JP2023001684A - Cast iron-made cylindrical member and method for producing the same - Google Patents

Cast iron-made cylindrical member and method for producing the same Download PDF

Info

Publication number
JP2023001684A
JP2023001684A JP2021102555A JP2021102555A JP2023001684A JP 2023001684 A JP2023001684 A JP 2023001684A JP 2021102555 A JP2021102555 A JP 2021102555A JP 2021102555 A JP2021102555 A JP 2021102555A JP 2023001684 A JP2023001684 A JP 2023001684A
Authority
JP
Japan
Prior art keywords
graphite
cast iron
cylindrical member
iron cylindrical
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021102555A
Other languages
Japanese (ja)
Inventor
延明 鈴木
Nobuaki Suzuki
諒 長澤
Ryo Nagasawa
雄一 水村
Yuichi Mizumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2021102555A priority Critical patent/JP2023001684A/en
Publication of JP2023001684A publication Critical patent/JP2023001684A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

To provide a cast iron-made cylindrical member that allows for increased strength while ensuring high slidability of the inner peripheral part and a method for producing the same.SOLUTION: To a molten metal that contains C: 3.5-3.85%, Si: 2.3-2.7%, Mn: 0.5-1.5%, and S: 0.005-0.015% with the balance being Fe and has a CE value of 4.45-4.70, added are a graphite spheroidizing agent containing Mg: 2.0-4.0% and RE: 4.0-6.0% and an Fe-Si-Bi inoculating agent; the molten metal is injected into a die for centrifugal casting; and a first cooling is performed to cool the temperature at injection to an eutectic temperature and then a second cooling is performed to cool the eutectic temperature to an eutectoid temperature at a cooling rate lower than in the first cooling. Thus, a cast iron-made cylindrical member can be produced in which granular or spherical graphite particles of less than 50 μm exist by 1000 or more per mm2; the number of graphite particles increases toward the inner peripheral face of the member; the graphite area ratio is 5% or more; and the graphite area ratio increases toward the inner peripheral face of the member.SELECTED DRAWING: Figure 12

Description

本発明は、鋳鉄製円筒部材およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a cast iron cylindrical member and a manufacturing method thereof.

長尺・薄肉の鋳鉄製円筒部材の多くは、円筒状の金型を高速で回転させながらこの金型の内周部へ溶湯を注ぎ込む遠心鋳造法によって製造されている。この遠心鋳造法により製造されるものとしては、インフラ用鋳鉄管や塑性加工用の圧延ロールなどが代表的であるが、生産量の多い自動車用エンジンのシリンダスリーブでも遠心鋳造法によれば高価な砂中子を使用せずに安定した品質の鋳鉄円筒部材が得られるため広く用いられている。シリンダスリーブは、生産性の高い生型鋳造法でも製造されているが、いずれの鋳造法においても、シリンダスリーブには断面の金属組織に一様な片状黒鉛を含有するねずみ鋳鉄(FC鋳鉄)が用いられている。この理由は、片状に晶出した黒鉛が優れた制振性や熱伝導性及び自己潤滑性等を有するためである。 Many long, thin-walled cast-iron cylindrical members are manufactured by a centrifugal casting method in which molten metal is poured into the inner periphery of a cylindrical mold that is rotated at high speed. Typical items manufactured by this centrifugal casting method include cast iron pipes for infrastructure and rolling rolls for plastic working. It is widely used because cast iron cylindrical members of stable quality can be obtained without using sand cores. Cylinder sleeves are also manufactured by the green casting method, which is highly productive. is used. The reason for this is that the flake-crystallized graphite has excellent damping properties, thermal conductivity, self-lubricating properties, and the like.

例えば、特許文献1には、摺動性に加えて高強度特性を同時に備えた内燃機関用シリンダライナ(シリンダスリーブ)を簡単な条件設定により低コストで製造する方法として、黒鉛球状化成分を有する過共晶組成の鋳鉄溶湯を遠心鋳造鋳型に鋳込み、この鋳型を所定の速度で回転させて、遠心力とフェーディング現象を利用して、鋳型の中心に近い内側部に片状黒鉛に類似する形状の黒鉛が晶出した内側鋳鉄層を形成し、鋳型壁面に接する外側部に球状黒鉛が晶出した外側鋳鉄層を形成することが記載されている。 For example, Patent Literature 1 describes a method for manufacturing a cylinder liner (cylinder sleeve) for an internal combustion engine having both slidability and high strength at low cost by setting simple conditions. Molten cast iron with a hypereutectic composition is cast into a centrifugal casting mold, and the mold is rotated at a predetermined speed to use centrifugal force and fading phenomenon to form a similar to flake graphite in the inner part near the center of the mold. It is described that an inner cast iron layer with crystallized shaped graphite is formed, and an outer cast iron layer with crystallized spheroidal graphite is formed on the outer part in contact with the mold wall.

特開2001-227405号公報Japanese Patent Application Laid-Open No. 2001-227405

自動車用エンジンのシリンダスリーブには、エンジンの低燃費化や静粛性の面から摺動摩擦性能(低フリクション)や高い振動減衰能の他、高熱伝導性、切削加工性が求められるため、これらの性能を満足するFC鋳鉄が使用されている。しかし、FC鋳鉄はヤング率が鋼(210GPa)の約半分程度と低い。そのため、自動車用エンジンを模式的に表す図1に示すように、薄肉の円筒形状のシリンダスリーブ11をダイカスト鋳造によりシリンダバレル12で鋳包んだシリンダブロック10は、シリンダヘッド20と鋼ボルトによって高軸力で締結すると、剛性の低いシリンダスリーブ11は円筒軸方向に作用する強い圧縮荷重(図1の矢印1)によって、ボア変形(ひずみ)を起こしやすい。また、運転時における燃焼・爆発圧力によるボア内圧荷重(図1の矢印2)によって、シリンダスリーブ11は径方向に張り出すようにひずむ(または変形する)傾向がある。さらに、剛性の低い薄肉のシリンダスリーブ11では、シリンダブロック10のダイカスト鋳造時において導入されるアルミバレル12側の残留応力(図1の矢印3)が、エンジンの運転経過で経時的に開放されることでボア変形を引き起こすリスクがある。これらのボア形状の変形挙動は、ピストンリング摺動の際のフリクションやブローバイの増大を招く要因となって燃費を低下させるという問題がある。 Cylinder sleeves for automobile engines are required to have sliding friction performance (low friction), high vibration damping performance, high thermal conductivity, and machinability in order to improve fuel efficiency and quietness of the engine. FC cast iron that satisfies is used. However, FC cast iron has a Young's modulus as low as about half that of steel (210 GPa). Therefore, as shown in FIG. 1, which schematically shows an automobile engine, a cylinder block 10 in which a thin-walled cylindrical cylinder sleeve 11 is encapsulated in a cylinder barrel 12 by die-casting has a high axis by a cylinder head 20 and steel bolts. When fastened with force, the cylinder sleeve 11 with low rigidity is likely to undergo bore deformation (strain) due to a strong compressive load (arrow 1 in FIG. 1) acting in the direction of the cylinder axis. In addition, the cylinder sleeve 11 tends to be strained (or deformed) so as to protrude in the radial direction due to the bore internal pressure load (arrow 2 in FIG. 1) due to the combustion/explosion pressure during operation. Furthermore, in the thin-walled cylinder sleeve 11 with low rigidity, residual stress (arrow 3 in FIG. 1) on the side of the aluminum barrel 12 introduced during die casting of the cylinder block 10 is released over time as the engine runs. Therefore, there is a risk of causing bore deformation. These deformation behaviors of the bore shape have the problem of causing an increase in friction and blow-by when the piston ring slides, resulting in a decrease in fuel consumption.

特許文献1に開示された方法で製造されたシリンダスリーブ鋳鉄製円筒部材を、自動車用エンジンのシリンダスリーブに用いた場合、鋳鉄製円筒部材の内周部(すなわち、摺動面側)に片状黒鉛に類似する形状の黒鉛が晶出しており、内周面に要求される摺動性と強度を両立することが困難であるという問題がある。 When the cylinder sleeve cast-iron cylindrical member manufactured by the method disclosed in Patent Document 1 is used for the cylinder sleeve of an automobile engine, the inner peripheral portion (that is, the sliding surface side) of the cast-iron cylindrical member has a flake shape. Graphite having a shape similar to graphite is crystallized, and there is a problem that it is difficult to achieve both the slidability and strength required for the inner peripheral surface.

そこで本発明は、内周部に高い摺動性を確保しつつ、高強度化が可能な鋳鉄製円筒部材およびその製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a cast iron cylindrical member capable of increasing strength while ensuring high slidability in the inner peripheral portion, and a method for manufacturing the same.

