JP2023020753A - Shoulder blade position calculation device and shoulder blade position calculation method - Google Patents

Shoulder blade position calculation device and shoulder blade position calculation method Download PDF

Info

Publication number
JP2023020753A
JP2023020753A JP2021126298A JP2021126298A JP2023020753A JP 2023020753 A JP2023020753 A JP 2023020753A JP 2021126298 A JP2021126298 A JP 2021126298A JP 2021126298 A JP2021126298 A JP 2021126298A JP 2023020753 A JP2023020753 A JP 2023020753A
Authority
JP
Japan
Prior art keywords
point
scapula
subject
angle
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021126298A
Other languages
Japanese (ja)
Inventor
浩之 辰己
Hiroyuki Tatsumi
知子 前川
Tomoko Maekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maido Co Ltd
Original Assignee
Maido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maido Co Ltd filed Critical Maido Co Ltd
Priority to JP2021126298A priority Critical patent/JP2023020753A/en
Publication of JP2023020753A publication Critical patent/JP2023020753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

To provide a shoulder blade position calculation device and shoulder blade position calculation method which can three-dimensionally calculate the positions of the shoulder blades of a subject in a non-contact manner.SOLUTION: A measurement control unit 101 measures a three-dimensional point group of a surface of the back of a subject in a prescribed attitude using a three-dimensional point group measuring appliance. A first acquisition control unit 102 acquires a spine point indicating a portion of the spine in the back of the subject in the three-dimensional point group of the surface of the back. A second acquisition control unit 103 acquires a left shoulder blade point indicating a portion of the left shoulder blade in the back of the subject and a right shoulder blade point indicating a portion of the right shoulder blade of the back of the subject in the three-dimensional point group of the surface of the back. A calculation control unit 104 calculates the positions of the left and right shoulder blades of the subject by calculating a distance of a line connecting any two points of the spine point, the left shoulder blade point and the right shoulder blade point and an angle between the two lines connecting any three points.SELECTED DRAWING: Figure 1

Description

本発明は、肩甲骨位置算出装置及び肩甲骨位置算出方法に関する。 The present invention relates to a scapula position calculation device and a scapula position calculation method.

各種心身の状態により人体の姿勢が変化することが経験的に知られている。例えば、落ち込んでいる際には、肩を落とす等の外観変化が見られる。又、心的外傷後ストレス症候群(PTSD:Post Traumatic Stress Disorder)等に対するヨガの有用性が報告されている。 It is empirically known that the posture of the human body changes depending on various mental and physical conditions. For example, when he is depressed, his appearance changes, such as dropping his shoulders. In addition, the usefulness of yoga for post-traumatic stress syndrome (PTSD) and the like has been reported.

一方、脊椎や肩甲骨の位置を測定する技術が存在する。例えば、特表2015-535451号公報(特許文献1)には、X線画像を用いた脊柱内の椎骨の空間位置及び向きを判定するための方法が開示されている。この方法では、脊柱の一部の1つのX線画像を撮影し、同時に、光学的方法によって背部の一部の表面データを記録し、X線画像によって骨構造の要素の位置を判定し、表面データにおける特徴的な要素の位置を判定し、解剖学的固定点を判定し、解剖学的固定点を用いて撮影された1つのX線画像及び表面データを重ね合わせ、表面データ及び1つのX線画像からの骨構造の要素から3次元モデルを計算する。3次元モデルは、椎骨の位置及び向き、脊柱及び棘突起の発達、並びに、棘突起発達及び脊柱発達のシフトを含む。これにより、脊柱内の椎骨の空間位置及び向きを正確に測定することができるとしている。 On the other hand, techniques exist for measuring the position of the spine and scapula. For example, Japanese Patent Publication No. 2015-535451 (Patent Document 1) discloses a method for determining the spatial position and orientation of vertebrae in the spinal column using X-ray images. In this method, a single X-ray image of a portion of the spinal column is taken, while surface data of a portion of the back are recorded by optical methods, positions of elements of the bony structure are determined by the X-ray image, and surface Determining the location of a characteristic element in the data, determining an anatomical fixation point, superimposing one X-ray image and the surface data taken with the anatomical fixation point, A three-dimensional model is computed from elements of the bone structure from the line image. The three-dimensional model includes the position and orientation of the vertebrae, spinal column and spinous process development, and spinous process and spinal development shifts. This allows accurate measurement of the spatial position and orientation of the vertebrae within the spinal column.

又、実用新案登録第3207832号公報(特許文献2)には、透光性を有する基材から構成される姿勢検査用具が開示されている。この姿勢検査用具では、基材は身体に歪みのない状態の人体の輪郭を示す図案からなる測定部を備えており、人体の輪郭の内側部分は透光性を備え、被検者の身体の輪郭線に測定部の人体の図案の輪郭を重ねた状態で被検者の身体の歪みを検査する。これにより、姿勢の歪みの検査について深い知識のない者でも容易に姿勢の歪みの検査を行うことが可能であるとしている。 In addition, Japanese Utility Model Registration No. 3207832 (Patent Document 2) discloses a posture checking tool composed of a translucent base material. In this posture testing tool, the base material is provided with a measuring part consisting of a design showing the contour of the human body in a state where the body is not distorted, the inner part of the contour of the human body is translucent, and the part inside the contour of the body is translucent. The distortion of the subject's body is inspected with the outline of the human body design of the measurement unit superimposed on the outline. This makes it possible for even a person who does not have a deep knowledge of posture distortion inspection to easily inspect posture distortion.

一方、本出願人が、既に特許出願し、権利化している特開2015-205169号公報(特許文献3)には、肩甲骨位置測定器具及び肩甲骨位置測定方法が開示されている。この器具は、高さ方向に延びる態様の本体部と、本体部の右方向又は左方向に延びる態様で設けられるバー部と、本体部が脊柱に沿って所定箇所に配置されるとともに、バー部が右肩甲骨又は左肩甲骨の所定箇所の高さ位置に合うように本体部において変位され、バー部に対する右肩甲骨又は左肩甲骨の所定箇所の位置が計測されることにより、右肩甲骨又は左肩甲骨の水平方向の位置が測定されるとともに、本体部に対するバー部の位置が計測されることにより、右肩甲骨又は左肩甲骨の高さ方向の位置が測定される。これにより、肩甲骨の位置異常によっておこる肩こりや姿勢不良に対する治療効果を客観的な数値で測定することができるとしている。 On the other hand, Japanese Patent Application Laid-Open No. 2015-205169 (Patent Document 3), for which the present applicant has already filed and obtained a patent, discloses a scapula position measuring instrument and a scapula position measuring method. This instrument includes a main body portion extending in the height direction, a bar portion extending in the right or left direction of the main body portion, the main body portion being arranged at a predetermined position along the spinal column, and the bar portion is displaced in the main body so as to match the height position of a predetermined portion of the right shoulder blade or left shoulder blade, and the position of the predetermined portion of the right shoulder blade or left shoulder blade with respect to the bar portion is measured to obtain the right shoulder blade or left shoulder. By measuring the horizontal position of the blade and measuring the position of the bar relative to the main body, the height of the right or left scapula is measured. As a result, it is possible to objectively measure the effectiveness of treatment for stiff shoulders and poor posture caused by scapular malposition.

特表2015-535451号公報Japanese Patent Publication No. 2015-535451 実用新案登録第3207832号公報Utility Model Registration No. 3207832 特開2015-205169号公報JP 2015-205169 A

現在、PTSDをはじめとする各種精神的障害や心理的状況・心理的負荷と肩甲骨の位置を含めた姿勢要素に関する研究は、ほとんど存在しない。 At present, there is almost no research on various mental disorders such as PTSD, psychological conditions/psychological load, and postural factors including the position of the scapula.

ここで、上述のように、脊椎や肩甲骨の位置を測定する技術は存在するものの、特許文献1に記載の技術では、X線画像を撮影する設備が必要であり、手軽に脊椎の位置や向きを測定することが出来ないという課題がある。又、特許文献2に記載の技術では、被検者の肩甲骨や脊椎の位置や向きを具体的に測定することが出来ないという課題がある。更に、特許文献3に記載の技術では、測定者がバー部を被験者の右肩甲骨又は左肩甲骨の位置に直接配置する必要があり、被験者の肩甲骨の位置の測定に手間や時間がかかるという課題がある。又、測定者が被験者と密接に接触するため、新型コロナウイルス等の感染症の接触感染のリスクが高まるという課題がある。更に、特許文献1-3に記載の技術では、肩甲骨の位置を3次元的に測定することが出来ないことから、肩甲骨の位置から被験者の心理的な部分の関連性を具体的に導き出し難いという課題がある。 Here, as described above, although there is a technique for measuring the position of the spine and scapula, the technique described in Patent Document 1 requires equipment for taking X-ray images, so that the position of the spine and the position of the scapula can be easily measured. There is a problem that the orientation cannot be measured. In addition, the technique described in Patent Document 2 has a problem that the positions and orientations of the scapula and spine of the subject cannot be specifically measured. Furthermore, in the technique described in Patent Document 3, it is necessary for the measurer to directly place the bar on the position of the subject's right or left scapula, and it takes time and effort to measure the position of the subject's scapula. I have a problem. In addition, since the subject is in close contact with the subject, there is a problem that the risk of contact infection with an infectious disease such as the novel coronavirus increases. Furthermore, in the techniques described in Patent Documents 1 to 3, the position of the scapula cannot be measured three-dimensionally. There is a difficult issue.

一方、精神的障害や心理的状況・心理的負荷と姿勢要素の関連性について関心が高まっており、姿勢要素は、左右の肩甲骨の位置と深い関係にある。そのため、手軽に被験者の左右の肩甲骨の位置を測定することが可能な装置や方法が求められている。 On the other hand, there is growing interest in the relationship between mental disorders, psychological conditions, and psychological load, and postural factors, and postural factors are closely related to the position of the left and right shoulder blades. Therefore, there is a demand for an apparatus and method that can easily measure the positions of the left and right scapulae of a subject.

又、近年の携帯端末装置(スマートフォンやタブレット)の普及に伴い、ユーザーが携帯端末装置をうつむいた状態で使用し続けることが多くなっている。ここで、ユーザーがうつむいた状態で携帯端末を使用し続けると、頭を支える首に大きな負担が掛かり、首のカーブが失われ、首の骨が次第に真っすぐになることが分かってきている(ストレートネックという)。ストレートネックは、ユーザーがディスクトップ型の端末装置を長時間使用し続けても引き起こされる。このようなストレートネックは、首、肩、背中、腰などの凝りや痛みを生じさせ、重症化すると、痛みやしびれ、背骨の変形、ヘルニア、手足の冷え、頭痛、眼精疲労、吐き気、めまい、慢性的なだるさ、血行不良などの症状が現れる。一方で、ストレートネックは、左右の肩甲骨の位置と密接に関係しており、ストレートネックを検証する上でも、左右の肩甲骨の位置を測定することには大きな意義がある。 In addition, with the recent spread of mobile terminal devices (smartphones and tablets), users often continue to use mobile terminal devices with their heads down. Here, it has been found that if the user continues to use the mobile device while looking down, the neck that supports the head will be heavily burdened, the neck curve will be lost, and the neck bone will gradually straighten (straightening). neck). A straight neck is caused by a user's continued use of a desktop terminal device for a long time. Such a straight neck causes stiffness and pain in the neck, shoulders, back, lower back, etc. In severe cases, pain, numbness, deformation of the spine, hernia, cold hands and feet, headache, eye strain, nausea, and dizziness. , Chronic dullness, poor blood circulation, etc. On the other hand, the straight neck is closely related to the position of the left and right scapulae, and measuring the position of the left and right scapulas is of great significance in verifying the straight neck.

そこで、本発明は、前記課題を解決するためになされたものであり、非接触で被験者の肩甲骨の位置を3次元的に算出することが可能な肩甲骨位置算出装置及び肩甲骨位置算出方法を提供することを目的とする。 Accordingly, the present invention has been made to solve the above problems, and is a scapula position calculation device and a scapula position calculation method capable of three-dimensionally calculating the position of the scapula of a subject without contact. intended to provide

本発明に係る肩甲骨位置算出装置は、測定制御部と、第一の取得制御部と、第二の取得制御部と、算出制御部と、を備える。測定制御部は、3次元点群測定器具を用いて、所定の姿勢における被験者の背中の表面の3次元点群を測定する。第一の取得制御部は、前記背中の表面の3次元点群のうち、脊椎の一部を示す脊椎点を取得する。第二の取得制御部は、前記背中の表面の3次元点群のうち、前記被験者の背中の左肩甲骨の一部を示す左肩甲骨点と、前記被験者の背中の右肩甲骨の一部を示す右肩甲骨点とを取得する。算出制御部は、前記脊椎点と、前記左肩甲骨点と、前記右肩甲骨点とのいずれかの2点を結んだ線の距離と、いずれかの3点を結んだ二線の間の角度とを算出することで、前記被験者の左右の肩甲骨の位置を算出する。 A scapula position calculation device according to the present invention includes a measurement control section, a first acquisition control section, a second acquisition control section, and a calculation control section. The measurement control unit uses a three-dimensional point cloud measuring instrument to measure a three-dimensional point cloud of the surface of the subject's back in a predetermined posture. A first acquisition control unit acquires a spine point indicating a part of the spine from the three-dimensional point cloud of the surface of the back. A second acquisition control unit indicates a left scapula point indicating a part of the left scapula on the back of the subject and a part of the right scapula on the back of the subject among the three-dimensional point cloud of the surface of the back. Acquire the right scapula point. The calculation control unit calculates the distance of a line connecting any two points of the spine point, the left scapula point, and the right scapula point, and the angle between the two lines connecting any of the three points. The positions of the left and right scapulae of the subject are calculated by calculating .

本発明に係る肩甲骨位置算出方法は、測定制御工程と、第一の取得制御工程と、第二の取得制御工程と、算出制御工程と、を備える。肩甲骨位置算出方法の各工程は、肩甲骨位置算出装置の各制御部に対応する。 A scapula position calculation method according to the present invention includes a measurement control process, a first acquisition control process, a second acquisition control process, and a calculation control process. Each step of the scapula position calculation method corresponds to each controller of the scapula position calculation device.

