JP2023009843A - snow melting device - Google Patents

snow melting device Download PDF

Info

Publication number
JP2023009843A
JP2023009843A JP2021113457A JP2021113457A JP2023009843A JP 2023009843 A JP2023009843 A JP 2023009843A JP 2021113457 A JP2021113457 A JP 2021113457A JP 2021113457 A JP2021113457 A JP 2021113457A JP 2023009843 A JP2023009843 A JP 2023009843A
Authority
JP
Japan
Prior art keywords
heating element
snow
heating elements
layer
snow melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021113457A
Other languages
Japanese (ja)
Inventor
繁博 戸村
Shigehiro Tomura
和博 戸村
Kazuhiro Tomura
剛 戸村
Takeshi Tomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CITY KIKAKU KK
Original Assignee
CITY KIKAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CITY KIKAKU KK filed Critical CITY KIKAKU KK
Priority to JP2021113457A priority Critical patent/JP2023009843A/en
Publication of JP2023009843A publication Critical patent/JP2023009843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Resistance Heating (AREA)

Abstract

To provide a device capable of coping with problems that, in a conventional device in which a plurality of heating elements are connected in series as shown in Fig. 7, because the temperature of the surface layer B is low, the amount of snow melting water W generated becomes small and sucked up by the sedimentary layer C, and thus a space G to be a heat insulating layer is generated between a surface layer B and a deposited layer C, resulting in low snow melting efficiency.SOLUTION: By connecting each heating element in parallel and applying a large amount of electric current to a part of the heating element to raise the surface temperature of a surface layer B, even if a large amount of water W is generated and a part of the water W is sucked up to a deposition layer C, the water W does not remain in the surface layer B and the space described above is not created.SELECTED DRAWING: Figure 6

Description

本発明は、駐車場等の地中に発熱体を埋設して、その駐車場等に堆積した雪を溶かすための融雪装置に関する。 TECHNICAL FIELD The present invention relates to a snow melting device for melting snow accumulated in a parking lot or the like by embedding a heating element in the ground of the parking lot or the like.

地表面に堆積した雪を溶かすためには、地表面に水を噴出させる方式のほかに、地中に電気ヒータなどの発熱体を埋設し、その発熱体に通電することによって埋設されている範囲の地表面の温度を上昇させ、地表面に堆積している雪を溶かすものが知られている。 In order to melt the snow that has accumulated on the ground surface, in addition to the method of blowing water onto the ground surface, a heating element such as an electric heater is buried in the ground and the heating element is energized. It is known to raise the temperature of the ground surface and melt the snow deposited on the ground surface.

このような発熱体を埋設するものでは、長尺の複数本の発熱体を並列に埋設し、各発熱体を相互に直列に接続して、各発熱体を同時に均等に発熱させて発熱体が埋設されている範囲の融雪を行うものが知られている(例えば、特許文献1参照)。 In the case of embedding such a heating element, a plurality of long heating elements are embedded in parallel and connected in series so that each heating element generates heat evenly at the same time. A device that melts snow in a buried range is known (see, for example, Patent Document 1).

特開2011-96430号公報(段落[0040]、図5)JP 2011-96430 A (paragraph [0040], FIG. 5)

融雪装置を設計する際には、発熱体が埋設されている範囲の融雪能力を予め設定し、その設定された発熱量になるように各発熱体への通電量が設定される。そのため、全ての発熱体の発熱量が、発熱体が埋設されている範囲に分散されるため、特に通電開始時点では地表面の温度上昇速度が遅くなる。 When designing a snow-melting device, the snow-melting capacity of the range in which the heating elements are embedded is set in advance, and the amount of power supplied to each heating element is set so as to achieve the set heat generation amount. Therefore, the amount of heat generated by all the heating elements is dispersed in the area where the heating elements are embedded, so the temperature rise rate of the ground surface becomes slow especially at the start of energization.