上記の目的を達成するために、本発明は、その一態様として、質量%で、C:3.5~3.85%、Si:2.3~2.7%、Mn:0.5~1.5%、S:0.005~0.015%を含有し、残部がFe及び不可避的不純物からなり、以下の式1で規定される炭素当量(以下、「CE値」という)が4.45~4.70である鋳鉄製円筒部材であって、
CE値=トータルカーボン(以下、「TC」という)+(Si含有量+P含有量)/3 ・・・(式1)
当該鋳鉄製円筒部材の断面において、粒子サイズが1μm以上、50μm未満の粒状または球状の黒鉛の黒鉛粒子数が1mm当たり1000個以上存在し、且つ前記黒鉛粒子数が当該鋳鉄製円筒部材の外周面から内周面に向かって増加しており、当該鋳鉄製円筒部材の断面において、粒子サイズが1μm以上、50μm未満の粒状または球状の黒鉛の黒鉛面積率が5%以上であり、且つ前記黒鉛面積率が当該鋳鉄製円筒部材の外周面から内周面に向かって増加しているものである。
In order to achieve the above object, as one aspect of the present invention, in mass%, C: 3.5 to 3.85%, Si: 2.3 to 2.7%, Mn: 0.5 to 1.5%, S: 0.005 to 0.015%, the balance consists of Fe and unavoidable impurities, and the carbon equivalent defined by the following formula 1 (hereinafter referred to as “CE value”) is 4 .45 to 4.70 cast iron cylindrical member,
CE value = total carbon (hereinafter referred to as "TC") + (Si content + P content) / 3 (Formula 1)
In the cross section of the cast iron cylindrical member, the number of graphite particles of granular or spherical graphite with a particle size of 1 μm or more and less than 50 μm is 1000 or more per 1 mm 2 , and the number of graphite particles is the outer circumference of the cast iron cylindrical member. Granular or spherical graphite with a particle size of 1 μm or more and less than 50 μm has a graphite area ratio of 5% or more in the cross section of the cast iron cylindrical member, and the graphite increases from the surface to the inner peripheral surface. The area ratio increases from the outer peripheral surface toward the inner peripheral surface of the cast iron cylindrical member.

また、本発明は、別の態様として、遠心鋳造による鋳鉄製円筒部材の製造方法であって、この製造方法は、質量%で、C:3.5~3.85%、Si:2.3~2.7%、Mn:0.5~1.5%、S:0.005~0.015%を含有し、残部がFe及び不可避的不純物からなり、上述した式1で規定されるCE値が4.45~4.70である溶湯を準備するステップと、前記溶湯に、質量%で、Mg:2.0~4.0%と希土類金属(以下、「RE」という):4.0~6.0%を含有するFe-Si-Mg-RE系合金からなる黒鉛球状化剤を添加するステップと、前記溶湯に、Fe-Si-Bi系接種剤を添加するステップと、前記黒鉛球状化剤および前記接種剤を添加した前記溶湯を、遠心力鋳造用金型に注湯するステップと、前記注湯から共晶温度まで冷却して固相を析出させる第一の冷却を行うステップと、前記第一の冷却よりも小さい冷却速度で、前記固相を共晶温度から共析温度まで冷却する第二の冷却を行い、鋳鉄製円筒部材の粗材を成形するステップと、前記粗材の内周面を切削加工して内周加工面を形成するステップとを含む。 Another aspect of the present invention is a method for producing a cast iron cylindrical member by centrifugal casting. ~ 2.7%, Mn: 0.5 to 1.5%, S: 0.005 to 0.015%, the balance consisting of Fe and unavoidable impurities, CE defined by the above formula 1 a step of preparing a molten metal having a value of 4.45 to 4.70; adding a graphite spheroidizing agent made of Fe--Si--Mg--RE based alloy containing 0-6.0%; adding an Fe--Si--Bi based inoculant to the molten metal; A step of pouring the molten metal to which the spheroidizing agent and the inoculant are added into a centrifugal casting mold, and performing a first cooling to precipitate a solid phase by cooling from the pouring to the eutectic temperature. and performing a second cooling that cools the solid phase from the eutectic temperature to the eutectoid temperature at a cooling rate lower than that of the first cooling to form a rough material of the cast iron cylindrical member; and cutting the inner peripheral surface of the material to form an inner peripheral machined surface.

このように本発明の鋳鉄製円筒部材によれば、所定の組成を有する鋳鉄製円動部材の内周部に微小な粒状または球状の黒鉛粒子を1mm当たり1000個以上存在させ、且つこの黒鉛粒子数を外周面から内周面に向かって増加させ、更に、微小な粒状または球状の黒鉛の黒鉛面積率を5%以上とし、且つこの黒鉛面積率を外周面から内周面に向かって増加させることで、高い摺動性を確保しつつ、高強度化が可能な鋳鉄製円筒部材を提供することができる。 As described above, according to the cast iron cylindrical member of the present invention, 1000 or more fine granular or spherical graphite particles are present per 1 mm 2 in the inner peripheral portion of the cast iron circular motion member having a predetermined composition, and this graphite The number of particles is increased from the outer peripheral surface to the inner peripheral surface, the graphite area ratio of fine granular or spherical graphite is 5% or more, and the graphite area ratio is increased from the outer peripheral surface to the inner peripheral surface. By doing so, it is possible to provide a cast iron cylindrical member that can be increased in strength while ensuring high slidability.

また、本発明の製造方法によれば、所定の組成を有する溶湯に所定の組成を有する黒鉛球状化剤を反応させ、且つ所定の組成を有する接種剤で接種処理を行い、この溶湯を遠心力鋳造用金型に注湯した後、この注湯から共晶温度まで冷却して固相を析出させる第一の冷却を行い、そして、この第一の冷却よりも小さい冷却速度で、固相を共晶温度から共析温度まで冷却する第二の冷却を行うことで、上記の特徴を有する鋳鉄製円筒部材を製造することができる。 Further, according to the production method of the present invention, a molten metal having a predetermined composition is reacted with a graphite spheroidizing agent having a predetermined composition, and an inoculant having a predetermined composition is used to inoculate the molten metal. After pouring into the casting mold, first cooling is performed to cool from the pouring to the eutectic temperature to precipitate a solid phase, and the solid phase is precipitated at a cooling rate lower than that of the first cooling. By performing the second cooling from the eutectic temperature to the eutectoid temperature, the cast iron cylindrical member having the above characteristics can be manufactured.

鋳鉄製円筒部材をシリンダスリーブとして用いた場合の内燃機関の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of an internal combustion engine in which a cast-iron cylindrical member is used as a cylinder sleeve; FIG. 本発明に係る鋳鉄製円筒部材の製造方法の一実施の形態を模式的に示すフロー図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a flowchart which shows typically one Embodiment of the manufacturing method of the cast-iron cylindrical member which concerns on this invention. 本発明に係る鋳鉄製円筒部材の一実施の形態を模式的に示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view schematically showing one embodiment of a cast-iron cylindrical member according to the present invention; 図3に示す鋳鉄製円筒部材を線III-IIIに沿って切断した際の模式な断面図である。FIG. 4 is a schematic cross-sectional view of the cast-iron cylindrical member shown in FIG. 3 taken along line III-III. 図4に示す鋳鉄製円筒部材の断面の一部を拡大して示す模式的な断面図である。5 is a schematic cross-sectional view showing an enlarged part of the cross section of the cast-iron cylindrical member shown in FIG. 4. FIG. 実施例の鋳鉄製円筒部材(粗材)の断面の光学顕微鏡写真である。It is an optical microscope photograph of the cross section of the cast-iron cylindrical member (rough material) of an Example. 実施例および比較例の鋳鉄製円筒部材(粗材)の外周面の直下における最小粒子サイズ毎の黒鉛粒子数を示すグラフである。4 is a graph showing the number of graphite particles for each minimum particle size immediately below the outer peripheral surface of cast-iron cylindrical members (coarse materials) of Examples and Comparative Examples. 実施例および比較例の鋳鉄製円筒部材(粗材)の外周面から1.0mmの距離における最小粒子サイズ毎の黒鉛粒子数を示すグラフである。4 is a graph showing the number of graphite particles for each minimum particle size at a distance of 1.0 mm from the outer peripheral surface of cast iron cylindrical members (coarse materials) of Examples and Comparative Examples. 実施例および比較例の鋳鉄製円筒部材(粗材)の外周面から2.0mmの距離における最小粒子サイズ毎の黒鉛粒子数を示すグラフである。4 is a graph showing the number of graphite particles for each minimum particle size at a distance of 2.0 mm from the outer peripheral surface of cast iron cylindrical members (coarse materials) of Examples and Comparative Examples. 実施例および比較例の鋳鉄製円筒部材(粗材)の外周面から3.0mmの距離における最小粒子サイズ毎の黒鉛粒子数を示すグラフである。4 is a graph showing the number of graphite particles for each minimum particle size at a distance of 3.0 mm from the outer peripheral surface of cast iron cylindrical members (coarse materials) of Examples and Comparative Examples. 実施例の鋳鉄製円筒部材(粗材)の外周面から3.5mmの距離における最小粒子サイズ毎の黒鉛粒子数を示すグラフである。4 is a graph showing the number of graphite particles for each minimum particle size at a distance of 3.5 mm from the outer peripheral surface of the cast iron cylindrical member (coarse material) of the example. 実施例および比較例の鋳鉄製円筒部材(粗材)の外周面からの距離に対して、粒子サイズ1μm以上、50μm未満の黒鉛粒子数の変化を示すグラフである。4 is a graph showing changes in the number of graphite particles having a particle size of 1 μm or more and less than 50 μm with respect to the distance from the outer peripheral surface of cast iron cylindrical members (coarse materials) of Examples and Comparative Examples. 実施例の鋳鉄製円筒部材(粗材)の外周面からの距離毎に、最小粒子サイズ毎の黒鉛球状化率を示すグラフである。4 is a graph showing the graphite spheroidization rate for each minimum particle size for each distance from the outer peripheral surface of the cast iron cylindrical member (coarse material) of the example. 実施例および比較例の鋳鉄製円筒部材(粗材)の外周面からの距離に対して、粒子サイズ1μm以上、50μm未満の黒鉛面積率の変化を示すグラフである。4 is a graph showing changes in the area ratio of graphite with a particle size of 1 μm or more and less than 50 μm with respect to the distance from the outer peripheral surface of cast iron cylindrical members (coarse materials) of Examples and Comparative Examples.

