JP2023003255A - シミュレータの操縦装置、操縦装置の反力制御方法及び回転翼機 - Google Patents
シミュレータの操縦装置、操縦装置の反力制御方法及び回転翼機 Download PDFInfo
- Publication number
- JP2023003255A JP2023003255A JP2021104327A JP2021104327A JP2023003255A JP 2023003255 A JP2023003255 A JP 2023003255A JP 2021104327 A JP2021104327 A JP 2021104327A JP 2021104327 A JP2021104327 A JP 2021104327A JP 2023003255 A JP2023003255 A JP 2023003255A
- Authority
- JP
- Japan
- Prior art keywords
- reaction force
- control
- pseudo
- steering
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
【課題】ミキシング特性を考慮して回転翼機の操縦装置を好適に模擬する。
【解決手段】ミキシングユニットを有する回転翼機のシミュレータの操縦装置であって、複数の擬似操縦端と、反力発生装置と、制御部と、記憶部と、を備え、前記記憶部は、反力特性マップとミキシング特性マップとを有し、前記制御部は、複数の前記擬似操縦端の位置を取得するステップと、複数の前記擬似操縦端への操作力を取得するステップと、所定の前記擬似操縦端の位置における前記操作力から、前記反力特性マップ及び前記ミキシング特性マップに基づいて、ミキシング特性による他の前記擬似操縦端の前記操縦反力を導出するステップと、導出した他の前記擬似操縦端の前記操縦反力に基づいて、所定の前記擬似操縦端の前記操縦反力を導出するステップと、導出した所定の前記擬似操縦端の前記操縦反力に基づいて、前記反力発生装置を制御するステップと、を実行する。
【選択図】図5
【解決手段】ミキシングユニットを有する回転翼機のシミュレータの操縦装置であって、複数の擬似操縦端と、反力発生装置と、制御部と、記憶部と、を備え、前記記憶部は、反力特性マップとミキシング特性マップとを有し、前記制御部は、複数の前記擬似操縦端の位置を取得するステップと、複数の前記擬似操縦端への操作力を取得するステップと、所定の前記擬似操縦端の位置における前記操作力から、前記反力特性マップ及び前記ミキシング特性マップに基づいて、ミキシング特性による他の前記擬似操縦端の前記操縦反力を導出するステップと、導出した他の前記擬似操縦端の前記操縦反力に基づいて、所定の前記擬似操縦端の前記操縦反力を導出するステップと、導出した所定の前記擬似操縦端の前記操縦反力に基づいて、前記反力発生装置を制御するステップと、を実行する。
【選択図】図5
Description
本開示は、回転翼機の動作を模擬するシミュレータの操縦装置、操縦装置の反力制御方法及び回転翼機に関するものとなっている。
従来、操縦装置の反力を制御するものとして、運転者による移動体の操縦部の操作を支援する操縦支援装置が知られている(例えば、特許文献1参照)。操縦支援装置は、運転者による操縦部の操作が不適切である場合、操縦部に加わる操縦反力が軽くなるように調整している。
ところで、操縦装置としては、回転翼機の操縦装置がある。回転翼機の操縦装置は、操縦者により操縦される複数の操縦端と、複数の操縦端から入力された操作力を合成して各操作舵面へ出力するミキシングユニットと、を備えている。複数の操縦端は、ミキシングユニットを介して操作舵面を駆動することから、ミキシングユニットの構造上の制限により、操作可能範囲が操作軸同士で相互に干渉する場合がある。
上記のような回転翼機の操縦装置を模擬する場合、ミキシングユニットの構造上の制限、つまりミキシング特性による複数の操縦端の操縦反力を模擬することで、実機の操縦感覚を得られることが望ましい。なお、特許文献1では、ミキシング特性による複数の操縦端の操縦反力を考慮したものとはなっていない。
そこで、本開示は、回転翼機の操縦装置を、ミキシング特性を考慮して好適に模擬することができるシミュレータの操縦装置、操縦装置の反力制御方法及び回転翼機を提供することを課題とする。
本開示のシミュレータの操縦装置は、回転翼機の動作をシミュレートするシミュレータの操縦装置であって、前記回転翼機は、前記回転翼機を操縦するための複数の操縦端と、複数の前記操縦端からの操作力を合成して、操作舵面へ向けて出力するミキシングユニットと、を有しており、複数の擬似操縦端と、複数の前記擬似操縦端に操縦反力を発生させる反力発生装置と、発生させる前記操縦反力を導出すると共に、導出した前記操縦反力に基づいて、前記反力発生装置を制御する制御部と、前記操縦反力の導出に用いられる情報を記憶する記憶部と、を備え、前記記憶部は、前記情報として、前記操縦端の位置と前記操縦反力との関係を示す反力特性マップと、前記操縦端の相互間における操作可能範囲及び操作不可範囲を示すミキシング特性マップと、を有し、前記制御部は、複数の前記擬似操縦端の位置を取得するステップと、複数の前記擬似操縦端への操作力を取得するステップと、複数の前記擬似操縦端のうち、所定の前記擬似操縦端の位置における前記操作力から、前記反力特性マップ及び前記ミキシング特性マップに基づいて、ミキシング特性による他の前記擬似操縦端の前記操縦反力を導出するステップと、導出した他の前記擬似操縦端の前記操縦反力に基づいて、所定の前記擬似操縦端の前記操縦反力を導出するステップと、導出した所定の前記擬似操縦端の前記操縦反力に基づいて、前記反力発生装置を制御するステップと、を実行する。
本開示の操縦装置の反力制御方法は、回転翼機の動作をシミュレートするシミュレータの操縦装置に設けられる複数の擬似操縦端へ操縦反力を発生させる操縦装置の反力制御方法であって、前記回転翼機は、前記回転翼機を操縦するための複数の操縦端と、複数の前記操縦端からの操作力を合成して、操作舵面へ向けて出力するミキシングユニットと、を有し、前記シミュレータは、複数の擬似操縦端と、複数の前記擬似操縦端に操縦反力を発生させる反力発生装置と、を有し、前記操縦端の位置と前記操縦反力との関係を示す反力特性マップと、前記操縦端の相互間における操作可能範囲及び操作不可範囲を示すミキシング特性マップと、が予め用意され、複数の前記擬似操縦端の位置を取得するステップと、複数の前記擬似操縦端への操作力を取得するステップと、複数の前記擬似操縦端のうち、所定の前記擬似操縦端の位置における前記操作力から、前記反力特性マップ及び前記ミキシング特性マップに基づいて、ミキシング特性による他の前記擬似操縦端の前記操縦反力を導出するステップと、導出した他の前記擬似操縦端の前記操縦反力に基づいて、所定の前記擬似操縦端の前記操縦反力を導出するステップと、導出した所定の前記擬似操縦端の前記操縦反力に基づいて、前記反力発生装置を制御するステップと、を実行する。