図7を参照して、土壌Aにシース管式の発熱体Hが埋設されている場合に、内部の電熱線H2が通電により発熱すると、その発熱によって生じた熱エネルギはシース管H1から土壌Aに伝達され、土壌A中を伝導した後、コンクリートやアスファルトからなる表面層Bに伝達される。表面層Bに伝達された熱エネルギは表面層B内を伝導して表面層Bの地表面の温度を上昇させる。 Referring to FIG. 7, when the sheath tube type heating element H is buried in the soil A, when the internal heating wire H2 generates heat by energization, the thermal energy generated by the heat generation is transferred from the sheath tube H1 to the soil A. , and after conducting in the soil A, it is transmitted to the surface layer B made of concrete or asphalt. The thermal energy transmitted to the surface layer B is conducted through the surface layer B to raise the ground surface temperature of the surface layer B.

一方、雪の堆積層Cは均一な組成ではなく、雪などの氷粒C1が多孔質状に堆積されている。従って、氷粒C1の周囲には空間が存在する。上述のように表面層Bの地表面の温度上昇速度が遅いと、地表面に接する氷粒C1の融解量が少なくなり、融解して生じた水Wは堆積層Cの多孔質部分に吸い上げられて、表面層Bと堆積層Cとの間に空間Gが生じてしまって、表面層Bから堆積層Cへの熱伝達が阻害される。これにより融雪効率が低下するという不具合が生じる。 On the other hand, the deposited snow layer C does not have a uniform composition, and ice grains C1 such as snow are deposited in a porous manner. Therefore, a space exists around the ice grain C1. As described above, if the temperature rise rate of the ground surface of the surface layer B is slow, the amount of melting of the ice grains C1 in contact with the ground surface is small, and the water W generated by the melting is sucked up by the porous part of the sediment layer C. As a result, a space G is generated between the surface layer B and the deposited layer C, and heat transfer from the surface layer B to the deposited layer C is impeded. This causes a problem that the snow melting efficiency is lowered.

なお、発熱体Hでの発熱量を増加させて表面層Bの地表面の温度上昇速度を上げて、多くの氷粒C1を融解させて空間Gが生じないようにすることも考えられるが、それでは当初設定した融雪能力を超える発熱量を発生させることになり、融雪装置がオーバースペックとなり、また省エネ上好ましくない。 It is also conceivable to increase the amount of heat generated by the heating element H to increase the temperature rise rate of the ground surface of the surface layer B, thereby melting many ice grains C1 and preventing the space G from being generated. In this case, the amount of heat generated exceeds the initially set snow-melting capacity, and the snow-melting device becomes over-engineered, which is not preferable in terms of energy saving.

そこで本発明は、上記の問題点に鑑み、全体として発熱量を増加させることなく堆積した雪を効率よく溶かすことのできる融雪装置を提供することを課題とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a snow melting apparatus capable of efficiently melting accumulated snow without increasing the amount of heat generated as a whole.

上記課題を解決するために本発明による融雪装置は、地中に埋設した複数本の発熱体に通電して地表面の温度を上昇させて地表面に堆積した雪を融雪する融雪装置において、上記複数本の発熱体を並列に並べて埋設すると共に、これら複数本の発熱体の一部の発熱体に通電し、かつ、その通電する発熱体を順次切り替えていくことを特徴とする。 In order to solve the above-mentioned problems, the snow melting device according to the present invention is a snow melting device for melting snow accumulated on the ground surface by energizing a plurality of heating elements buried in the ground to increase the temperature of the ground surface. A plurality of heating elements are arranged in parallel and embedded, some of the plurality of heating elements are energized, and the energized heating elements are sequentially switched.

全ての発熱体を同時に発熱させるのではなく、一部の発熱体に電力を集中させて、通電されている発熱体の上部の地表面温度を従来のものより高温にすることによって地表面から積雪への熱伝達効率を改善する。 Instead of generating heat from all heating elements at the same time, electric power is concentrated on some of the heating elements to raise the ground surface temperature above the energized heating elements to a higher temperature than before, thereby causing snow to fall from the ground surface. improve heat transfer efficiency to

なお、上記一部の発熱体に通電した状態での発熱量を、上記複数の発熱体を直列に接続した場合に設定される発熱量と同じ発熱量になるように設定することによって、全体としての消費電力を従来のものより増加させない。 In addition, by setting the amount of heat generated in a state in which electricity is supplied to some of the heat generating elements so as to be the same as the amount of heat generated when the plurality of heat generating elements are connected in series, does not increase the power consumption of the conventional one.

