JP2023009668A - Coated positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same - Google Patents

Coated positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same Download PDF

Info

Publication number
JP2023009668A
JP2023009668A JP2021113124A JP2021113124A JP2023009668A JP 2023009668 A JP2023009668 A JP 2023009668A JP 2021113124 A JP2021113124 A JP 2021113124A JP 2021113124 A JP2021113124 A JP 2021113124A JP 2023009668 A JP2023009668 A JP 2023009668A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021113124A
Other languages
Japanese (ja)
Inventor
知之 辻村
Tomoyuki Tsujimura
将斉 矢代
Masanari Yashiro
格 本間
Itaru Honma
国豪 原
guo-hao Yuan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Samsung R&D Institute Japan Co Ltd
Original Assignee
Tohoku University NUC
Samsung R&D Institute Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Samsung R&D Institute Japan Co Ltd filed Critical Tohoku University NUC
Priority to JP2021113124A priority Critical patent/JP2023009668A/en
Priority to KR1020210125869A priority patent/KR20230008580A/en
Priority to US17/856,016 priority patent/US20230024868A1/en
Publication of JP2023009668A publication Critical patent/JP2023009668A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To increase the battery capacity and cycle-keeping rate of a nonaqueous electrolyte secondary battery.SOLUTION: A coated positive electrode active material comprises: a positive electrode active material particle; and a coating layer that coats the surface of each positive electrode active material particle. The coating layer contains LiAlF4, LiF and Li3AlF6.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池用被覆正極活物質及び該被覆正極活物質を含有する非水電解質二次電池に関する。 TECHNICAL FIELD The present invention relates to a coated positive electrode active material for non-aqueous electrolyte secondary batteries and a non-aqueous electrolyte secondary battery containing the coated positive electrode active material.

リチウムイオン二次電池などの非水電解質二次電池の性質として、例えば、4.5V程度などの高い動作電圧で使用できることが求められる場合がある。
このように高い動作電圧でリチウムイオン二次電池を使用すると正極活物質と非水電解質との間で副反応が起きることがある。
As a property of non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, it is sometimes required that they can be used at a high operating voltage such as about 4.5V.
When a lithium ion secondary battery is used at such a high operating voltage, side reactions may occur between the positive electrode active material and the non-aqueous electrolyte.

この副反応は、正極活物質と非水電解質との界面における抵抗成分の生成により、電池容量の低下やサイクル維持率の低下等の電池性能の劣化を引き起こす。
そこで、このような副反応を低減するために、正極活物質を被覆層で覆うことが考えられている(特許文献1)。
This side reaction causes deterioration of battery performance, such as a decrease in battery capacity and a decrease in cycle maintenance rate, due to the formation of a resistance component at the interface between the positive electrode active material and the non-aqueous electrolyte.
Therefore, in order to reduce such side reactions, it has been considered to cover the positive electrode active material with a coating layer (Patent Document 1).

特表2015-533257号公報Japanese translation of PCT publication No. 2015-533257

本発明は、
被覆層による非水電解質二次電池のさらなる性能改善を図るべく、本発明者が鋭意検討を重ねた結果、
所定の成分を含有する被覆層によって正極活物質を被覆すれば、従来よりもさらに電池容量及びサイクル維持率を向上させることができることに想到して初めて完成したものである。
The present invention
In order to further improve the performance of the non-aqueous electrolyte secondary battery by the coating layer, the present inventors have made extensive studies, and as a result,
The present invention was completed only after realizing that the battery capacity and the cycle retention rate can be further improved by coating the positive electrode active material with a coating layer containing a predetermined component.

すなわち、本発明に係る非水電解質二次電池用被覆正極活物質は、正極活物質粒子と、該正極活物質粒子の表面を被覆する被覆層とを備え、前記被覆層がLiAlF、LiF及びLiAlFを含有することを特徴とするものである。 That is, the coated positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes positive electrode active material particles and a coating layer that coats the surface of the positive electrode active material particles, and the coating layer comprises LiAlF 4 , LiF and It is characterized by containing Li 3 AlF 6 .

このような被覆正極活物質によれば、従来の被覆層によって正極活物質を被覆する場合に比べて、非水電解質二次電池の電池容量及びサイクル維持率をさらに向上させることができる。 According to such a coated positive electrode active material, the battery capacity and cycle maintenance rate of the non-aqueous electrolyte secondary battery can be further improved as compared with the case where the positive electrode active material is covered with a conventional coating layer.

前記被覆層の厚みが0.6nm以上9nm以下であることが好ましい。また、前記被覆層のX線光電子分光装置により観測されたF1sスペクトルの中心位置が685.05eV以上685.60eV以下であることが好ましい。 It is preferable that the coating layer has a thickness of 0.6 nm or more and 9 nm or less. Moreover, it is preferable that the central position of the F1s spectrum of the coating layer observed by an X-ray photoelectron spectrometer is 685.05 eV or more and 685.60 eV or less.

前記被覆層中のLiAlFの含有量が30質量%以上80質量%以下であり、LiFの含有量が1質量%以上30質量%以下であり、LiAlFの含有量が1質量%以上70質量%以下であることが好ましい。 The content of LiAlF 4 in the coating layer is 30% by mass or more and 80% by mass or less, the content of LiF is 1% by mass or more and 30% by mass or less, and the content of Li 3 AlF 6 is 1% by mass or more. It is preferably 70% by mass or less.

被覆正極活物質の比表面積を大きくすることができれば、非水電解質二次電池の充放電容量をできるだけ大きくすることができる。そこで、被覆正極活物質の比表面積を大きくするために、被覆正極活物質の平均二次粒子径は10μm以下であることが好ましい。 If the specific surface area of the coated positive electrode active material can be increased, the charge/discharge capacity of the non-aqueous electrolyte secondary battery can be increased as much as possible. Therefore, in order to increase the specific surface area of the coated positive electrode active material, the average secondary particle size of the coated positive electrode active material is preferably 10 μm or less.

高電圧での使用により高い耐性を有することから、前記正極活物質がスピネル型構造を有するものであることがより好ましい。前記正極活物質が、LiNixCoyAlzO又はLiNixCoyMnzOで表される3元系の遷移金属酸化物のリチウム塩であることが特に好ましい。 It is more preferable that the positive electrode active material has a spinel structure because it has a high resistance to use at a high voltage. It is particularly preferable that the positive electrode active material is a lithium salt of a ternary transition metal oxide represented by LiNi x Co y Al z O 2 or LiN x Co y Mn z O 2 .

本発明は、以上に前述したような特徴を有する被覆正極活物質を含有する非水電解質二次電池をも含むものである。 The present invention also includes a non-aqueous electrolyte secondary battery containing a coated positive electrode active material having the characteristics described above.

被覆正極活物質によれば、従来の被覆層によって正極活物質を被覆する場合に比べて、非水電解質二次電池の電池容量及びサイクル維持率をさらに向上させることができる。 According to the coated positive electrode active material, the battery capacity and cycle maintenance rate of the non-aqueous electrolyte secondary battery can be further improved compared to the case where the positive electrode active material is coated with a conventional coating layer.

本実施形態に係る被覆正極活物質を表す模式図。FIG. 2 is a schematic diagram showing the coated positive electrode active material according to the present embodiment; 本発明の一実施例に係る被覆正極活物質のSEM画像。1 is an SEM image of a coated cathode active material according to an example of the present invention; 本発明の一実施例に係る被覆層のX線光電子分光分析の結果を示すグラフ。4 is a graph showing results of X-ray photoelectron spectroscopic analysis of a coating layer according to an example of the present invention; 本発明の一実施例に係る被覆層のX線光電子分光分析によって得られたLNMO表面のAl元素およびF元素の分布状態を表す画像。4 is an image showing the distribution state of Al element and F element on the LNMO surface obtained by X-ray photoelectron spectroscopic analysis of the coating layer according to one example of the present invention.