本開示の回転翼機は、回転翼機を操縦するための操縦装置と、前記操縦装置からの操作力を操作舵面へ向けて出力するミキシングユニットと、を備え、前記操縦装置は、複数の操縦端と、複数の前記操縦端に操縦反力を発生させる反力発生装置と、発生させる前記操縦反力を導出すると共に、導出した前記操縦反力に基づいて、前記反力発生装置を制御する制御部と、前記操縦反力の導出に用いられる情報を記憶する記憶部と、を備え、複数の前記操縦端と前記ミキシングユニットとは、物理的に非接続状態となるフライ・バイ・ワイヤ方式となっており、前記記憶部は、前記情報として、前記操縦端の位置と前記操縦反力との関係を示す反力特性マップと、前記操縦端の相互間における操作可能範囲及び操作不可範囲を示すミキシング特性マップと、を有し、前記制御部は、複数の前記操縦端の位置を取得するステップと、複数の前記操縦端への操作力を取得するステップと、複数の前記操縦端の位置における前記操作力から、前記反力特性マップ及び前記ミキシング特性マップに基づいて、ミキシング特性による所定の前記操縦端の前記操縦反力を導出するステップと、導出した所定の前記操縦端の前記操縦反力に基づいて、前記反力発生装置を制御するステップと、を実行する。
本開示によれば、ミキシング特性を考慮して回転翼機の操縦装置を好適に模擬することができる。
以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態1]
図1は、実施形態1に係る回転翼機のシミュレータの操縦装置を示す概略構成図である。図2は、回転翼機のミキシングユニットの外観斜視図である。図3は、反力特性マップの説明図である。図4は、ミキシング特性マップの説明図である。図5は、操縦装置の反力制御方法に関するフローを示す説明図である。図6は、ミキシング模擬反力特性マップの生成に関する説明図である。図7から図17は、操縦反力を導出するフローの一例を示す説明図である。図18は、ミキシング特性に基づく操縦端の位置の変位を示す説明図である。
図1は、実施形態1に係る回転翼機のシミュレータの操縦装置を示す概略構成図である。図2は、回転翼機のミキシングユニットの外観斜視図である。図3は、反力特性マップの説明図である。図4は、ミキシング特性マップの説明図である。図5は、操縦装置の反力制御方法に関するフローを示す説明図である。図6は、ミキシング模擬反力特性マップの生成に関する説明図である。図7から図17は、操縦反力を導出するフローの一例を示す説明図である。図18は、ミキシング特性に基づく操縦端の位置の変位を示す説明図である。
実施形態1に係るシミュレータの操縦装置1は、回転翼機の動作を模擬するシミュレータに設けられるものである。回転翼機としては、例えば、ヘリコプタ等である。シミュレータは、例えば、回転翼機の操縦者を訓練するために用いられ、操縦装置1は、操縦者によって操作される。実施形態1に係る操縦装置1の反力制御方法は、操縦装置1を操作する操縦者に対して与える操縦反力を制御する方法となっている。
(シミュレータの操縦装置)
図1に示すように、操縦装置1は、複数の擬似操縦端10と、複数の擬似操縦端10に応じて設けられる反力発生装置11と、反力発生装置11に接続される操縦制御装置15と、を備えている。
図1に示すように、操縦装置1は、複数の擬似操縦端10と、複数の擬似操縦端10に応じて設けられる反力発生装置11と、反力発生装置11に接続される操縦制御装置15と、を備えている。
複数の擬似操縦端10は、実機となる回転翼機の操縦端を模擬したものであり、シミュレータ用の操縦端となっている。擬似操縦端10は、操縦者が把持して移動させることにより、シミュレーション上における回転翼機を操縦するための操作部である。擬似操縦端10は、反力発生装置11に接続されており、反力発生装置11から操縦反力が付与される。なお、実施形態1では、擬似操縦端10が2軸の場合について説明し、一方の擬似操縦端10を符号10aとし、他方の擬似操縦端10を符号10bとする。
複数の反力発生装置11は、複数の擬似操縦端10に応じてそれぞれ設けられる。反力発生装置11は、図示しない動力源としての電動モータ(図5で示すサーボモータ)を有し、電動モータで発生させた力を操縦反力として擬似操縦端10へ出力している。反力発生装置11には、操縦制御装置15で導出された操縦反力に関する制御信号が入力され、入力された制御信号に基づいて電動モータの駆動が制御される。このため、反力発生装置11は、操縦制御装置15からの制御信号に基づく操縦反力を擬似操縦端10へ出力する。また、反力発生装置11は、擬似操縦端10から入力された操作力を検出する図示しないセンサを備えており、センサで検出した操作力を操縦制御装置15へ出力する。さらに、反力発生装置11は、操縦者により操縦された擬似操縦端10の位置情報を検出する図示しないセンサを備えており、センサで検出した擬似操縦端10の位置情報を操縦制御装置15へ出力する。
操縦制御装置15は、反力発生装置11を制御している。操縦制御装置15は、制御部21と記憶部22とを有している。制御部21は、各種プログラムを実行するための演算を行うCPU(Central Processing Unit)等の集積回路を含んでいる。制御部21は、記憶部22に記憶された各種プログラムを実行することで、各種処理を実行することが可能となる。実施形態1において、制御部21は、反力発生装置11を介して入力された擬似操縦端10の位置情報を取得し、取得した擬似操縦端10の位置情報に基づいて、反力発生装置11の操縦反力を制御する。なお、擬似操縦端10の位置情報は、反力発生装置11から取得するが、反力発生装置11から入力される各種情報に基づいて制御部21が算出してもよい。つまり、制御部21は、擬似操縦端10の位置情報を、計算により算出した計算値で取得してもよい。実施形態1では、擬似操縦端10の位置情報を計算値で取得している。また、制御部21は、反力発生装置11を介して入力された操作力を取得している。
記憶部22は、例えば、半導体記憶デバイス、及び磁気記憶デバイス等の任意の記憶デバイスを含む。記憶部22は、制御部21の処理結果を一時的に記憶する作業領域として利用されたり、各種プログラム及び各種データを記憶したりしている。記憶部22は、例えば、各種データとして、操縦反力を導出するために用いられる情報を記憶している。
ここで、操縦反力は、回転翼機に設けられるミキシングユニット30による特性(ミキシング特性)を考慮して導出される。回転翼機は、回転翼機を操縦するための複数の操縦端と、複数の操縦端からの操作力を合成して、操作舵面へ向けて出力するミキシングユニット30と、を有している。
図2を参照して、ミキシングユニット30について説明する。ミキシングユニット30には、入力側に複数の操縦端が接続されており、複数の操縦端としては、横サイクリック・ピッチ系統31の操作に関する操縦端、コレクティブ・ピッチ系統32の操作に関する操縦端、縦サイクリック・ピッチ系統33の操作に関する操縦端がある。また、ミキシングユニット30には、出力側に操作舵面が接続されており、操作舵面としては、下部スワッシュプレート35、上部スワッシュプレート36、ピッチ・リンク37がある。