具体的には、上記一部の発熱体に通電する状態とは、1本の発熱体のみに通電する状態が繰り返される状態と、複数本の発熱体に通電する状態が交互に繰り返される状態を含むようにしてもよい。 Specifically, the state in which a part of the heating elements are energized includes a state in which a state in which only one heating element is energized is repeated, and a state in which a state in which a plurality of heating elements are energized is alternately repeated. may be included.

以上の説明から明らかなように、本発明は、発熱体が埋設されているエリアの一部に発熱量を集中させてその部分の地表面温度を高くして、地表面から堆積した雪への熱伝達量を増加させて、特に通電初期における融雪効率を増加させることができる。 As is clear from the above description, the present invention concentrates the calorific value in a part of the area in which the heating element is buried to increase the ground surface temperature in that part, thereby causing the snow to accumulate from the ground surface to accumulate. By increasing the amount of heat transfer, it is possible to increase the snow-melting efficiency particularly at the initial stage of energization.

本発明における発熱体の埋設状態の一実施の形態を示す図A diagram showing an embodiment of an embedded state of a heating element according to the present invention. 各発熱体の配線状態を示す図Diagram showing the wiring state of each heating element 各発熱体への第1の通電状態を示す図The figure which shows the 1st energization state to each heating element. 各発熱体への第2の通電状態を示す図The figure which shows the 2nd energization state to each heating element. 各発熱体への第3の通電状態を示す図The figure which shows the 3rd energization state to each heating element. 本発明による融雪装置での地表面近傍での融雪状態を示す図FIG. 2 is a diagram showing the state of snow melting near the ground surface by the snow melting device according to the present invention; 従来の融雪装置での地表面近傍での融雪状態を示す図Diagram showing the state of snow melting near the ground surface with a conventional snow melting device

図1を参照して、本発明による融雪装置は、土壌A中に複数本の発熱体Hを互いに平行になるように、かつ同じ深さに埋設した。本実施の形態では発熱体Hとして10本の発熱体を配設したが、この本数に限定されるものではない。各発熱体Hは通電することによって発熱する電熱線を内蔵しており、各発熱体Hは、図2に示すように、電源装置PSに対して並列に配線されており、各発熱体Hへの通電量及び通電タイミングは電源装置PSによって制御される。なお、この電源装置PSは外部の電源PWから電力の供給を受けるように構成されている。 Referring to FIG. 1, the snow melting device according to the present invention has a plurality of heating elements H embedded in soil A parallel to each other and at the same depth. In the present embodiment, 10 heat generating elements are provided as the heat generating elements H, but the number is not limited to this number. Each heating element H incorporates a heating wire that generates heat when energized. As shown in FIG. is controlled by the power supply unit PS. The power supply device PS is configured to receive power supply from an external power supply PW.

従来のものでは上記10本の発熱体Hは直列に接続されており、各発熱体Hに流れる電流は同じにあるので、各発熱体での発熱量は全て同じにある。ここで、例えば従来のものでは各発熱体Hに対して1Aの電流を流すと仮定すると、同じ消費電力量であれば1本のみの発熱体に対して10Aの電流を流すことができる。そうすると、1本あたりの発熱量は従来のものと比較して10倍になる。 In the conventional apparatus, the ten heating elements H are connected in series, and the current flowing through each heating element H is the same, so the amount of heat generated by each heating element is the same. Here, for example, assuming that a current of 1 A flows through each heating element H in the conventional one, a current of 10 A can flow through only one heating element if the power consumption is the same. Then, the amount of heat generated per one tube becomes ten times that of the conventional one.

図3に示すように、1本のみに所定時間通電した後、その発熱体への通電を停止して他の発熱体、例えば隣接する発熱体におなじく10Aの電流を所定時間流す操作を順次繰り返すようにした。 As shown in FIG. 3, after energizing only one heating element for a predetermined period of time, energization to that heating element is stopped and the same 10 A current is applied to other heating elements, for example, adjacent heating elements, for a predetermined period of time. I made it

なお、通電パターンは図3に示すものに限られず、例えば、図4に示すように、発熱体1本に対して所定時間5A流し、その後10Aを所定時間流し、最後に5Aを所定時間流すパターンを各発熱体に対して順次切り替えていくようにしてもよい。なお、この図4に示すパターンでは同時に2本の発熱体に通電する時間帯が生じるが、その通電時間帯では各発熱体に5Aずつ流して合計で10Aになるように制御する。 The energization pattern is not limited to that shown in FIG. 3, and for example, as shown in FIG. may be sequentially switched for each heating element. In the pattern shown in FIG. 4, there is a period of time during which two heating elements are energized at the same time. During this period of energization, 5 A is supplied to each heating element and the total is controlled to 10 A.

