As shown in FIG. 8, when the carbonated apatite porous material was immersed in a silver nitrate solution of 35 equivalents or less, no cytotoxicity was observed. When immersed in a silver nitrate solution of 50 equivalents or more, cell viability decreased dramatically, confirming cytotoxicity. From Test Example 1, the concentration of silver phosphate and silver carbonate when immersed in a 50-equivalent silver nitrate solution was 3.8×10 −2 mass % of the total mass, and the silver phosphate when immersed in a 35-equivalent silver nitrate solution and the silver carbonate concentration is 2.8×10 −2 mass % of the total mass. That is, the threshold concentration of silver phosphate and silver carbonate indicating cytotoxicity exists between 2.8×10 −2 and 3.8×10 −2 mass % of the total mass.

実施例1及び2で記したように、90%以上の殺菌効果を示すリン酸銀及び炭酸銀濃度は全質量の9.9×10-4質量%以上、完全に細菌を殺傷するリン酸銀及び炭酸銀濃度の閾値は1.2×10-3から2.0×10-3質量%の間に存在することから、この実験結果から、リン酸銀及び炭酸銀濃度が全質量の9.9×10-4~2.8×10-2質量%であれば確実に細胞毒性を示さず、90%以上の殺菌効果を示し、2.0×10-3~2.8×10-2質量%であれば確実に細胞毒性を示さず、完全に細菌を殺菌できることがわかる。ただし、生体内で生じる炎症は様々な細胞や因子が関わる複雑な免疫系の反応であるため、予想外の細胞毒性が生じるおそれがあることから、実際の臨床においては、さらに細胞毒性に対する確実性を考慮して上限濃度は低い方が好ましく、例えば、1.0×10-2質量%より低い濃度がよいと考えられる。なお、このような低濃度であっても、抗菌性は十分に発揮される(実施例4及び5参照)。 As described in Examples 1 and 2, the concentration of silver phosphate and silver carbonate exhibiting a bactericidal effect of 90% or more is 9.9 × 10 -4 mass% or more of the total mass, and the silver phosphate that completely kills bacteria and silver carbonate concentration threshold exists between 1.2×10 −3 and 2.0×10 −3 mass %. If it is 9×10 −4 to 2.8×10 −2 % by mass, it certainly does not show cytotoxicity, shows a bactericidal effect of 90% or more, and 2.0×10 −3 to 2.8×10 −2 It can be seen that if it is mass %, it does not exhibit cytotoxicity and can completely kill bacteria. However, since inflammation that occurs in vivo is a complex reaction of the immune system involving various cells and factors, unexpected cytotoxicity may occur. Considering the above, the upper limit concentration is preferably lower, and for example, a concentration lower than 1.0×10 −2 mass % is considered good. Even at such a low concentration, the antibacterial properties are sufficiently exhibited (see Examples 4 and 5).

[試験例6]
炭酸含有リン酸カルシウムである炭酸アパタイトディスク(φ8mm×1.5mm)と炭酸非含有リン酸カルシウムであるハイドロキシアパタイトディスク(φ8mm×1.5mm)を5~5000当量の硝酸銀水溶液に20℃で24時間浸漬した。用いた炭酸アパタイトとハイドロキシアパタイトの比表面積は共に4m-1で同じである。MRSAに対する抗菌効果をJIS Z 2801:2010に準拠して評価した。比較として、硝酸銀水溶液に未浸漬の試料の抗菌効果も同様の方法で評価した。測定結果を図9に示す。
[Test Example 6]
A carbonate apatite disc (φ8 mm×1.5 mm), which is a carbonate-containing calcium phosphate, and a hydroxyapatite disc (φ8 mm×1.5 mm), which is a carbonate-free calcium phosphate, were immersed in an aqueous silver nitrate solution of 5 to 5000 equivalents at 20° C. for 24 hours. The specific surface areas of the used carbonate apatite and hydroxyapatite are the same, 4 m 2 g −1 . The antibacterial effect against MRSA was evaluated according to JIS Z 2801:2010. For comparison, the antibacterial effect of a sample not immersed in the silver nitrate aqueous solution was also evaluated in the same manner. FIG. 9 shows the measurement results.