以下に、本発明の一実施形態に係る二次電池の具体的な構成について説明する。
<1.非水電解質二次電池の基本構成>
本実施形態に係るリチウムイオン二次電池は、正極と、負極と、セパレータ(separator)と、非水電解質と、を備えるものである。
このリチウムイオン二次電池の充電到達電圧(酸化還元電位)は、例えば、4.0V(vs.Li/Li+)以上5.0V以下、特に4.2V以上5.0V以下であることが好ましい。リチウムイオン二次電池の形態は、特に限定されないが、例えば、円筒形、角形、ラミネート(laminate)形、またはボタン(button)形等のいずれであってもよい。
A specific configuration of the secondary battery according to one embodiment of the present invention will be described below.
<1. Basic Configuration of Nonaqueous Electrolyte Secondary Battery>
A lithium-ion secondary battery according to this embodiment includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
The charge ultimate voltage (oxidation-reduction potential) of this lithium ion secondary battery is preferably, for example, 4.0 V (vs. Li/Li+) or more and 5.0 V or less, and particularly preferably 4.2 V or more and 5.0 V or less. The shape of the lithium-ion secondary battery is not particularly limited, and may be, for example, cylindrical, prismatic, laminate, button, or the like.

(1-1.正極)
前記正極は、正極集電体と、該正極集電体上に形成された正極合剤層とを備えている。
前記正極集電体は、導電体であればどのようなものでも良く、例えば、板状又は箔状のものであり、アルミニウム(aluminum)、ステンレス(stainless)鋼、及びニッケルメッキ(nickel coated)鋼等で構成されることが好ましい。
前記正極合剤層は、少なくとも正極活物質1を含み、導電剤と、正極活物質1及び導電剤を正極集電体上に結着させる正極用バインダーとをさらに含んでいてもよい。
(1-1. Positive electrode)
The positive electrode includes a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector.
The positive electrode current collector may be any conductive material, for example, plate-like or foil-like, aluminum, stainless steel, and nickel-coated steel. etc. is preferable.
The positive electrode mixture layer contains at least the positive electrode active material 1, and may further contain a conductive agent and a positive electrode binder that binds the positive electrode active material 1 and the conductive agent onto the positive electrode current collector.

本実施形態に係る正極合材層に使用されている正極活物質1は、図1に示すように、その表面が被覆層2によって覆われた被覆正極活物質100となっている。 The positive electrode active material 1 used in the positive electrode mixture layer according to the present embodiment is a coated positive electrode active material 100 whose surface is covered with a coating layer 2, as shown in FIG.

前記正極活物質1は、例えば、リチウムを含む遷移金属酸化物または固溶体酸化物であり、電気化学的にリチウムイオンを吸蔵および放出することができる物質であれば特に制限されない。リチウムを含む遷移金属酸化物としては、例えば、Li1.0Ni0.88Co0.1Al0.01Mg0.01等を挙げることができるが、これ以外にも、LiCoO等のLi・Co系複合酸化物、LiNiCoMn等のLi・Ni・Co・Mn系複合酸化物、LiNiO等のLi・Ni系複合酸化物、またはLiMn等のLi・Mn系複合酸化物等を例示することができる。固溶体酸化物としては、LiMnCoNi(1.150≦a≦1.430、0.45≦x≦0.6、0.10≦y≦0.15、0.20≦z≦0.28)、LiMn1.5Ni0.5等を例示することができる。正極活物質1としては、前述したものの中でも、LiNixCoyAlzO又はLiNixCoyMnzOで表される3元系の遷移金属酸化物のリチウム塩であることが好ましい。また、スピネル型の結晶構造を有するものであることがより好ましい。また、これらの化合物を単独で用いても良いし、または複数種混合して用いてもよい。正極活物質1の形状は特に限定されないが、粒子状のものであることが好ましい。 The positive electrode active material 1 is, for example, a transition metal oxide or solid solution oxide containing lithium, and is not particularly limited as long as it can electrochemically occlude and release lithium ions. Examples of transition metal oxides containing lithium include Li 1.0 Ni 0.88 Co 0.1 Al 0.01 Mg 0.01 O 2 and the like. , LiNiCoMn compound oxides such as LiNixCoyMnzO2 , LiNiCo compound oxides such as LiNiO2 , or LiMn2O4 such as Li.Mn-based composite oxides and the like can be exemplified. Solid solution oxides include LiaMnxCoyNizO2 ( 1.150≤a≤1.430 , 0.45≤x≤0.6 , 0.10≤y≤0.15 , 0.20 ≦z≦0.28), LiMn 1.5 Ni 0.5 O 4 and the like. Among the materials described above, the positive electrode active material 1 is preferably a lithium salt of a ternary transition metal oxide represented by LiNi x Co y Al z O 2 or LiNi x Co y Mn z O 2 . Moreover, it is more preferable to have a spinel-type crystal structure. In addition, these compounds may be used alone, or a mixture of two or more of them may be used. Although the shape of the positive electrode active material 1 is not particularly limited, it is preferably in the form of particles.

前記被覆層2については、本実施形態に係る非水電解質二次電池の特徴点であるので、後述することとする。 The coating layer 2 is a feature of the non-aqueous electrolyte secondary battery according to this embodiment, and will be described later.

前記導電剤は、前記正極の導電性を高めるためのものであれば特に制限されない。前記導電剤の具体例としては、例えば、カーボンブラック、天然黒鉛、人造黒鉛及び繊維状炭素の中から選ばれる一種以上を含有するものを挙げることができる。
前記カーボンブラックの例としては、ファーネスブラック(furnace black)、チャネルブラック(channel black)、サーマルブラック(thermal black)、ケッチェンブラック(ketjen black)、アセチレンブラック(acetylene black)等を挙げることができる。
前記繊維状炭素の例としては、カーボンナノチューブ、グラフェン、カーボンナノファイバ等を挙げることができる。
前記導電剤の含有量は、特に制限されず、非水電解質二次電池の正極合剤層に適用可能な含有量であれば良い。
The conductive agent is not particularly limited as long as it enhances the conductivity of the positive electrode. Specific examples of the conductive agent include those containing one or more selected from carbon black, natural graphite, artificial graphite, and fibrous carbon.
Examples of the carbon black include furnace black, channel black, thermal black, ketjen black, and acetylene black.
Examples of the fibrous carbon include carbon nanotubes, graphene, and carbon nanofibers.
The content of the conductive agent is not particularly limited as long as it is applicable to the positive electrode mixture layer of the non-aqueous electrolyte secondary battery.

前記正極用バインダーとしては、例えば、ポリフッ化ビニリデン(polyvinylidene fluoride)等のフッ素含有樹脂、スチレンブタジエンゴム(styrene-butadiene rubber)等のエチレン含有樹脂、エチレンプロピレンジエン三元共重合体(ethylene-propylene-diene terpolymer)、アクリロニトリルブタジエンゴム(acrylonitile-butadiene rubber)、フッ素ゴム(fluororubber)、ポリ酢酸ビニル(polyvinyl acetate)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリエチレン(polyethylene)、ポリビニルアルコール(polyvinyl alcohol)、カルボキシメチルセルロース(carboxy metyl cellulose)若しくはカルボキシメチルセルロース誘導体(カルボキシメチルセルロースの塩等)、又はニトロセルロース(nitrocellulose)等を挙げることができる。前記正極用バインダーは、前記正極活物質1及び前記導電剤を前記正極集電体上に結着させることができるものであればよく、特に制限されない。 Examples of the positive electrode binder include fluorine-containing resins such as polyvinylidene fluoride, ethylene-containing resins such as styrene-butadiene rubber, and ethylene-propylene-diene terpolymers. diene terpolymer), acrylonitrile-butadiene rubber, fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, methyl cellulose, polyvinyl alcohol carboxymethyl cellulose), carboxymethyl cellulose derivatives (such as salts of carboxymethyl cellulose), nitrocellulose, and the like. The positive electrode binder is not particularly limited as long as it can bind the positive electrode active material 1 and the conductive agent onto the positive electrode current collector.

(1-2.負極)
負極は、負極集電体と、該負極集電体上に形成された負極合剤層とを備えるものである。
前記負極集電体は、導電体であればどのようなものでも良く、例えば、板状又は箔状のものであり、銅、ステンレス鋼、及びニッケルメッキ鋼等で構成されるものであることが好ましい。
(1-2. Negative electrode)
The negative electrode includes a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector.
The negative electrode current collector may be any conductor as long as it is a conductor, for example, it is plate-shaped or foil-shaped, and may be made of copper, stainless steel, nickel-plated steel, or the like. preferable.

前記負極合剤層は、少なくとも負極活物質を含み、導電剤と、正極活物質及び導電剤を正極集電体上に結着させる負極用バインダーとをさらに含んでいても良い。 The negative electrode mixture layer contains at least a negative electrode active material, and may further contain a conductive agent and a negative electrode binder that binds the positive electrode active material and the conductive agent to the positive electrode current collector.