あるいは図5に示すように、同時に2本ずつ通電するパターンを繰り返してもよい。この通電パターンでは各発熱体に対して5Aずつ流して、通電量の合計が10Aを超えないようにした。 Alternatively, as shown in FIG. 5, a pattern of energizing two wires at a time may be repeated. In this energization pattern, 5 A was supplied to each heating element so that the total amount of energization did not exceed 10 A.

上記いずれの通電パターンであっても従来の融雪装置と比較して、図6に示すように、各発熱体H内の電熱線H2での発熱量が増加する。すると、発熱体Hのシース管H1の温度が従来のものより高くなり、土壌Aから表面層Bへの熱伝達量が増加して、表面層Bの地表面温度は従来のものより高くなる。そのため、堆積層Cの氷粒C1の融雪量が増加して、従来の融雪装置を作動させた場合より多量の水Wが発生して、一部の水Wが氷粒C1の隙間に吸い上げられても、表面層Bの地表面に水Wが残存して、その残存した水Wを介して熱が堆積層Cへの伝達される。なお、上述のように1本の発熱体Hに通電されると、その後一定時間通電が停止する期間が生じるが、一旦融雪にして生じた水Wが再凝固するためには凝固熱を放熱する必要があるので、凝固する前に次の通電タイミングとなって再び表面層Bの地表面が加熱される。 In any of the above energization patterns, the amount of heat generated by the heating wire H2 in each heating element H is increased as shown in FIG. 6, as compared with the conventional snow melting device. Then, the temperature of the sheath tube H1 of the heating element H becomes higher than that of the conventional one, the amount of heat transfer from the soil A to the surface layer B increases, and the ground surface temperature of the surface layer B becomes higher than that of the conventional one. Therefore, the amount of snow melted by the ice grains C1 of the sedimentary layer C increases, and a larger amount of water W is generated than when the conventional snow melting device is operated, and a part of the water W is sucked up into the gaps between the ice grains C1. However, water W remains on the ground surface of the surface layer B, and heat is transferred to the sediment layer C via the remaining water W. As described above, when one heating element H is energized, there will be a period in which the energization is stopped for a certain period of time. Since it is necessary, the ground surface of the surface layer B is heated again at the next energization timing before solidification.

このように本発明による融雪装置であれば、地表面と堆積層Cとの間に断熱層となる空間が生じないので、発熱体で発生した熱量を効率よく堆積層Cへ伝達させることができる。そのため、従来の融雪蔵置よりも融雪効率を上げることができる。 Thus, with the snow melting device according to the present invention, since there is no space that serves as a heat insulating layer between the ground surface and the sedimentary layer C, the amount of heat generated by the heating element can be efficiently transferred to the sedimentary layer C. . Therefore, the snow melting efficiency can be improved more than the conventional snow melting storage.

ところで、上記図5に示したように、2本の発熱体に対して同じタイミングで同じ通電量の電流を流す場合には、それら2本の発熱体を直列に接続して対となし、5対のはうねつたいを電源装置PSに対して並設に接続してもよく、あるいは1つ置きに5本の発熱体を一組として同じタイミングで同じ電流(2A)流す場合には、その5本の発熱体を直列に接続し、2組の発熱体を電源装置に対して並列に接続して、各組に対して交互に通電するようにしてもよい。 By the way, as shown in FIG. 5, when the same amount of current is supplied to two heat generating elements at the same timing, the two heat generating elements are connected in series to form a pair. A pair of undulations may be connected in parallel to the power supply PS, or when a set of five heating elements are alternately arranged and the same current (2 A) is supplied at the same timing, The five heating elements may be connected in series, two sets of heating elements may be connected in parallel to the power supply device, and each set may be alternately energized.

なお、本発明は上記した形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもかまわない。 It should be noted that the present invention is not limited to the embodiments described above, and various modifications may be made without departing from the gist of the present invention.