本発明によれば、非接触で被験者の肩甲骨の位置を3次元的に算出することが可能となる。 According to the present invention, it is possible to three-dimensionally calculate the position of the scapula of a subject without contact.

本発明の実施形態に係る肩甲骨位置算出装置の一例を示す機能ブロック図である。1 is a functional block diagram showing an example of a scapula position calculation device according to an embodiment of the present invention; FIG. 本発明の実施形態に係る肩甲骨位置算出方法の実行手順を示すためのフローチャートである。4 is a flowchart for showing the execution procedure of the scapula position calculation method according to the embodiment of the present invention; 本発明の実施形態に係る3次元点群測定器具が校正プレートとカメラの場合の被験者の背中の表面の3次元点群の測定の一例を示す概略図(図3A)と、3次元空間における被験者の背中の表面の3次元点群の一例を示す概略図(図3B)と、である。A schematic diagram ( FIG. 3A ) showing an example of measurement of a three-dimensional point cloud on the surface of the subject's back when the three-dimensional point cloud measuring instrument according to the embodiment of the present invention is a calibration plate and a camera, and a subject in a three-dimensional space. Fig. 3B is a schematic diagram (Fig. 3B) showing an example of a 3D point cloud of the surface of the back of a human; 本発明の実施形態に係る3次元点群測定器具が3次元レーザスキャナーの場合の被験者の背中の表面の3次元点群の測定の一例を示す概略図(図4A)と、3次元空間における被験者の背中の表面の3次元点群の一例を示す概略図(図4B)と、である。A schematic diagram ( FIG. 4A ) showing an example of measurement of a three-dimensional point cloud on the surface of the subject's back when the three-dimensional point cloud measuring instrument according to the embodiment of the present invention is a three-dimensional laser scanner, and a subject in a three-dimensional space. Fig. 4B is a schematic diagram (Fig. 4B) showing an example of a 3D point cloud of the surface of the back of a human; 本発明の実施形態に係る被験者の背面と右側面における脊椎(頸椎、胸椎、腰椎)、左右の肩甲骨の位置の一例を示す概略図である。It is a schematic diagram showing an example of the position of the vertebrae (cervical vertebrae, thoracic vertebrae, lumbar vertebrae) and left and right shoulder blades on the back and right side of the subject according to the embodiment of the present invention. 本発明の実施形態に係る第一の肩甲骨モデルとその各点の距離と角度の一例を示す概略図(図6A)と、第二の肩甲骨モデルとその各点の距離と角度の一例を示す概略図(図6B)と、である。A schematic diagram (FIG. 6A) showing an example of the first scapula model and the distance and angle of each point thereof according to the embodiment of the present invention, and a second scapula model and an example of the distance and angle of each point thereof. The schematic diagram shown (FIG. 6B) and FIG. 本発明の実施形態に係る第三の肩甲骨モデルとその各点の距離と角度の一例を示す概略図(図7A)と、第四の肩甲骨モデルとその各点の距離と角度の一例を示す概略図(図7B)と、である。A schematic diagram ( FIG. 7A ) showing an example of the third scapula model and the distance and angle of each point thereof according to the embodiment of the present invention, and a fourth scapula model and an example of the distance and angle of each point thereof. The schematic diagram shown (FIG. 7B) and FIG. 本発明の実施形態に係る第五の肩甲骨モデルとその各点の距離と角度の一例を示す概略図(図8A)と、第六の肩甲骨モデルとその各点の距離と角度の一例を示す概略図(図8B)と、である。A schematic diagram ( FIG. 8A ) showing an example of the fifth scapula model and the distance and angle of each point thereof according to the embodiment of the present invention, and a sixth scapula model and an example of the distance and angle of each point thereof. The schematic diagram shown (FIG. 8B) and FIG. 本発明の実施形態に係る第七の肩甲骨モデルとその各点の距離と角度の一例を示す概略図(図9A)と、第八の肩甲骨モデルとその各点の距離と角度の一例を示す概略図(図9B)と、である。A schematic diagram ( FIG. 9A ) showing an example of the seventh scapula model and the distance and angle of each point thereof according to the embodiment of the present invention, and an example of the eighth scapula model and the distance and angle of each point thereof. Schematic diagrams shown (FIG. 9B) and FIG. 本発明の実施形態に係る通常姿勢と猫背姿勢と背伸姿勢における第四の肩甲骨モデルの一例を示す概略図である。FIG. 11 is a schematic diagram showing an example of a fourth scapula model in a normal posture, a stooped posture, and a stretched posture according to the embodiment of the present invention; 実施例における3次元点群測定器具が校正プレートとカメラの場合の通常姿勢の被験者の背中の表面の3次元点群の測定の一例を示す写真(図11A)と、3次元空間における被験者の背中の表面の3次元点群の測定結果の一例を示す概略図(図11B)と、である。A photograph (FIG. 11A) showing an example of measurement of a three-dimensional point cloud on the surface of the back of a subject in a normal posture when the three-dimensional point cloud measuring instrument in the example is a calibration plate and a camera, and the back of the subject in a three-dimensional space FIG. 11B is a schematic diagram ( FIG. 11B ) showing an example of measurement results of a three-dimensional point cloud on the surface of . 実施例における第一の肩甲骨モデルと各点を用いた距離と角度の一例を示す結果図である。It is a result figure which shows an example of the distance and angle using the first scapula model and each point in an Example. 実施例における第二の肩甲骨モデルと各点を用いた距離と角度の一例を示す結果図である。It is a result figure which shows an example of the distance and angle using the second scapula model and each point in an Example. 実施例における第三の肩甲骨モデルと各点を用いた距離と角度の一例を示す結果図である。It is a result figure which shows an example of the distance and the angle which used the 3rd scapula model and each point in an Example. 実施例における第四の肩甲骨モデルと各点を用いた距離と角度の一例を示す結果図である。It is a result figure which shows an example of the distance and the angle which used the 4th scapula model and each point in an Example. 実施例における第五の肩甲骨モデルと各点を用いた距離と角度の一例を示す結果図である。It is a result figure which shows an example of the distance and angle which used the 5th scapula model and each point in an Example. 実施例における第六の肩甲骨モデルと各点を用いた距離と角度の一例を示す結果図である。It is a result figure which shows an example of the distance and angle which used the 6th scapula model and each point in an Example. 実施例における第七の肩甲骨モデルと各点を用いた距離と角度の一例を示す結果図である。FIG. 11 is a result diagram showing an example of distances and angles using the seventh scapula model and each point in the example. 実施例における第八の肩甲骨モデルと各点を用いた距離と角度の一例を示す結果図である。It is a result figure which shows an example of the distance and the angle which used the 8th scapula model and each point in an Example. 実施例における猫背姿勢と背伸姿勢の被験者の背中の表面の3次元点群の測定とその測定結果の一例を示す概略図である。It is a schematic diagram showing an example of the measurement of the three-dimensional point cloud of the surface of the back of the test subject in the stooped posture and the stretched posture and the measurement results in the example. 実施例における通常姿勢と猫背姿勢と背伸姿勢での第一の肩甲骨モデルとそれぞれの距離と角度と、距離の変化と角度の変化の一例を示す結果図である。FIG. 10 is a result diagram showing an example of a first scapula model in a normal posture, a stooped posture, and a stretched posture, the respective distances and angles, and changes in the distances and changes in the angles in the example. 実施例における通常姿勢と猫背姿勢と背伸姿勢での第二の肩甲骨モデルとそれぞれの距離と角度と、距離の変化と角度の変化の一例を示す結果図である。FIG. 10 is a result diagram showing an example of a second scapula model in a normal posture, a stooped posture, and a stretched posture, the respective distances and angles, and changes in the distances and changes in the angles in the example. 実施例における通常姿勢と猫背姿勢と背伸姿勢での第三の肩甲骨モデルとそれぞれの距離と角度と、距離の変化と角度の変化の一例を示す結果図である。FIG. 10 is a result diagram showing an example of a third scapula model in a normal posture, a stooped posture, and a stretched posture, the respective distances and angles, and changes in the distances and changes in the angles in the example. 実施例における通常姿勢と猫背姿勢と背伸姿勢での第四の肩甲骨モデルとそれぞれの距離と角度と、距離の変化と角度の変化の一例を示す結果図である。FIG. 11 is a result diagram showing an example of a fourth scapula model in a normal posture, a stooped posture, and a stretched posture, the respective distances and angles, and changes in the distances and changes in the angles in the example. 実施例における通常姿勢と猫背姿勢と背伸姿勢での第五の肩甲骨モデルとそれぞれの距離と角度と、距離の変化と角度の変化の一例を示す結果図である。FIG. 10 is a result diagram showing an example of a fifth scapula model in a normal posture, a stooped posture, and a stretched posture, the respective distances and angles, and changes in the distances and changes in the angles in the example. 実施例における通常姿勢と猫背姿勢と背伸姿勢での第六の肩甲骨モデルとそれぞれの距離と角度と、距離の変化と角度の変化の一例を示す結果図である。FIG. 10 is a result diagram showing an example of a sixth scapula model in a normal posture, a stooped posture, and a stretched posture, the respective distances and angles, and changes in the distances and changes in the angles in the example. 実施例における通常姿勢と猫背姿勢と背伸姿勢での第七の肩甲骨モデルとそれぞれの距離と角度と、距離の変化と角度の変化の一例を示す結果図である。FIG. 11 is a result diagram showing an example of a seventh scapula model in a normal posture, a stooped posture, and a stretched posture, the respective distances and angles, and changes in the distances and changes in the angles in the example. 実施例における通常姿勢と猫背姿勢と背伸姿勢での第八の肩甲骨モデルとそれぞれの距離と角度と、距離の変化と角度の変化の一例を示す結果図である。FIG. 11 is a result diagram showing an example of an eighth scapula model in a normal posture, a stooped posture, and a stretched posture, the respective distances and angles, and changes in the distances and changes in the angles in the example.

以下に、添付図面を参照して、本発明の実施形態について説明し、本発明の理解に供する。尚、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiment is an example that embodies the present invention, and is not intended to limit the technical scope of the present invention.

本発明者は、長年、精神的障害や心理的状況・心理的負荷と、左右の肩甲骨の位置、並びに左右の肩甲骨の位置と姿勢の関係に関する研究を進めており、既に出願した特許出願(特開2015-205169)の肩甲骨位置測定器具及び肩甲骨位置測定方法を用いて事業展開しているが、今回、3次元点群測定器具を用いることで、意外にも、被験者の肩甲骨の位置を3次元的に算出することが出来たため、後述する実施例に基づいて、本発明を完成させたのである。 The present inventor has been conducting research for many years on the relationship between mental disorders, psychological situations, and psychological loads, the positions of the left and right shoulder blades, and the positions and postures of the left and right shoulder blades. (JP 2015-205169) scapula position measurement instrument and scapula position measurement method are used for business development, but this time, by using a three-dimensional point cloud measurement instrument, unexpectedly, the subject's scapula Since the position of was able to be calculated three-dimensionally, the present invention was completed based on the examples described later.

即ち、本発明に係る肩甲骨位置算出装置1は、図1に示すように、3次元点群測定器具10と、端末装置11と、を備える。 That is, the scapula position calculation device 1 according to the present invention includes a three-dimensional point group measuring instrument 10 and a terminal device 11, as shown in FIG.

3次元点群測定器具10は、非接触で対象物の表面の3次元点群(複数の3次元座標値)を測定可能な器具であれば、特に限定は無いが、例えば、対象物に設けた校正プレートを撮影することで対象物の表面の3次元点群を測定するカメラ(撮影器具)や対象物の表面にレーザを照射し、その反射光を利用することで対象物の表面の3次元点群を測定する3次元レーザスキャナーなどを挙げることが出来る。ここで、カメラは、携帯端末装置に内蔵されたものを用いても構わないし、デプス(奥行き距離)値を撮影可能なデプスカメラであっても構わない。 The three-dimensional point cloud measuring instrument 10 is not particularly limited as long as it is an instrument that can measure a three-dimensional point cloud (a plurality of three-dimensional coordinate values) on the surface of the object without contact. A camera (photographing device) that measures a 3D point cloud on the surface of an object by photographing a calibration plate, or a laser that irradiates the surface of the object and uses the reflected light to obtain a 3D image of the surface of the object. A three-dimensional laser scanner that measures a dimensional point group can be used. Here, the camera may be built in the mobile terminal device, or may be a depth camera capable of capturing depth (depth distance) values.

その他に、例えば、対象物の表面に反射シールを設けて、反射シールを含む対象物の表面を複数のカメラで異なる角度で撮影することで、対象物の表面の反射シールの3次元点群を測定するトラッキングシステム(いわゆるモーションキャプチャーに相当)、対象物の表面の温度を検出することで、対象物の表面の遠近を算出し、対象物の表面の3次元点群を測定する赤外線カメラや対象物の表面に特定の光の照射パターンを照射し、その反射光を利用することで対象物の表面の3次元点群を測定するドットプロジェクタなどを挙げることが出来る。 In addition, for example, by providing a reflective sticker on the surface of the object and photographing the surface of the object including the reflective sticker at different angles with a plurality of cameras, the 3D point cloud of the reflective sticker on the surface of the object can be obtained. A tracking system to measure (equivalent to so-called motion capture), an infrared camera or object that detects the temperature of the surface of the object, calculates the perspective of the surface of the object, and measures the 3D point cloud on the surface of the object Examples include a dot projector that irradiates a surface of an object with a specific light irradiation pattern and uses the reflected light to measure a three-dimensional point group on the surface of the object.