横サイクリック・ピッチ系統31、縦サイクリック・ピッチ系統33及びコレクティブ・ピッチ系統32の3つの操舵軸は、一方のスワッシュプレート35,36の舵面の向き及び上下方向を駆動対象として制御している。舵面の上下方向は、コレクティブ・ピッチ系統32で制御し、舵面の向きは、縦・横サイクリック・ピッチ系統31,33で制御している。ここで、縦サイクリック・ピッチ系統33と横サイクリック・ピッチ系統31とは、90°向きが異なっているため、独立した系統であるものの、縦サイクリック・ピッチ系統33及びコレクティブ・ピッチ系統32、横サイクリック・ピッチ系統31及びコレクティブ・ピッチ系統32は相互に作用する。
相互作用する操舵軸同士は、同一の駆動対象を駆動するが、駆動対象は、ミキシングユニット30のハードウェア的に駆動範囲が限られる。例えば、コレクティブ・ピッチ系統32に最大入力を加えた場合と、コレクティブ・ピッチ系統32に中程度の入力を加えた場合とを比較すると、縦サイクリック・ピッチ系統33に許容される操作入力上限は、駆動対象の駆動範囲からコレクティブ・ピッチ系統32による駆動量の差分となるため変化する。この結果、コレクティブ・ピッチ系統32の操縦端の操作可能範囲は、縦サイクリック・ピッチ系統33の操作可能範囲に影響し、また逆も同様である。
上記のミキシング特性を考慮した操縦反力を導出するために、記憶部22は、例えば、各種データとして、図3に示す反力特性マップM1と、図4に示すミキシング特性マップM2とを有している。
図3に示すように、反力特性マップM1は、縦軸が操縦反力となっており、横軸が操作端の位置となっている。反力特性マップM1のL1(実線)は、操作端の位置に応じて変化する操縦反力を示している。なお、図3では、後述において反力特性マップM1に操作力をプロットすることから、縦軸において操縦反力と共に操作力を併記している。このため、反力特性マップM1には、所定の操作端の位置において入力される操作力をプロットできる。なお、反力特性マップM1は、擬似操縦端10aに関する反力特性マップM1aと、擬似操縦端10bに関する反力特性マップM1bとを含んでいる。
図4に示すように、ミキシング特性マップM2は、縦軸が一方の擬似操縦端10aの位置となっており、横軸が他方の擬似操縦端10bの位置となっている。ミキシング特性マップM2は、両方の擬似操縦端10の操作が可能となる操作可能範囲E1と、少なくとも一方の擬似操縦端10の操作が不能となる操作不可範囲E2と、を有している。図4において、操作不可範囲E2は、例えば、両方の擬似操縦端10の位置が最大入力となるマップ上の領域と、両方の擬似操縦端10の位置が最小入力となるマップ上の領域と、の2か所に設けられている。また、操作可能範囲E1と操作不可範囲E2との境界は、一方の擬似操縦端10aの位置が大きくなるほど、他方の擬似操縦端10aの位置が小さくなる、直線状のラインとなっている。なお、図4に示すミキシング特性マップM2では、操作可能範囲E1と操作不可範囲E2との境界が直線状のラインとなっているが、一例であり、この構成に特に限定されない。また、ミキシング特性マップM2は、擬似操縦端10aに関するミキシング特性マップM2aと、擬似操縦端10bに関するミキシング特性マップM2bとを含んでいる。
上記のような操縦制御装置15は、反力発生装置11を介して入力された擬似操縦端10の位置情報及び操作力を取得する。操縦制御装置15は、取得した擬似操縦端10の位置情報から、反力特性マップM1及びミキシング特性マップM2に基づいて、擬似操縦端10の操縦反力を導出する。そして、操縦制御装置15は、導出した操縦反力に基づいて反力発生装置11を制御する。
(操縦装置の反力制御方法)
次に、図5から図17を参照して、操縦装置1に設けられる複数の擬似操縦端10へ操縦反力を発生させる操縦装置1の反力制御方法について説明する。なお、図5は、擬似操縦端10aの操縦反力を制御する場合の図となっており、図6は、擬似操縦端10aのミキシング特性に関する操縦反力P2aを説明する図となっている。擬似操縦端10bの操縦反力を制御する場合も、図5及び図6と同様の構成であり、擬似操縦端10aと擬似操縦端10bとを読み替えればよい。
次に、図5から図17を参照して、操縦装置1に設けられる複数の擬似操縦端10へ操縦反力を発生させる操縦装置1の反力制御方法について説明する。なお、図5は、擬似操縦端10aの操縦反力を制御する場合の図となっており、図6は、擬似操縦端10aのミキシング特性に関する操縦反力P2aを説明する図となっている。擬似操縦端10bの操縦反力を制御する場合も、図5及び図6と同様の構成であり、擬似操縦端10aと擬似操縦端10bとを読み替えればよい。
図5に示すように、反力制御方法では、複数の擬似操縦端10の位置を取得するステップS11,SX1を実行する。ステップS11では、操縦制御装置15が、反力発生装置11から擬似操縦端10bの位置情報を取得する。同様に、ステップSX1では、操縦制御装置15が、反力発生装置11から擬似操縦端10aの位置情報を取得する。また、反力制御方法では、複数の擬似操縦端10a,10bへの操作力を取得するステップ12を実行する。ステップS12では、操縦制御装置15が、反力発生装置11のそれぞれから擬似操縦端10a,10bへの操作力を取得する。さらに、反力制御方法では、取得した擬似操縦端10bの位置情報から、反力特性マップM1bに基づいて、擬似操縦端10bの操縦反力P1bを導出するステップS13を実行する。
次に、反力制御方法では、ステップSX1で取得した擬似操縦端10aの位置、ステップS11で取得した擬似操縦端10bの位置、ステップS12で取得した擬似操縦端10bへの操作力、導出された擬似操縦端10bの操縦反力P1b、及びミキシング特性マップM2aに基づいて、ミキシング特性による所定の擬似操縦端10aの操縦反力P2aを導出するステップSX2を実行する。
図6を参照して、ステップSX2について具体的に説明する。ステップSX2では、図6に示すように、操縦制御装置15が、他の擬似操縦端10bの位置における操作力から、ステップS13において導出した操縦反力P1bを減算して、余剰操作力dF2を算出するステップSX2aを実行する。なお、擬似操縦端10aの余剰操作力をdF1とし、擬似操縦端10bの余剰操作力をdF2とする。また、ステップSX2では、図6に示すように、操縦制御装置15が、他の擬似操縦端10bの位置から、ミキシング特性マップM2aに基づいて、所定の擬似操縦端10aの操作不可範囲となる制限位置PL1を導出するステップSX2bを実行する。なお、擬似操縦端10aの制限位置をPL1とし、擬似操縦端10bの制限位置をPL2とする。この後、ステップSX2では、操縦制御装置15が、余剰操作力dF2と制限位置PL1とに基づいて、所定の擬似操縦端10aの位置と操縦反力との関係を示すミキシング模擬反力特性マップM3aを導出するステップSX2cを実行する。ステップSX2cで導出されるミキシング模擬反力特性マップM3aの操縦反力P2aは、余剰操作力dF2と、他の擬似操作端10bの余剰反力係数α2とを乗算することにより得られる。そして、操縦制御装置15は、ステップSX1において取得した擬似操縦端10aの位置から、ミキシング模擬反力特性マップM3aに基づいて、擬似操縦端10aの操縦反力P2aを導出するステップSX2dを実行する。