図9に示すように、炭酸アパタイトにおいては、硝酸銀水溶液に未浸漬の試料では抗菌効果が確認されなかったが、0.5当量以上の硝酸銀水溶液に浸漬した試料ではMRSAが検出されず、抗菌効果が確認された。一方、ハイドロキシアパタイトにおいては、50当量以下の硝酸銀水溶液に浸漬した試料では抗菌効果が確認されず、5000当量まで硝酸銀濃度を高めなければMRSAコロニー数をゼロにすることはできなかった。試験例5から、5当量の硝酸銀水溶液に浸漬した炭酸アパタイト中の銀化合物濃度と、50当量の硝酸銀水溶液に浸漬したハイドロキシアパタイト中の銀化合物濃度は同等であり、500当量以上の硝酸銀水溶液に浸漬したハイドロキシアパタイト中の銀化合物濃度は5当量の硝酸銀水溶液に浸漬した炭酸アパタイト中の銀化合物濃度よりも10倍以上高い。以上から、炭酸アパタイトを原料無機化合物とした方がハイドロキシアパタイトを原料無機化合物とした場合に比べ抗菌効果が高いことが明らかになった。これは炭酸アパタイトを硝酸銀水溶液に浸漬すると炭酸銀とリン酸銀の両者が生成するのに対し、ハイドロキシアパタイトではリン酸銀のみが生成するためであり、炭酸銀とリン酸銀が共に生成することで抗菌効果が高まることが示された。 As shown in FIG. 9, in carbonate apatite, the antibacterial effect was not confirmed in the sample not immersed in the silver nitrate aqueous solution, but the sample immersed in the silver nitrate aqueous solution of 0.5 equivalent or more did not detect MRSA, and the antibacterial effect was observed. was confirmed. On the other hand, for hydroxyapatite, no antibacterial effect was observed in samples immersed in silver nitrate aqueous solution of 50 equivalents or less, and the number of MRSA colonies could not be reduced to zero unless the silver nitrate concentration was increased to 5000 equivalents. According to Test Example 5, the silver compound concentration in carbonate apatite immersed in 5 equivalents of silver nitrate aqueous solution is equivalent to the silver compound concentration in hydroxyapatite immersed in 50 equivalents of silver nitrate aqueous solution. The concentration of the silver compound in the hydroxyapatite thus obtained is ten times higher than that in the carbonate apatite immersed in a 5-equivalent aqueous solution of silver nitrate. From the above, it has been clarified that the use of carbonate apatite as a raw material inorganic compound has a higher antibacterial effect than the use of hydroxyapatite as a raw material inorganic compound. This is because when carbonate apatite is immersed in an aqueous solution of silver nitrate, both silver carbonate and silver phosphate are produced, whereas hydroxyapatite produces only silver phosphate, and both silver carbonate and silver phosphate are produced. was shown to increase the antibacterial effect.

[実施例4]
炭酸アパタイト多孔体を5当量の硝酸銀に20℃で60分間浸漬した試料及び未浸漬の試料を1×10CFU/mLのMRSA菌液に10分間浸漬し、ウサギ大腿骨内側顆欠損(φ6×3mm)に埋植した。2週間後の、埋植部位近傍の生菌数測定結果を図10に示す。
[Example 4]
A sample obtained by immersing a carbonated apatite porous material in 5 equivalents of silver nitrate at 20°C for 60 minutes and an unimmersed sample were immersed in an MRSA bacterial solution of 1 × 10 7 CFU/mL for 10 minutes. 3 mm). FIG. 10 shows the results of measuring the number of viable bacteria in the vicinity of the implantation site after 2 weeks.