3次元点群測定器具10の制御部の構成に特に限定は無いが、例えば、制御部を端末装置11に組み込んだソフトウェアで構成して、端末装置11を操作することで、3次元点群測定器具10で被験者の背中の表面の3次元点群を測定すると、端末装置11で演算して、3次元点群の測定値を出力しても良い。その他に、3次元点群測定器具10に制御部を内蔵して、3次元点群測定器具10で被験者の背中の表面の3次元点群を測定すると、内部の制御部で演算して、3次元点群の測定値だけ出力しても良い。 The configuration of the control unit of the three-dimensional point cloud measuring instrument 10 is not particularly limited. After measuring the three-dimensional point cloud on the surface of the subject's back with the instrument 10, the terminal device 11 may perform calculations and output the measured values of the three-dimensional point cloud. In addition, a control unit is incorporated in the three-dimensional point cloud measuring instrument 10, and when the three-dimensional point cloud of the back surface of the subject is measured with the three-dimensional point cloud measuring instrument 10, the internal control unit performs calculations, Only the measured values of the dimensional point cloud may be output.

又、端末装置11は、一般に使用されるコンピュータであり、例えば、タッチパネル付きの携帯端末装置、タブレット型端末装置、ウェアラブル型端末装置、ディスクトップ型端末装置を含む。端末装置11は、記憶部と、入力部と、出力部とを備え、入力部は、例えば、キーボード、マウス、タッチパネル等であり、出力部は、例えば、液晶ディスプレイ等である。 The terminal device 11 is a commonly used computer, and includes, for example, a mobile terminal device with a touch panel, a tablet terminal device, a wearable terminal device, and a desktop terminal device. The terminal device 11 includes a storage unit, an input unit, and an output unit. The input unit is, for example, a keyboard, mouse, touch panel, etc., and the output unit is, for example, a liquid crystal display.

端末装置11は、図示しないCPU、ROM、RAM等を内蔵しており、CPUは、例えば、RAMを作業領域として利用し、ROM等に記憶されているプログラムを実行する。後述する各制御部についても、CPUがプログラムを実行することで各制御部の機能を実現する。尚、プログラムは、ネットワークを介してクラウド等のサーバから取得可能なソフトウェアやアプリケーションであっても良い。 The terminal device 11 incorporates a CPU, ROM, RAM, etc. (not shown), and the CPU, for example, uses the RAM as a work area and executes programs stored in the ROM, etc. FIG. Each control unit, which will be described later, also implements the function of each control unit by executing the program by the CPU. Note that the program may be software or an application that can be obtained from a server such as a cloud via a network.

次に、図1-図2を参照しながら、本発明の実施形態に係る構成及び実行手順について説明する。先ず、測定者が、被験者Sの依頼を受けて、端末装置11を起動し、被験者Sに所定の姿勢(例えば、通常姿勢)を取ってもらい、被験者Sの背中に対して3次元点群測定器具10を設置して、端末装置11に測定キーを入力する。すると、端末装置11の測定制御部101は、3次元点群測定器具10を用いて、所定の姿勢における被験者Sの背中の表面の3次元点群を測定する(図2:S101)。 Next, a configuration and an execution procedure according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. First, the measurer receives a request from the subject S, activates the terminal device 11, asks the subject S to take a predetermined posture (for example, a normal posture), and measures the three-dimensional point cloud on the back of the subject S. The instrument 10 is installed and a measurement key is input to the terminal device 11 . Then, the measurement control unit 101 of the terminal device 11 uses the three-dimensional point cloud measuring instrument 10 to measure the three-dimensional point cloud of the back surface of the subject S in a predetermined posture (FIG. 2: S101).

測定制御部101の測定方法は、3次元点群測定器具10の種類に応じて適宜変更される。例えば、校正プレートを用いたカメラを3次元点群測定器具10にした場合は、図3Aに示すように、先ず、測定者が、校正プレート10aを被験者Sの背中に沿わせて設置して、校正プレート10aを含む被験者Sの背中を第一の方向からカメラ10bで撮影し、次に、測定者が、被験者Sの背中を動かすことなく、カメラ10bを動かして、第一の方向と異なる第二の方向から、校正プレート10aを含む被験者Sの背中を撮影する。 The measurement method of the measurement control unit 101 is appropriately changed according to the type of the three-dimensional point cloud measuring instrument 10 . For example, when a camera using a calibration plate is used as the three-dimensional point cloud measuring instrument 10, as shown in FIG. The back of the subject S, including the calibration plate 10a, is photographed from a first direction by the camera 10b. The back of the subject S including the calibration plate 10a is photographed from two directions.

すると、カメラ10bから、第一の方向と第二の方向で撮影された二枚の撮影画像が端末装置11に送られ、端末装置11の測定制御部101は、図3Bに示すように、二枚の撮影画像に基づいて、校正プレート10aを基準とした被験者Sの背中の表面の3次元点群を取得することが出来る。 Then, two captured images captured in the first direction and the second direction are sent from the camera 10b to the terminal device 11, and the measurement control unit 101 of the terminal device 11 performs two images as shown in FIG. A three-dimensional point group of the back surface of the subject S can be obtained based on the captured images, with reference to the calibration plate 10a.

校正プレート10aの構成に特に限定は無いが、例えば、長方形状の四隅のそれぞれに円状のマークを設けた構成を挙げることが出来る。校正プレート10aの4つのマークを二つの異なる方向で撮影し、その撮影された二枚の撮影画像と、校正プレート10aの4つのマークの相対的な位置情報とを用いることで、カメラの特定の位置を基準とした校正プレート10aの4つのマークの3次元点群を取得することが出来るとともに、校正プレート10aに設置された被験者Sの背中の表面の3次元点群を算出することが出来る。この状態で、例えば、測定者が、撮影画像内の被験者Sの背中の表面のうち、任意の点を指定すると、指定した点の3次元座標値を取得することが出来る。 Although the configuration of the calibration plate 10a is not particularly limited, for example, a configuration in which circular marks are provided at each of the four corners of a rectangular shape can be mentioned. By photographing the four marks on the calibration plate 10a in two different directions and using the two photographed images and the relative positional information of the four marks on the calibration plate 10a, a specific camera can be obtained. A three-dimensional point cloud of the four marks on the calibration plate 10a can be acquired with reference to the position, and a three-dimensional point cloud of the back surface of the subject S placed on the calibration plate 10a can be calculated. In this state, for example, when the measurer designates an arbitrary point on the surface of the back of the subject S in the photographed image, the three-dimensional coordinate values of the designated point can be obtained.

一方、3次元レーザスキャナーを3次元点群測定器具10にした場合は、図4Aに示すように、先ず、測定者が、3次元レーザスキャナー10cの発光部分に対向する位置に被験者Sの背中を向けた状態で被験者Sを立たせて、被験者Sの背中を3次元レーザスキャナー10cでスキャンする。 On the other hand, when the three-dimensional laser scanner is used as the three-dimensional point group measuring instrument 10, as shown in FIG. The subject S is made to stand in the facing state, and the back of the subject S is scanned by the three-dimensional laser scanner 10c.

すると、3次元レーザスキャナーからスキャンされた3次元点群が端末装置11に送られ、端末装置11の測定制御部101は、図4Bに示すように、3次元点群に基づいて、3次元レーザスキャナーの特定の位置を基準とした被験者Sの背中の表面の3次元点群を取得することが出来る。 Then, the three-dimensional point group scanned by the three-dimensional laser scanner is sent to the terminal device 11, and the measurement control unit 101 of the terminal device 11, as shown in FIG. A three-dimensional point cloud of the back surface of the subject S can be obtained with reference to a specific position of the scanner.

尚、他の方法として、カメラで二つの異なる方向から撮影した被験者Sの背中の表面の画像や動画を用いて、被験者Sの背中の表面の彩度、輝度、明度、色相等の変化に基づいて、被験者Sの背中の表面の3次元点群を測定しても良いし、上述のようにデプスカメラから被験者Sの背中の表面の3次元点群を測定しても構わない。 In addition, as another method, using images and videos of the surface of the back of the subject S photographed from two different directions with a camera, based on changes in saturation, brightness, brightness, hue, etc. , the three-dimensional point cloud of the back surface of the subject S may be measured, or the three-dimensional point cloud of the back surface of the subject S may be measured from the depth camera as described above.

さて、測定制御部101が測定を完了すると、次に、端末装置12の第一の取得制御部102は、背中の表面の3次元点群のうち、被験者Sの背中の脊椎の一部を示す脊椎点を取得する(図2:S102)。 Now, when the measurement control unit 101 completes the measurement, next, the first acquisition control unit 102 of the terminal device 12 indicates a part of the spine of the back of the subject S from the three-dimensional point cloud of the surface of the back. A spinal point is acquired (FIG. 2: S102).

第一の取得制御部102の取得方法に特に限定は無い。例えば、図5に示すように、通常、ヒトの背中の中央内部には、頭部から、7個の頚椎と、12個の胸椎と、5個の腰椎が下方に向かって配置され、胸椎の左右には、左右の肩甲骨が配置されている。この頸椎と胸椎と腰椎は、脊椎と称する。脊椎点は、頸椎点、胸椎点、腰椎点のいずれか又はこれらの組み合わせの特徴点を採用することが出来る。頸椎点は、第1頸椎から第7頸椎までのいずれか、これらの間、又はこれらの組み合わせであり、胸椎点は、第1胸椎から第12胸椎までのいずれか、これらの間、又はこれらの組み合わせであり、腰椎点は、第1腰椎から第5腰椎までのいずれか、これらの間、又はこれらの組み合わせである。下記では、例えば、脊椎点として、1つの頸椎点と1つの胸椎点を例に挙げて説明する。 The acquisition method of the first acquisition control unit 102 is not particularly limited. For example, as shown in FIG. 5, generally, 7 cervical vertebrae, 12 thoracic vertebrae, and 5 lumbar vertebrae are arranged downward from the head in the center of the human back. Left and right shoulder blades are arranged on the left and right. The cervical, thoracic and lumbar vertebrae are referred to as the spine. As the spine point, any one of the cervical spine point, the thoracic spine point, the lumbar spine point, or a combination thereof can be adopted. A cervical point is any, between, or a combination of the 1st to 7th cervical vertebrae, and a thoracic point is any, between, or a combination of the 1st to 12th thoracic vertebrae. A combination, where the lumbar point is any, between, or a combination of 1st to 5th lumbar vertebrae. In the following description, for example, one cervical vertebrae point and one thoracic vertebrae point will be described as examples of spinal points.

ここで、7つの頸椎のうち、頭部から7番目の第7頸椎C7は、他の頸椎と比べて、外部に最も突出した棘突起C7aを有するため、この第7頸椎C7の棘突起C7aの位置は、背中の表面から突出して、外部から目視することが出来る。 Here, of the seven cervical vertebrae, the seventh cervical vertebrae C7, which is the seventh from the head, has a spinous process C7a that protrudes the most to the outside compared to other cervical vertebrae. The position protrudes from the surface of the back and can be viewed from the outside.

そこで、測定者は、被験者Sの背中の表面の3次元点群のうち、背中の中央上部に突出している突起部C7aを第7頸椎C7の棘突起C7aとして指定すると、第一の取得制御部102は、測定者の指定を受けて、この突起部C7aの3次元座標値を、頸椎の一部を示す頸椎点C7として取得する。 Therefore, when the measurer designates the protrusion C7a protruding in the upper center of the back as the spinous process C7a of the seventh cervical vertebrae C7 in the three-dimensional point cloud of the back surface of the subject S, the first acquisition control unit 102 acquires the three-dimensional coordinate value of this protrusion C7a as a cervical vertebrae point C7 indicating a part of the cervical vertebrae in response to the measurement person's designation.

次に、12個の胸椎のうち、頭部から1番目の第1胸椎T1は、他の胸椎と比べて、第7頸椎C7に最も近接し、且つ、外部に突出した棘突起T1aを有するため、この第1胸椎T1の棘突起T1aの位置は、背中の表面から突出して、外部から目視することが出来る。 Next, of the 12 thoracic vertebrae, the first thoracic vertebrae T1, which is the first from the head, is closest to the seventh cervical vertebrae C7 compared to other thoracic vertebrae, and has a spinous process T1a protruding to the outside. , The position of the spinous process T1a of the first thoracic vertebra T1 protrudes from the surface of the back and can be visually observed from the outside.

そこで、測定者は、被験者Sの背中の表面の3次元点群のうち、第7頸椎C7の頸椎点に最も近接した突起部T1aを第1胸椎T1の棘突起T1aとして指定すると、第一の取得制御部102は、測定者の指定を受けて、この突起部T1aの3次元座標値を、胸椎の一部を示す胸椎点T1として取得する。 Therefore, when the measurer designates the projection T1a closest to the cervical vertebra point of the seventh cervical vertebrae C7 as the spinous process T1a of the first thoracic vertebrae T1 in the three-dimensional point cloud of the back surface of the subject S, the first Acquisition control unit 102 acquires the three-dimensional coordinate value of this projection T1a as a thoracic vertebra point T1 indicating a part of the thoracic vertebrae in response to the measurement person's designation.

このように、測定者が、被験者Sの背中の表面における突起部を目印にして、第7頸椎C7の棘突起C7aと第1胸椎T1の棘突起T1aとを指定することで、第一の取得制御部102は、頸椎点C7と胸椎点T1の3次元座標値を取得する。これにより、測定者は、被験者Sに接触することなく、被験者Sの左右の肩甲骨の位置を算出するための頸椎点C7と胸椎点T1とを取得することが出来る。 In this way, the measurer designates the spinous process C7a of the seventh cervical vertebrae C7 and the spinous process T1a of the first thoracic vertebrae T1 using the protrusions on the surface of the back of the subject S as marks, thereby performing the first acquisition. The control unit 102 acquires the three-dimensional coordinate values of the cervical vertebrae point C7 and the thoracic vertebrae point T1. Thereby, the measurer can acquire the cervical vertebrae point C7 and the thoracic vertebrae point T1 for calculating the positions of the left and right scapulae of the subject S without touching the subject S.

ここで、頸椎点C7と胸椎点T1とは、共に、被験者Sの頭部から胸部までの背骨の一直線上に位置することから、これらの点は、被験者Sの左右の肩甲骨の位置の基準位置となり得る。 Here, since both the cervical vertebrae point C7 and the thoracic vertebrae point T1 are located on a straight line of the spine from the head to the chest of the subject S, these points are the reference of the positions of the right and left shoulder blades of the subject S. can be a position.