ステップSX2の実行後、反力制御方法では、操縦制御装置15が、導出した所定の擬似操縦端10aの操縦反力P2aに基づいて、所定の擬似操縦端10aの操縦反力P3aを導出するステップS14を実行する。ステップS14では、所定の擬似操縦端10aの位置から反力特性マップM1aに基づいて導出される操縦反力P1に、導出した所定の擬似操縦端10aの操縦反力P2aを加算するステップを実行する。
これにより、ステップS14では、操縦制御装置15が、所定の擬似操縦端10aの操縦反力P1aに、導出した所定の擬似操縦端10aの操縦反力P2aを加算することで、ミキシング特性を考慮した所定の擬似操縦端10aの操縦反力P3aが導出される。なお、ステップS14における所定の擬似操縦端10aの操縦反力P1aは、擬似操縦端10aの位置、擬似操縦端10aの操作速度、Trim/boostに関する情報から、反力特性マップM1aに基づいて導出される。
この後、反力制御方法では、操縦制御装置15が、導出した所定の擬似操縦端10aの操縦反力P3aに基づいて、反力発生装置を制御するステップS15を実行する。ステップS15では、操縦制御装置15が、ステップS12において取得した擬似操縦端10aの操作力から、ステップS14において導出したミキシング特性を考慮した所定の擬似操縦端10aの操縦反力P3aを減算して、余剰操作力を算出する。この後、操縦制御装置15は、余剰操作力から、擬似操縦端10aの操作速度に応じたダンピングによる抵抗力を減算した余剰操作力を導出する。そして、操縦制御装置15は、余剰操作力から擬似操縦端10aの質量を除算して、擬似操縦端10aの加速度を導出する。また、操縦制御装置15は、擬似操縦端10aの加速度を微分して、擬似操縦端10aの操作速度を導出する。なお、擬似操縦端10aの操作速度は、ダンピングによる抵抗力の導出に用いられ、また、擬似操縦端10aの操縦反力の導出に用いられる。さらに、操縦制御装置15は、擬似操縦端10aの操作速度を微分して、擬似操縦端10aの距離に基づく擬似操縦端10aの位置を導出する。なお、擬似操縦端10aの位置は、擬似操縦端10aの操縦反力の導出に用いられる。そして、操縦制御装置15は、導出した擬似操縦端10aの位置となるように、反力発生装置11の図示しない電動モータを制御することで、操縦反力を発生させる。
次に、図7から図17を参照して、反力制御方法による操縦反力の導出に関する処理について、具体的に説明する。なお、以下では、説明を簡略化するために、上記の図6に示すステップSX2dを省いている。先ず、初期状態として、図7に示すように、擬似操縦端10a及び擬似操縦端10bは、操作可能範囲E1と操作不可範囲E2との境界上における限界位置Aにおいて釣り合った状態となっている。この初期状態において、図8に示すように、擬似操縦端10aは、操作力と操縦反力とが釣り合った状態となっており、同様に、擬似操縦端10bは、操作力と操縦反力とが釣り合った状態となっている。
図7に示す状態から、擬似操縦端10a及び擬似操縦端10bに対して操作可能範囲E1の制限を越えるように、操縦者から操作力を加える。すると、図9に示すように、擬似操縦端10a及び擬似操縦端10bにおいて、操縦反力と操作力との釣り合いが崩れて、余剰操作力dF1及び余剰操作力dF2が生じる。
余剰操作力dF1及び余剰操作力dF2が生じると、図10に示すように、操縦制御装置15は、余剰操作力dF1と擬似操縦端10aの位置とに基づいて、擬似操縦端10bのミキシング模擬反力特性マップM3bを導出する。同様に、操縦制御装置15は、余剰操作力dF2と擬似操縦端10bの位置とに基づいて、擬似操縦端10aのミキシング模擬反力特性マップM3aを導出する。
操縦制御装置15は、図11に示すように、導出したミキシング模擬反力特性マップM3を反力特性マップM1に加算する。なお、図11では、反力特性マップM1にミキシング模擬反力特性マップM3を加算する処理を示しているが、説明を簡略化した処理となっており、実際の処理においては、反力特性マップM1から導出された操縦反力P1に、ミキシング模擬反力特性マップM3から導出された操縦反力P2を加算する処理となっている。加えて、以下の説明においてもステップSX2dを省いた説明としている。ここで、図11の擬似操縦端10aにおいて、操作力は、加算後のミキシング模擬反力加算後の操縦反力より大きいため、位置Aから位置A’に遷移する。一方で、図11の擬似操縦端10bにおいて、操作力は、ミキシング模擬反力加算後の操縦反力を越えることができないため、擬似操縦端10bの位置は変化しない。この結果、擬似操縦端10aの位置及び擬似操縦端10bの位置は、図12に示すものとなる。
図12において、白丸の位置Aは、遷移前の位置であり、黒丸の位置A’は、遷移後の位置である。操縦制御装置15は、図11及び図12に示すように、擬似操縦端10aの遷移後の位置A’と位置A’における余剰操作力dF1とに基づいて、擬似操縦端10bのミキシング模擬反力特性マップM3bを導出する。擬似操縦端10aの遷移後の位置は変化していることから、図13に示す擬似操縦端10bのミキシング模擬反力加算後の操縦反力は変化する。これにより、図13の擬似操縦端10bにおいて、操作力は、ミキシング模擬反力加算後の操縦反力よりも小さくなるため、位置A’から位置Bに遷移する。また、操縦制御装置15は、図11及び図12に示すように、擬似操縦端10bの遷移後の位置A’と位置A’における余剰操作力dF2とに基づいて、擬似操縦端10aのミキシング模擬反力特性マップM3aを導出する。擬似操縦端10bの遷移後の位置は変化していないことから、図13に示す擬似操縦端10aのミキシング模擬反力加算後の操縦反力は変化しない。
図14において、白丸の位置A’は、遷移前の位置であり、黒丸の位置Bは、遷移後の位置である。操縦制御装置15は、図13及び図14に示すように、擬似操縦端10aの遷移後の位置Bと位置Bにおける余剰操作力dF1とに基づいて、擬似操縦端10bのミキシング模擬反力特性マップM3bを導出する。擬似操縦端10aの遷移後の位置は変化していないことから、図15に示す擬似操縦端10bのミキシング模擬反力加算後の操縦反力は変化しない。また、操縦制御装置15は、図13及び図14に示すように、擬似操縦端10bの遷移後の位置Bと位置Bにおける余剰操作力dF2とに基づいて、擬似操縦端10aのミキシング模擬反力特性マップM3aを導出する。擬似操縦端10bの遷移後の位置は変化していることから、図15に示す擬似操縦端10bのミキシング模擬反力加算後の操縦反力は変化する。この場合であっても、図15の擬似操縦端10aにおいて、操作力は、加算後のミキシング模擬反力加算後の操縦反力より大きいため、位置Bから位置B’に遷移する。
そして、操縦制御装置15は、操作力と操縦反力とが釣り合うまで上記の処理を繰り返し実行する。操作力と操縦反力とが釣り合った擬似操縦端10aの位置及び擬似操縦端10bの位置が、図16に示す黒丸の位置Cとなっている。