A 土壌
B 表面層
C 堆積層
C1 氷粒
G 空間
H 発熱体
H1 シース管
H2 電熱線
PS 電源装置
PW 電源
W 水
A Soil B Surface layer C Sedimentary layer C1 Ice grain G Space H Heating element H1 Sheath tube H2 Heating wire PS Power supply PW Power supply W Water

Claims (3)

地中に埋設した複数本の発熱体に通電して地表面の温度を上昇させて地表面に堆積した雪を融雪する融雪装置において、上記複数本の発熱体を並列に並べて埋設すると共に、これら複数本の発熱体の一部の発熱体に通電し、かつ、その通電する発熱体を順次切り替えていくことを特徴とする融雪装置。 A snow melting device for melting snow accumulated on the ground surface by energizing a plurality of heating elements buried in the ground to increase the temperature of the ground surface, wherein the plurality of heating elements are arranged in parallel and buried, and A snow melting device characterized by energizing some of a plurality of heating elements and sequentially switching the energized heating elements. 上記一部の発熱体に通電した状態での発熱量を、上記複数の発熱体を直列に接続した場合に設定される発熱量と同じ発熱量になるように設定したことを特徴とする請求項1に記載の融雪蔵置。 3. The heat generation amount set when the plurality of heat generation elements are connected in series is set to be the same as the heat generation amount set when the plurality of heat generation elements are connected in series. 1. Snow melting storage according to 1. 上記一部の発熱体に通電する状態とは、1本の発熱体のみに通電する状態が繰り返される状態と、複数本の発熱体に通電する状態が交互に繰り返される状態とを含むことを特徴とする請求項1または請求項2に記載の融雪装置。
The state of energizing some of the heating elements includes a state in which only one heating element is energized and a state in which a plurality of heating elements are alternately energized. The snow melting device according to claim 1 or claim 2.
JP2021113457A 2021-07-08 2021-07-08 snow melting device Pending JP2023009843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021113457A JP2023009843A (en) 2021-07-08 2021-07-08 snow melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021113457A JP2023009843A (en) 2021-07-08 2021-07-08 snow melting device

Publications (1)

Publication Number Publication Date
JP2023009843A true JP2023009843A (en) 2023-01-20

Family

ID=85119244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021113457A Pending JP2023009843A (en) 2021-07-08 2021-07-08 snow melting device

Country Status (1)

Country Link
JP (1) JP2023009843A (en)

Similar Documents

Publication Publication Date Title
RU2011102933A (en) ACTIVE THERMAL REGULATION OF MULTILAYERED INTEGRAL CIRCUITS
CN106052160B (en) A kind of intelligence Molten salt heating system
KR101083475B1 (en) Cooling system of electric generation module using solar energy
ATE410774T1 (en) METHOD FOR CONTROLLING THE FIRST-MELTING AREA OF A PCM CELL AND DEVICES PRODUCED THEREFROM
JP2023009843A (en) snow melting device
DK2718634T3 (en) Device and method for heating a medium
JP2020096509A (en) High efficiency solar module
CN102655728A (en) Heat radiation control device, electronic device and heat radiation control method
JP2004039966A (en) Thermoelectric element snow melting system and thermoelectric element power generation system
KR100975142B1 (en) Heater for electric boiler having improved heat-change structure and heating structure, and method for the same
CN201539976U (en) Heating assembly for hot air guns
JP2004100347A (en) Control system for road heating
JP5362135B1 (en) Snow melting system and snow melting method using the same
CN206361977U (en) A kind of fused salt stores up salt system
JP2005325576A (en) Heating device
JP2006112058A (en) Snow melting equipment
JP3273147B2 (en) Snow melting system
JPH11222803A (en) Snow melting system
CN107735623A (en) Solar heat collection device
KR200238921Y1 (en) a heating device for heat-accumulation material using heat-concentration portion of heat-accumulation midnight electric boiler
CN107166707A (en) A kind of commercial water heater
JP2003064616A (en) Snow-melting system
JP2002369384A (en) Power control device for cutting basic contract rate for electric power used for snow-melting heater system
JP4344656B2 (en) Method for supplying power to heater for floor heating and current control device for carrying out the method
FR2566985A1 (en) Heating panel for electrical heating installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123