以下、添付図面を参照して、本発明に係る鋳鉄製円筒部材およびその製造方法の一実施の形態について説明する。なお、図面は、理解のし易さを優先にして描かれており、縮尺通りに描かれたものではない。 An embodiment of a cast-iron cylindrical member and a method for manufacturing the same according to the present invention will be described below with reference to the accompanying drawings. The drawings are drawn with priority given to ease of understanding, and are not drawn to scale.

先ず、鋳鉄製円筒部材の製造方法の一実施の形態について、図2を参照して説明する。本実施の形態の鋳鉄製円筒摺動部材の製造方法は、図2(a)に示すように、所定の組成を有する溶湯41を準備するステップと、図2(b)に示すように、所定の合金組成を有する黒鉛球状化剤42を溶湯41に添加するステップと、図2(b)又は(c)に示すように、所定の組成を有する接種剤43Aを溶湯41に添加するステップと、図2(c)に示すように、黒鉛球状化剤および接種剤を添加した溶湯44を、接種剤43Bをさらに添加して遠心力鋳造用の円筒金型35に注湯するステップと、注湯から共晶温度まで冷却して固相を晶出させる第一の冷却を行うステップと、第一の冷却よりも小さい冷却速度で、固相を共晶温度から共析温度直下まで冷却する第二の冷却を行い、鋳鉄製円筒摺動部材の粗材を成形するステップと、図示は省略するが、粗材の内周面を切削加工して摺動面となる内周加工面を形成するステップとを含む。各ステップについて以下に説明する。 First, an embodiment of a method for manufacturing a cast-iron cylindrical member will be described with reference to FIG. The method of manufacturing a cast iron cylindrical sliding member according to the present embodiment includes the step of preparing a molten metal 41 having a predetermined composition as shown in FIG. and adding an inoculant 43A having a predetermined composition to the molten metal 41 as shown in FIG. 2(b) or (c); As shown in FIG. 2(c), a step of pouring a molten metal 44 containing a graphite spheroidizing agent and an inoculant into a cylindrical mold 35 for centrifugal force casting after further adding an inoculant 43B; to the eutectic temperature to crystallize the solid phase; A step of forming a rough material for a cast iron cylindrical sliding member by cooling, and a step of cutting the inner peripheral surface of the rough material to form an inner peripheral machined surface that will be the sliding surface, although not shown including. Each step is described below.

(1)溶湯の準備ステップ
円筒金型を用いた遠心鋳造法では、注湯された溶湯の凝固速度が著しく速いため、溶湯から黒鉛を安定して晶出させるために以下のような高C、高Siからなる溶湯が必須となる。鋳鉄製円筒摺動部材を製作するための溶湯41の組成は、質量%で、C:3.5~3.85%、Si:2.3~2.7%、Mn:0.5~1.5%、S:0.005~0.015%を含有し、残部がFe及び不可避的不純物からなり、以下の式1で規定されるCE値が4.45~4.70である。なお、鋳鉄製円筒摺動部材もこのような組成を有するものとなる。
CE値=TC+(Si含有量+P含有量)/3 ・・・(式1)
(1) Molten metal preparation step In the centrifugal casting method using a cylindrical mold, the solidification speed of the poured molten metal is extremely fast, so in order to stably crystallize graphite from the molten metal, the following high C, A molten metal with a high Si content is essential. The composition of the molten metal 41 for manufacturing the cast iron cylindrical sliding member is, in mass%, C: 3.5 to 3.85%, Si: 2.3 to 2.7%, Mn: 0.5 to 1. .5%, S: 0.005-0.015%, the balance being Fe and unavoidable impurities, and the CE value defined by the following formula 1 is 4.45-4.70. A cast-iron cylindrical sliding member also has such a composition.
CE value = TC + (Si content + P content) / 3 (Formula 1)

上記組成を有する溶湯を溶製するために、図2(a)に示すように、高周波誘導溶解炉を用いることが好ましい。誘導コイル32を備えた溶解炉または保持炉(以下、溶解炉)31内に上記組成となるように原材料を溶解・調整し、溶湯41(元湯)を得る。以下、上記組成の各成分およびその含有量について説明する。 In order to melt the molten metal having the above composition, it is preferable to use a high-frequency induction melting furnace as shown in FIG. 2(a). In a melting furnace or holding furnace (hereinafter referred to as a melting furnace) 31 equipped with an induction coil 32, raw materials are melted and adjusted so as to have the above composition to obtain a molten metal 41 (original melt). Each component of the above composition and its content will be described below.

Siは、強力な黒鉛化促進元素であり、溶湯中から黒鉛を優先的に晶出させるという効果を有する。Siが2.3質量%未満の場合、凝固速度が速い遠心鋳造法では、黒鉛ではなくチル(=オーステナイトとセメンタイトの共晶物。レデブライトとも言う)が晶出しやすく、脆化と切削性劣化を招く。一方、Si含有量が増えるとCの固溶度が低下するため、Siが2.7質量%を超えると、過飽和状態のCによって著しいカーボンドロスが発生する。カーボンドロスは溶鉄と比べて比重が小さいため凝固完了前に円筒粗材内周表面に膜状に偏析し、溶湯内から大気中へ放散しようとするガスの移動を妨げて粗材内部にガス欠陥を誘発させてしまう。よって、Siの含有量は2.3~2.7質量%とする。 Si is a strong graphitization promoting element, and has the effect of preferentially crystallizing graphite from the molten metal. When Si is less than 2.3% by mass, in the centrifugal casting method with a high solidification rate, chill (= eutectic of austenite and cementite, also called ledeburite) is likely to crystallize instead of graphite, resulting in embrittlement and deterioration of machinability. Invite. On the other hand, as the Si content increases, the solid solubility of C decreases. Therefore, when the Si content exceeds 2.7% by mass, C in a supersaturated state causes significant carbon dross. Since carbon dross has a smaller specific gravity than molten iron, it segregates in the form of a film on the inner surface of the cylindrical coarse material before the completion of solidification. provokes Therefore, the Si content is set to 2.3 to 2.7% by mass.

Cは、鋳鉄の第一主要元素であり、特異な材料特性を導出する黒鉛を組織内に晶出させるための必須元素である。Siの含有量が2.3~2.7質量%であるため、Cの含有量が3.5%質量未満であると、CE値が共晶組成(すなわち4.3)以下まで低下してしまう。CE値が共晶組成まで低下すると、円筒金型内へ遠心鋳造された溶湯は、凝固速度が大きいために過冷によってチルが晶出しやすく、また黒鉛粒数の減少や黒鉛球状化率を低下させる。一方、C含有量が3.85質量%を超えると、CE値が5.0を超える場合があり、過剰なCの存在によってカーボンドロスやチャンキー黒鉛、爆発状黒鉛などを晶出させて、機械的性質を劣化させる。よって、Cの含有量は3.5~3.85質量%とする。 C is the first major element of cast iron and is an essential element for crystallizing graphite in the structure, which leads to unique material properties. Since the Si content is 2.3 to 2.7% by mass, if the C content is less than 3.5% by mass, the CE value decreases to the eutectic composition (that is, 4.3) or less. put away. When the CE value decreases to the eutectic composition, the molten metal centrifugally cast into the cylindrical mold has a high solidification rate, so chill is likely to crystallize due to supercooling, and the number of graphite grains decreases and the graphite spheroidization rate decreases. Let On the other hand, when the C content exceeds 3.85% by mass, the CE value may exceed 5.0, and the presence of excess C crystallizes carbon dross, chunky graphite, explosive graphite, etc., Degrades mechanical properties. Therefore, the C content should be 3.5 to 3.85% by mass.

CE値は、Fe-C合金に添加される第3元素(すなわち、SiおよびP)が炭素の溶解度に与える影響、さらには炭素の活量の増加又は減少、つまり炭素を黒鉛あるいはセメンタイトとしての晶出のしやすさを表すものであり、鋳鉄の溶解・凝固におけるC、Si、Pの複合化による影響の度合いをC量のみで換算して表したものである。CE値を過共晶範囲である4.45~4.70の範囲にすることにより、薄肉長尺の円筒粗材を凝固速度の大きい遠心鋳造で製造する場合であっても、鋳鉄の凝固において安定した形状・サイズの初晶黒鉛を液相から晶出でき、かつ鋳造欠陥も抑制できる効果がある。なお、CE値を定義する式1中のTCは、固体中炭素・硫黄分析装置や、全有機体炭素計などにより測定されるものである。固体中炭素・硫黄分析装置としては、例えば、株式会社堀場製作所製の型式EMIAシリーズ等がある。
The CE value is the effect of the tertiary elements (i.e., Si and P) added to the Fe—C alloy on the solubility of carbon, as well as the increase or decrease in carbon activity, i.e., the crystallization of carbon as graphite or cementite. It expresses the ease of release, and the degree of influence due to the combination of C, Si, and P in the melting and solidification of cast iron is expressed by converting only the amount of C. By setting the CE value in the range of 4.45 to 4.70, which is the hypereutectic range, even when producing a thin long cylindrical rough material by centrifugal casting with a high solidification rate, in solidification of cast iron There is an effect that primary crystal graphite of stable shape and size can be crystallized from the liquid phase and casting defects can be suppressed. TC in Formula 1 that defines the CE value is measured by a solid carbon/sulfur analyzer, a total organic carbon meter, or the like. Examples of solid carbon/sulfur analyzers include model EMIA series manufactured by Horiba, Ltd., and the like.