操縦制御装置15は、図16及び図17に示すように、擬似操縦端10aの位置Cと位置Cにおける余剰操作力dF1とに基づいて、擬似操縦端10bのミキシング模擬反力特性マップM3bを導出する。図17に示す擬似操縦端10bのミキシング模擬反力加算後の操縦反力は、操作力と釣り合っている。また、操縦制御装置15は、図16及び図17に示すように、擬似操縦端10bの位置Cと位置Cにおける余剰操作力dF2とに基づいて、擬似操縦端10aのミキシング模擬反力特性マップM3aを導出する。図17に示す擬似操縦端10aのミキシング模擬反力加算後の操縦反力は、操作力と釣り合っている。
以上の処理によって、操縦者は、2つの擬似操縦端10a,10bで、同一の駆動対象を駆動する場合、ミキシング特性を考慮した操縦感覚を得ることが可能となる。つまり、操縦制御装置15は、図18に示すように、ミキシング特性マップM2の操作可能範囲E1と操作不可範囲E2との境界線上に沿った2つの擬似操縦端10a,10bの移動が可能となるように、ミキシング特性に基づく2つの擬似操縦端10a,10bの取り合いを模擬することができる。
(回転翼機)
上記したシミュレータの操縦装置1は、実機となる回転翼機に適用可能である。具体的に、回転翼機としては、複数の操縦端と、図2に示すようなミキシングユニット30と、を備えるものであって、複数の操縦端とミキシングユニット30とが、物理的に非接続状態となるフライ・バイ・ワイヤ方式となっているものである。具体的に、回転翼機は、操縦装置と、ミキシングユニット30と、を備える。操縦装置は、シミュレータの操縦装置1と同様であり、操縦装置1のシミュレータ用となる複数の疑似操縦端を、実機用となる複数の操縦端に代えた構成となっている。このため、複数の操縦端とミキシングユニット30とが非接続状態である場合、回転翼機の操縦装置は、シミュレータの操縦装置1の反力制御方法と同様に、ミキシング特性に基づく複数の操縦端の取り合いを模擬する。つまり、回転翼機の操縦装置は、複数の操縦端の位置と複数の操縦端への操作力とから、反力特性マップM1及びミキシング特性マップM2に基づいて、ミキシング特性による操縦端の操縦反力を導出し、導出した操縦端の操縦反力に基づいて、反力発生装置を制御している。
上記したシミュレータの操縦装置1は、実機となる回転翼機に適用可能である。具体的に、回転翼機としては、複数の操縦端と、図2に示すようなミキシングユニット30と、を備えるものであって、複数の操縦端とミキシングユニット30とが、物理的に非接続状態となるフライ・バイ・ワイヤ方式となっているものである。具体的に、回転翼機は、操縦装置と、ミキシングユニット30と、を備える。操縦装置は、シミュレータの操縦装置1と同様であり、操縦装置1のシミュレータ用となる複数の疑似操縦端を、実機用となる複数の操縦端に代えた構成となっている。このため、複数の操縦端とミキシングユニット30とが非接続状態である場合、回転翼機の操縦装置は、シミュレータの操縦装置1の反力制御方法と同様に、ミキシング特性に基づく複数の操縦端の取り合いを模擬する。つまり、回転翼機の操縦装置は、複数の操縦端の位置と複数の操縦端への操作力とから、反力特性マップM1及びミキシング特性マップM2に基づいて、ミキシング特性による操縦端の操縦反力を導出し、導出した操縦端の操縦反力に基づいて、反力発生装置を制御している。
[実施形態2]
次に、図19から図23を参照して、実施形態2について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図19は、実施形態2に係る操縦装置の反力制御方法に関するフローを示す説明図である。図20は、ミキシング模擬反力特性マップの生成に関する説明図である。図21から図23は、操縦反力を導出するフローの一例を示す説明図である。
次に、図19から図23を参照して、実施形態2について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図19は、実施形態2に係る操縦装置の反力制御方法に関するフローを示す説明図である。図20は、ミキシング模擬反力特性マップの生成に関する説明図である。図21から図23は、操縦反力を導出するフローの一例を示す説明図である。
実施形態2の操縦装置1は、実施形態1の2つの擬似操縦端10a,10bに代えて、3つの擬似操縦端10a,10b、10cとした操縦装置1となっている。なお、図19は、図5と同様に、擬似操縦端10aの操縦反力を制御する場合の図となっており、図20は、図6と同様に、擬似操縦端10aのミキシング特性に関する操縦反力P2aを説明する図となっている。
図19に示すように、反力制御方法では、所定の擬似操縦端10aのミキシング模擬反力特性マップM3aを導出する場合、残りの2つの擬似操縦端10b、10cの位置における操作力と、2つの擬似操縦端10b、10cの操縦反力P1b,P1cとに基づいて、ミキシング特性による所定の擬似操縦端10aの操縦反力P1aを導出している。なお、図19における他の反力制御方法については、図5と同様であるため、説明を省略する。
図20を参照して、擬似操縦端10aの操縦反力P2aを導出するステップSX2について具体的に説明する。図20では、図6と同様に、擬似操縦端10aに関する反力特性マップM1a及びミキシング特性マップM2aが用いられる。ここで、ミキシング特性マップM2aは、3つの操縦端が相互作用するマップとなっており、三次元の直交座標系となるマップとなっている。具体的に、ミキシング特性マップM2aは、X軸が擬似操縦端10aの位置となっており、Y軸が擬似操縦端10bの位置となっており、Z軸が擬似操縦端10cの位置となっている。
ステップSX2では、図20に示すように、操縦制御装置15が、擬似操縦端10bの位置における操作力から、事前にステップS13において導出した操縦反力P1bを減算して、余剰操作力dF2を算出するステップSX2aを実行する。同様に、ステップSX2aでは、操縦制御装置15が、擬似操縦端10cの位置における操作力から、事前にステップS13において導出した操縦反力P1cを減算して、余剰操作力dF3を算出する。
また、ステップSX2では、図20に示すように、操縦制御装置15が、擬似操縦端10bの位置及び擬似操縦端10cの位置から、ミキシング特性マップM2aに基づいて、擬似操縦端10aの操作不可範囲となる制限位置PL1を導出するステップSX2bを実行する。この後、ステップSX2では、操縦制御装置15が、余剰操作力dF2と余剰操作力dF3と制限位置PL1とに基づいて、擬似操縦端10aの位置と操縦反力との関係を示すミキシング模擬反力特性マップM3aを導出するステップSX2cを実行する。ステップSX2cで導出されるミキシング模擬反力特性マップM3aの操縦反力P2aは、余剰操作力dF2と擬似操作端10bの余剰反力係数α21とを乗算し、余剰操作力dF3と擬似操作端10cの余剰反力係数α31とを乗算したものを、合算することにより得られる。なお、余剰反力係数は、擬似操縦端10aの操作によって擬似操縦端10bに与える場合の余剰反力係数をα12とし、擬似操縦端10aの操作によって擬似操縦端10cに与える場合の余剰反力係数をα13としている。同様に、余剰反力係数は、擬似操縦端10bの操作によって擬似操縦端10aに与える場合の余剰反力係数をα21とし、擬似操縦端10bの操作によって擬似操縦端10cに与える場合の余剰反力係数をα23としている。また、余剰反力係数は、擬似操縦端10cの操作によって擬似操縦端10aに与える場合の余剰反力係数をα31とし、擬似操縦端10cの操作によって擬似操縦端10bに与える場合の余剰反力係数をα32としている。