図10に示すように、未浸漬の試料では1gあたり約22400個のコロニーが検出されたが、5当量の硝酸銀に20℃で60分間浸漬した試料からは生菌は検出されなかった。つまり、実施例1、2、3のin vitro試験で材料表面のリン酸銀及び炭酸銀濃度が全質量の6.1×10-3質量%のときは細胞毒性を示さず、抗菌性を示すことが分かっていたが、動物実験においても材料表面のリン酸銀及び炭酸銀濃度が全質量の6.1×10-3質量%の場合に抗菌効果を示すことが実証された。 As shown in FIG. 10, about 22400 colonies per 1 g of the unimmersed sample were detected, but no viable bacteria were detected from the sample immersed in 5 equivalents of silver nitrate at 20° C. for 60 minutes. That is, in the in vitro tests of Examples 1, 2, and 3, when the silver phosphate and silver carbonate concentrations on the surface of the material were 6.1×10 −3 mass % of the total mass, no cytotoxicity was exhibited, and antibacterial activity was exhibited. However, animal experiments have also demonstrated that the antibacterial effect is exhibited when the concentration of silver phosphate and silver carbonate on the surface of the material is 6.1×10 −3 mass % of the total mass.

[実施例5]
炭酸アパタイト多孔体を5当量の硝酸銀水溶液に60分間浸漬した試料及び硝酸銀水溶液に未浸漬の試料を1×10CFU/mLのMRSA菌液に10分間浸漬し、ウサギ大腿骨内側顆欠損(φ6×3mm)に埋植した。2週間後の、埋植部位近傍の病理組織所見を図11に示す。
[Example 5]
A sample in which a porous carbonate apatite was immersed in 5 equivalents of an aqueous solution of silver nitrate for 60 minutes and a sample not immersed in an aqueous solution of silver nitrate were immersed in an MRSA bacterial solution of 1×10 7 CFU/mL for 10 minutes. × 3 mm). FIG. 11 shows histopathological findings in the vicinity of the implantation site after 2 weeks.

図11に示すように、5当量の硝酸銀に60分間浸漬した試料を埋植した検体においては、埋植部位周辺に炎症細胞の浸潤及び細菌による骨吸収は確認されず、試料内部及び周囲に新生骨が形成していた。一方、硝酸銀水溶液に未浸漬の試料を埋植した検体においては、埋植部位周辺に顕著な炎症細胞の浸潤及び細菌による大規模な骨吸収が生じており、試料内部および試料周囲における新生骨の形成は確認されなかった。以上のことから、5当量の硝酸銀水溶液に60分間浸漬することによって得られる表面のリン酸銀及び炭酸銀濃度が全質量の6.1×10-3質量%の試料は抗菌効果と骨伝導性を併せ持つことが明らかになった。 As shown in FIG. 11, in the specimen in which the specimen was immersed in 5 equivalents of silver nitrate for 60 minutes, no infiltration of inflammatory cells or bacterial bone resorption was observed around the implantation site, and new growth was observed in and around the specimen. bone was formed. On the other hand, in specimens implanted with specimens that had not been immersed in silver nitrate aqueous solution, marked infiltration of inflammatory cells and large-scale bone resorption due to bacteria occurred around the implantation site, and new bone formation occurred inside and around the specimen. No formation was confirmed. From the above, it can be concluded that a sample having a surface silver phosphate and silver carbonate concentration of 6.1×10 −3 mass % of the total mass obtained by immersing in a 5-equivalent silver nitrate aqueous solution for 60 minutes has antibacterial effect and osteoconductivity. It was found to have a combination of

本発明の医用組織再建材料は、医療分野又は医療に関係する分野で、骨などの組織再建術式や、再生医療のスキャッフォールドなどに用いることができることから、産業上有用である。 INDUSTRIAL APPLICABILITY The medical tissue reconstruction material of the present invention is industrially useful because it can be used for tissue reconstruction procedures for bones and the like, scaffolds for regenerative medicine, and the like in the medical field or fields related to medical care.