Mnは、炭化物の生成を促進し、基地のパーライト析出を促進する作用を有する。Mnを過剰に添加すると、基地のパーライト析出がさらに促進され、かつ粒界への偏析も多くなるため硬さが高まり脆性が増す場合がある。逆に、Mnが少ないと基地内にフェライトの析出が多くなり耐摩耗性が低下する。よって、Mnの含有量は0.5~1.5質量%とする。 Mn has the effect of promoting the formation of carbides and promoting the precipitation of pearlite in the matrix. Excessive addition of Mn further promotes the precipitation of pearlite in the matrix and increases segregation to grain boundaries, which may increase hardness and increase brittleness. Conversely, if the Mn content is low, more ferrite precipitates in the matrix, resulting in lower wear resistance. Therefore, the content of Mn is set to 0.5 to 1.5% by mass.

Pは、黒鉛球状化阻害化元素の一つであり、凝固の終期において共晶セル粒界近傍の液相中でPの濃化を起こし、凝固後共晶セル粒界に硬質なFePを偏析させる。このため、本案ではP添加は不要であり、不可避的不純物として0.02質量%以下に抑えることが好ましい。 P is one of graphite spheroidization-inhibiting elements. At the final stage of solidification, P is concentrated in the liquid phase near the eutectic cell grain boundary, and hard Fe 3 P is formed at the eutectic cell grain boundary after solidification. segregate. Therefore, in the present invention, P addition is unnecessary, and it is preferable to suppress the amount of P as an unavoidable impurity to 0.02% by mass or less.

Sは、不可避的不純物として混入するものであるが、MnやREとの共存によってMnS等の硫化物を溶湯内に形成し、黒鉛晶出の核として作用すると言われている。つまり、適量のS添加は黒鉛粒数を増加させる。しかし、Sの過剰添加は、黒鉛球状化を阻害し、鋳鉄製円筒摺動部材の伸びの低下をもたらす。よって、Sの含有量は0.005~0.015質量%とする。 Although S is an unavoidable impurity, S is said to form sulfides such as MnS in the molten metal when it coexists with Mn and RE, and act as nuclei for graphite crystallization. That is, addition of an appropriate amount of S increases the number of graphite grains. However, excessive addition of S inhibits graphite spheroidization, resulting in a decrease in elongation of the cast iron cylindrical sliding member. Therefore, the S content should be 0.005 to 0.015% by mass.

(2)黒鉛球状化剤の添加ステップ
黒鉛球状化剤42としては、質量%で、Mg:2.0~4.0%と、RE:4.0~6.0%を含有するFe-Si-Mg-RE系合金を用いる。Fe-Si-Mg-RE系合金は、任意にCaを添加してもよい。すなわち、Fe-Si-Mg-Ca-RE系合金を用いてもよい。
(2) Step of adding a graphite spheroidizing agent As the graphite spheroidizing agent 42, Fe—Si containing Mg: 2.0 to 4.0% and RE: 4.0 to 6.0% by mass% -Mg-RE alloy is used. Fe--Si--Mg--RE alloys may optionally contain Ca. That is, an Fe--Si--Mg--Ca--RE alloy may be used.

Mgは、Feに固溶しない元素であり、沸点が低いために高温の鋳鉄溶湯内で微細な気泡を発生させ大気中へ放散する。既述の微細な気泡は球状黒鉛の晶出サイトと言われており球状黒鉛鋳鉄を得るためには殆どがFe-Si-Mg系合金を黒鉛球状化処理剤として使用されている。ここで、本案が示す工法において、1ショット毎に小型取鍋34にて黒鉛球状化処理を行うが、従来のFCD鋳鉄の鋳造で使用されるMg含有量の多い黒鉛球状化処理剤を使用すると、小型取鍋内で溶湯との激しい反応が長く続き小型取鍋受湯後から注湯開始までのリードタイムが長くなって鋳造サイクルタイムが延びてしまう。さらに、反応の激しさによって溶湯内のMg歩留まりが安定しないため、鋳造された粗材の黒鉛球状化率のバラツキも大きくなる。逆に、Mg含有量の少ないFe-Si-Mg系合金を黒鉛球状化剤として使用すると、溶湯内に発生する微小な気泡は少なくなり、かつフェーディング時間も短くなってしまうために、黒鉛粒数の減少や黒鉛球状化率の低下が起こりやすい。よって、黒鉛球状化剤のMgは2.0~4.0質量%のものを使用する。 Mg is an element that does not form a solid solution with Fe, and since it has a low boiling point, it generates fine bubbles in high-temperature molten cast iron and dissipates into the atmosphere. The fine bubbles described above are said to be crystallization sites for spheroidal graphite, and in order to obtain spheroidal graphite cast iron, Fe--Si--Mg alloys are mostly used as graphite spheroidizing agents. Here, in the method shown in this proposal, graphite spheroidizing treatment is performed in a small ladle 34 for each shot, but if a graphite spheroidizing agent with a large Mg content used in conventional FCD cast iron casting is used, , the violent reaction with the molten metal in the small ladle continues for a long time, and the lead time from receiving the molten metal to the start of pouring into the small ladle becomes longer, resulting in a longer casting cycle time. Furthermore, since the yield of Mg in the molten metal is not stable due to the severity of the reaction, variations in the graphite spheroidization ratio of the cast coarse material also increase. Conversely, when an Fe—Si—Mg alloy with a low Mg content is used as a graphite spheroidizing agent, the number of microbubbles generated in the molten metal is reduced and the fading time is shortened. A decrease in the number of particles and a decrease in graphite spheroidization rate are likely to occur. Therefore, a graphite spheroidizing agent containing 2.0 to 4.0% by mass of Mg is used.

黒鉛球状化剤のREは、黒鉛球状化阻害元素の抑制作用やフェーディング防止効果、さらには硫化物形成による球状黒鉛の核生成サイトを形成させるなど強力に黒鉛化を促進させるため、凝固速度の大きな遠心鋳造法では必要不可欠な元素である。このため、使用する黒鉛球状化剤に含有されるREは1.5質量%以上、好ましくは4.0質量%以上とする。一方、REが6.0質量%を超えると、黒鉛の球状化が阻害されチャンキー状の黒鉛が晶出しやすくなる。よって、REは1.5~6.0質量%とする。 RE, which is a graphite spheroidizing agent, strongly promotes graphitization by suppressing elements that inhibit graphite spheroidization, preventing fading, and forming nucleation sites for spheroidal graphite through sulfide formation. It is an essential element in large centrifugal casting processes. Therefore, the amount of RE contained in the graphite spheroidizing agent used is set to 1.5% by mass or more, preferably 4.0% by mass or more. On the other hand, when RE exceeds 6.0% by mass, spheroidization of graphite is inhibited, and chunky graphite tends to crystallize. Therefore, RE is set to 1.5 to 6.0% by mass.

Si、Caの含有量は特に限定されないが、Siは40~70質量%含有することが好ましく、これにより、接種剤と同様に溶湯からの黒鉛晶出を促進することができる。Caは、1.5~5.0質量%含有することが好ましく、これにより、溶湯を強力に脱酸することができるためSiと同様、溶湯からの黒鉛晶出を促進することができる。 Although the contents of Si and Ca are not particularly limited, it is preferable that the Si content is 40 to 70% by mass. Ca is preferably contained in an amount of 1.5 to 5.0% by mass. Ca can strongly deoxidize the molten metal, and can promote crystallization of graphite from the molten metal in the same manner as Si.

残部はFeである。これら成分を合金にして、黒鉛球状化剤42として使用する。黒鉛球状化剤42は、塊状形体のものを用いることが好ましく、例えば、サイズは10mm以下が好ましく、5mm以下の塊がより好ましい。添加量としては、溶湯に対して0.2~2質量%の範囲で添加することが好ましい。 The balance is Fe. These components are alloyed and used as the graphite spheroidizing agent 42 . The graphite spheroidizing agent 42 is preferably in the form of lumps, for example, the size is preferably 10 mm or less, more preferably 5 mm or less. The addition amount is preferably in the range of 0.2 to 2% by mass with respect to the molten metal.