次に、図21から図23を参照して、反力制御方法による操縦反力の導出に関する処理について、具体的に説明する。なお、以下では、説明を簡略化するために、上記の図20に示すステップSX2dを省いている。図21に示すように、擬似操縦端10a、擬似操縦端10b及び擬似操縦端10cに対して操作可能範囲E1の制限を越えるように、操縦者から操作力を加える。すると、擬似操縦端10a、擬似操縦端10b及び擬似操縦端10cにおいて、操作力から操縦反力を減算した、余剰操作力dF1、余剰操作力dF2及び余剰操作力dF3が生じる。
余剰操作力dF1、余剰操作力dF2及び余剰操作力dF3が生じると、図22に示すように、操縦制御装置15は、余剰操作力dF1及び擬似操縦端10aの位置と、余剰操作力dF2及び擬似操縦端10bの位置と、に基づいて、擬似操縦端10cのミキシング模擬反力特性マップM3cを導出する。同様に、操縦制御装置15は、余剰操作力dF2及び擬似操縦端10bの位置と、余剰操作力dF3及び擬似操縦端10cの位置と、に基づいて、擬似操縦端10aのミキシング模擬反力特性マップM3aを導出する。同様に、操縦制御装置15は、余剰操作力dF1及び擬似操縦端10aの位置と、余剰操作力dF3及び擬似操縦端10cの位置と、に基づいて、擬似操縦端10bのミキシング模擬反力特性マップM3bを導出する。
操縦制御装置15は、図23に示すように、導出したミキシング模擬反力特性マップM3を反力特性マップM1に加算する。なお、図23では、反力特性マップM1にミキシング模擬反力特性マップM3を加算する処理を示しているが、説明を簡略化した処理となっており、実際の処理においては、反力特性マップM1から導出された操縦反力P1に、ミキシング模擬反力特性マップM3から導出された操縦反力P2を加算する処理となっている。加えて、以下の説明においてもステップSX2dを省いた説明としている。ここで、図23の擬似操縦端10aにおいて、操作力は、加算後のミキシング模擬反力加算後の操縦反力より大きなものとなっている。一方で、図23の擬似操縦端10bにおいて、操作力は、ミキシング模擬反力加算後の操縦反力を越えることができないため、擬似操縦端10bの位置は変化しない。同様に、図23の擬似操縦端10cにおいて、操作力は、ミキシング模擬反力加算後の操縦反力を越えることができないため、擬似操縦端10cの位置は変化しない。なお、以降の処理については、実施形態1とほぼ同様であり、操縦制御装置15は、操作力と操縦反力とが釣り合うまで上記の処理を繰り返し実行する。
これにより、3つの擬似操縦端10a,10b,10cの位置は、操作力と操縦反力とが釣り合った擬似操縦端10aの位置、擬似操縦端10bの位置及び擬似操縦端10cの位置となる。以上の処理によって、3つの擬似操縦端10a,10b,10cにおいても、ミキシング特性に基づく3つの擬似操縦端10a,10b,10cの取り合いを模擬することができる。
以上のように、実施形態に記載のシミュレータの操縦装置1及び操縦装置1の反力制御方法は、例えば、以下のように把握される。
第1の態様に係るシミュレータの操縦装置1は、回転翼機の動作をシミュレートするシミュレータの操縦装置1であって、前記回転翼機は、前記回転翼機を操縦するための複数の操縦端と、複数の前記操縦端からの操作力を合成して、操作舵面へ向けて出力するミキシングユニット30と、を有しており、複数の擬似操縦端10と、複数の前記擬似操縦端10に操縦反力を発生させる反力発生装置11と、発生させる前記操縦反力を導出すると共に、導出した前記操縦反力に基づいて、前記反力発生装置11を制御する制御部21と、前記操縦反力の導出に用いられる情報を記憶する記憶部20と、を備え、前記記憶部20は、前記情報として、前記操縦端の位置と前記操縦反力との関係を示す反力特性マップM1と、前記操縦端の相互間における操作可能範囲E1及び操作不可範囲E2を示すミキシング特性マップM2と、を有し、前記制御部21は、複数の前記擬似操縦端10の位置を取得するステップS11と、複数の前記擬似操縦端10への操作力を取得するステップS12と、複数の前記擬似操縦端10の位置における前記操作力から、前記反力特性マップM1及び前記ミキシング特性マップM2に基づいて、ミキシング特性による所定の前記擬似操縦端の前記操縦反力を導出するステップSX2,S14と、導出した所定の前記擬似操縦端10の前記操縦反力に基づいて、前記反力発生装置11を制御するステップS15と、を実行する。
この構成によれば、ミキシング特性を考慮した操縦反力を擬似操縦端10に発生させることができるため、回転翼機の操縦装置1を好適に模擬することができる。
第2の態様として、所定の前記擬似操縦端10の前記操縦反力を導出するステップSX2,S14では、他の前記擬似操縦端10の位置における前記操作力から、前記反力特性マップM1から得られる前記操縦反力を減算して、余剰操作力dFを算出するステップSX2aと、他の前記擬似操縦端10の位置から、前記ミキシング特性マップM2に基づいて、所定の前記擬似操縦端10の前記操作不可範囲E2となる制限位置を導出するステップSX2bと、前記余剰操作力αと前記制限位置PLとに基づいて、所定の前記擬似操縦端10の位置と前記操縦反力との関係を示すミキシング模擬反力特性マップM3を導出するステップSX2cと、所定の前記擬似操縦端の位置から前記反力特性マップM1に基づいて導出される前記操縦反力P1に、所定の前記擬似操縦端の位置から前記ミキシング模擬反力特性マップM3に基づいて導出される前記操縦反力P2を加算することで、前記ミキシング特性による所定の前記擬似操縦端の前記操縦反力P3を導出するステップS14と、を実行する。
この構成によれば、他の擬似操縦端10の操縦反力を考慮して、所定の擬似操縦端10の操縦反力を導出することができるため、ミキシング特性を考慮した適切な操縦反力を導出することができる。
第3の態様として、前記制御部21は、複数の前記擬似操縦端10において前記操作力と前記操縦反力とが釣り合うように、前記反力発生装置11を制御する。
この構成によれば、複数の擬似操縦端10を操作した場合であっても、操作力と操縦反力とが釣り合う擬似操縦端10の位置となるように、操縦反力を発生させることができる。