前記負極活物質は、電気化学的にリチウムイオンを吸蔵及び放出することが出来るものであれば特に限定されないが、例えば、黒鉛活物質(人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等)、Si系活物質又はSn系活物質(例えば、ケイ素(Si)もしくはスズ(Sn)もしくはそれらの酸化物の微粒子と黒鉛活物質との混合物、ケイ素もしくはスズの微粒子、ケイ素もしくはスズを基本材料とした合金)、金属リチウム及びLiTi12等の酸化チタン系化合物、リチウム窒化物等が考えられる。負極活物質としては、以上に挙げたもののうち一種類を用いても良いし、2種類以上を併用しても良い。なお、ケイ素の酸化物は、SiOx(0≦x≦2)で表される。
なお、負極活物質及び負極合材層の組成によっては前述した負極集電体は必ずしも必須の構成要素ではない。
The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. natural graphite coated with artificial graphite, etc.), Si-based active materials or Sn-based active materials (for example, silicon (Si) or tin (Sn) or a mixture of fine particles of their oxides and graphite active materials, silicon or tin fine particles, silicon or tin-based alloys), metallic lithium and titanium oxide compounds such as Li 4 Ti 5 O 12 , lithium nitrides, and the like. As the negative electrode active material, one of the materials listed above may be used, or two or more of them may be used in combination. Silicon oxide is represented by SiOx (0≦x≦2).
Depending on the composition of the negative electrode active material and the negative electrode mixture layer, the negative electrode current collector described above is not necessarily an essential component.

前記導電剤は、前記負極の導電性を高めるためのものであれば特に制限されず、例えば、前記正極の項で説明したものと同様のものを使用することができる。 The conductive agent is not particularly limited as long as it enhances the conductivity of the negative electrode, and for example, the same one as described in the section on the positive electrode can be used.

前記負極用バインダーとしては、前記負極活物質及び前記導電剤を前記負極集電体上に結着させることができるものであればよく、特に制限されない。例えば、前記正極の項で説明したものと同様のものを使用することができる。 The negative electrode binder is not particularly limited as long as it can bind the negative electrode active material and the conductive agent onto the negative electrode current collector. For example, one similar to that described in the section on the positive electrode can be used.

(1-3.セパレータ)
セパレータは、特に制限されず、リチウムイオン二次電池のセパレータとして使用されるものであれば、どのようなものであってもよい。セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。セパレータを構成する樹脂としては、例えば、ポリエチレン(polyethylene)、ポリプロピレン(polypropylene)等に代表されるポリオレフィン(polyolefin)系樹脂、ポリエチレンテレフタレート(polyethylene terephthalate)、ポリブチレンテレフタレート(polybutylene terephthalate)等に代表されるポリエステル(polyester)系樹脂、ポリフッ化ビニリデン(polyvinylidene difluoride)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(vinylidene difluoride-hexafluoropropylene copolymer)、フッ化ビニリデン-パーフルオロビニルエーテル共重合体(vinylidene difluoride-perfluoroninylether copolymer)、フッ化ビニリデン-テトラフルオロエチレン共重合体(vinylidene difluoride-tetrafluoroethylene copolymer)、フッ化ビニリデン-トリフルオロエチレン共重合体(vinylidene difluoride-trifluoroethylene copolymer)、フッ化ビニリデン-フルオロエチレン共重合体(vinylidene difluoride-fluoroethylene copolymer)、フッ化ビニリデン-ヘキサフルオロアセトン共重合体(vinylidene difluoride-hexafluoroacetone copolymer)、フッ化ビニリデン-エチレン共重合体(vinylidene difluoride-ethylene copolymer)、フッ化ビニリデン-プロピレン共重合体(vinylidene difluoride-propylene copolymer)、フッ化ビニリデン-トリフルオロプロピレン共重合体(vinylidene difluoride-trifluoro propylene copolymer)、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(vinylidene difluoride-tetrafluoroethylene copolymer)、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体(vinylidene difluoride-ethylene-tetrafluoroethylene copolymer)等を挙げることができる。なお、セパレータの気孔率は、特に制限されず、従来のリチウムイオン二次電池のセパレータが有する気孔率を任意に適用することが可能である。
(1-3. Separator)
The separator is not particularly limited, and may be of any type as long as it is used as a separator for lithium ion secondary batteries. As the separator, it is preferable to use, alone or in combination, a porous membrane, a non-woven fabric, or the like, which exhibits excellent high-rate discharge performance. Examples of the resin constituting the separator include polyolefin resins such as polyethylene and polypropylene, polyethylene terephthalate, and polybutylene terephthalate.ポリエステル(polyester)系樹脂、ポリフッ化ビニリデン(polyvinylidene difluoride)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(vinylidene difluoride-hexafluoropropylene copolymer)、フッ化ビニリデン-パーフルオロビニルエーテル共重合体(vinylidene difluoride-perfluoroninylether copolymer) , vinylidene difluoride-tetrafluoroethylene copolymer, vinylidene difluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene-difluoride fluoroethylene copolymer), vinylidene fluoride-hexafluoroacetone copolymer, vinylidene difluoride-hexafluoroacetone copolymer, vinylidene difluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer propylene copolymer), vinylidene difluoride-trifluoropropylene copolymer, vinylidene difluoride-tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride copolymer -ethylene-tetrafluoroethylene copolymer (vinylidene difluoride-ethylene-tetrafluoroethylene copolymer) and the like. The porosity of the separator is not particularly limited, and any porosity of a conventional lithium ion secondary battery separator can be applied.

セパレータの表面に、耐熱性を向上させるための無機粒子を含む耐熱層、または電極と接着して電池素子を固定化するための接着剤を含む層があってもよい。前述の無機粒子としては、Al、AlOOH、Mg(OH)、SiOなどがあげられる。接着剤としてはフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン重合体の酸変性物、スチレン-(メタ)アクリル酸エステル共重合体などがあげられる。 The surface of the separator may have a heat-resistant layer containing inorganic particles for improving heat resistance, or a layer containing an adhesive for fixing the battery element by adhering to the electrode. Examples of the aforementioned inorganic particles include Al 2 O 3 , AlOOH, Mg(OH) 2 and SiO 2 . Examples of adhesives include vinylidene fluoride-hexafluoropropylene copolymers, acid-modified vinylidene fluoride polymers, and styrene-(meth)acrylate copolymers.

(1-4.非水電解液)
非水電解液は、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。非水電解液は、電解液用溶媒である非水溶媒に電解質塩を含有させた組成を有する。前記非水溶媒としては、例えば、プロピレンカーボネート(propylene carbonate)、エチレンカーボネート(ethylene carbonate)、ブチレンカーボネート(butylene carbonate)、クロロエチレンカーボネート(chloroethylene carbonate)、フルオロエチレンカーボネート(fluoroethylene carbonate)、ビニレンカーボネート(vinylene carbonate)等の環状炭酸エステル類、γ-ブチロラクトン(γ-butyrolactone)、γ-バレロラクトン(γ-valerolactone)等の環状エステル類、ジメチルカーボネート(dimethyl carbonate)、ジエチルカーボネート(diethyl carbonate)、エチルメチルカーボネート(ethylmethyl carbonate)等の鎖状カーボネート類、ギ酸メチル(methylformate)、酢酸メチル(methylacetate)、酪酸メチル(methylbutyrate)、プロピオン酸エチル(ethyl propionate)、プロピオン酸プロピル(propyl propionate)等の鎖状エステル類、テトラヒドロフラン(tetrahydrofuran)またはその誘導体、1,3-ジオキサン(1,3-dioxane)、1,4-ジオキサン(1,4-dioxane)、1,2-ジメトキシエタン(1,2-dimethoxyethane)、1,4-ジブトキシエタン(1,4-dibutoxyethane)、またはメチルジグライム(methyldiglyme)、エチレングリコールモノプロピルエーテル(ethylene glycol monopropyl ether)、プロピレンレングリコールモノプロピルエーテル(propylene glycol monopropyl ether)等のエーテル類、アセトニトリル(acetonitrile)、ベンゾニトリル(benzonitrile)等のニトリル類、ジオキソラン(dioxolane)またはその誘導体、エチレンスルフィド(ethylene sulfide)、スルホラン(sulfolane)、スルトン(sultone)またはその誘導体等を、単独で、またはそれら2種以上を混合して使用することができる。なお、前記非水溶媒を2種以上混合して使用する場合、各非水溶媒の混合比は、従来のリチウムイオン二次電池で用いられる混合比が適用可能である。
(1-4. Non-aqueous electrolyte)
As the non-aqueous electrolyte, the same non-aqueous electrolyte as conventionally used in lithium ion secondary batteries can be used without particular limitation. The non-aqueous electrolyte has a composition in which an electrolyte salt is contained in a non-aqueous solvent, which is a solvent for the electrolyte. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, fluoroethylene carbonate, and vinylene carbonate. cyclic esters such as γ-butyrolactone, γ-valerolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate chain carbonates such as (ethylmethyl carbonate), chain esters such as methylformate, methylacetate, methylbutyrate, ethyl propionate, and propyl propionate , tetrahydrofuran or its derivatives, 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1 ,4-dibutoxyethane, or ethers such as methyldiglyme, ethylene glycol monopropyl ether, propylene glycol monopropyl ether , acetonitrile, nitriles such as benzonitrile, dioxolane or derivatives thereof, ethylene sulfide, sulfolane, sultone or derivatives thereof, etc. alone or Mixing and using two or more of them can be done. When two or more of the non-aqueous solvents are mixed and used, the mixing ratio of each non-aqueous solvent can be the mixing ratio used in conventional lithium ion secondary batteries.