黒鉛球状化剤42は、置き注ぎ法によって溶湯41に添加することが好ましく、図2(b)に示すように、黒鉛球状化剤42は小型取鍋34の底に配置しておき、これに溶湯41を注湯することで、溶湯41を黒鉛球状化処理する。小型取鍋34へは、溶解炉31から1回注湯分の溶湯(元湯)41を小出しに出湯する。この時の湯温は1500~1550℃とすることが好ましい。これは、小型取鍋34から円筒金型35に注湯する際の溶湯の温度は、小型取鍋34への配湯や、黒鉛球状化剤42および接種剤43との反応により、出湯時の湯温から最大100℃程度低下することから、出湯時の湯温の上記の範囲にすることで、注湯時の湯温を望ましい1400~1450℃にすることができる。 The graphite spheroidizing agent 42 is preferably added to the molten metal 41 by a pouring method, and as shown in FIG. By pouring the molten metal 41, the molten metal 41 is subjected to graphite spheroidizing treatment. To the small ladle 34, the molten metal (original molten metal) 41 for one pouring is poured out from the melting furnace 31 in small amounts. The hot water temperature at this time is preferably 1500 to 1550°C. This is because the temperature of the molten metal when it is poured from the small ladle 34 into the cylindrical mold 35 varies depending on the distribution of the molten metal to the small ladle 34 and the reaction with the graphite spheroidizing agent 42 and the inoculant 43 at the time of pouring. Since the temperature of the hot water is lowered by about 100°C at the maximum, the temperature of the hot water at the time of pouring can be set to the desired 1400 to 1450°C by setting the temperature of the hot water at the time of tapping to the above range.

(3)接種剤の添加ステップ
接種は、黒鉛化能力が高められ、チル防止、黒鉛形状の改善等の効果が得られることから、黒鉛球状化処理とともに接種が併せて行われている。接種剤としては、一般にFe-Si系合金が用いられているが、本実施の形態では、小型取鍋34内に溶湯41を受湯する際に、黒鉛球状化剤42と共にBiを含有していない接種剤43Aを、注湯重量に対して0.2~0.8質量%投入し、置き注ぎ法にて接種処理を行い、さらに既述の黒鉛球状化及び接種処理を行った溶湯44を回転金型内に注湯する際に、Biを含有するFe-Si-Bi系接種剤43Bを、溶湯重量に対し0.1質量%~0.3質量%注湯流接種(後期接種)する。これにより、上述した黒鉛球状化剤42の所定の組成との相乗効果によって、黒鉛粒数は著しく増加し、チルの発生も防止できる。よって、微小な黒鉛の黒鉛粒子数を1mm当たり1000個以上に増加させることができる。なお、上記のBiを含有する接種剤を、図2(b)の接種剤43Aとして直接使用し、図2(c)の接種剤43Bの注湯流接種を省くことができるが、上記注湯流接種を行った場合と比べて黒鉛粒数は低下する。
(3) Inoculant Addition Step Inoculation is performed together with graphite spheroidizing treatment because the inoculation enhances the graphitization ability, prevents chilling, improves the shape of graphite, and the like. As an inoculant, an Fe—Si alloy is generally used, but in the present embodiment, when the molten metal 41 is received in the small ladle 34, Bi is contained together with the graphite spheroidizing agent 42. 0.2 to 0.8% by mass of the inoculant 43A is added to the weight of the molten metal to be poured, and the molten metal 44 is inoculated by the pouring method. When the molten metal is poured into the rotary mold, the Fe—Si—Bi-based inoculant 43B containing Bi is inoculated by pouring 0.1% by mass to 0.3% by mass of the weight of the molten metal (late inoculation). . As a result, the synergistic effect with the predetermined composition of the graphite spheroidizing agent 42 described above significantly increases the number of graphite grains and prevents the occurrence of chill. Therefore, the number of fine graphite particles can be increased to 1000 or more per 1 mm 2 . The inoculant containing Bi described above can be directly used as the inoculant 43A in FIG. The number of graphite grains is reduced compared to the case of flow inoculation.

Fe-Si-Bi系接種剤における各成分の含有量は、特に限定されないが、Siは50~75質量%が好ましく、Biは0.5~2質量%が好ましい。任意に、REを0.5~2.0質量%で含有してもよい。残部はFeの他、Ca等の不可避的不純物である。Fe-Si-Bi系接種剤は、粒状の形態で用いることが好ましく、例えば、図2(c)の接種剤43Bのような注湯流接種で使用する場合であれば、粒子サイズは1mm以下が好ましい。また、図2(b)の接種剤43Aのような置き注ぎで使用する場合であれば、3~10mmサイズが好ましい。添加量としては、少量で効果が得られるため溶湯に対して0.1~1質量%の範囲で添加することが好ましい。なお、Fe-Si-Bi系接種剤と組み合わせて、その他の接種剤を用いてもよく、例えば、Fe-Si-Al系接種剤やSrを含有しない他のFe-Si系接種剤を小型取鍋34内で置き注ぎ法で接種した後、注湯流接種のみに上記Fe-Si-Bi系接種剤を用いてもよい。なお、Fe-Si-Sr系の接種剤を使用すると、SrがRE(主な元素はCe)との反応によって互いに有する黒鉛化の効果が減少しチル化を促進してしまう。 The content of each component in the Fe—Si—Bi-based inoculant is not particularly limited, but Si is preferably 50 to 75% by mass, and Bi is preferably 0.5 to 2% by mass. Optionally, 0.5 to 2.0 wt% RE may be included. The balance is Fe and unavoidable impurities such as Ca. The Fe—Si—Bi-based inoculant is preferably used in a granular form. For example, when it is used for pouring inoculation such as the inoculant 43B in FIG. 2(c), the particle size is 1 mm or less. is preferred. Also, if the inoculant 43A of FIG. 2(b) is to be used for pouring, a size of 3 to 10 mm is preferable. As for the amount to be added, it is preferable to add in the range of 0.1 to 1% by mass based on the molten metal because the effect can be obtained with a small amount. In addition, other inoculants may be used in combination with the Fe—Si—Bi inoculant. After inoculating in the pan 34 by the pouring method, the Fe--Si--Bi inoculant may be used only for pouring inoculation. When an Fe--Si--Sr-based inoculant is used, Sr reacts with RE (the main element is Ce) to reduce the mutual graphitization effect and promote chilling.

Fe-Si-Bi系接種剤は、既述の通り、置き注ぎ法では、図2(b)に示すように、一次接種剤43AとしてFe-Si-Bi系接種剤を小型取鍋34の底に配置しておき、これに溶湯41を注湯することで、溶湯41の接種処理を行う。また、注湯流接種では、図2(c)に示すように、小型取鍋34から円筒金型35内に注湯する溶湯44中に、二次接種剤43BとしてFe-Si-Bi系接種剤を添加して接種処理を行う。注湯重量に対し0.1質量%の添加でも多くの黒鉛粒数増加が得られるため、Fe-Si-Bi系接種剤は注湯時に溶湯に添加して行う注湯流接種を行うことがより好ましい。 As described above, the Fe—Si—Bi based inoculant is placed in the bottom of the small ladle 34 as the primary inoculant 43A, as shown in FIG. The molten metal 41 is inoculated by pouring the molten metal 41 into it. In addition, in the pouring flow inoculation, as shown in FIG. 2(c), Fe—Si—Bi system inoculum is added as a secondary inoculant 43B into the molten metal 44 poured into the cylindrical mold 35 from the small ladle 34. Inoculation treatment is performed by adding the agent. Since the number of graphite grains can be increased significantly even when the amount is 0.1% by mass based on the weight of the molten metal, the Fe—Si—Bi inoculant can be added to the molten metal during pouring to perform pouring inoculation. more preferred.

(4)円筒金型への注湯ステップ
鋳鉄製円筒摺動部材を遠心鋳造するための円筒金型35は、図2(c)に示すように、その内周面に塗型層36が形成されている。この塗型層36は、鋳鉄製円筒摺動部材を鋳ぐるみする際に周辺との密着性を高めるために、鋳鉄製円筒摺動部材の外周面に複数の凸部突起を形成するためのものである。塗型層36を形成する方法としては、回転する円筒金型35の内周面に、ベントナイト等の粘結剤や耐火材を所定の配合比率にて水と混合した塗型スラリーを塗布し、乾燥・固化させることで、凸状突起に対応する凹部を有する塗型層36を形成することができる。塗型層36の厚さは約1mmが好ましい。
(4) Pouring Step into Cylindrical Mold As shown in FIG. It is This coating layer 36 is for forming a plurality of convex projections on the outer peripheral surface of the cast-iron cylindrical sliding member in order to increase the adhesion to the surroundings when casting the cast-iron cylindrical sliding member. is. As a method for forming the mold coating layer 36, a mold coating slurry is applied to the inner peripheral surface of the rotating cylindrical mold 35. By drying and solidifying, the mold coating layer 36 having concave portions corresponding to the convex protrusions can be formed. The thickness of the coating layer 36 is preferably about 1 mm.

そして、黒鉛球状化処理および接種処理を行った溶湯44を、回転する円筒金型35内に小型取鍋34から注湯し、遠心鋳造を行う。円筒金型35の回転数は、内周面における遠心加速度が110~130G相当の回転数とすることが好ましい。円筒金型35内に注湯する溶湯44の量は、鋳鉄製円筒摺動部材(粗材)の厚さが6.0~8.0mmとなる量とすることが好ましい。詳しくは後述するが、鋳鉄製円筒摺動部材(粗材)の内周面が切削加工されるため、所望する鋳鉄製円筒摺動部材の厚さよりも2.5~4.0mm厚くしておくことが好ましい。 Then, the molten metal 44 subjected to graphite spheroidization and inoculation is poured from a small ladle 34 into a rotating cylindrical mold 35 for centrifugal casting. It is preferable that the rotational speed of the cylindrical mold 35 is such that the centrifugal acceleration on the inner peripheral surface is equivalent to 110 to 130G. The amount of the molten metal 44 poured into the cylindrical mold 35 is preferably such that the cast iron cylindrical sliding member (rough material) has a thickness of 6.0 to 8.0 mm. Although details will be described later, since the inner peripheral surface of the cast iron cylindrical sliding member (rough material) is machined, it should be 2.5 to 4.0 mm thicker than the desired thickness of the cast iron cylindrical sliding member. is preferred.