第4の態様に係る操縦装置1の反力制御方法は、回転翼機の動作をシミュレートするシミュレータの操縦装置1に設けられる複数の擬似操縦端10へ操縦反力を発生させる操縦装置1の反力制御方法であって、前記回転翼機は、前記回転翼機を操縦するための複数の操縦端と、複数の前記操縦端からの操作力を合成して、操作舵面へ向けて出力するミキシングユニット30と、を有し、前記操縦装置1は、複数の擬似操縦端10と、複数の前記擬似操縦端10に操縦反力を発生させる反力発生装置11と、を有し、前記操縦端の位置と前記操縦反力との関係を示す反力特性マップM1と、前記操縦端の相互間における操作可能範囲E1及び操作不可範囲E2を示すミキシング特性マップM2と、が予め用意され、複数の前記擬似操縦端10の位置を取得するステップS11と、複数の前記擬似操縦端10への操作力を取得するステップS12と、複数の前記擬似操縦端10の位置における前記操作力から、前記反力特性マップM1及び前記ミキシング特性マップM2に基づいて、ミキシング特性による所定の前記擬似操縦端10の前記操縦反力を導出するステップSX2,S14と、導出した所定の前記擬似操縦端10の前記操縦反力に基づいて、前記反力発生装置11を制御するステップS15と、を実行する。
この構成によれば、ミキシング特性を考慮した操縦反力を擬似操縦端10に発生させることができるため、回転翼機の操縦装置1を好適に模擬することができる。
第5の態様に係る回転翼機は、回転翼機を操縦するための操縦装置と、前記操縦装置からの操作力を操作舵面へ向けて出力するミキシングユニット30と、を備え、前記操縦装置は、複数の操縦端と、複数の前記操縦端に操縦反力を発生させる反力発生装置11と、発生させる前記操縦反力を導出すると共に、導出した前記操縦反力に基づいて、前記反力発生装置11を制御する制御部21と、前記操縦反力の導出に用いられる情報を記憶する記憶部20と、を備え、複数の前記操縦端と前記ミキシングユニット30とは、物理的に非接続状態となるフライ・バイ・ワイヤ方式となっており、前記記憶部20は、前記情報として、前記操縦端の位置と前記操縦反力との関係を示す反力特性マップM1と、前記操縦端の相互間における操作可能範囲及び操作不可範囲を示すミキシング特性マップM2と、を有し、前記制御部21は、複数の前記操縦端の位置を取得するステップS11と、複数の前記操縦端への操作力を取得するステップS12と、複数の前記操縦端の位置における前記操作力から、前記反力特性マップM1及び前記ミキシング特性マップM2に基づいて、ミキシング特性による所定の前記操縦端の前記操縦反力を導出するステップSX2,S14と、導出した所定の前記操縦端10の前記操縦反力に基づいて、前記反力発生装置11を制御するステップS15と、を実行する。
この構成によれば、複数の操縦端とミキシングユニット30とが物理的に非接続状態となっていても、操縦装置によりミキシング特性を考慮した操縦端の取り合いを模擬することができる。
1 操縦装置
10 擬似操縦端
11 反力発生装置
15 操縦制御装置
21 制御部
20 記憶部
30 ミキシングユニット
M1 反力特性マップ
M2 ミキシング特性マップ
M3 ミキシング模擬反力特性マップ
10 擬似操縦端
11 反力発生装置
15 操縦制御装置
21 制御部
20 記憶部
30 ミキシングユニット
M1 反力特性マップ
M2 ミキシング特性マップ
M3 ミキシング模擬反力特性マップ
Claims (5)
- 回転翼機の動作をシミュレートするシミュレータの操縦装置であって、
前記回転翼機は、前記回転翼機を操縦するための複数の操縦端と、複数の前記操縦端からの操作力を合成して、操作舵面へ向けて出力するミキシングユニットと、を有しており、
複数の擬似操縦端と、
複数の前記擬似操縦端に操縦反力を発生させる反力発生装置と、
発生させる前記操縦反力を導出すると共に、導出した前記操縦反力に基づいて、前記反力発生装置を制御する制御部と、
前記操縦反力の導出に用いられる情報を記憶する記憶部と、を備え、
前記記憶部は、前記情報として、
前記操縦端の位置と前記操縦反力との関係を示す反力特性マップと、
前記操縦端の相互間における操作可能範囲及び操作不可範囲を示すミキシング特性マップと、を有し、
前記制御部は、
複数の前記擬似操縦端の位置を取得するステップと、
複数の前記擬似操縦端への操作力を取得するステップと、
複数の前記擬似操縦端の位置における前記操作力から、前記反力特性マップ及び前記ミキシング特性マップに基づいて、ミキシング特性による所定の前記擬似操縦端の前記操縦反力を導出するステップと、
導出した所定の前記擬似操縦端の前記操縦反力に基づいて、前記反力発生装置を制御するステップと、を実行するシミュレータの操縦装置。 - 所定の前記擬似操縦端の前記操縦反力を導出するステップでは、
他の前記擬似操縦端の位置における前記操作力から、前記反力特性マップから得られる前記操縦反力を減算して、余剰操作力を算出するステップと、
他の前記擬似操縦端の位置から、前記ミキシング特性マップに基づいて、所定の前記擬似操縦端の前記操作不可範囲となる制限位置を導出するステップと、
前記余剰操作力と前記制限位置とに基づいて、所定の前記擬似操縦端の位置と前記操縦反力との関係を示すミキシング模擬反力特性マップを導出するステップと、
所定の前記擬似操縦端の位置から前記反力特性マップに基づいて導出される前記操縦反力に、所定の前記擬似操縦端の位置から前記ミキシング模擬反力特性マップに基づいて導出される前記操縦反力を加算することで、前記ミキシング特性による所定の前記擬似操縦端の前記操縦反力を導出するステップと、を実行する請求項1に記載のシミュレータの操縦装置。 - 前記制御部は、複数の前記擬似操縦端において前記操作力と前記操縦反力とが釣り合うように、前記反力発生装置を制御する請求項1または2に記載のシミュレータの操縦装置。
- 回転翼機の動作をシミュレートするシミュレータの操縦装置に設けられる複数の擬似操縦端へ操縦反力を発生させる操縦装置の反力制御方法であって、
前記回転翼機は、前記回転翼機を操縦するための複数の操縦端と、複数の前記操縦端からの操作力を合成して、操作舵面へ向けて出力するミキシングユニットと、を有し、
前記操縦装置は、複数の擬似操縦端と、複数の前記擬似操縦端に操縦反力を発生させる反力発生装置と、を有し、
前記操縦端の位置と前記操縦反力との関係を示す反力特性マップと、前記操縦端の相互間における操作可能範囲及び操作不可範囲を示すミキシング特性マップと、が予め用意され、
複数の前記擬似操縦端の位置を取得するステップと、
複数の前記擬似操縦端への操作力を取得するステップと、
複数の前記擬似操縦端の位置における前記操作力から、前記反力特性マップ及び前記ミキシング特性マップに基づいて、ミキシング特性による所定の前記擬似操縦端の前記操縦反力を導出するステップと、
導出した所定の前記擬似操縦端の前記操縦反力に基づいて、前記反力発生装置を制御するステップと、を実行する操縦装置の反力制御方法。 - 回転翼機を操縦するための操縦装置と、
前記操縦装置からの操作力を操作舵面へ向けて出力するミキシングユニットと、を備え、
前記操縦装置は、
複数の操縦端と、
複数の前記操縦端に操縦反力を発生させる反力発生装置と、
発生させる前記操縦反力を導出すると共に、導出した前記操縦反力に基づいて、前記反力発生装置を制御する制御部と、
前記操縦反力の導出に用いられる情報を記憶する記憶部と、を備え、
複数の前記操縦端と前記ミキシングユニットとは、物理的に非接続状態となるフライ・バイ・ワイヤ方式となっており、
前記記憶部は、前記情報として、
前記操縦端の位置と前記操縦反力との関係を示す反力特性マップと、
前記操縦端の相互間における操作可能範囲及び操作不可範囲を示すミキシング特性マップと、を有し、