尚、上述では、測定者が、第7頸椎C7の棘突起C7aと第1胸椎T1の棘突起T1aとを指定することで、頸椎点C7と胸椎点T1とを脊椎点として取得するように構成したが、他の脊椎の棘突起を指定しても構わない。例えば、測定者が、腰椎の一部を示す腰椎点を脊椎点として取得しても良い。測定者が腰椎点を指定する方法として、例えば、左右の腸骨稜の最高点を結んだ線のヤコビ線(Jacoby line)を用いて第4腰椎、第5腰椎、又は、第4腰椎と第5腰椎との間を指定することが出来る。 In the above description, the measurement person designates the spinous process C7a of the seventh cervical vertebrae C7 and the spinous process T1a of the first thoracic vertebrae T1, so that the cervical vertebrae point C7 and the thoracic vertebrae point T1 are acquired as vertebrae points. However, spinous processes of other vertebrae may be specified. For example, the measurer may acquire a lumbar vertebrae point indicating a part of the lumbar vertebrae as the vertebrae point. As a method for the measurer to specify the lumbar vertebrae, for example, using the Jacoby line of the line connecting the highest points of the left and right iliac crests, the 4th lumbar vertebrae, the 5th lumbar vertebrae, or the 4th lumbar vertebrae and the 4th lumbar vertebrae It is possible to specify between 5 lumbar vertebrae.

又、他の方法を用いても良い。例えば、3次元点群測定器具10がカメラ10bを含む場合、カメラ10bで撮影された撮影画像の被験者Sの背中のうち、突起部には、黒色の影が映し出されるため、突起部の影を利用して、例えば、第7頸椎C7の棘突起C7aや第1胸椎T1の棘突起T1aの位置を特定し、特定した点を取得するよう構成しても構わない。この場合、測定者が手作業で突起部の位置を特定しても良いし、突起部の陰影、彩度、輝度、明度、色相等の特徴の変化に基づいて突起部の位置を測定するソフトウェアを作成して、ソフトウェアを使って自動的に突起部の位置を特定しても良い。 Alternatively, other methods may be used. For example, when the three-dimensional point cloud measuring instrument 10 includes the camera 10b, a black shadow is projected on the projections of the back of the subject S in the image captured by the camera 10b. For example, the position of the spinous process C7a of the seventh cervical vertebrae C7 or the spinous process T1a of the first thoracic vertebrae T1 may be specified, and the specified points may be acquired. In this case, the position of the protrusion may be specified manually by the operator, or software that measures the position of the protrusion based on changes in features such as shadow, saturation, brightness, lightness, and hue of the protrusion. may be created and software may be used to automatically identify the position of the protrusion.

尚、被験者Sの脊椎の特徴点が増加する程、被験者Sの背骨の位置を精度高く算出することが出来る。 The more the feature points of the spine of the subject S, the more accurately the position of the spine of the subject S can be calculated.

さて、第一の取得制御部102が取得を完了すると、次に、端末装置12の第二の取得制御部103は、被験者Sの背中の左肩甲骨の一部を示す左肩甲骨点と、被験者Sの背中の右肩甲骨の一部を示す右肩甲骨点とを取得する(図2:S103)。 Now, when the first acquisition control unit 102 completes the acquisition, next, the second acquisition control unit 103 of the terminal device 12 controls the left scapula point indicating a part of the left scapula on the back of the subject S, the subject S A right scapula point indicating a part of the right scapula on the back of the user is obtained (Fig. 2: S103).

第二の取得制御部103の取得方法に特に限定は無い。例えば、図5に示すように、一般的に、被験者Sの背中の表面では、左の肩甲骨のうち、上方近傍に、外部に向かって突出した左の肩甲棘が存在し、右の肩甲骨にも、同様に、上方近傍に、外部に向かって突出した右の肩甲棘が存在する。この左右の肩甲棘の位置は、背中の表面から突出して、外部から目視することが出来る。 The acquisition method of the second acquisition control unit 103 is not particularly limited. For example, as shown in FIG. 5, generally, on the surface of the back of the subject S, the left scapular spine protruding outward is present near the upper part of the left scapula, and the right shoulder The scapula also has an externally projecting right scapular spine near the top. The positions of the left and right scapular spines protrude from the surface of the back and can be visually observed from the outside.

そこで、測定者は、被験者Sの背中の表面の3次元点群のうち、背中の上方の左右のそれぞれに突出した突起部A、Bを、左右の肩甲棘として指定すると、第二の取得制御部103は、測定者の指定を受けて、これらの突起部A、Bの3次元座標値を、左肩甲骨の上方の一部を示す左肩甲骨上点Aと、右肩甲骨の上方の一部を示す右肩甲骨上点Bとして取得する。 Therefore, when the measurer designates the projections A and B projecting to the left and right above the back from the three-dimensional point cloud of the back surface of the subject S as the left and right scapular spines, the second acquisition The control unit 103, in response to the user's designation, converts the three-dimensional coordinate values of these projections A and B into a left suprascapular point A indicating a part of the upper part of the left scapula and a point A of the upper part of the right scapula. It is obtained as a point B on the right scapula that indicates the buttocks.

このように、上述と同様に、測定者が、被験者Sの背中の表面における突起部を目印にして、左右の肩甲棘の突起部A、Bとを指定することで、第二の取得制御部103は、左肩甲骨上点Aと右肩甲骨上点Bの3次元座標値を取得することが出来るため、測定者は、被験者Sに接触することなく、被験者Sの左右の肩甲骨の位置を算出するための左肩甲骨上点Aと右肩甲骨上点Bとを取得することが出来る。 In this way, in the same manner as described above, the measurer designates the projections A and B of the left and right scapular spines using the projections on the surface of the back of the subject S as a mark, thereby performing the second acquisition control. Since the unit 103 can acquire the three-dimensional coordinate values of the left suprascapular point A and the right suprascapular point B, the measurer can determine the positions of the left and right shoulder blades of the subject S without touching the subject S. It is possible to obtain the left scapula point A and the right scapula point B for calculating .

ここで、左肩甲骨上点Aと右肩甲骨上点Bとは、被験者Sの左右の肩甲骨の特徴点であるため、脊椎点としての上述の頸椎点C7と胸椎点T1とで比較することで、被験者Sの左右の肩甲骨の位置の傾きや偏りを確認することが出来る。 Here, since the left suprascapular point A and the right suprascapular point B are characteristic points of the left and right scapulae of the subject S, the above-described cervical vertebrae point C7 and thoracic vertebrae point T1 as vertebrae points can be compared. , it is possible to confirm the inclination and deviation of the positions of the left and right scapulae of the subject S.

ここで、左肩甲骨上点Aと右肩甲骨上点Bの代わりに、被験者Sの左右の肩甲骨の他の特徴点を取得しても良い。例えば、図5に示すように、左右の肩甲骨について、外部から認識できる位置として、左右の肩甲棘の他に、左右の下角を挙げることが出来る。具体的には、左の肩甲骨のうち、下方近傍に、外部に向かって突出した左の下角が存在し、右の肩甲骨にも、同様に、下方近傍に、外部に向かって突出した右の下角が存在する。この左右の下角の位置は、上述と同様に、背中の表面から突出して、外部から目視することが出来る。 Here, instead of the left suprascapular point A and the right suprascapular point B, other characteristic points of the left and right scapulae of the subject S may be acquired. For example, as shown in FIG. 5, in addition to the left and right scapular spines, the left and right lower corners of the left and right shoulder blades can be mentioned as positions that can be recognized from the outside. Specifically, in the vicinity of the lower part of the left scapula, there is a left lower angle that protrudes outward. There is a lower angle of The positions of the left and right lower corners protrude from the surface of the back and can be visually observed from the outside in the same manner as described above.

そこで、測定者は、被験者Sの背中の表面の3次元点群のうち、背中の下方の左右のそれぞれに突出した突起部C、Dを、左右の下角として指定すると、第二の取得制御部103は、測定者の指定を受けて、これらの突起部C、Dの3次元座標値を、左肩甲骨の下方の一部を示す左肩甲骨下点Cと、右肩甲骨の下方の一部を示す右肩甲骨下点Dとして取得してもよい。 Therefore, when the measurer designates the protrusions C and D projecting to the left and right below the back in the three-dimensional point cloud of the back surface of the subject S as the left and right lower corners, the second acquisition control unit 103 receives the specification of the measurer and converts the three-dimensional coordinate values of these protrusions C and D into the left scapula point C indicating the lower part of the left scapula and the lower part of the right scapula. It may be acquired as the right scapula lower point D shown.

このように、左肩甲骨上点Aと右肩甲骨上点Bに代えて、左肩甲骨下点Cと右肩甲骨下点Dとを取得しても良いし、これらの点を全て採用しても良い。 In this way, instead of the left scapula top point A and the right scapula top point B, the left scapula bottom point C and the right scapula bottom point D may be acquired, or all of these points may be used. good.

又、左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとの代わりに、被験者Sの左右の肩甲骨の他の特徴点を取得しても良い。例えば、図5に示すように、左右の肩甲骨について、外部から認識できる位置として、左右の下角の他に、左右の肩峰を挙げることが出来る。具体的には、左の肩甲骨のうち、上方左近傍に、外部に向かって突出した左の肩峰が存在し、右の肩甲骨にも、同様に、上方右近傍に、外部に向かって突出した右の肩峰が存在する。この左右の肩峰の位置は、上述と同様に、背中の表面から突出して、外部から目視することが出来る。 Also, instead of the left upper scapula point A, the right upper scapula point B, the lower left scapula point C, and the lower right scapula point D, other characteristic points of the left and right scapulae of the subject S may be acquired. . For example, as shown in FIG. 5, the left and right shoulder blades can be recognized from the outside at the left and right lower corners as well as the left and right acromions. Specifically, in the left scapula, near the upper left, there is a left acromion that protrudes outward. A prominent right acromion is present. The positions of the left and right acromions project from the surface of the back and can be visually observed from the outside in the same manner as described above.

そこで、測定者は、被験者Sの背中の表面の3次元点群のうち、背中の上方の左右のそれぞれに突出した突起部E、Fを、左右の肩峰として指定すると、第二の取得制御部103は、測定者の指定を受けて、これらの突起部E、Fの3次元座標値を、左肩甲骨の外側の一部を示す左肩甲骨外点Eと、右肩甲骨の外側の一部を示す右肩甲骨外点Fとして取得してもよい。 Therefore, when the measurer designates the projections E and F projecting to the left and right above the back from the three-dimensional point cloud of the back surface of the subject S as the left and right acromions, the second acquisition control The unit 103, in response to the measurement person's designation, converts the three-dimensional coordinate values of these projections E and F into a left scapula extrinsic point E indicating a portion of the outside of the left scapula and a portion of the outside of the right scapula. may be acquired as a right scapula extra-point F indicating .

このように、左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとに代えて、左肩甲骨外点Eと右肩甲骨外点Fとを取得しても良いし、これらの点を全て採用しても良い。尚、被験者Sの左右の肩甲骨の特徴点が増加する程、被験者Sの左右の肩甲骨の位置を精度高く算出することが出来る。又、脊椎点の数及び左右の肩甲骨点の数が増加する程、被験者Sの左右の肩甲骨の位置の精度を更に向上させることが出来る。 In this way, instead of the left scapula top point A, the right scapula top point B, the left scapula bottom point C, and the right scapula bottom point D, the left scapula outside point E and the right scapula outside point F are acquired. or all of these points may be adopted. The positions of the left and right shoulder blades of the subject S can be calculated with higher accuracy as the feature points of the right and left shoulder blades of the subject S increase. Further, the accuracy of the positions of the right and left shoulder blades of the subject S can be further improved as the number of spinal points and left and right shoulder blade points increases.

さて、第二の取得制御部103が取得を完了すると、端末装置12の算出制御部104は、脊椎点(例えば、頸椎点C7と、胸椎点T1)と、左肩甲骨点(例えば、左肩甲骨上点A)と、右肩甲骨点(例えば、右肩甲骨上点B)とのいずれかの2点を結んだ線の距離と、いずれかの3点を結んだ二線の間の角度とを算出することで、被験者Sの左右の肩甲骨の位置を算出する(図2:S104)。 Now, when the second acquisition control unit 103 completes the acquisition, the calculation control unit 104 of the terminal device 12 calculates the vertebral points (for example, the cervical vertebrae point C7 and the thoracic vertebrae point T1) and the left scapula points (for example, the left scapula point). Point A) and the right scapula point (for example, right scapula point B), the distance of the line connecting any two points, and the angle between the two lines connecting any three points By calculating, the positions of the right and left shoulder blades of the subject S are calculated (FIG. 2: S104).

算出制御部104の算出方法に特に限定は無い。例えば、頸椎点C7と胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bとの4点の3次元座標値が取得された場合は、図6Aに示すように、3次元点群を表すための3次元空間のxyz座標系において、頸椎点C7と胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bとの4点がそれぞれプロットされ、4点がそれぞれ線で結ばれることで、被験者Sの左右の肩甲骨の位置のモデル(肩甲骨モデルとする)が作成される。ここでは、頸椎点C7と胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bとの4点で構成される肩甲骨モデルを第一の肩甲骨モデルとする。 The calculation method of the calculation control unit 104 is not particularly limited. For example, when the three-dimensional coordinate values of four points of the cervical vertebrae point C7, the thoracic vertebrae point T1, the left upper scapula point A, and the right upper scapula point B are acquired, a three-dimensional point group is obtained as shown in FIG. 6A. In the xyz coordinate system of the three-dimensional space for representation, the cervical vertebrae point C7, the thoracic vertebrae point T1, the left suprascapular point A, and the right suprascapular point B are plotted, respectively, and the four points are connected by lines. , a model of the positions of the right and left shoulder blades of the subject S (referred to as a shoulder blade model) is created. Here, the scapula model composed of the cervical vertebrae point C7, the thoracic vertebrae point T1, the left upper scapula point A, and the right upper scapula point B is taken as the first scapula model.