電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF、LIPF-x(C2n+1)x[但し、1<x<6、n=1or2]、LiSCN、LiBr、LiI、LiSO、Li10Cl10、NaClO、NaI、NaSCN、NaBr、KClO、KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF、(CHNBr、(CNClO、(CNI、(CNBr、(n-CNClO、(n-CNI、(CN-maleate、(CN-benzoate、(CN-phtalate、ステアリルスルホン酸リチウム(stearyl sulfonic acid lithium)、オクチルスルホン酸リチウム(octyl sulfonic acid lithium)、ドデシルベンゼンスルホン酸リチウム(dodecyl benzeneulfonic acid lithium)等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。なお、電解質塩の濃度は、従来のリチウムイオン二次電池で使用される非水電解液と同様でよく、特に制限はない。本実施形態では、前述したようなリチウム化合物(電解質塩)を0.8mol/l以上1.5mol/l以下程度の濃度で含有させた非水電解液を使用することが好ましい。 Examples of electrolyte salts include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LIPF 6 −x(C n F 2n+1 )x [where 1<x<6, n=1or2], LiSCN, LiBr, LiI, inorganic ion salts containing one of lithium (Li), sodium (Na) or potassium ( K) such as Li2SO4 , Li2B10Cl10 , NaClO4 , NaI, NaSCN, NaBr , KClO4 , KSCN ; LiCF3SO3 , LiN ( CF3SO2 ) 2 , LiN ( C2F5SO2 ) 2 , LiN ( CF3SO2 ) ( C4F9SO2 ), LiC ( CF3SO2 ) 3 , LiC ( C2F5SO2 ) 3 , ( CH3 ) 4NBF4 , ( CH3 ) 4NBr , ( C2H5 ) 4NClO4 , ( C2H5 ) 4NI , ( C3H7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, ( C 2 H 5 ) 4 N-phtalate, lithium stearyl sulfonic acid lithium, octyl sulfonic acid lithium, lithium dodecyl benzene sulfonic acid lithium, etc. These ionic compounds can be used alone or in combination of two or more. The concentration of the electrolyte salt may be the same as that of the non-aqueous electrolyte used in conventional lithium ion secondary batteries, and is not particularly limited. In this embodiment, it is preferable to use a non-aqueous electrolytic solution containing the above-described lithium compound (electrolyte salt) at a concentration of about 0.8 mol/l or more and 1.5 mol/l or less.

なお、非水電解液には、各種の添加剤を添加してもよい。このような添加剤としては、負極作用添加剤、正極作用添加剤、エステル系の添加剤、炭酸エステル系の添加剤、硫酸エステル系の添加剤、リン酸エステル系の添加剤、ホウ酸エステル系の添加剤、酸無水物系の添加剤、及び電解質系の添加剤等が挙げられる。これらのうちいずれか1種を非水電解液に添加しても良いし、複数種類の添加剤を非水電解液に添加してもよい。 Various additives may be added to the non-aqueous electrolyte. Examples of such additives include negative-acting additives, positive-acting additives, ester-based additives, carbonate-based additives, sulfate-based additives, phosphate-based additives, and borate-based additives. additives, acid anhydride-based additives, electrolyte-based additives, and the like. Any one of these may be added to the non-aqueous electrolyte, or a plurality of additives may be added to the non-aqueous electrolyte.

<2.本実施形態に係る非水電解質二次電池の特徴構成>
以下に、本実施形態に係る非水電解質二次電池の特徴構成について説明する。
本実施形態に係る非水電解質二次電池に用いられている正極活物質1は、前述したようにその表面が被覆層2で覆われた被覆正極活物質100となっている。
<2. Characteristic configuration of the non-aqueous electrolyte secondary battery according to the present embodiment>
Characteristic configurations of the non-aqueous electrolyte secondary battery according to the present embodiment will be described below.
The positive electrode active material 1 used in the non-aqueous electrolyte secondary battery according to this embodiment is the coated positive electrode active material 100 whose surface is covered with the coating layer 2 as described above.

この被覆層2は、LiAlF、LiF及びLiAlFを含有するものである。本実施形態において被覆層2は、これらLiAlF、LiF及びLiAlFの混合物からなるものである。 This coating layer 2 contains LiAlF 4 , LiF and Li 3 AlF 6 . In this embodiment, the coating layer 2 consists of a mixture of these LiAlF 4 , LiF and Li 3 AlF 6 .

被覆層2全体の質量を100質量%とした場合の被覆層中におけるLiAlFの含有量は、30質量%以上80質量%以下であることが好ましく、40質量%以上65質量%以下であることがより好ましい。
被覆層2全体の質量を100質量%とした場合の被覆層中におけるLiFの含有量は、1質量%以上30質量%以下であることが好ましく、5質量%以上10質量%以下であることがより好ましい。
被覆層2全体の質量を100質量%とした場合の被覆層中におけるLiAlFの含有量は、1質量%以上70質量%以下であることが好ましく、25質量%以上55質量%以下であることがより好ましい。
When the mass of the entire coating layer 2 is 100% by mass, the content of LiAlF 4 in the coating layer is preferably 30% by mass or more and 80% by mass or less, and is 40% by mass or more and 65% by mass or less. is more preferred.
When the mass of the entire coating layer 2 is 100% by mass, the content of LiF in the coating layer is preferably 1% by mass or more and 30% by mass or less, and is preferably 5% by mass or more and 10% by mass or less. more preferred.
When the mass of the entire coating layer 2 is 100% by mass, the content of Li 3 AlF 6 in the coating layer is preferably 1% by mass or more and 70% by mass or less, and is preferably 25% by mass or more and 55% by mass or less. It is more preferable to have

被覆層2の組成は、例えば、X線光電子分光装置によって分析することができる。
具体的には、例えば、図2に示すような被覆正極活物質100の表面の組成をX線光電子分光装置によって分析することによって得られる図3のようなF1sスペクトルピークの中心位置(スペクトルピークの頂点)やピーク面積、波形等から、どのような成分がどの程度含有されているかを算出することができる。なお、本実施形態のように、LiAlF、LiF及びLiAlFをそれぞれ前述した好ましい割合で含有する場合のF1sスペクトルピークの中心位置は、685.05eV以上685.60eV以下となることが確かめられている。
The composition of the coating layer 2 can be analyzed by, for example, an X-ray photoelectron spectrometer.
Specifically, for example, the central position of the F1s spectral peak (spectral peak It is possible to calculate what kind of component is contained and how much is contained from the peak), peak area, waveform, and the like. In addition, as in the present embodiment, when LiAlF 4 , LiF and Li 3 AlF 6 are each contained in the above-mentioned preferable ratio, the center position of the F1s spectrum peak is 685.05 eV or more and 685.60 eV or less. It is