Claims (12)

その表面に、炭酸銀及びリン酸銀を備えたカルシウム系材料であって、
炭酸銀及びリン酸銀の合計含有量が、5.0×10-4~3.3×10-2質量%である、医用組織再建材料。
A calcium-based material having silver carbonate and silver phosphate on its surface,
A medical tissue reconstruction material having a total content of silver carbonate and silver phosphate of 5.0×10 −4 to 3.3×10 −2 mass %.
炭酸銀及びリン酸銀の合計含有量が、1.5×10-3~1.0×10-2質量%(未満)であることを特徴とする請求項1に記載の医用組織再建材料。 2. The tissue reconstruction material for medical use according to claim 1, wherein the total content of silver carbonate and silver phosphate is 1.5×10 −3 to 1.0×10 −2 mass % (less than). 炭酸含有リン酸カルシウム、リン酸カルシウムと炭酸含有化合物の混合物、及び骨から選ばれる少なくとも1種の無機化合物を含むことを特徴とする請求項1又は2に記載の医用組織再建材料。 3. The medical tissue reconstruction material according to claim 1, comprising at least one inorganic compound selected from carbonate-containing calcium phosphate, a mixture of calcium phosphate and a carbonate-containing compound, and bone. 多孔体であることを特徴とする請求項1~3のいずれかに記載の医用組織再建材料。 The tissue reconstruction material for medical use according to any one of claims 1 to 3, which is a porous body. 請求項1~4のいずれか記載の医用組織再建材料を製造する方法であって、
カルシウム系材料を、銀イオンを含む溶液に暴露する、医用組織再建材料の製造方法。
A method for producing the medical tissue reconstruction material according to any one of claims 1 to 4,
A method for producing a medical tissue reconstruction material, comprising exposing a calcium-based material to a solution containing silver ions.
カルシウム系材料を、銀イオンを含む溶液に浸漬することを特徴とする請求項5記載の医用組織再建材料の製造方法。 6. The method for producing a medical tissue reconstruction material according to claim 5, wherein the calcium-based material is immersed in a solution containing silver ions. 銀イオンを含む溶液が、硝酸銀水溶液であることを特徴とする請求項5又は6記載の医用組織再建材料の製造方法。 7. The method for producing a medical tissue reconstruction material according to claim 5, wherein the solution containing silver ions is an aqueous solution of silver nitrate. カルシウム系材料を、該カルシウム系材料に対して0.6~41.3当量の硝酸銀水溶液に浸漬することを特徴とする請求項5~7のいずれか記載の医用組織再建材料の製造方法。 8. The method for producing a medical tissue reconstruction material according to any one of claims 5 to 7, wherein the calcium-based material is immersed in an aqueous silver nitrate solution of 0.6 to 41.3 equivalents to the calcium-based material. カルシウム系材料を、該カルシウム系材料に対して1.9~12.5当量の硝酸銀水溶液に浸漬することを特徴とする請求項5~8のいずれか記載の医用組織再建材料の製造方法。 9. The method for producing a medical tissue reconstruction material according to any one of claims 5 to 8, wherein the calcium-based material is immersed in an aqueous silver nitrate solution of 1.9 to 12.5 equivalents to the calcium-based material. 炭酸銀及びリン酸銀を合計で5.0×10-4~3.3×10-2質量%生成させることを特徴とする請求項8記載の医用組織再建材料の製造方法。 9. The method for producing a medical tissue reconstruction material according to claim 8, wherein a total of 5.0×10 −4 to 3.3×10 −2 mass % of silver carbonate and silver phosphate is produced. 炭酸銀及びリン酸銀を合計で1.5×10-3~1.0×10-2質量%(未満)生成させることを特徴とする請求項9記載の医用組織再建材料の製造方法。 10. The method for producing a medical tissue reconstruction material according to claim 9, wherein a total of 1.5×10 −3 to 1.0×10 −2 mass % (less than) of silver carbonate and silver phosphate is produced. カルシウム系材料が、炭酸含有リン酸カルシウム、リン酸カルシウムと炭酸含有化合物の混合物、及び骨から選ばれる少なくとも1種の無機化合物であることを特徴とする請求項5~11のいずれか記載の医用組織再建材料の製造方法。 The medical tissue reconstruction material according to any one of claims 5 to 11, wherein the calcium-based material is at least one inorganic compound selected from carbonate-containing calcium phosphate, a mixture of calcium phosphate and a carbonate-containing compound, and bone. Production method.
JP2021129380A 2021-08-05 2021-08-05 Medical tissue reconstruction material and method of producing same Pending JP2023023663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021129380A JP2023023663A (en) 2021-08-05 2021-08-05 Medical tissue reconstruction material and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021129380A JP2023023663A (en) 2021-08-05 2021-08-05 Medical tissue reconstruction material and method of producing same