この肩甲骨モデルは、被験者Sの背中の頸椎や胸椎、左右の肩甲骨の空間的位置を一見して理解することが出来るとともに、胸椎に対する頸椎の曲がり具合や胸椎に対する左右の肩甲骨のひずみ具合を確認することが出来るため、大変有意義である。 With this scapula model, the spatial positions of the cervical and thoracic vertebrae on the back of the subject S and the left and right scapulae can be understood at a glance. It is very significant because it is possible to confirm

さて、算出制御部104は、第一の肩甲骨モデルから、左右の肩甲骨の位置を示す距離と角度とを算出する。距離は、例えば、頸椎点C7と胸椎点T1との距離(1)と、頸椎点C7と左肩甲骨上点Aとの距離(2)と、頸椎点C7と右肩甲骨上点Bとの距離(3)と、胸椎点T1と左肩甲骨上点Aとの距離(4)と、胸椎点T1と右肩甲骨上点Bとの距離(5)とを挙げることが出来る。これにより、左右の肩甲骨の位置の近接具合を数値的に示すことが出来る。更に、距離(3)と距離(2)の差分と、距離(5)と距離(4)の差分とを求めることで、左右の肩甲骨の偏り具合を数値的に示すことが出来る。又、角度は、例えば、左肩甲骨上点Aと胸椎点T1と頸椎点C7との間の角度(1)と、右肩甲骨上点Bと胸椎点T1と頸椎点C7との間の角度(2)と、頸椎点C7と左肩甲骨上点Aと胸椎点T1との間の角度(3)と、頸椎点C7と右肩甲骨上点Bと胸椎点T1との間の角度(4)と、胸椎点T1と頸椎点C7と左肩甲骨上点Aとの間の角度(5)と、胸椎点T1と頸椎点C7と右肩甲骨上点Bとの間の角度(6)とを挙げることが出来る。これにより、左右の肩甲骨の位置の傾き具合を数値的に示すことが出来る。更に、角度(2)と角度(1)の差分と、角度(4)と角度(3)の差分と、角度(6)と角度(5)の差分とを求めることで、左右の肩甲骨の傾き具合を数値的に示すことが出来る。 Now, the calculation control unit 104 calculates the distance and angle indicating the positions of the left and right shoulder blades from the first shoulder blade model. The distances are, for example, the distance (1) between the cervical vertebrae point C7 and the thoracic vertebrae point T1, the distance (2) between the cervical vertebrae point C7 and the left suprascapular point A, and the distance between the cervical vertebrae point C7 and the right suprascapular point B. (3), the distance (4) between the thoracic vertebra point T1 and the left suprascapular point A, and the distance (5) between the thoracic vertebra point T1 and the right suprascapular point B. As a result, it is possible to numerically indicate the closeness of the positions of the left and right scapulae. Furthermore, by calculating the difference between the distances (3) and (2) and the difference between the distances (5) and (4), it is possible to numerically indicate the deviation of the left and right shoulder blades. Also, the angles are, for example, the angle (1) between the left suprascapular point A, the thoracic vertebrae point T1 and the cervical vertebrae point C7, and the angle ( 2), the angle (3) between the cervical point C7, the left suprascapular point A and the thoracic point T1, and the angle (4) between the cervical point C7, the right suprascapular point B and the thoracic point T1. , the angle (5) between the thoracic vertebrae point T1, the cervical vertebrae point C7 and the left suprascapular point A, and the angle (6) between the thoracic vertebrae point T1, the cervical vertebrae point C7 and the right suprascapular point B. can be done. As a result, it is possible to numerically indicate the degree of inclination of the positions of the left and right scapulae. Furthermore, by obtaining the difference between the angle (2) and the angle (1), the difference between the angle (4) and the angle (3), and the difference between the angle (6) and the angle (5), The degree of inclination can be indicated numerically.

上述の肩甲骨モデルは、取得される点の数や種類によって適宜設計変更することが出来るが、ここでは、代表的な肩甲骨モデルを列記する。 The scapula model described above can be appropriately modified in design depending on the number and types of acquired points, but representative scapula models are listed here.

例えば、頸椎点C7と左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとの5点の3次元座標値が取得された場合は、図6Bに示すように、この5点の線の組み合わせで構成される肩甲骨モデルを第二の肩甲骨モデルとする。第二の肩甲骨モデルの距離は、例えば、頸椎点C7と左肩甲骨上点Aとの距離(1)と、頸椎点C7と右肩甲骨上点Bとの距離(2)と、左肩甲骨上点Aと左肩甲骨下点Cとの距離(3)と、右肩甲骨上点Bと右肩甲骨下点Dとの距離(4)と、頸椎点C7と左肩甲骨下点Cとの距離(5)と、頸椎点C7と右肩甲骨下点Dとの距離(6)とを挙げることが出来る。更に、距離(2)と距離(1)の差分と、距離(6)と距離(5)の差分とを求めることが出来る。角度は、例えば、左肩甲骨下点Cと左肩甲骨上点Aと頸椎点C7との間の角度(1)と、右肩甲骨下点Dと右肩甲骨上点Bと頸椎点C7との間の角度(2)と、左肩甲骨上点Aと左肩甲骨下点Cと頸椎点C7との間の角度(3)と、右肩甲骨上点Bと右肩甲骨下点Dと頸椎点C7との間の角度(4)と、左肩甲骨上点Aと頸椎点C7と左肩甲骨下点Cとの間の角度(5)と、右肩甲骨上点Bと頸椎点C7と右肩甲骨下点Dとの間の角度(6)と、更に、角度(2)と角度(1)の差分と、角度(6)と角度(5)の差分とを求めることが出来る。 For example, when the three-dimensional coordinate values of the cervical vertebrae point C7, the left upper scapula point A, the right upper scapula point B, the left lower scapula point C, and the right lower scapula point D are obtained, the values are shown in FIG. 6B. As shown, the scapula model formed by combining the lines of these five points is used as the second scapula model. The distance of the second scapula model is, for example, the distance (1) between the cervical vertebrae point C7 and the left suprascapular point A, the distance (2) between the cervical vertebrae point C7 and the right suprascapular point B, and the distance (2) between the cervical vertebrae point C7 and the left scapula point B The distance (3) between point A and left scapula point C, the distance (4) between right scapula point B and right scapula point D, and the distance between cervical vertebra point C7 and left scapula point C ( 5) and the distance (6) between the cervical vertebra point C7 and the point D below the right scapula. Furthermore, the difference between the distances (2) and (1) and the difference between the distances (6) and (5) can be obtained. The angles are, for example, the angle (1) between the left lower scapula point C, the left upper scapula point A, and the cervical point C7, and the angle (1) between the right lower scapula point D, the right suprascapular point B, and the cervical point C7. angle (2), angle (3) between left suprascapular point A, left subscapular point C and cervical vertebrae point C7, right suprascapular point B, right subscapular point D and cervical vertebrae point C7 Angle (4) between left suprascapular point A, cervical point C7 and left subscapular point C (5), right suprascapular point B, cervical point C7 and right subscapular point We can find the angle (6) between D and also the difference between angle (2) and angle (1) and the difference between angle (6) and angle (5).

又、胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとの5点の3次元座標値が取得された場合は、図7Aに示すように、この5点の線の組み合わせで構成される肩甲骨モデルを第三の肩甲骨モデルとする。第三の肩甲骨モデルの距離は、例えば、胸椎点T1と左肩甲骨上点Aとの距離(1)と、胸椎点T1と右肩甲骨上点Bとの距離(2)と、左肩甲骨上点Aと左肩甲骨下点Cとの距離(3)と、右肩甲骨上点Bと右肩甲骨下点Dとの距離(4)と、胸椎点T1と左肩甲骨下点Cとの距離(5)と、胸椎点T1と右肩甲骨下点Dとの距離(6)とを挙げることが出来る。更に、距離(2)と距離(1)の差分と、距離(6)と距離(5)の差分とを求めることが出来る。角度は、例えば、左肩甲骨下点Cと左肩甲骨上点Aと胸椎点T1との間の角度(1)と、右肩甲骨下点Dと右肩甲骨上点Bと胸椎点T1との間の角度(2)と、左肩甲骨上点Aと左肩甲骨下点Cと胸椎点T1との間の角度(3)と、右肩甲骨上点Bと右肩甲骨下点Dと胸椎点T1との間の角度(4)と、左肩甲骨上点Aと胸椎点T1と左肩甲骨下点Cとの間の角度(5)と、右肩甲骨上点Bと胸椎点T1と右肩甲骨下点Dとの間の角度(6)とを挙げることが出来る。更に、角度(2)と角度(1)の差分と、角度(4)と角度(3)の差分と、角度(6)と角度(5)の差分とを求めることが出来る。 Further, when the three-dimensional coordinate values of the thoracic vertebra point T1, the left upper scapula point A, the right upper scapula point B, the left lower scapula point C, and the right lower scapula point D are obtained, they are shown in FIG. 7A. As shown, the scapula model formed by combining these five lines is the third scapula model. The distances of the third scapula model are, for example, the distance (1) between the thoracic vertebra point T1 and the left suprascapular point A, the distance (2) between the thoracic vertebra point T1 and the right suprascapular point B, and the distance on the left scapula The distance (3) between the point A and the left scapula point C, the distance (4) between the right scapula point B and the right scapula point D, and the distance between the thoracic vertebra point T1 and the left scapula point C ( 5) and the distance (6) between the thoracic vertebra point T1 and the point D below the right scapula. Furthermore, the difference between the distances (2) and (1) and the difference between the distances (6) and (5) can be obtained. The angles are, for example, the angle (1) between the left lower scapula point C, the left upper scapula point A, and the thoracic vertebrae point T1, and the angle (1) between the right lower scapula point D, the right upper scapula point B, and the thoracic vertebrae point T1. angle (2), angle (3) between left suprascapular point A, left subscapular point C and thoracic vertebrae point T1, right suprascapular point B, right subscapular point D and thoracic vertebrae point T1 Angle (4) between left suprascapular point A, thoracic point T1 and left subscapular point C (5), right suprascapular point B, thoracic point T1 and right subscapular point The angle (6) between D and D can be mentioned. Furthermore, the difference between angles (2) and (1), the difference between angles (4) and (3), and the difference between angles (6) and (5) can be obtained.

又、頸椎点C7と胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとの6点の3次元座標値が取得された場合は、図7Bに示すように、この6点の線の組み合わせで構成される肩甲骨モデルを第四の肩甲骨モデルとする。第四の肩甲骨モデルの距離は、頸椎点C7と胸椎点T1との距離(1)と、頸椎点C7と左肩甲骨下点Cとの距離(2)と、頸椎点C7と右肩甲骨下点Dとの距離(3)と、胸椎点T1と左肩甲骨下点Cとの距離(4)と、胸椎点T1と右肩甲骨下点Dとの距離(5)とを挙げることが出来る。更に、距離(3)と距離(2)の差分と、距離(5)と距離(4)の差分とを求めることが出来る。角度は、例えば、左肩甲骨下点Cと胸椎点T1と頸椎点C7との間の角度(1)と、右肩甲骨下点Dと胸椎点T1と頸椎点C7との間の角度(2)と、頸椎点C7と左肩甲骨下点Cと胸椎点T1との間の角度(3)と、頸椎点C7と右肩甲骨下点Dと胸椎点T1との間の角度(4)と、左肩甲骨下点Cと頸椎点C7と胸椎点T1との間の角度(5)と、右肩甲骨下点Dと頸椎点C7と胸椎点T1との間の角度(6)とを挙げることが出来る。更に、角度(2)と角度(1)の差分と、角度(4)と角度(3)の差分と、角度(6)と角度(5)の差分とを求めることが出来る。 Also, when the three-dimensional coordinate values of the cervical vertebrae point C7, the thoracic vertebrae point T1, the left upper scapula point A, the right upper scapula point B, the left lower scapula point C, and the right lower scapula point D are acquired, , as shown in FIG. 7B, the scapula model formed by combining these six-point lines is the fourth scapula model. The distances of the fourth scapula model are the distance (1) between the cervical vertebrae point C7 and the thoracic vertebrae point T1, the distance (2) between the cervical vertebrae point C7 and the left lower scapula point C, and the cervical vertebrae point C7 and the right lower scapula. The distance (3) from the point D, the distance (4) between the thoracic vertebra point T1 and the left subscapular point C, and the distance (5) between the thoracic vertebra point T1 and the right subscapular point D can be mentioned. Furthermore, the difference between the distances (3) and (2) and the difference between the distances (5) and (4) can be obtained. The angles are, for example, the angle (1) between the left subscapular point C, the thoracic vertebra point T1 and the cervical vertebra point C7, and the angle (2) between the right subscapular point D, the thoracic vertebra point T1 and the cervical vertebra point C7. , the angle (3) between the cervical vertebra point C7 and the left subscapular point C and the thoracic vertebra point T1, the angle (4) between the cervical vertebra point C7, the right subscapular point D and the thoracic vertebra point T1, and the left shoulder The angle (5) between the subbladder point C, the cervical point C7 and the thoracic point T1, and the angle (6) between the right subscapular point D, the cervical point C7 and the thoracic point T1 can be mentioned. . Furthermore, the difference between angles (2) and (1), the difference between angles (4) and (3), and the difference between angles (6) and (5) can be obtained.