この被覆層2は正極活物質1の表面の少なくとも一部を覆うものであればよく、正極活物質1の質量を100質量%としたときの被覆層2の被覆量は、LiAlF、LiF及びLiAlFの混合物全体として1質量%以上10質量%以下であることが好ましい。
また、被覆層2の厚みは、0.6nm以上9nm以下であることが好ましく、1nm以上5nm以下であることがより好ましい。なお、被覆層2の厚みは、例えば、形成した被覆層2の断面を透過型電子顕微鏡(TEM)で観察することによって見積もることができる。
被覆層2は前述したようにLiAlF、LiF及びLiAlFの混合物からなるものであることが好ましいが、例えば正極活物質1由来の成分を含有するものであってもよい。
被覆正極活物質100の平均二次粒子径が小さいほど被覆正極活物質100の比表面積は大きくなる。被覆正極活物質100の比表面積が大きいほど、この被覆正極活物質を含有する非水電解質二次電池の充放電容量を大きくすることができる。そこで、被覆正極活物質100の平均二次粒子径は、10μm以下であることが好ましい。なお、「平均粒子二次径」とは、散乱法等によって求められた粒子の粒度分布における個数平均径(D50)を表し、粒度分布計等により測定することができる。
The coating layer 2 may cover at least part of the surface of the positive electrode active material 1, and the coating amount of the coating layer 2 when the mass of the positive electrode active material 1 is 100% by mass is LiAlF 4 , LiF and The Li 3 AlF 6 mixture as a whole is preferably 1% by mass or more and 10% by mass or less.
The thickness of the coating layer 2 is preferably 0.6 nm or more and 9 nm or less, more preferably 1 nm or more and 5 nm or less. The thickness of the coating layer 2 can be estimated, for example, by observing the cross section of the formed coating layer 2 with a transmission electron microscope (TEM).
The coating layer 2 is preferably made of a mixture of LiAlF 4 , LiF and Li 3 AlF 6 as described above, but may contain a component derived from the positive electrode active material 1, for example.
The smaller the average secondary particle diameter of the coated positive electrode active material 100 is, the larger the specific surface area of the coated positive electrode active material 100 is. The larger the specific surface area of the coated positive electrode active material 100, the larger the charge/discharge capacity of the non-aqueous electrolyte secondary battery containing this coated positive electrode active material. Therefore, the average secondary particle size of the coated positive electrode active material 100 is preferably 10 μm or less. The "average particle secondary diameter" represents the number average diameter (D50) in the particle size distribution of particles obtained by a scattering method or the like, and can be measured by a particle size distribution analyzer or the like.

<3.非水電解質二次電池の製造方法>
次に、前述した被覆正極活物質100を用いたリチウムイオン二次電池の製造方法について説明する。
まず、被覆正極活物質100は、以下のような工程で製造することができる。
被覆層2の材料である、例えば、LiNO、Al(NO、NHFなどの試薬を目標組成となるようにそれぞれ秤量し、水に溶かして水溶液とする。この水溶液に正極活物質1の粒子を添加して、例えば、70℃以上90℃以下の温度に保った状態で4時間以上8時間以内の間、攪拌しながら混合する。次に、水溶液から水を蒸発させる等して除いて乾燥させたものを焼成することによって、正極活物質1の表面を被覆層2が覆った被覆正極活物質100を得ることができる。なお、添加した被覆層2の材料は水溶液に添加したほとんど全てが反応に使用されて被覆層2を形成していることが確認されている。
<3. Method for manufacturing non-aqueous electrolyte secondary battery>
Next, a method for manufacturing a lithium ion secondary battery using the coated positive electrode active material 100 described above will be described.
First, the coated positive electrode active material 100 can be manufactured by the following steps.
Reagents such as LiNO 3 , Al(NO 3 ) 3 , and NH 4 F, which are the materials of the coating layer 2, are each weighed so as to have a target composition and dissolved in water to form an aqueous solution. Particles of the positive electrode active material 1 are added to this aqueous solution, and mixed with stirring for 4 hours or more and 8 hours or less while the temperature is kept at 70° C. or more and 90° C. or less. Next, the coated positive electrode active material 100 in which the surface of the positive electrode active material 1 is covered with the coating layer 2 can be obtained by removing water from the aqueous solution by evaporation or the like and drying the dried product. It has been confirmed that almost all of the added material of the coating layer 2 added to the aqueous solution is used in the reaction to form the coating layer 2 .

正極は、以下のように作製される。まず、前述したようにして製造した被覆正極活物質100、導電剤及び正極用バインダーを所望の割合で混合したものを、正極スラリー用溶媒に分散させることで正極スラリーを形成する。次いで、この正極スラリーを正極集電体上に塗布し、乾燥させることで、正極合剤層を形成する。なお、塗布の方法は、特に限定されない。塗布の方法としては、例えば、ナイフコーター(knife coater)法、グラビアコーター(gravure coater)法、リバースロールコーター(reverse roll coater)、スリットダイコーター(slit die coater)等が考えられる。以下の各塗布工程も同様の方法により行われる。次いで、プレス(press)機により正極合剤層を所望の密度となるようにプレスする。これにより、正極が作製される。 A positive electrode is produced as follows. First, a positive electrode slurry is formed by dispersing a mixture of the coated positive electrode active material 100 produced as described above, a conductive agent, and a positive electrode binder in a desired ratio in a positive electrode slurry solvent. Next, this positive electrode slurry is applied onto a positive electrode current collector and dried to form a positive electrode mixture layer. In addition, the method of application is not particularly limited. Examples of coating methods include a knife coater method, a gravure coater method, a reverse roll coater, a slit die coater, and the like. The following coating steps are also performed by the same method. Then, the positive electrode material mixture layer is pressed to a desired density using a press machine. Thereby, a positive electrode is produced.

負極も、正極と同様に作製される。まず、負極合剤層を構成する材料を混合したものを、負極スラリー用溶媒に分散させることで、負極スラリーを作製する。次いで、負極スラリーを負極集電体上に塗布し、乾燥させることで、負極合剤層を形成する。次いで、プレス機により負極合剤層を所望の密度となるようにプレスする。これにより、負極が作製される。 The negative electrode is also made in the same manner as the positive electrode. First, a negative electrode slurry is prepared by dispersing a mixture of materials constituting a negative electrode mixture layer in a negative electrode slurry solvent. Next, the negative electrode mixture layer is formed by applying the negative electrode slurry onto the negative electrode current collector and drying it. Next, a pressing machine is used to press the negative electrode mixture layer to a desired density. Thus, a negative electrode is produced.

次いで、セパレータを正極及び負極で挟むことで、電極構造体を作製する。次いで、電極構造体を所望の形態(例えば、円筒形、角形、ラミネート形、ボタン形等)に加工し、当該形態の容器に挿入する。次いで、当該容器内に非水電解液を注入することで、セパレータ内の各気孔や正極及び負極の空隙に電解液を含浸させる。これにより、リチウムイオン二次電池が作製される。 Next, an electrode structure is produced by sandwiching the separator between the positive electrode and the negative electrode. Next, the electrode structure is processed into a desired shape (for example, cylindrical, rectangular, laminated, button-shaped, etc.) and inserted into a container of that shape. Next, by injecting a non-aqueous electrolyte into the container, the pores in the separator and the gaps between the positive electrode and the negative electrode are impregnated with the electrolyte. Thereby, a lithium ion secondary battery is produced.

<4.本実施形態の効果>
前述した被覆正極活物質100によれば、非水電解質二次電池の電池容量及びサイクル維持率を向上させることができる。
このような効果を得ることができるメカニズムとしては、以下のようなものが考えられる。本実施形態に係る被覆正極活物質100が備える被覆層2は、前述したようにLiAlF、LiF及びLiAlFを含む混合物で形成されている。LiAlFは高いイオン電導性、LiAlFは電位窓の広さ、LiFは安定性とイオン電導性といったそれぞれの特性を備えており、これらが混合物となることによってこれら3つの成分の特性が互いに補完し合って前述したような効果を奏しているのではないかと考えられる。
<4. Effect of the present embodiment>
According to the coated positive electrode active material 100 described above, the battery capacity and cycle retention rate of the non-aqueous electrolyte secondary battery can be improved.
As a mechanism by which such an effect can be obtained, the following can be considered. The coating layer 2 included in the coated positive electrode active material 100 according to this embodiment is formed of a mixture containing LiAlF 4 , LiF and Li 3 AlF 6 as described above. LiAlF 4 has high ionic conductivity, Li 3 AlF 6 has a wide potential window, and LiF has stability and ionic conductivity. It is thought that they complement each other and produce the above-mentioned effects.