(5)第一および第二の冷却ステップ
円筒金型35を回転させながら冷却を行うことで、溶湯が固まり鋳鉄製円筒摺動部材の粗材が成形されるが、この溶湯の冷却を、注湯から共晶温度まで冷却して固相(初晶黒鉛と共晶黒鉛+共晶オーステナイト)を晶出させる第一の冷却ステップと、第一の冷却ステップよりも小さい冷却速度で、固相を共晶温度から共析温度直下まで冷却する第二の冷却ステップとで行うことで、粗材の外周面から内周面に向けて、初晶黒鉛のみから、初晶黒鉛+共晶黒鉛からなる黒鉛分布を形成させるとともに、外周面から内周面に向けて黒鉛面積率を高めることができる。
(5) First and Second Cooling Steps By cooling while rotating the cylindrical mold 35, the molten metal solidifies and the rough material of the cast iron cylindrical sliding member is formed. A first cooling step in which a solid phase (primary graphite and eutectic graphite + eutectic austenite) is crystallized by cooling from hot water to the eutectic temperature, and a cooling rate lower than that of the first cooling step to form a solid phase. By performing the second cooling step of cooling from the eutectic temperature to just below the eutectoid temperature, from the outer peripheral surface to the inner peripheral surface of the coarse material, from only primary crystal graphite to primary crystal graphite + eutectic graphite A graphite distribution can be formed, and the graphite area ratio can be increased from the outer peripheral surface to the inner peripheral surface.

このような異なる冷却速度としては、例えば、第一の冷却ステップを5℃/秒以上、15℃/秒以下の範囲で行い、第二の冷却ステップを1℃/秒以上、5℃/秒未満の範囲で行ってもよい。第一の冷却を行う方法としては、例えば、回転金型35を外周より水冷することで、上記の冷却速度で冷却できるとともに、粗材の凝固方向を外周面から内周面へと指向させることもできる。第二の冷却を行う方法としては、水冷を止めて、金型内で粗材を放冷することで、冷却速度を緩和させることができる。特に、粗材の内周面側は輻射熱によって冷却速度をより緩和される。 As such different cooling rates, for example, the first cooling step is performed in the range of 5 ° C./sec or more and 15 ° C./sec or less, and the second cooling step is 1 ° C./sec or more and less than 5 ° C./sec. can be done within the range of As a first cooling method, for example, by water-cooling the rotary mold 35 from the outer periphery, it is possible to cool at the above-described cooling rate, and the solidification direction of the coarse material is oriented from the outer peripheral surface to the inner peripheral surface. can also As a second cooling method, the cooling rate can be moderated by stopping the water cooling and allowing the rough material to cool in the mold. In particular, the cooling rate of the inner peripheral surface of the rough material is more moderated by the radiant heat.

特に、鋳鉄製円筒摺動部材において黒鉛粒子数および黒鉛面積率が内周面に向けて漸次、増加する変曲点が生じるのは、初晶から共晶の固液共存区間内ΔTの温度勾配によるものと考えられる。例えば、円筒金型35の水冷時間が極端に短い場合、初晶開始から共晶までの間のΔTの温度勾配は小さく、固液共存する時間が増す。ここで、溶湯はそのCE値から過共晶組成であるため、液中より最初に晶出する固体は初晶黒鉛である。初晶黒鉛と液相が共存する状態において遠心力が作用すると円筒金型35と接する粗材の外周面から内周面に向けて凝固が進行するものの、初晶黒鉛は液相と比べて著しく比重が小さいために、粗材の外周面側から内周面方向に向けて移動しつつ成長する。これが、外周面からのある距離の位置から、内周面に向かって黒鉛粒子数や黒鉛面積率が漸次、増加する変曲点を持つようになるメカニズムと考えられる。逆に、水冷時間が長いとΔTの温度勾配が大きく、固液共存可能な時間が短くなるため、初晶黒鉛の移動が少ないまま共晶凝固が完了してしまい、上記の変曲点を持った黒鉛粒子数や黒鉛面積率の増加傾向は認められ難くなると考えられる。 In particular, in the cast iron cylindrical sliding member, the number of graphite particles and the graphite area ratio gradually increase toward the inner peripheral surface, and the point of inflection occurs because the temperature gradient ΔT in the solid-liquid coexistence interval from the primary crystal to the eutectic This is thought to be due to For example, if the water-cooling time of the cylindrical mold 35 is extremely short, the temperature gradient of ΔT from the start of the primary crystal to the eutectic is small, and the solid-liquid coexistence time increases. Here, since the molten metal has a hypereutectic composition from its CE value, the first solid crystallized from the liquid is primary crystal graphite. When the centrifugal force acts in a state where the primary crystal graphite and the liquid phase coexist, solidification proceeds from the outer peripheral surface of the rough material in contact with the cylindrical mold 35 toward the inner peripheral surface, but the primary crystal graphite is significantly stronger than the liquid phase. Since the specific gravity is small, it grows while moving from the outer peripheral surface side of the rough material toward the inner peripheral surface direction. This is considered to be the mechanism of having an inflection point at which the number of graphite particles and the graphite area ratio gradually increase toward the inner peripheral surface from a position at a certain distance from the outer peripheral surface. Conversely, if the water cooling time is long, the temperature gradient of ΔT is large and the solid-liquid coexistence time is short. It is thought that the increasing trend of the number of graphite particles and the graphite area ratio will be difficult to recognize.

(6)切削加工ステップ
上記の冷却によって得られた鋳鉄製円筒摺動部材の粗材は、その内周面を切削加工や研削加工によって摺動面となる内周加工面を形成する。例えば、旋盤等による切削加工の後、切削加工面をホーニング加工によって内周加工面を得ることができる。鋳鉄製円筒摺動部材の厚さは、例えば、3.5~4.0mmとすることができる。
(6) Cutting Step The rough material of the cast-iron cylindrical sliding member obtained by the above-described cooling is subjected to cutting or grinding to form an inner peripheral machined surface that serves as a sliding surface. For example, after cutting with a lathe or the like, the machined surface can be honed to obtain an inner peripheral machined surface. The thickness of the cast-iron cylindrical sliding member can be, for example, 3.5 to 4.0 mm.

また、切削加工によって得られた内周加工面に、更にレーザ照射を施すことで、内周加工面から露出した黒鉛を気化消失させ、内周加工面に微小な凹状ディンプルを形成してもよい。これにより、内周加工面の表層に硬質なマルテンサイト組織を形成できるため、耐面圧性能を向上させることができる。更に、内周加工面における黒鉛は、粒子サイズが1~10μmのものが90%以上を占めていることから、黒鉛粒子が除去された部分に対応する多数の微小凹状ディンプルが形成される。よって、潤滑油の油溜りとなり、全体に亘って均一な油膜が形成できるため、更なるフリクション低減が期待できる。 Further, the inner peripheral processed surface obtained by cutting may be further subjected to laser irradiation to vaporize and disappear the graphite exposed from the inner peripheral processed surface, thereby forming fine concave dimples on the inner peripheral processed surface. . As a result, since a hard martensite structure can be formed on the surface layer of the inner peripheral machined surface, surface pressure resistance performance can be improved. Furthermore, since 90% or more of the graphite on the inner peripheral processed surface has a particle size of 1 to 10 μm, a large number of fine concave dimples are formed corresponding to the portions where the graphite particles have been removed. As a result, lubricating oil accumulates, and a uniform oil film can be formed over the entire surface, so that further reduction of friction can be expected.

このようにして得られた鋳鉄製円筒摺動部材を図3~図5に示す。図3~図5に示すように、鋳鉄製円筒摺動部材11はその外周面13に、円筒金型の内周面に設けた塗型層の凹部に応じた複数の凸状突起15が形成されている。鋳鉄製円筒摺動部材11の内周面14は、切削加工によって摺動面が形成されている。外周面から内周面に向かう方向を、鋳鉄製円筒摺動部材11の径方向と呼ぶ。また、外周面から内周面までの距離を、鋳鉄製円筒摺動部材11の厚さと呼ぶ。 The cast iron cylindrical sliding member thus obtained is shown in FIGS. 3 to 5. FIG. As shown in FIGS. 3 to 5, the cast iron cylindrical sliding member 11 has an outer peripheral surface 13 formed with a plurality of convex projections 15 corresponding to the concave portions of the coating layer provided on the inner peripheral surface of the cylindrical mold. It is The inner peripheral surface 14 of the cast-iron cylindrical sliding member 11 is cut to form a sliding surface. The direction from the outer peripheral surface to the inner peripheral surface is called the radial direction of the cast iron cylindrical sliding member 11 . Also, the distance from the outer peripheral surface to the inner peripheral surface is called the thickness of the cast iron cylindrical sliding member 11 .