又、頸椎点C7と左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとの5点の3次元座標値が取得された場合は、図8Aに示すように、この5点の線の組み合わせで構成される肩甲骨モデルを第五の肩甲骨モデルとする。第五の肩甲骨モデルの距離は、例えば、頸椎点C7と左肩甲骨上点Aとの距離(1)と、頸椎点C7と右肩甲骨上点Bとの距離(2)と、左肩甲骨上点Aと右肩甲骨上点Bとの距離(3)と、左肩甲骨下点Cと右肩甲骨下点Dとの距離(4)と、頸椎点C7と左肩甲骨下点Cとの距離(5)と、頸椎点C7と右肩甲骨下点Dとの距離(6)とを挙げることが出来る。更に、距離(2)と距離(1)の差分と、距離(6)と距離(5)の差分とを求めることが出来る。角度は、例えば、左肩甲骨上点Aと頸椎点C7と右肩甲骨上点Bとの間の角度(1)と、左肩甲骨下点Cと頸椎点C7と右肩甲骨下点Dとの間の角度(2)と、頸椎点C7と左肩甲骨上点Aと右肩甲骨上点Bとの間の角度(3)と、頸椎点C7と左肩甲骨下点Cと右肩甲骨下点Dとの間の角度(4)と、頸椎点C7と右肩甲骨上点Bと左肩甲骨上点Aとの間の角度(5)と、頸椎点C7と右肩甲骨下点Dと左肩甲骨下点Cとの間の角度(6)とを挙げることが出来る。更に、角度(2)と角度(1)の差分と、角度(4)と角度(3)の差分と、角度(6)と角度(5)の差分とを求めることが出来る。 Also, when the three-dimensional coordinate values of the cervical vertebrae point C7, the left upper scapula point A, the right upper scapula point B, the left lower scapula point C, and the right lower scapula point D are acquired, they are shown in FIG. 8A. As shown, a fifth scapula model is a scapula model composed of a combination of five lines. The distances of the fifth scapula model are, for example, the distance (1) between the cervical vertebrae point C7 and the left suprascapular point A, the distance (2) between the cervical vertebrae point C7 and the right suprascapular point B, The distance (3) between the point A and the right scapula point B, the distance (4) between the left scapula point C and the right scapula point D, and the distance between the cervical vertebra point C7 and the left scapula point C ( 5) and the distance (6) between the cervical vertebra point C7 and the point D below the right scapula. Furthermore, the difference between the distances (2) and (1) and the difference between the distances (6) and (5) can be obtained. The angles are, for example, the angle (1) between the left suprascapular point A, the cervical vertebrae point C7 and the right suprascapular point B, and the angle between the left subscapular point C, the cervical vertebrae point C7 and the right subscapular point D The angle (2) between the cervical vertebrae point C7 and the left scapula point A and the right scapula suprapoint B (3), the cervical vertebrae point C7, the left scapula point C and the right scapula point D The angle (4) between the cervical vertebra point C7 and the right suprascapular point B and the left suprascapular point A (5) and the cervical vertebra point C7 and the right subscapular point D and the left subscapular point The angle (6) between C and C can be mentioned. Furthermore, the difference between angles (2) and (1), the difference between angles (4) and (3), and the difference between angles (6) and (5) can be obtained.

又、胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとの5点の3次元座標値が取得された場合は、図8Bに示すように、この5点の線の組み合わせで構成される肩甲骨モデルを第六の肩甲骨モデルとする。第六の肩甲骨モデルの距離は、例えば、胸椎点T1と左肩甲骨上点Aとの距離(1)と、胸椎点T1と右肩甲骨上点Bとの距離(2)と、左肩甲骨上点Aと右肩甲骨上点Bとの距離(3)と、左肩甲骨下点Cと右肩甲骨下点Dとの距離(4)と、胸椎点T1と左肩甲骨下点Cとの距離(5)と、胸椎点T1と右肩甲骨下点Dとの距離(6)とを挙げることが出来る。更に、距離(2)と距離(1)の差分と、距離(6)と距離(5)の差分とを求めることが出来る。角度は、例えば、左肩甲骨上点Aと胸椎点T1と右肩甲骨上点Bとの間の角度(1)と、左肩甲骨下点Cと胸椎点T1と右肩甲骨下点Dとの間の角度(2)と、胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bとの間の角度(3)と、胸椎点T1と左肩甲骨下点Cと右肩甲骨下点Dとの間の角度(4)と、胸椎点T1と右肩甲骨上点Bと左肩甲骨上点Aとの間の角度(5)と、胸椎点T1と右肩甲骨下点Dと左肩甲骨下点Cとの間の角度(6)とを挙げることが出来る。更に、角度(2)と角度(1)の差分と、角度(4)と角度(3)の差分と、角度(6)と角度(5)の差分とを求めることが出来る。 When the three-dimensional coordinate values of the thoracic vertebrae point T1, the left scapula point A, the right scapula point B, the left scapula point C, and the right scapula point D are acquired, they are shown in FIG. 8B. As shown, the scapula model composed of a combination of these five-point lines is the sixth scapula model. The distances of the sixth scapula model are, for example, the distance (1) between the thoracic vertebrae point T1 and the left suprascapular point A, the distance (2) between the thoracic vertebrae point T1 and the right suprascapular point B, and the distance on the left scapula The distance (3) between the point A and the right scapula point B, the distance (4) between the left scapula point C and the right scapula point D, and the distance between the thoracic vertebra point T1 and the left scapula point C ( 5) and the distance (6) between the thoracic vertebra point T1 and the point D below the right scapula. Furthermore, the difference between the distances (2) and (1) and the difference between the distances (6) and (5) can be obtained. The angles are, for example, the angle (1) between the left suprascapular point A, the thoracic vertebrae point T1, and the right suprascapular point B, and the angle between the left subscapular point C, the thoracic vertebrae point T1, and the right subscapular point D. angle (2), angle (3) between thoracic vertebrae point T1, left upper scapula point A and right upper scapula point B, thoracic vertebrae point T1, left lower scapula point C and right lower scapula point D The angle (4) between the thoracic vertebra point T1 and the right suprascapular point B and the left suprascapular point A (5) and the thoracic vertebra point T1 and the right subscapular point D and the left subscapular point The angle (6) between C and C can be mentioned. Furthermore, the difference between angles (2) and (1), the difference between angles (4) and (3), and the difference between angles (6) and (5) can be obtained.

又、頸椎点C7と胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとの6点の3次元座標値が取得された場合は、図9Aに示すように、この6点の線の組み合わせで構成される肩甲骨モデルを第七の肩甲骨モデルとする。第七の肩甲骨モデルの距離は、例えば、胸椎点T1と胸椎点T1との距離(1)と、胸椎点T1と左肩甲骨上点Aとの距離(2)と、胸椎点T1と右肩甲骨上点Bとの距離(3)と、胸椎点T1と左肩甲骨下点Cとの距離(4)と、胸椎点T1と右肩甲骨下点Dとの距離(5)と、頸椎点C7と左肩甲骨上点Aとの距離(6)と、頸椎点C7と右肩甲骨上点Bとの距離(7)と、左肩甲骨上点Aと左肩甲骨下点Cとの距離(8)と、右肩甲骨上点Bと右肩甲骨下点Dとの距離(9)と、左肩甲骨下点Cと右肩甲骨下点Dとの距離(10)とを挙げることが出来る。角度は、例えば、頸椎点C7と胸椎点T1と左肩甲骨上点Aとの間の角度(1)と、頸椎点C7と胸椎点T1と右肩甲骨上点Bとの間の角度(2)と、左肩甲骨上点Aと胸椎点T1と左肩甲骨下点Cとの間の角度(3)と、右肩甲骨上点Bと胸椎点T1と右肩甲骨下点Dとの間の角度(4)と、左肩甲骨下点Cと胸椎点T1と右肩甲骨下点Dとの間の角度(5)と、左肩甲骨上点Aと頸椎点C7と右肩甲骨上点Bとの間の角度(6)と、頸椎点C7と左肩甲骨上点Aと左肩甲骨下点Cとの間の角度(7)と、頸椎点C7と右肩甲骨上点Bと右肩甲骨下点Dとの間の角度(8)と、左肩甲骨上点Aと左肩甲骨下点Cと右肩甲骨下点Dとの間の角度(9)と、右肩甲骨上点Bと右肩甲骨下点Dと左肩甲骨下点Cとの間の角度(10)とを挙げることが出来る。 Also, when the three-dimensional coordinate values of the cervical vertebrae point C7, the thoracic vertebrae point T1, the left upper scapula point A, the right upper scapula point B, the left lower scapula point C, and the right lower scapula point D are acquired, , as shown in FIG. 9A, the scapula model constituted by the combination of these six-point lines is defined as the seventh scapula model. The distances of the seventh scapula model are, for example, the distance (1) between the thoracic vertebrae point T1 and the thoracic vertebrae point T1, the distance (2) between the thoracic vertebrae point T1 and the left suprascapular point A, the thoracic vertebrae point T1 and the right shoulder The distance (3) from the upper blade point B, the distance (4) between the thoracic vertebra point T1 and the left lower scapula point C, the distance (5) between the thoracic vertebra point T1 and the right lower scapula point D, and the cervical vertebra point C7. and the distance (6) between the left suprascapular point A, the distance (7) between the cervical vertebra point C7 and the right suprascapular point B, and the distance (8) between the left suprascapular point A and the left subscapular point C , the distance (9) between the right suprascapular point B and the right subscapular point D, and the distance (10) between the left subscapular point C and the right subscapular point D. The angles are, for example, the angle (1) between the cervical vertebrae point C7, the thoracic vertebrae point T1 and the left suprascapular point A, and the angle (2) between the cervical vertebrae point C7, the thoracic vertebrae point T1 and the right suprascapular point B. , the angle (3) between the left suprascapular point A, the thoracic vertebrae point T1 and the left subscapular point C, and the angle between the right suprascapular point B, the thoracic vertebrae point T1 and the right subscapular point D ( 4), the angle (5) between the left subscapular point C, the thoracic vertebra point T1 and the right subscapular point D, and the angle between the left suprascapular point A, the cervical vertebra point C7 and the right suprascapular point B The angle (6), the angle (7) between the cervical vertebrae point C7 and the left suprascapular point A and the left subscapular point C, and the cervical vertebrae point C7, the right suprascapular point B and the right subscapular point D The angle (8) between the left suprascapular point A, the left subscapular point C and the right subscapular point D (9), the right suprascapular point B and the right subscapular point D The angle (10) between the point C below the left scapula can be mentioned.

又、頸椎点C7と胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとの6点の3次元座標値が取得された場合は、図9Bに示すように、この6点の線の組み合わせで構成される肩甲骨モデルを第八の肩甲骨モデルとする。第八の肩甲骨モデルの距離は、例えば、頸椎点C7と左肩甲骨上点Aとの距離(1)と、頸椎点C7と右肩甲骨上点Bとの距離(2)と、胸椎点T1と左肩甲骨上点Aとの距離(3)と、胸椎点T1と右肩甲骨上点Bとの距離(4)と、左肩甲骨上点Aと右肩甲骨上点Bとの距離(5)と、左肩甲骨上点Aと左肩甲骨下点Cとの距離(6)と、右肩甲骨上点Bと右肩甲骨下点Dとの距離(7)と、左肩甲骨下点Cと右肩甲骨下点Dとの距離(8)とを挙げることが出来る。角度は、例えば、左肩甲骨上点Aと頸椎点C7と右肩甲骨上点Bとの間の角度(1)と、左肩甲骨上点Aと胸椎点T1と右肩甲骨上点Bとの間の角度(2)と、右肩甲骨上点Bと左肩甲骨上点Aと左肩甲骨下点Cとの間の角度(3)と、左肩甲骨上点Aと右肩甲骨上点Bと右肩甲骨下点Dとの間の角度(4)と、左肩甲骨上点Aと左肩甲骨下点Cと右肩甲骨下点Dとの間の角度(5)と、右肩甲骨上点Bと右肩甲骨下点Dと左肩甲骨下点Cとの間の角度(6)とを挙げることが出来る。 Also, when the three-dimensional coordinate values of the cervical vertebrae point C7, the thoracic vertebrae point T1, the left upper scapula point A, the right upper scapula point B, the left lower scapula point C, and the right lower scapula point D are acquired, , and as shown in FIG. 9B, the scapula model formed by combining these six-point lines is defined as the eighth scapula model. The distances of the eighth scapula model are, for example, the distance (1) between the cervical vertebra point C7 and the left suprascapular point A, the distance (2) between the cervical vertebra point C7 and the right suprascapular point B, and the thoracic vertebra point T1 and the left suprascapular point A (3), the distance between the thoracic vertebra point T1 and the right suprascapular point B (4), and the distance between the left suprascapular point A and the right scapular point B (5) , the distance (6) between the left upper scapula point A and the left lower scapula point C, the distance (7) between the right upper scapula point B and the right lower scapula point D, the left lower scapula point C and the right shoulder The distance (8) to the point D below the blade can be mentioned. The angles are, for example, the angle (1) between the left suprascapular point A, the cervical vertebrae point C7, and the right suprascapular point B, and the angle between the left suprascapular point A, the thoracic vertebrae point T1, and the right suprascapular point B. angle (2) between right suprascapular point B, left suprascapular point A and left subscapular point C (3), left suprascapular point A, right suprascapular point B and right shoulder The angle (4) between the subblade point D and the angle (5) between the left suprascapular point A, the left subscapular point C and the right subscapular point D, the right suprascapular point B and the right The angle (6) between the subscapular point D and the left subscapular point C can be mentioned.

このように、算出制御部104が、二点間の距離と三点間の角度とを算出することで、被験者Sの左右の肩甲骨の位置を数値的に把握することが可能となる。そして、算出制御部104は、作成した被験者Sの肩甲骨モデルを液晶ディスプレイ等の表示部に表示することで、測定者は、被験者Sの肩甲骨モデルを使いながら、被験者Sの左右の肩甲骨の位置を被験者Sに説明したり評価したりすることが出来る。 In this manner, the calculation control unit 104 calculates the distance between two points and the angle between three points, so that the positions of the right and left shoulder blades of the subject S can be numerically grasped. Then, the calculation control unit 104 displays the created scapula model of the subject S on a display unit such as a liquid crystal display, so that the measurer can use the scapula model of the subject S to calculate the left and right scapulae of the subject S. position can be explained to the subject S and evaluated.

尚、上述のように、第一の肩甲骨モデルから第八の肩甲骨モデルまでに必要となる点は異なる。そのため、第一の取得制御部102と第二の取得制御部103とは、対象とする肩甲骨モデルに応じて、取得対象の点を適宜変更しても良い。 It should be noted that, as described above, the points required from the first scapula model to the eighth scapula model are different. Therefore, the first acquisition control unit 102 and the second acquisition control unit 103 may appropriately change the acquisition target points according to the target scapula model.