<5.その他の実施形態>
本発明は、前述した実施形態に限られるものではない。
例えば、被覆層は正極活物質粒子の表面の一部を覆うものであっても良いし、全体を覆うものであってもよい。
本発明に係る被覆正極活物質は、固体電解質を用いた固体二次電池や全固体二次電池にも用いることが可能である。
その他、本発明はこれら実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
<5. Other Embodiments>
The invention is not limited to the embodiments described above.
For example, the coating layer may cover a part of the surface of the positive electrode active material particles, or may cover the entire surface.
The coated positive electrode active material according to the present invention can also be used for solid secondary batteries using solid electrolytes and all-solid secondary batteries.
In addition, the present invention is not limited to these embodiments, and it goes without saying that various modifications are possible without departing from the spirit of the present invention.

以下、本発明を具体的な実施例に基づいてより詳細に説明する。しかしながら、以下の実施例は、あくまでも本発明の一例であり、本発明は以下の実施例に限定されるものではない。
(実施例1)
<被覆正極活物質の作製>
まず、被覆層材料となる試薬LiNO、Al(NOおよびNHFを表1に示す目的組成になるように秤量しそれぞれ水溶液としてから混合した。この混合液に正極活物質であるLiNiCoMn(LNMO)を加えたうえで、80℃において6時間程度攪拌しながら混合した。この時、正極活物質を100質量%とした場合の被覆層の割合が1質量%となるように前記被覆層材料の水溶液を調整した。水溶液から水を蒸発させて前駆体を得、この前駆体を真空中において乾燥した後、400℃で1時間の焼成を行うことで被覆正極活物質を得た。
Hereinafter, the present invention will be described in more detail based on specific examples. However, the following examples are merely examples of the present invention, and the present invention is not limited to the following examples.
(Example 1)
<Preparation of coated positive electrode active material>
First, reagents LiNO 3 , Al(NO 3 ) 3 and NH 4 F, which are coating layer materials, were weighed so as to have the target composition shown in Table 1, and each of them was made into an aqueous solution and then mixed. LiNi x Co y Mnz O 2 (LNMO), which is a positive electrode active material, was added to this mixed solution, and mixed with stirring at 80° C. for about 6 hours. At this time, the aqueous solution of the coating layer material was adjusted so that the ratio of the coating layer was 1% by mass when the positive electrode active material was 100% by mass. Water was evaporated from the aqueous solution to obtain a precursor, and the precursor was dried in vacuum and then calcined at 400° C. for 1 hour to obtain a coated positive electrode active material.

<被覆正極活物質の性質>
被覆層による正極活物質表面の被覆状態を確認する目的で、焼成後の被覆正極活物質のSEMおよびEDS観察を実施した。観察の結果、LiAlF4は正極活物質LNMO表面にナノ粒子状に存在していることを確認した。同様にXPS測定を行った結果、Al元素およびF元素がLNMOの表面に存在していることを確認した(図4)。以上のことから、目的とする組成の被覆層によって正極活物質の表面が被覆されている状態であることを確認した。また、XPS測定におけるF 1sおよびAl 2pスペクトル解析から被覆層からは、LiAlF4、LiFおよびLi3AlF6の混合成分のスペクトルが得られたことから、実施例1における被覆層がLiAlF4、LiFおよびLi3AlF6を表1に示す割合で含有する混合相から形成されていることが分かった。
<Properties of coated positive electrode active material>
For the purpose of confirming the state of coating of the surface of the positive electrode active material with the coating layer, SEM and EDS observations of the coated positive electrode active material after baking were performed. As a result of observation, it was confirmed that LiAlF 4 was present in the form of nanoparticles on the surface of the positive electrode active material LNMO. Similar XPS measurements confirmed the presence of Al and F elements on the surface of the LNMO (Fig. 4). From the above, it was confirmed that the surface of the positive electrode active material was covered with the coating layer having the desired composition. Further, from the F 1s and Al 2p spectrum analysis in the XPS measurement, the spectrum of the mixed component of LiAlF 4 , LiF and Li 3 AlF 6 was obtained from the coating layer. and Li 3 AlF 6 in the proportions shown in Table 1.

<非水電解質二次電池の作製>
前述したようにして得た被覆正極活物質を用いた非水電解質二次電池の評価は、リチウム負極を用いた2032型のコインセルを作製して行った。その際、正極は、前述した被覆正極活物質、Acetylene Black(AB; Denka Black, FX-35, Denka Co., Ltd.)および PolyVinylidene Fluoride(重量比8:1:1)を混合して、アルミニウム箔上に塗布することで作製した。使用した電解液は1mol/L LiPF6 EC:DMC(1:1v/v%)であり、セパレータとしては多孔質ポリプロピレン膜(Celgard 2400)を使用した。なお、コインセルはアルゴンガス雰囲気下のグローブボックス内で組み立てた。
<Production of non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery using the coated positive electrode active material obtained as described above was evaluated by manufacturing a 2032 type coin cell using a lithium negative electrode. At that time, the positive electrode was made by mixing the above-mentioned coated positive electrode active material, Acetylene Black (AB; Denka Black, FX-35, Denka Co., Ltd.) and PolyVinylidene Fluoride (weight ratio 8:1:1), and aluminum It was made by coating on foil. The electrolyte used was 1 mol/L LiPF 6 EC:DMC (1:1 v/v%), and a porous polypropylene membrane (Celgard 2400) was used as the separator. The coin cell was assembled in a glove box under an argon gas atmosphere.

<非水電解質二次電池の評価>
充放電測定装置(8CH Charge/Discharge Unit 10V 1A HJ 1001SM8A, HOKUTO DENKO)を用いて、前述したようにして作成した非水電解質二次電池の充放電を146.5mA/gの一定電流条件で、3.0V-5.0Vの電圧範囲で行い非水電解質二次電池の評価を行った。評価の結果を表1に示す。なおサイクル維持率は、初回放電容量に対する100サイクル後の放電容量の割合から求めた。
<Evaluation of Nonaqueous Electrolyte Secondary Battery>
Using a charge/discharge measuring device (8CH Charge/Discharge Unit 10V 1A HJ 1001SM8A, HOKUTO DENKO), the charge/discharge of the non-aqueous electrolyte secondary battery prepared as described above was measured under a constant current condition of 146.5mA/g at 3.0 The non-aqueous electrolyte secondary battery was evaluated in the voltage range of V-5.0V. Table 1 shows the evaluation results. The cycle retention rate was obtained from the ratio of the discharge capacity after 100 cycles to the initial discharge capacity.

(実施例2、3)
被覆正極活物質を作成する際に使用する被覆層材料を表1に記載の目的組成となるように秤量した以外は、実施例1と同様の手法を用いて、非水電解質二次電池を作製し評価を行った。評価の結果を表1に示す。
(Examples 2 and 3)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the coating layer material used in producing the coated positive electrode active material was weighed so as to have the target composition shown in Table 1. and evaluated. Table 1 shows the evaluation results.

(比較例1)
正極活物質に対する被覆処理を全く行っていないこと以外は、実施例1と同様の手法を用いて、非水電解質二次電池の作製および評価を行った。評価の結果を表1に示す。
(Comparative example 1)
A non-aqueous electrolyte secondary battery was produced and evaluated using the same method as in Example 1, except that the positive electrode active material was not coated at all. Table 1 shows the evaluation results.

(比較例2~4)
被覆正極活物質を作成する際に使用する被覆層材料を表1に記載の目的組成となるように秤量した以外は、実施例1と同様の手法を用いて、非水電解質二次電池を作製し評価を行った。評価の結果を表1に示す。
(Comparative Examples 2-4)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that the coating layer material used in producing the coated positive electrode active material was weighed so as to have the target composition shown in Table 1. and evaluated. Table 1 shows the evaluation results.