前記制御部は、
複数の前記操縦端の位置を取得するステップと、
複数の前記操縦端への操作力を取得するステップと、
複数の前記操縦端の位置における前記操作力から、前記反力特性マップ及び前記ミキシング特性マップに基づいて、ミキシング特性による所定の前記操縦端の前記操縦反力を導出するステップと、
導出した所定の前記操縦端の前記操縦反力に基づいて、前記反力発生装置を制御するステップと、を実行する回転翼機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021104327A JP2023003255A (ja) | 2021-06-23 | 2021-06-23 | シミュレータの操縦装置、操縦装置の反力制御方法及び回転翼機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021104327A JP2023003255A (ja) | 2021-06-23 | 2021-06-23 | シミュレータの操縦装置、操縦装置の反力制御方法及び回転翼機 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023003255A true JP2023003255A (ja) | 2023-01-11 |
Family
ID=84816976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021104327A Pending JP2023003255A (ja) | 2021-06-23 | 2021-06-23 | シミュレータの操縦装置、操縦装置の反力制御方法及び回転翼機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023003255A (ja) |
-
2021
- 2021-06-23 JP JP2021104327A patent/JP2023003255A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11150655B2 (en) | Method and system for training unmanned aerial vehicle control model based on artificial intelligence | |
US20140272865A1 (en) | Physics Engine for Virtual Reality Surgical Training Simulator | |
US20160096276A1 (en) | Universal motion simulator | |
Fedák et al. | Analysis of robotic system motion in SimMechanics and MATLAB GUI Environment | |
Gomez | Hardware-in-the-loop simulation | |
Peregudin et al. | Virtual laboratory for game-based control systems education | |
Martins-Filho et al. | Processor-in-the-loop simulations applied to the design and evaluation of a satellite attitude control | |
JP2023003255A (ja) | シミュレータの操縦装置、操縦装置の反力制御方法及び回転翼機 | |
KR101954494B1 (ko) | 사이드 그립 요크를 구비한 비행훈련장치용 조종감 생성기의 검증 방법 | |
CN105785789A (zh) | 高空飞艇的仿真系统 | |
CN110891739B (zh) | 耦合的导纳控制器的最优控制 | |
EP3729408B1 (en) | Method, system and computer program product for compensation of simulator control loading mechanical effects | |
Guiatni et al. | Programmable force-feedback side-stick for flight simulation | |
Villacís et al. | A new real-time flight simulator for military training using mechatronics and cyber-physical system methods | |
Martin et al. | Design and development of robotic hardware-in-the-loop simulation | |
Dirk et al. | Cost-oriented virtual reality and real-time control system architecture | |
Lee | Nonlinear feedback control of underactuated mechanical systems | |
Jian et al. | Simulator building for agile control design of shipboard crane and its application to operational training | |
Hoang et al. | Design and Simulation of a Scaled Motion Platform System Based Parallel Robot | |
Chomachar et al. | 6DOF nonlinear control loading system for a large transport aircraft simulator | |
Nelson et al. | A simulation-based control interface layer for a high-fidelity anthropomorphic training simulator | |
Liu | Development of hardware-in-the-loop simulation system for electric power steering controller testing | |
Kruger | Interconnection and damping assignment passivity-based control of an unmanned helicopter | |
KR20220057742A (ko) | 턴테이블을 구비하는 모션 플랫폼의 제어 방법 | |
Hiranaka | An integrated, modular simulation system for education and research |