又、上述では、算出制御部104が、二点間の距離と三点間の角度とを算出しているが、これらに追加して、複数点の間の距離や複数点間の角度を算出しても構わない。 Further, in the above description, the calculation control unit 104 calculates the distance between two points and the angle between three points. I don't mind.

さて、被験者Sの左右の肩甲骨の位置について、更に、詳細に検討したい場合は、下記の処理を行っても構わない。即ち、算出制御部104が算出を完了すると、端末装置12の評価制御部105は、所定の姿勢(通常姿勢)と異なる姿勢(例えば、猫背姿勢、背伸姿勢)における被験者Sの背中の表面の3次元点群の測定と、複数の点の取得とを行わせ、算出した距離と角度とで用いた点の組み合わせと同一の点の組み合わせでの距離と角度とを算出し、所定の姿勢と異なる姿勢との距離の変化と、所定の姿勢と異なる姿勢との角度の変化とを算出することで、被験者Sの左右の肩甲骨の位置の変化を評価する(図2:S105)。ここで、複数の点は、例えば、頸椎点C7と胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとのいずれかの組み合わせとなる。 Now, if it is desired to examine the positions of the right and left shoulder blades of the subject S in more detail, the following processing may be performed. That is, when the calculation control unit 104 completes the calculation, the evaluation control unit 105 of the terminal device 12 determines the surface of the back of the subject S in a posture different from a predetermined posture (normal posture) (for example, a stooped posture, a stretched posture). Measurement of a three-dimensional point cloud and acquisition of a plurality of points are performed, and the distance and angle are calculated using the same combination of points as the combination of points used in the calculated distance and angle, and a predetermined posture and angle are calculated. A change in the position of the right and left scapula of the subject S is evaluated by calculating a change in the distance from the different postures and a change in the angle from the predetermined posture to the different postures (FIG. 2: S105). Here, the plurality of points are, for example, any combination of the cervical vertebrae point C7, the thoracic vertebrae point T1, the left upper scapula point A, the right upper scapula point B, the left lower scapula point C, and the right lower scapula point D Become.

評価制御部105の評価方法に特に限定は無い。例えば、図10に示すように、第四の肩甲骨モデルを採用した場合、最初は、被験者Sに通常姿勢を取ってもらった上で、被験者Sの背中の表面の3次元点群の測定と、頸椎点C7と胸椎点T1と左肩甲骨上点Aと右肩甲骨上点Bと左肩甲骨下点Cと右肩甲骨下点Dとの6点の取得が行われ、これらの6点の組み合わせにより、通常姿勢での距離と角度とが算出されている。そこで、測定者は、次に、被験者Sに通常姿勢と異なる猫背姿勢を取ってもらって、端末装置11に指示することで、端末装置11の評価制御部105は、上述のS101からS104までを各制御部に行わせることで、猫背姿勢での距離と角度とを算出する。そして、評価制御部105は、通常姿勢と猫背姿勢との距離の変化と、通常姿勢と猫背姿勢との角度の変化とを算出する。ここで、変化は、例えば、通常姿勢と猫背姿勢との距離の差分や通常姿勢の距離に対する猫背姿勢の距離の比率を挙げることが出来る。このように、同一の被験者Sに異なる姿勢を取ってもらった上で、姿勢毎の距離と角度とを算出して、その変化を算出することで、被験者Sの姿勢の変化に伴う左右の肩甲骨の位置の変化を数値化することが可能となり、左右の肩甲骨の周囲の筋肉の緊張具合や弛緩具合を推定することが出来る。 The evaluation method of the evaluation control unit 105 is not particularly limited. For example, as shown in FIG. 10, when adopting the fourth scapula model, first, the subject S takes a normal posture, and then the three-dimensional point cloud of the back surface of the subject S is measured. , the cervical vertebra point C7, the thoracic vertebra point T1, the left upper scapula point A, the right upper scapula point B, the left lower scapula point C, and the right lower scapula point D are obtained, and these six points are combined. , the distance and angle in the normal posture are calculated. Therefore, the measurer next asks the subject S to take a stooped posture different from the normal posture, and instructs the terminal device 11, so that the evaluation control unit 105 of the terminal device 11 performs the above-mentioned S101 to S104 respectively. The distance and angle in the stooped posture are calculated by causing the control unit to perform the calculation. The evaluation control unit 105 then calculates a change in the distance between the normal posture and the stooped posture and a change in the angle between the normal posture and the stooped posture. Here, the change can be, for example, the difference in the distance between the normal posture and the stooped posture or the ratio of the distance of the stooped posture to the distance of the normal posture. In this way, after having the same subject S assume different postures, the distance and angle for each posture are calculated, and the changes in the distance and angle are calculated. It is possible to quantify changes in the position of the blade, and to estimate the degree of tension and relaxation of the muscles around the left and right shoulder blades.

ここで、異なる姿勢は、猫背姿勢の他に背伸姿勢を挙げることが可能であり、測定者が、更に、被験者Sに背伸姿勢を取ってもらって、上述と同様にして、評価制御部105は、背伸姿勢での距離と角度とを算出し、通常姿勢と背伸姿勢との距離の変化と、通常姿勢と背伸姿勢との角度の変化とを算出しても良い。複数の姿勢における各点の距離と角度を算出し、姿勢変化に伴う距離と角度の変化を算出することで、より具体的に左右の肩甲骨の位置の変化を評価することが出来る。 Here, the different postures can include the stretched posture in addition to the stooped posture. may calculate the distance and angle in the stretched posture, and calculate the change in the distance between the normal posture and the stretched posture and the change in the angle between the normal posture and the stretched posture. By calculating the distance and angle of each point in a plurality of postures and calculating the change in the distance and angle accompanying the change in posture, it is possible to more specifically evaluate the change in the position of the left and right shoulder blades.

このように、左右の肩甲骨の位置の変化を数値化することで、複数の被験者Sのデータベースを作成することが出来る。上述のように、精神的障害や心理的状況・心理的負荷と、左右の肩甲骨の位置には密接な関係が示唆されていることから、例えば、被験者Sの左右の肩甲骨の位置又はその変化と、被験者Sの心理的状態とを関連付けておくことで、例えば、所定の被験者Sの左右の肩甲骨の位置又はその変化を測定することで、その被験者Sの心理的状態を推定することも可能となる。もちろん、被験者Sのストレートネックの程度を検証する上でも有力なツールとなる。 In this way, a database of a plurality of subjects S can be created by quantifying the changes in the positions of the left and right scapulae. As described above, since it is suggested that there is a close relationship between the position of the left and right shoulder blades and the mental disorder, psychological situation, and psychological load, for example, the positions of the left and right shoulder blades of the subject S or their Estimate the psychological state of the subject S by associating the change with the psychological state of the subject S, for example, by measuring the positions of the left and right scapulae of the predetermined subject S or the changes thereof. is also possible. Of course, it is also an effective tool for verifying the degree of straight neck of the subject S.

又、本発明では、被験者Sの左右の肩甲骨の位置又はその変化を数値化することが出来るため、様々な分野への応用が期待される。例えば、肩こりの他に五十肩や腱板損傷、ストレートネックやヘルニア等の整形外科的な治療やリハビリ、マッサージ療法、温熱療法、運動療法、安静・薬物療法、鍼灸等の処置を行う前後の被験者Sの左右の肩甲骨の位置又はその変化を数値化することで、具体的な治療効果を数値的に把握することが可能となる。処置は、医療に限らず、多種多様な分野へ積極的に活用することが出来る。例えば、スポーツ分野であればパフォーマンスの低下の検証、美容分野であれば若く見える姿勢の検証等を挙げることが出来る。更に、本発明では、被験者Sの左右の肩甲骨の位置又はその変化から、被験者Sのストレス度合いも評価することが出来る。 Further, in the present invention, the positions of the left and right scapulae of the subject S or their changes can be quantified, so application to various fields is expected. For example, subject S before and after treatment such as frozen shoulder, rotator cuff injury, straight neck and hernia, orthopedic treatment and rehabilitation, massage therapy, heat therapy, exercise therapy, rest/drug therapy, acupuncture and moxibustion in addition to stiff shoulders By quantifying the positions of the left and right scapulae or their changes, it is possible to grasp the specific therapeutic effects numerically. Treatment is not limited to medical care, and can be actively applied to a wide variety of fields. For example, in the field of sports, verification of deterioration in performance, and in the field of beauty, verification of a posture that looks young can be mentioned. Furthermore, in the present invention, the degree of stress of the subject S can also be evaluated from the positions of the left and right scapulae of the subject S or their changes.

又、本発明では、端末装置11が各制御部を備えるよう構成したが、当該各制御部を実現するプログラムを記憶媒体に記憶させ、当該記憶媒体を提供するよう構成しても構わない。当該構成では、プログラムを所定の端末装置に読み出させ、当該端末装置が各制御部を実現する。その場合、記録媒体から読み出されたプログラム自体が本発明の作用効果を奏する。 Further, in the present invention, the terminal device 11 is configured to include each control unit, but it may be configured to store a program for realizing each control unit in a storage medium and provide the storage medium. In this configuration, the program is read by a predetermined terminal device, and the terminal device realizes each control unit. In that case, the program itself read from the recording medium exhibits the effects of the present invention.

又、各制御部が実行する工程を本発明に係る肩甲骨位置算出方法としてとして提供することも可能である。例えば、測定者が、3次元点群測定器具10を用いて、被験者Sの背中の表面の3次元点群を測定し、その中から、脊椎点と左肩甲骨点と右肩甲骨点とを取得し、これらの点の距離及び角度を用いて被験者Sの左右の肩甲骨の位置を算出しても構わない。 It is also possible to provide the steps executed by each control unit as a scapula position calculation method according to the present invention. For example, the measurer uses the three-dimensional point cloud measuring instrument 10 to measure the three-dimensional point cloud of the back surface of the subject S, and acquires the spine point, the left shoulder blade point, and the right shoulder blade point from among them. Then, the positions of the left and right shoulder blades of the subject S may be calculated using the distances and angles of these points.

以下、実施例によって本発明を具体的に説明するが、本発明はこれにより限定されるものではない。
<実施例1>
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.
<Example 1>

測定者は、3次元点群測定器具10として、校正プレート10aとカメラ10bを用意した。そして、図11Aに示すように、測定者は、被験者Sに通常姿勢を取ってもらい、長方形状の校正プレート10aを被験者Sの背中に沿わせて設置して、被験者Sの背中の表面のうち、第7頸椎C7の棘突起C7aと第1胸椎T1の棘突起T1aと左右の肩甲棘と左右の下角とのそれぞれに対応する突起部に円状のシールを貼った。次に、測定者は、校正プレート10aを含む被験者Sの背中を第一の方向からカメラ10bで撮影し、次に、測定者が、被験者Sの背中を動かすことなく、カメラ10bを動かして、第一の方向と異なる第二の方向から、校正プレート10aを含む被験者Sの背中を撮影した。これにより、第一の方向と第二の方向で撮影された二枚の撮影画像を取得した。 The measurer prepared a calibration plate 10a and a camera 10b as the three-dimensional point cloud measuring instrument 10. FIG. Then, as shown in FIG. 11A, the measurer asks the subject S to take a normal posture, places the rectangular calibration plate 10a along the back of the subject S, and , the spinous process C7a of the seventh cervical vertebrae C7, the spinous process T1a of the first thoracic vertebrae T1, the left and right scapular spines, and the left and right inferior horns, respectively. Next, the measurer shoots the back of the subject S including the calibration plate 10a from the first direction with the camera 10b, then the measurer moves the camera 10b without moving the back of the subject S, The back of the subject S including the calibration plate 10a was photographed from a second direction different from the first direction. As a result, two captured images captured in the first direction and the second direction were acquired.

一方、端末装置11に、二枚の撮影画像と校正プレート10aの4つのマークの相対的な位置情報とに基づいて撮影画像内の被験者Sの背中の表面の3次元点群を算出するソフトウェアをインストールしておき、測定者は、そのソフトウェアを起動して、二枚の撮影画像をソフトウェアに入力することで、撮影画像内の被験者Sの背中の表面の3次元点群を測定した。ここでは、ソフトウェアが測定制御部101として機能した。 On the other hand, the terminal device 11 is provided with software for calculating a three-dimensional point cloud of the back surface of the subject S in the photographed image based on the two photographed images and the relative positional information of the four marks on the calibration plate 10a. After installing the software, the measurer started the software and input two captured images into the software to measure the three-dimensional point cloud of the back surface of the subject S in the captured images. Here, software functioned as the measurement control unit 101 .

ここで、ソフトウェアでは、校正プレート10aの四隅の円状のマークと被験者Sの背中の表面の貼った円状のシールとを自動で認識して、マークとシールのそれぞれの3次元座標値を取得するように構成している。そのため、図10Bに示すように、二枚の撮影画像をソフトウェアに入力すると、マークとシールのそれぞれの3次元座標値が自動的に取得された。ここでは、ソフトウェアが第一の取得制御部102と第二の取得制御部103として機能した。尚、表示した3次元座標値の原点は所定位置で示している。 Here, the software automatically recognizes the circular marks at the four corners of the calibration plate 10a and the circular sticker pasted on the back surface of the subject S, and acquires the three-dimensional coordinate values of each of the marks and stickers. It is configured to Therefore, as shown in FIG. 10B, when two photographed images were input to the software, the three-dimensional coordinate values of the mark and sticker were automatically acquired. Here, software functioned as the first acquisition control unit 102 and the second acquisition control unit 103 . The origin of the displayed three-dimensional coordinate values is shown at a predetermined position.