Figure 2023009668000002
Figure 2023009668000002

表1に示す通り、被覆正極活物質における被覆層がLiAlF4、LiF及びLi3AlF6を含有する混合相から形成されている場合、初回放電容量、初回効率およびサイクル特性のすべてが優れた非水電解質二次電池を作製できることが分かった。
また、LiAlF4、LiF及びLi3AlF6を含有する場合には、これらの含有割合や被覆量(被覆濃度)を様々に変えた場合であっても、同様の効果が得られることが確認できた。
As shown in Table 1, when the coating layer in the coated positive electrode active material is formed from a mixed phase containing LiAlF 4 , LiF and Li 3 AlF 6 , the initial discharge capacity, initial efficiency and cycle characteristics are all excellent. It was found that a water electrolyte secondary battery can be produced.
In addition, when LiAlF 4 , LiF and Li 3 AlF 6 are contained, it can be confirmed that similar effects can be obtained even when the content ratio and coating amount (coating concentration) of these are varied. rice field.

(実施例4)
正極活物質としてLiCoO(LCO)を使用したことと、充放電評価を137mA/gの一定電流条件で、3.0V-5.0Vの電圧範囲で行ったこと以外は、実施例1と同様の手法を用いて、非水電解質二次電池を作製し評価を行った。評価の結果を表2に示す。
(Example 4)
The same method as in Example 1, except that LiCoO 2 (LCO) was used as the positive electrode active material, and charge/discharge evaluation was performed under a constant current condition of 137 mA/g in a voltage range of 3.0 V to 5.0 V. was used to fabricate and evaluate a non-aqueous electrolyte secondary battery. Table 2 shows the evaluation results.

(実施例5、6)
被覆正極活物質を作成する際に使用する被覆層材料を表2に記載の目的組成となるように秤量した以外は、実施例4と同様の手法を用いて、非水電解質二次電池を作製し評価を行った。評価の結果を表2に示す。
(Examples 5 and 6)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4, except that the coating layer material used in producing the coated positive electrode active material was weighed so as to have the target composition shown in Table 2. and evaluated. Table 2 shows the evaluation results.

(比較例5)
正極活物質に対する被覆処理を全く行っていないこと以外は、実施例4と同様の手法を用いて、非水電解質二次電池の作製および評価を行った。評価の結果を表2に示す。
(Comparative Example 5)
A non-aqueous electrolyte secondary battery was produced and evaluated using the same method as in Example 4, except that the positive electrode active material was not coated at all. Table 2 shows the evaluation results.

(比較例6、7)
被覆正極活物質を作成する際に使用する被覆層材料を表2に記載の目的組成となるように秤量した以外は、実施例4と同様の手法を用いて、非水電解質二次電池を作製し評価を行った。評価の結果を表2に示す。
(Comparative Examples 6 and 7)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 4, except that the coating layer material used in producing the coated positive electrode active material was weighed so as to have the target composition shown in Table 2. and evaluated. Table 2 shows the evaluation results.

Figure 2023009668000003
Figure 2023009668000003

表2に示す通り、正極活物質の種類を変えた場合であっても、被覆正極活物質における被覆層がLiAlF4、LiF及びLi3AlF6を含有する混合相から形成されている場合、初回放電容量、初回効率およびサイクル特性のすべてが優れた非水電解質二次電池を作製できることが分かった。 As shown in Table 2, even when the type of positive electrode active material is changed, when the coating layer in the coated positive electrode active material is formed from a mixed phase containing LiAlF 4 , LiF and Li 3 AlF 6 , the first time It was found that a non-aqueous electrolyte secondary battery having excellent discharge capacity, initial efficiency and cycle characteristics could be produced.

(実施例7)
充放電評価を137mA/gの一定電流条件で、3.0V-4.7Vの電圧範囲で行ったこと以外は、実施例4と同様の手法を用いて、非水電解質二次電池を作製し評価を行った。評価の結果を表3に示す。
(Example 7)
A non-aqueous electrolyte secondary battery was produced and evaluated in the same manner as in Example 4, except that the charging and discharging evaluation was performed under a constant current condition of 137 mA / g and in a voltage range of 3.0 V to 4.7 V. went. Table 3 shows the evaluation results.

(実施例8、9)
被覆正極活物質を作成する際に使用する被覆層材料を表3に記載の目的組成となるように秤量した以外は、実施例7と同様の手法を用いて、非水電解質二次電池を作製し評価を行った。評価の結果を表3に示す。
(Examples 8 and 9)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 7, except that the coating layer material used in producing the coated positive electrode active material was weighed so as to have the target composition shown in Table 3. and evaluated. Table 3 shows the evaluation results.

(比較例8、9)
被覆正極活物質を作成する際に使用する被覆層材料を表3に記載の目的組成となるように秤量した以外は、実施例7と同様の手法を用いて、非水電解質二次電池を作製し評価を行った。評価の結果を表3に示す。
(Comparative Examples 8 and 9)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 7, except that the coating layer material used in producing the coated positive electrode active material was weighed so as to have the target composition shown in Table 3. and evaluated. Table 3 shows the evaluation results.

Figure 2023009668000004
Figure 2023009668000004

表3に示す通り、充放電試験における条件を変えた場合であっても、被覆正極活物質における被覆層がLiAlF4、LiF及びLi3AlF6を含有する混合相から形成されている非水電解質二次電池においては、初回放電容量、初回効率およびサイクル特性のすべてが優れた結果となることが分かった。 As shown in Table 3, even when the conditions in the charge-discharge test are changed, the coating layer in the coated positive electrode active material is a non-aqueous electrolyte formed from a mixed phase containing LiAlF 4 , LiF and Li 3 AlF 6 It was found that the secondary battery exhibited excellent results in all of initial discharge capacity, initial efficiency and cycle characteristics.

(実施例10)
被覆層による被覆量を2質量%とした以外は実施例1と同様にして作成した被覆正極活物質を使用し、以下の手順で全固体二次電池を作製し、評価を行った。
<固体電解質の作製>
固体電解質の合成は下記の方法にて実施した。固体電解質としてLi3YCl6を作製する場合はLiCl / YCl3 = 3/1のモル比で、直径5mmのジルコニアボールを使用してジルコニアポットにロードされた。この作業は、アルゴンが充填されたグローブボックス内で行われた。混合された材料は、500rpmで50時間の遊星ボールミル粉砕で粉砕された。固体電解質としてLi3InCl6を作製する場合はLiCl/InCl3=3/1のモル比で同様に合成を行った。
(Example 10)
Using the coated positive electrode active material prepared in the same manner as in Example 1 except that the coating amount of the coating layer was 2% by mass, an all-solid secondary battery was produced and evaluated by the following procedure.
<Preparation of solid electrolyte>
A solid electrolyte was synthesized by the following method. When making Li3YCl6 as the solid electrolyte, the molar ratio of LiCl/YCl3= 3 / 1 was loaded into the zirconia pot using 5 mm diameter zirconia balls. This work was done in an argon-filled glove box. The mixed material was ground in a planetary ball mill at 500 rpm for 50 hours. When Li 3 InCl 6 was produced as a solid electrolyte, synthesis was performed in the same manner at a molar ratio of LiCl/InCl 3 =3/1.

<全固体二次電池の作製>
次に、前述したようにして作製した被覆正極活物質と固体電解質を用いて全固体二次電池の作製を行った。負極としては、金属リチウム箔(厚さ200μm)とインジウム箔(厚さ400μm)によって形成されたLi-In合金を使用した。固体電解質層としてはLiYClを用いた。正極としては、上記被覆を行ったLNMO、固体電解質(LiInCl)、導電助剤(Acetylene Black (AB))を66.5:28.5:5重量比で混合した材料を用いた。これら正極、固体電解質、負極を積層し、3 ton/cm2の圧力でpressすることで、試験用セルを得た。
<Production of all-solid secondary battery>
Next, an all-solid secondary battery was produced using the coated positive electrode active material and the solid electrolyte produced as described above. As the negative electrode, a Li--In alloy formed of metallic lithium foil (200 μm thick) and indium foil (400 μm thick) was used. Li 3 YCl 6 was used as the solid electrolyte layer. As the positive electrode, a material obtained by mixing the coated LNMO, solid electrolyte (Li 3 InCl 6 ), and conductive agent (Acetylene Black (AB)) at a weight ratio of 66.5:28.5:5 was used. A test cell was obtained by stacking these positive electrode, solid electrolyte, and negative electrode and pressing with a pressure of 3 ton/cm 2 .