Publications (1)

Publication Number Publication Date
JP2023023663A true JP2023023663A (en) 2023-02-16

Family

ID=85203385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021129380A Pending JP2023023663A (en) 2021-08-05 2021-08-05 Medical tissue reconstruction material and method of producing same

Country Status (1)

Country Link
JP (1) JP2023023663A (en)

Similar Documents

Publication Publication Date Title
Brennan et al. Silver nanoparticles and their orthopaedic applications
Lim et al. Development of nanosized silver-substituted apatite for biomedical applications: A review
Correia et al. 3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration
Lim et al. Effect of silver content on the antibacterial and bioactive properties of silver‐substituted hydroxyapatite
Zhao et al. Ag-incorporated FHA coating on pure Mg: degradation and in vitro antibacterial properties
Yu et al. Enhancing antibacterial performance and biocompatibility of pure titanium by a two-step electrochemical surface coating
Lin et al. Antimicrobial properties of MgO nanostructures on magnesium substrates
CN104593650A (en) Biodegradable and absorbable magnesium-zinc-copper alloy with antibiotic function, and application thereof
JP2009528074A (en) Antimicrobial material
CN104513922A (en) Antibacterial medical metal material capable of being degraded in body fluid, and applications thereof
US20200246511A1 (en) Methods and devices to reduce the risk of infection
ES2929118T3 (en) Magnesium phosphate hydrogels
Sugiura et al. Aesthetic silver-doped octacalcium phosphate powders exhibiting both contact antibacterial ability and low cytotoxicity
KR20160042064A (en) Bone regeneration material kit, paste-like bone regeneration material, bone regeneration material, and bone bonding material
Moroi et al. E ffect on surface character and mechanical property of unsintered hydroxyapatite/poly‐l‐lactic acid (uHA/PLLA) material by UV treatment
Dabiri et al. Fabrication of alginate modified brushite cement impregnated with antibiotic: Mechanical, thermal, and biological characterizations
Seidenstuecker et al. Release Kinetics and Antibacterial Efficacy of Microporous β‐TCP Coatings
Nayak et al. Physiochemical and bactericidal activity evaluation: Silver‐augmented 3D‐printed scaffolds—An in vitro study
Braem et al. Biomaterial strategies to combat implant infections: new perspectives to old challenges
JP2023552608A (en) Orthopedic internal fixation implant medical device
JP2023023663A (en) Medical tissue reconstruction material and method of producing same
JP6174684B2 (en) Calcium antibacterial material
Florea et al. Mus, at
Ravanetti et al. Osteogenic response and osteoprotective effects in vivo of a nanostructured titanium surface with antibacterial properties
KR20000036857A (en) Polyphosphate as promoter for recovery of wound and restraint of scar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240625