鋳鉄製円筒摺動部材11の組成は、質量%で、C:3.5~3.85%、Si:2.3~2.7%、Mn:0.5~1.5%、S:0.005~0.015%を含有し、残部がFe及び不可避的不純物からなり、CE値が4.45~4.70である。上述した溶湯の組成と実質的に同様であるのは、添加した黒鉛球状化剤と接種剤が溶湯に対し少量であるとともに、黒鉛球状化剤と接種剤の各成分の沸点からほとんどが蒸発するからである。但し、黒鉛球状化剤におけるMgは、全てが蒸発する訳ではなく、鋳鉄製円筒摺動部材11に不可避的不純物として0.005~0.04%で含有される。また、接種剤におけるBiは全てが蒸発する訳ではなく、鋳鉄製円筒摺動部材11に不可避的不純物として0.1~30ppmで含有される。Biは、高周波誘導結合プラズマ発光分光分析法(ICP-MS法)により定量することができる。 The composition of the cast iron cylindrical sliding member 11 is, in mass %, C: 3.5 to 3.85%, Si: 2.3 to 2.7%, Mn: 0.5 to 1.5%, S: It contains 0.005-0.015%, the balance being Fe and unavoidable impurities, and the CE value is 4.45-4.70. The composition of the molten metal is substantially the same as described above, because the added graphite spheroidizing agent and inoculant are in small amounts relative to the molten metal, and most of the components of the graphite spheroidizing agent and inoculant evaporate from their boiling points. It is from. However, not all Mg in the graphite spheroidizing agent evaporates, and is contained in the cast iron cylindrical sliding member 11 as an unavoidable impurity at 0.005 to 0.04%. Moreover, not all of the Bi in the inoculant evaporates, and is contained in the cast-iron cylindrical sliding member 11 as an unavoidable impurity at 0.1 to 30 ppm. Bi can be quantified by high frequency inductively coupled plasma atomic emission spectrometry (ICP-MS method).

鋳鉄製円筒摺動部材11の断面には、粒子サイズが1μm以上、50μm未満の粒状または球状の黒鉛の黒鉛粒子数が、1mm当たり1000個以上存在する。このような微小な粒状または球状の黒鉛が多数存在することで、鋳鉄製円筒摺動部材11のヤング率および強度をFC鋳鉄よりも優れた球状黒鉛鋳鉄(FCD鋳鉄)並みに向上させることができる。また、粒子サイズが1μm以上、50μm未満の粒状または球状の黒鉛の黒鉛面積率は5%以上であり、上記の黒鉛粒子数が、鋳鉄製円筒摺動部材11の外周面13から内周面14に向かって増加しており、且つ上記の黒鉛面積率も、鋳鉄製円筒摺動部材11の外周面13から内周面14に向かって増加している。これにより黒鉛の粒子間距離が短縮化していることから、黒鉛の固体潤滑効果により、内周面14において優れた摺動特性を発揮することができる。このように、本実施の形態の鋳鉄製円筒摺動部材11は、内周面14に高い摺動性を確保しつつ、高強度を有するものである。 In the cross section of the cast-iron cylindrical sliding member 11, there are 1000 or more granular or spherical graphite particles per 1 mm 2 having a particle size of 1 μm or more and less than 50 μm. Due to the presence of a large number of such fine granular or spherical graphite, the Young's modulus and strength of the cast iron cylindrical sliding member 11 can be improved to the same level as spheroidal graphite cast iron (FCD cast iron), which is superior to FC cast iron. . In addition, the graphite area ratio of granular or spherical graphite having a particle size of 1 μm or more and less than 50 μm is 5% or more, and the number of graphite particles is from the outer peripheral surface 13 to the inner peripheral surface 14 of the cast iron cylindrical sliding member 11. , and the graphite area ratio also increases from the outer peripheral surface 13 toward the inner peripheral surface 14 of the cast iron cylindrical sliding member 11 . As a result, the distance between particles of graphite is shortened, so that the inner peripheral surface 14 can exhibit excellent sliding properties due to the solid lubricating effect of graphite. Thus, the cast-iron cylindrical sliding member 11 of the present embodiment has high strength while ensuring high slidability on the inner peripheral surface 14 .

以下、本発明の実施例および比較例について説明する。 EXAMPLES Examples and comparative examples of the present invention will be described below.

先ず、鋳鉄製円筒摺動部材のための円筒金型を作製した。予熱した内径約80mmの円筒形状の金型を回転させ、内周面における遠心加速度が約15G相当の回転数にて塗型スラリーを塗布し、金型回転を維持したまま乾燥・固化させた。これにより、約1mmの一様な厚さの塗型層を金型内周面に形成して、当該部材用の円筒金型を完成させた。 First, a cylindrical mold for a cast-iron cylindrical sliding member was produced. A preheated cylindrical mold with an inner diameter of about 80 mm was rotated, and the mold coating slurry was applied at a rotation speed corresponding to a centrifugal acceleration of about 15 G on the inner peripheral surface, and dried and solidified while maintaining the mold rotation. As a result, a mold coating layer having a uniform thickness of about 1 mm was formed on the inner peripheral surface of the mold to complete a cylindrical mold for the member.

次に、鋳鉄製円筒摺動部材を製作するための溶湯として、高周波誘導溶解炉にて、質量%で、C:3.75%、Si:2.1%、Mn:0.8%、P:0.02%、S:0.010%となるよう原材料を配合・溶解し、これを元湯とした。 Next, as a molten metal for manufacturing a cast iron cylindrical sliding member, in a high-frequency induction melting furnace, C: 3.75%, Si: 2.1%, Mn: 0.8%, P : 0.02%, S: 0.010%.

[比較例1]
小型取鍋の底に、黒鉛球状化剤としてFe-Si-Mg-Ca-RE合金(粒サイズは1~5mm、添加量は対受湯量0.85質量%)と、一次接種剤としてFe-Si-Sr系接種剤(組成は、質量%で、Si:75%、Sr:1%、Fe:残部、粒サイズ:1~6mm、添加量:対受湯量0.6質量%)とを配置した後、上記の溶解炉より1回注湯分の元湯を小型取鍋へ小出しに出湯した。この時の湯温は、1518℃であった。そして、このように黒鉛球状化処理、接種処理を行った溶湯を、遠心加速度が約120G相当の回転数で回転させた上記の円筒金型内に注湯し、遠心鋳造を行った。金型外周面の水冷時間は、注湯開始直後から40秒間行い、その後は、水冷を止めて、冷却速度を緩和させた。これにより長尺・薄肉の鋳鉄製円筒摺動部材(粗材)を得た。
[Comparative Example 1]
At the bottom of a small ladle, Fe-Si-Mg-Ca-RE alloy (grain size: 1 to 5 mm, addition amount: 0.85% by mass based on the amount of hot water) as a graphite spheroidizing agent, and Fe- as a primary inoculant Si—Sr-based inoculant (composition in mass %, Si: 75%, Sr: 1%, Fe: balance, grain size: 1 to 6 mm, amount added: 0.6% by mass based on the amount of hot water) After that, the original hot water for one pouring from the melting furnace was poured into a small ladle. The hot water temperature at this time was 1518°C. Then, the molten metal subjected to the graphite spheroidization treatment and the inoculation treatment was poured into the cylindrical mold rotated at a rotation speed corresponding to a centrifugal acceleration of about 120 G, and centrifugal casting was performed. The water cooling time of the outer peripheral surface of the mold was performed for 40 seconds immediately after the start of pouring, and thereafter the water cooling was stopped to moderate the cooling rate. As a result, a long and thin cast iron cylindrical sliding member (coarse material) was obtained.

[実施例1]
鋳鉄の主要元素の一つであるSは、後工程で添加する黒鉛球状化剤に含まれるRE(主成分はCe)との反応によって黒鉛晶出を著しく促す効果を有するが、Srが介在すると優先的にCeが消費されてしまうため、Srを含む接種剤を使用した比較例1では黒鉛粒数の著しい増加は得られず基地内にはチルが晶出した。
[Example 1]
S, which is one of the main elements of cast iron, has the effect of significantly promoting graphite crystallization by reaction with RE (main component is Ce) contained in the graphite spheroidizing agent added in the subsequent process. Since Ce was preferentially consumed, in Comparative Example 1 using an inoculant containing Sr, a significant increase in the number of graphite grains was not obtained, and chill was crystallized in the matrix.

そのため、Srを含む接種剤を使用しない実施例1では、Fe-S合金を溶解炉内の残湯に添加してSを0.012%に調整してから元湯として使用した。また実施例1では、一次接種剤として比較例1のFe-Si-Sr系接種剤に代えて、Fe-Si-Al系接種剤(組成は、質量%で、Si:75%、Al:1.5%、Fe:残部、粒サイズは8mm以下、添加量は対受湯量0.6質量%)を用いた。更に、実施例1では、二次接種剤として、Fe-Si-Bi系接種剤(組成は、質量%で、Si:73%、Bi:1%、RE:1%、Fe:残部、粒サイズ:0.2~0.8mm、添加量:対注湯量0.2質量%)を、小型取鍋から円筒金型内に注湯する溶湯中に添加する注湯流接種を行った。そして、上記に加え、溶解炉から小型取鍋への出湯時の湯温が1516℃であったこと、水冷時間を注湯開始直後から50秒間行ったこと以外は比較例1と同様にして遠心鋳造を行い、長尺・薄肉の鋳鉄製円筒摺動部材(粗材)を得た。 Therefore, in Example 1, which does not use an inoculant containing Sr, an Fe—S alloy was added to the residual melt in the melting furnace to adjust the S content to 0.012%, and then used as the base melt. Further, in Example 1, instead of the Fe--Si--Sr-based inoculant of Comparative Example 1 as the primary inoculant, an Fe--Si--Al-based inoculant (composition, in mass %, Si: 75%, Al: 1 0.5%, Fe: balance, grain size of 8 mm or less, amount added: 0.6% by mass based on the amount of molten metal). Furthermore, in Example 1, as a secondary inoculant, an Fe—Si—Bi inoculant (composition, in mass %, Si: 73%, Bi: 1%, RE: 1%, Fe: balance, grain size : 0.2 to 0.8 mm, addition amount: 0.2% by mass of the amount of molten metal to be poured) was added to the molten metal poured into the cylindrical mold from a small ladle to perform pouring flow inoculation. In addition to the above, the centrifugation was performed in the same manner as in Comparative Example 1 except that the temperature of the hot water was 1516 ° C. when it was discharged from the melting furnace to the small ladle, and that the water cooling time was 50 seconds immediately after the start of pouring. Casting was performed to obtain a long, thin-walled cast-iron cylindrical sliding member (coarse material).