又、このソフトウェアでは、取得した点の3次元座標値を3次元空間のxyz座標系にプロットして、各点を線で結ぶように構成している。ここで、各点で第一の肩甲骨モデルを構成する場合、例えば、ソフトウェアは、第一の肩甲骨モデルに対応して、各点の組み合わせによる距離と角度とを算出し、図12に示すように、骸骨模型において各点の位置を示した写真と、各点を用いた第一の肩甲骨モデルと、各点を用いた距離と角度とを表示する。ここでは、ソフトウェアが算出制御部104として機能する。これにより、測定者は、被験者Sの左右の肩甲骨の位置やその傾き具合を一見して把握することが出来る。 In addition, this software plots the three-dimensional coordinate values of the obtained points on the xyz coordinate system of the three-dimensional space and connects the points with lines. Here, when constructing the first scapula model from each point, for example, the software calculates the distance and angle from the combination of each point corresponding to the first scapula model, as shown in FIG. As shown, a photograph showing the position of each point on the skeleton model, the first scapula model using each point, and the distance and angle using each point are displayed. Here, software functions as the calculation control unit 104 . This allows the measurer to grasp the positions of the left and right scapulae of the subject S and the degree of inclination thereof at a glance.

ここで、ソフトウェアは、第一の肩甲骨モデルの他に、図13~図19に示すように、第二の肩甲骨モデルから第八の肩甲骨モデルに対応して、同様に、各点の組み合わせによる距離と角度とを算出して表示する。第一の肩甲骨モデルから第八の肩甲骨モデルまでの距離と角度との算出は、例えば、測定者が、切り替え指示をソフトウェアに入力することでなされる。このように、各点の組み合わせから距離と角度の算出が可能である。 Here, in addition to the first scapula model, as shown in FIGS. Calculate and display the distance and angle by the combination. The distance and angle from the first scapula model to the eighth scapula model are calculated by, for example, the measurer inputting a switching instruction to the software. Thus, it is possible to calculate the distance and the angle from the combination of each point.

次に、測定者は、被験者Sに通常姿勢と異なる猫背姿勢を取ってもらい、ソフトウェアを使って、図20に示すように、猫背姿勢における被験者Sの背中の表面の3次元点群の測定と、複数の点の取得とを行った。更に、測定者は、被験者Sに背伸姿勢を取ってもらい、同様に、背伸姿勢における被験者Sの背中の表面の3次元点群の測定と、複数の点の取得とを行った。そして、測定者は、評価指示をソフトウェアに入力すると、ソフトウェアは、通常姿勢での距離と角度とを基準として、通常姿勢で算出した距離と角度とで用いた点の組み合わせと同一の点の組み合わせでの猫背姿勢での距離と角度とを算出し、通常姿勢と猫背姿勢との距離の変化と、通常姿勢と猫背姿勢との角度の変化とを算出した。ここで、変化は、通常姿勢と猫背姿勢との距離の差分と、通常姿勢の距離に対する猫背姿勢の距離の比率を採用した。ソフトウェアは、同様に、通常姿勢と背伸姿勢との距離の変化と、通常姿勢と背伸姿勢との角度の変化とを算出した。ここでは、ソフトウェアが評価制御部105として機能する。 Next, the measurer asked the subject S to take a stooped posture different from the normal posture, and using software, as shown in FIG. , with the acquisition of multiple points. Further, the measurer asked the subject S to stretch his back, and similarly measured the three-dimensional point cloud of the surface of the back of the subject S in the stretched posture and acquired a plurality of points. Then, when the measurer inputs an evaluation instruction into the software, the software uses the distance and angle in the normal posture as the reference, and the same combination of points as the combination of points used in the distance and angle calculated in the normal posture. The distance and angle in the stooped posture were calculated, and the change in the distance between the normal posture and the stooped posture and the change in the angle between the normal posture and the stooped posture were calculated. Here, as the change, the difference in the distance between the normal posture and the stooped posture and the ratio of the distance of the stooped posture to the distance of the normal posture were adopted. The software similarly calculated the change in the distance between the normal posture and the stretched posture, and the change in the angle between the normal posture and the stretched posture. Here, software functions as the evaluation control unit 105 .

ソフトウェアは、図21に示すように、通常姿勢と猫背姿勢と背伸姿勢での第一の肩甲骨モデルとそれぞれの距離と角度と、距離の変化と角度の変化とを表示する。これにより、測定者は、被験者Sの姿勢の変化に伴う左右の肩甲骨の位置の変化を容易に把握することが出来る。又、ソフトウェアは、第一の肩甲骨モデルの他に、図22~図28に示すように、第二の肩甲骨モデルから第八の肩甲骨モデルに対応して、同様に、通常姿勢と猫背姿勢と背伸姿勢での距離と角度と、距離の変化と角度の変化とを表示する。このように、様々な肩甲骨モデルから距離と角度の検証が可能である。 As shown in FIG. 21, the software displays the first scapula models in the normal posture, the stooped posture, and the stretched posture, the respective distances and angles, and changes in the distance and angles. Thereby, the measurer can easily grasp the change in the position of the right and left scapula accompanying the change in the posture of the subject S. In addition to the first scapula model, as shown in FIGS. 22 to 28, the software also supports the second scapula model to the eighth scapula model. It displays the distance and angle in posture and posture, and the change in distance and change in angle. In this way, it is possible to verify distances and angles from various scapula models.

以上のように、本発明に係る肩甲骨位置算出装置及び肩甲骨位置算出方法は、医学に限らず、看護、介護、心理学、スポーツ医学等の分野に広く有用であり、非接触で被験者の肩甲骨の位置を3次元的に算出することが可能な肩甲骨位置算出装置及び肩甲骨位置算出方法として有効である。 As described above, the scapula position calculation device and the scapula position calculation method according to the present invention are widely useful not only in medicine but also in fields such as nursing, nursing care, psychology, sports medicine, etc. It is effective as a scapula position calculation device and a scapula position calculation method capable of three-dimensionally calculating the position of the scapula.

1 肩甲骨位置算出装置
10 3次元点群測定器具
11 端末装置
101 測定制御部
102 第一の取得制御部
103 第二の取得制御部
104 算出制御部
105 評価制御部
1 scapula position calculation device 10 three-dimensional point cloud measuring instrument 11 terminal device 101 measurement control section 102 first acquisition control section 103 second acquisition control section 104 calculation control section 105 evaluation control section

Claims (4)

3次元点群測定器具を用いて、所定の姿勢における被験者の背中の表面の3次元点群を測定する測定制御部と、
前記背中の表面の3次元点群のうち、前記被験者の背中の脊椎の一部を示す脊椎点を取得する第一の取得制御部と、
前記背中の表面の3次元点群のうち、前記被験者の背中の左肩甲骨の一部を示す左肩甲骨点と、前記被験者の背中の右肩甲骨の一部を示す右肩甲骨点とを取得する第二の取得制御部と、
前記脊椎点と、前記左肩甲骨点と、前記右肩甲骨点とのいずれかの2点を結んだ線の距離と、いずれかの3点を結んだ二線の間の角度とを算出することで、前記被験者の左右の肩甲骨の位置を算出する算出制御部と、
を備える肩甲骨位置算出装置。
a measurement control unit that measures a three-dimensional point cloud of the surface of the subject's back in a predetermined posture using a three-dimensional point cloud measuring instrument;
a first acquisition control unit that acquires a spine point indicating a part of the spine of the subject's back from the three-dimensional point cloud of the surface of the back;
A left scapula point indicating a portion of the left scapula on the back of the subject and a right scapula point indicating a portion of the right scapula on the back of the subject are obtained from the three-dimensional point cloud of the surface of the back. a second acquisition control unit;
Calculating a distance of a line connecting any two points of the spine point, the left scapula point, and the right scapula point, and an angle between two lines connecting any three points. A calculation control unit that calculates the positions of the left and right shoulder blades of the subject;
A scapula position calculation device comprising:
前記所定の姿勢と異なる姿勢における被験者の背中の表面の3次元点群の測定と、複数の前記点の取得とを行わせ、前記算出した距離と角度とで用いた点の組み合わせと同一の点の組み合わせでの距離と角度とを算出し、前記所定の姿勢と前記異なる姿勢との距離の変化と、前記所定の姿勢と前記異なる姿勢との角度の変化とを算出することで、前記被験者の左右の肩甲骨の位置の変化を評価する評価制御部
を更に備える
請求項1に記載の肩甲骨位置算出装置。
Measurement of a three-dimensional point cloud on the surface of the subject's back in a posture different from the predetermined posture, acquisition of a plurality of the points, and the same point as the combination of points used in the calculated distance and angle By calculating the distance and angle in the combination of and calculating the change in the distance between the predetermined posture and the different posture and the change in the angle between the predetermined posture and the different posture, the subject's The scapula position calculation device according to claim 1, further comprising an evaluation control unit that evaluates changes in the positions of the left and right scapulae.
3次元点群測定器具を用いて、所定の姿勢における被験者の背中の表面の3次元点群を測定する測定制御工程と、
前記背中の表面の3次元点群のうち、前記被験者の背中の脊椎の一部を示す脊椎点を取得する第一の取得制御工程と、
前記背中の表面の3次元点群のうち、前記被験者の背中の左肩甲骨の一部を示す左肩甲骨点と、前記被験者の背中の右肩甲骨の一部を示す右肩甲骨点とを取得する第二の取得制御工程と、
前記脊椎点と、前記左肩甲骨点と、前記右肩甲骨点とのいずれかの2点を結んだ線の距離と、いずれかの3点を結んだ二線の間の角度とを算出することで、前記被験者の左右の肩甲骨の位置を算出する算出制御工程と、
を備える肩甲骨位置算出方法。
A measurement control step of measuring a three-dimensional point cloud on the back surface of a subject in a predetermined posture using a three-dimensional point cloud measuring instrument;
a first acquisition control step of acquiring, from the three-dimensional point cloud of the surface of the back, a spine point indicating a portion of the spine of the subject's back;
A left scapula point indicating a portion of the left scapula on the back of the subject and a right scapula point indicating a portion of the right scapula on the back of the subject are obtained from the three-dimensional point cloud of the surface of the back. a second acquisition control step;
Calculating a distance of a line connecting any two points of the spine point, the left scapula point, and the right scapula point, and an angle between two lines connecting any three points. a calculation control step of calculating the positions of the left and right shoulder blades of the subject;
A scapula position calculation method comprising:
前記所定の姿勢と異なる姿勢における被験者の背中の表面の3次元点群の測定と、複数の前記点の取得とを行わせ、前記算出した距離と角度とで用いた点の組み合わせと同一の点の組み合わせでの距離と角度とを算出し、前記所定の姿勢と前記異なる姿勢との距離の変化と、前記所定の姿勢と前記異なる姿勢との角度の変化とを算出することで、前記被験者の左右の肩甲骨の位置の変化を評価する評価制御工程
を更に備える
請求項3に記載の肩甲骨位置算出方法。
Measurement of a three-dimensional point cloud on the surface of the subject's back in a posture different from the predetermined posture, acquisition of a plurality of the points, and the same point as the combination of points used in the calculated distance and angle By calculating the distance and angle in the combination of and calculating the change in the distance between the predetermined posture and the different posture and the change in the angle between the predetermined posture and the different posture, the subject's The scapula position calculation method according to claim 3, further comprising an evaluation control step of evaluating changes in the positions of the left and right scapulae.
JP2021126298A 2021-07-30 2021-07-30 Shoulder blade position calculation device and shoulder blade position calculation method Pending JP2023020753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021126298A JP2023020753A (en) 2021-07-30 2021-07-30 Shoulder blade position calculation device and shoulder blade position calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021126298A JP2023020753A (en) 2021-07-30 2021-07-30 Shoulder blade position calculation device and shoulder blade position calculation method

Publications (1)

Publication Number Publication Date
JP2023020753A true JP2023020753A (en) 2023-02-09

Family

ID=85159929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021126298A Pending JP2023020753A (en) 2021-07-30 2021-07-30 Shoulder blade position calculation device and shoulder blade position calculation method

Country Status (1)

Country Link
JP (1) JP2023020753A (en)

Similar Documents

Publication Publication Date Title
Marks et al. Which lateral radiographic positioning technique provides the most reliable and functional representation of a patient’s sagittal balance?
McEvoy et al. Reliability of upright posture measurements in primary school children
Youdas et al. Reliability of measurements of lumbar spine sagittal mobility obtained with the flexible curve
Apostolico et al. Postural comfort evaluation: experimental identification of Range of Rest Posture for human articular joints
Reissner et al. Assessment of hand function during activities of daily living using motion tracking cameras: A systematic review
Schendel et al. 3D orthognathic surgery simulation using image fusion
Schiefer et al. A technical support tool for joint range of motion determination in functional diagnostics-an inter-rater study
JPWO2006049057A1 (en) Human spine measurement display system
Pourahmadi et al. Kinematics of the spine during sit-to-stand movement using motion analysis systems: a systematic review of literature
Hopkins et al. Validity and reliability of standing posture measurements using a mobile application
Suderman et al. Neck muscle paths and moment arms are significantly affected by wrapping surface parameters
Lee et al. Analysis of sagittal profile of spine using 3D ultrasound imaging: A phantom study and preliminary subject test
Pino-Almero et al. Quantification of topographic changes in the surface of back of young patients monitored for idiopathic scoliosis: correlation with radiographic variables
KR20190097361A (en) Posture evaluation system for posture correction and method thereof
Fan et al. Reliability of a human pose tracking algorithm for measuring upper limb joints: comparison with photography-based goniometry
Cloud et al. Agreement between fiber optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting
Hong et al. Measurement of covered curvature based on a tape of integrated accelerometers
JP2023020753A (en) Shoulder blade position calculation device and shoulder blade position calculation method
Lecoublet et al. Assessing the global range of motion of the helmeted head through rotational and translational measurements
US11350873B2 (en) Portable quantification apparatus and method for assessing joint accessory movement
Newton et al. Three-dimensional quantification of human standing posture
Vasavada et al. Effect of subject-specific vertebral position and head and neck size on calculation of spine musculoskeletal moments
Partlow et al. 3D posture visualisation from body shape measurements using physics simulation, to ascertain the orientation of the pelvis and femurs in a seated position
CN111950639B (en) Imaging method for synchronously displaying ultrasonic and tomographic anatomical images in real time
Bruno et al. A single video camera postural assessment system to measure rotation of the shoulder during computer use