<全固体二次電池の評価>
上記の方法にて作製を行った固体電池は充放電測定装置(8CH Charge/Discharge Unit 10V 1A HJ 1001SM8A, HOKUTO DENKO)を用いて、5μAの一定電流条件で、2.0V-6.0V の電圧範囲で充放電試験を行った。評価の結果を表4に示す。なおサイクル維持率は、初回放電容量に対する10サイクル後の放電容量の割合から求めた。
<Evaluation of all-solid secondary battery>
The solid-state battery fabricated by the above method was measured using a charge/discharge measuring device (8CH Charge/Discharge Unit 10V 1A HJ 1001SM8A, HOKUTO DENKO) under a constant current condition of 5μA in the voltage range of 2.0V-6.0V. A charge/discharge test was performed. Table 4 shows the evaluation results. The cycle retention rate was obtained from the ratio of the discharge capacity after 10 cycles to the initial discharge capacity.

(比較例10)
正極活物質に対する被覆処理を全く行っていないこと以外は、実施例10と同様の手法を用いて、非水電解質二次電池の作製および評価を行った。評価の結果を表4に示す。
(Comparative Example 10)
A non-aqueous electrolyte secondary battery was produced and evaluated using the same method as in Example 10, except that the positive electrode active material was not coated at all. Table 4 shows the evaluation results.

Figure 2023009668000005
Figure 2023009668000005

表4に示す通り、全固体二次電池の場合であっても、被覆正極活物質における被覆層がLiAlF4、LiF及びLi3AlF6を含有する混合相から形成されている場合には、初回放電容量、初回効率およびサイクル特性のすべてが優れた結果となることが分かった。また、ここには記載していないが、実施例1~9及び比較例1~9の結果から、被覆層がLiAlF4、LiF及びLi3AlF6すべて含有している実施例10は、被覆層がLiAlF4、LiF及びLi3AlF6のうちの1種または2種のみ含有する全固体二次電池に比べて初回放電容量、初回効率およびサイクル特性のすべてが優れた結果となることが十分に推測できる。 As shown in Table 4, even in the case of an all-solid secondary battery, when the coating layer in the coated positive electrode active material is formed from a mixed phase containing LiAlF 4 , LiF and Li 3 AlF 6 , the first time It was found that the discharge capacity, initial efficiency and cycle characteristics all gave excellent results. Further, although not described here, from the results of Examples 1 to 9 and Comparative Examples 1 to 9, Example 10, in which the coating layer contains all of LiAlF 4 , LiF and Li 3 AlF 6 , has a coating layer compared to an all-solid secondary battery containing only one or two of LiAlF 4 , LiF and Li 3 AlF 6 , the initial discharge capacity, initial efficiency and cycle characteristics are all excellent. I can guess.

100・・・被覆正極活物質
1 ・・・正極活物質粒子
2 ・・・被覆層

100... Coated positive electrode active material 1... Positive electrode active material particles 2... Coating layer

Claims (8)

正極活物質粒子と、
該正極活物質粒子の表面を被覆する被覆層とを備え、
前記被覆層がLiAlF、LiF及びLiAlFを含有することを特徴とする被覆正極活物質。
positive electrode active material particles;
A coating layer that coats the surface of the positive electrode active material particles,
A coated positive electrode active material, wherein the coating layer contains LiAlF 4 , LiF and Li 3 AlF 6 .
前記被覆層の厚みが、0.6nm以上9nm以下である、請求項1に記載の被覆正極活物質。 The coated positive electrode active material according to claim 1, wherein the coating layer has a thickness of 0.6 nm or more and 9 nm or less. 平均二次粒子径が10μm以下である、請求項1又は2に記載の被覆正極活物質。 3. The coated positive electrode active material according to claim 1, having an average secondary particle size of 10 μm or less. 前記被覆層のX線光電子分光装置により観測されたF1sスペクトルの中心位置が685.05eV以上685.60eV以下である、請求項1に記載の被覆正極活物質。 2. The coated positive electrode active material according to claim 1, wherein the central position of the F1s spectrum of said coating layer observed by an X-ray photoelectron spectrometer is 685.05 eV or more and 685.60 eV or less. 前記被覆層中のLiAlFの含有量が30質量%以上80質量%以下であり、LiFの含有量が1質量%以上30質量%以下であり、LiAlFの含有量が1質量%以上70質量%以下である、請求項1~4のいずれか一項に記載の被覆正極活物質。 The content of LiAlF 4 in the coating layer is 30% by mass or more and 80% by mass or less, the content of LiF is 1% by mass or more and 30% by mass or less, and the content of Li 3 AlF 6 is 1% by mass or more. The coated positive electrode active material according to any one of claims 1 to 4, which is 70% by mass or less. 前記正極活物質がスピネル型構造を有するものである、請求項1~5のいずれか一項に記載の被覆正極活物質。 The coated positive electrode active material according to any one of claims 1 to 5, wherein the positive electrode active material has a spinel structure. 前記正極活物質が、LiNixCoyAlzO又はLiNixCoyMnzOで表される3元系の遷移金属酸化物のリチウム塩である、請求項1~6のいずれか一項に記載の被覆正極活物質。 7. The positive electrode active material is a lithium salt of a ternary transition metal oxide represented by LiNi x Co y Al z O 2 or LiNi x Co y Mn z O 2 . The coated positive electrode active material according to Item 1. 請求項1~7のいずれか一項に記載の被覆正極活物質を含有する非水電解質二次電池。

A nonaqueous electrolyte secondary battery containing the coated positive electrode active material according to any one of claims 1 to 7.

JP2021113124A 2021-07-07 2021-07-07 Coated positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same Pending JP2023009668A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021113124A JP2023009668A (en) 2021-07-07 2021-07-07 Coated positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
KR1020210125869A KR20230008580A (en) 2021-07-07 2021-09-23 Coated cathode active material, preparing method thereof, cathode including the same, and non-aqueous electrolyte secondary battery including the same
US17/856,016 US20230024868A1 (en) 2021-07-07 2022-07-01 Coated cathode active material, method of preparing the same, and cathode and non-aqueous electrolyte secondary battery each including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021113124A JP2023009668A (en) 2021-07-07 2021-07-07 Coated positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same

Publications (1)

Publication Number Publication Date
JP2023009668A true JP2023009668A (en) 2023-01-20

Family

ID=85110067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021113124A Pending JP2023009668A (en) 2021-07-07 2021-07-07 Coated positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same

Country Status (2)

Country Link
JP (1) JP2023009668A (en)
KR (1) KR20230008580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238584A1 (en) * 2022-06-10 2023-12-14 パナソニックホールディングス株式会社 Coated active material, electrode material, battery, and battery manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238584A1 (en) * 2022-06-10 2023-12-14 パナソニックホールディングス株式会社 Coated active material, electrode material, battery, and battery manufacturing method

Also Published As

Publication number Publication date
KR20230008580A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
US11121367B2 (en) Modified positive electrode active material, method for preparing the same and electrochemical energy storage device
JP7157252B2 (en) Positive electrode additive for lithium secondary battery, manufacturing method thereof, positive electrode for lithium secondary battery containing same, and lithium secondary battery containing same
US10468673B2 (en) Cathode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery comprising same
US9972835B2 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP5704986B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015098023A1 (en) Negative electrode for non-aqueous electrolyte secondary cell
KR101623720B1 (en) Anode Active Material with High Capacity and Secondary Battery Comprising the Same
US20190036117A1 (en) Lithium ion battery and positive active material thereof
WO2014054197A9 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP6394612B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2008262768A (en) Lithium ion secondary battery
US20210288320A1 (en) Positive electrode material and secondary battery
WO2017217407A1 (en) Lithium ion secondary battery
JP2020123460A (en) Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
US20210296646A1 (en) Positive electrode active material and secondary battery
WO2014103211A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using same
KR102227102B1 (en) Method for coating a lithium secondary battery electrode, and lithium secondary battery comprising a electrode using the same
CN111697227B (en) Lithium ion secondary battery and method for manufacturing same
US9716264B2 (en) Electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery including the electrode
US20220173389A1 (en) Nonaqueous electrolyte secondary battery
US8808913B2 (en) Composite positive electrode active material, electrode for lithium secondary battery including composite positive electrode active material, and lithium secondary battery
KR20080036255A (en) Mixed cathode material for lithium secondary battery and high power lithium secondary battery employed with the same
JP2023009668A (en) Coated positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
US9437874B2 (en) Active material for a lithium secondary battery, method of manufacturing the same, electrode including the active material, and lithium secondary battery including the electrode
WO2015045314A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231106