[比較例2]
比較例2では、二次接種剤として実施例1のFe-Si-Bi系接種剤に代えて、Fe-Si-Al系接種剤(組成は、質量%で、Si:75%、Al:1.5%、Fe:残部、粒サイズは0.1~0.8mm、添加量は対注湯量0.2質量%)を用いたこと、溶解炉から小型取鍋への出湯時の湯温が1507℃であったこと以外は実施例1と同様にして遠心鋳造を行い、長尺・薄肉の鋳鉄製円筒摺動部材(粗材)を得た。
[Comparative Example 2]
In Comparative Example 2, instead of the Fe--Si--Bi-based inoculant of Example 1 as the secondary inoculant, an Fe--Si--Al-based inoculant (composition, in mass %, Si: 75%, Al: 1 .5%, Fe: balance, grain size is 0.1 to 0.8 mm, addition amount is 0.2% by mass based on the amount of molten metal poured), and the hot water temperature when tapping from the melting furnace to the small ladle Centrifugal casting was performed in the same manner as in Example 1, except that the temperature was 1507° C., to obtain a long and thin cast iron cylindrical sliding member (rough material).

上述したように溶湯中のSの含有量の関係から、比較例1、実施例1、比較例2の順で鋳鉄製円筒摺動部材(粗材)を製作した。これら実施例、比較例の黒鉛球状化処理、接種処理、および冷却の各条件について、表1にまとめた。 As described above, cast iron cylindrical sliding members (coarse materials) were manufactured in the order of Comparative Example 1, Example 1, and Comparative Example 2 based on the relationship of the S content in the molten metal. Table 1 summarizes the graphite spheroidization treatment, inoculation treatment, and cooling conditions of these examples and comparative examples.

Figure 2023001684000002
Figure 2023001684000002

比較例1、実施例1、比較例2の各鋳鉄製円筒摺動部材(粗材)を切断し、その断面を光学顕微鏡(オリンパス株式会社製のOLYMPUS GX51)を用いて観察するとともに、画像解析ソフト(オリンパス株式会社製のOLYMPUS Stream Basic)を用いて、粒状または球状の黒鉛の黒鉛粒子数、黒鉛球状化率、黒鉛面積率を測定した。 Each cast iron cylindrical sliding member (rough material) of Comparative Example 1, Example 1, and Comparative Example 2 was cut, and the cross section was observed using an optical microscope (OLYMPUS GX51 manufactured by Olympus Corporation), and image analysis was performed. Using software (OLYMPUS Stream Basic manufactured by Olympus Corporation), the number of graphite particles, the graphite spheroidization rate, and the graphite area ratio of granular or spherical graphite were measured.

検鏡面は、切断面をエメリー紙にて水研後、バフ研磨した。検鏡面に腐食は観察されなかった。観察倍率は100倍とし、観察視野は1試料あたり5視野とした。粒状または球状の黒鉛粒子の検出サイズは、≧1μm、≧3μm、≧5μm、≧7.5μm、≧10μm、≧15μm、≧20μm、≧25μm、≧35μm、≧50μm毎で計測した。 For the specular surface, the cut surface was wet-polished with emery paper and then buffed. No corrosion was observed on the speculum surface. The observation magnification was 100 times, and the observation field was five fields per sample. The detected size of granular or spherical graphite particles was measured every ≧1 μm, ≧3 μm, ≧5 μm, ≧7.5 μm, ≧10 μm, ≧15 μm, ≧20 μm, ≧25 μm, ≧35 μm, ≧50 μm.

実施例1の鋳鉄製円筒摺動部材(粗材)の断面の光学顕微鏡写真を図6に示す。図6に示すように、鋳鉄製円筒摺動部材(粗材)の外周面には、凸状網状突起が形成され、その基底面13Bからの距離を、0.5mmから4.0mmまでの0.5mm毎に印しを付している。例えば、部材をシリンダスリーブとして使用する場合、粗材は基底面13Bから3.5mm以降の部分が加工にて削除されることになり、よって、シリンダスリーブの摺動面として利用され得る領域は、基底面13Bから1.5~3.5mmの範囲となる。図6の光学顕微鏡写真からわかるように、上記の方法によって得られた鋳鉄製円筒摺動部材(粗材)には、外周面から内周面にわたって微小な粒状または球状の黒鉛粒子が晶出していた。 FIG. 6 shows an optical microscope photograph of a cross section of the cast-iron cylindrical sliding member (coarse material) of Example 1. As shown in FIG. As shown in FIG. 6, on the outer peripheral surface of the cast-iron cylindrical sliding member (coarse material), convex net-like projections are formed, and the distance from the base surface 13B is 0.5 mm to 4.0 mm. A mark is attached every 5 mm. For example, when the member is used as a cylinder sleeve, the rough material is processed to remove the portion after 3.5 mm from the base surface 13B, so the area that can be used as the sliding surface of the cylinder sleeve is The range is 1.5 to 3.5 mm from the base surface 13B. As can be seen from the optical microscope photograph in FIG. 6, in the cast iron cylindrical sliding member (coarse material) obtained by the above method, minute granular or spherical graphite particles are crystallized from the outer peripheral surface to the inner peripheral surface. rice field.

比較例1、実施例1、比較例2の各鋳鉄製円筒摺動部材(粗材)の基底面の直下、並びに基底面から1.0mm、2.0mm、および3.0mmの距離の位置における粒状または球状の黒鉛の黒鉛粒子数のグラフを図7~図10に示す。黒鉛粒子数は、部材断面1mm当たりの個数である。なお、これらグラフの凡例として、用いた接種剤の違いから、比較例1をSr系接種剤、実施例1をBi系接種剤、比較例2をAl系接種剤としてある。また、実施例1についてのみ、基底面から3.5mmの距離の位置における黒鉛粒子数のグラフを図11に示す。 Immediately below the base surface of each cast iron cylindrical sliding member (rough material) of Comparative Example 1, Example 1, and Comparative Example 2, and at positions at distances of 1.0 mm, 2.0 mm, and 3.0 mm from the base surface Graphs of graphite particle counts for granular or spherical graphite are shown in FIGS. The number of graphite particles is the number per 1 mm 2 of cross section of the member. As legends for these graphs, the Sr-based inoculant is used for Comparative Example 1, the Bi-based inoculant is used for Example 1, and the Al-based inoculant is used for Comparative Example 2, because of the difference in the inoculants used. In addition, only for Example 1, a graph of the number of graphite particles at a distance of 3.5 mm from the basal plane is shown in FIG.

図7~図11に示すように、Bi系接種剤を用いた実施例1が、Sr系接種剤を用いた比較例1やAl系接種剤を用いた比較例2と比べて、いずれの位置においても粒状または球状の黒鉛の黒鉛粒子数が顕著に多いことがわかる。特に、粒子サイズが1μm以上、15μm未満の黒鉛の黒鉛粒子数が多くなっている。 As shown in FIGS. 7 to 11, Example 1 using the Bi-based inoculant was compared to Comparative Example 1 using the Sr-based inoculant and Comparative Example 2 using the Al-based inoculant at any position. It can be seen that the number of graphite particles in granular or spherical graphite is remarkably large. In particular, the number of graphite particles of graphite having a particle size of 1 µm or more and less than 15 µm is large.

また、基底面からの距離に対して、粒子サイズが1μm以上の粒状または球状の黒鉛の黒鉛粒子数の変化を表したグラフを図12に示す。図12に示すように、Bi系接種剤を用いた実施例1では、粒子サイズが1μm以上の粒状または球状の黒鉛の黒鉛粒子数は1mm当たり1000個以上であった。また、Bi系接種剤を用いた実施例1およびSr系接種剤を用いた比較例1では、粒子サイズが1μm以上の粒状または球状の黒鉛の黒鉛粒子数が、内周面に向けて増加する傾向を示した。特に、基底面から2.0mmの距離の位置から内周面に向けて、漸次、増加した。中でも、シリンダスリーブの摺動面となる可能性の高い基底面から3.0mmの距離の位置から3.5mmの距離の位置に向けて、Bi系接種剤を用いた実施例1の黒鉛粒子数は顕著に増加した。 FIG. 12 is a graph showing changes in the number of graphite particles of granular or spherical graphite having a particle size of 1 μm or more with respect to the distance from the basal plane. As shown in FIG. 12, in Example 1 using the Bi-based inoculant, the number of granular or spherical graphite particles having a particle size of 1 μm or more was 1000 or more per 1 mm 2 . Further, in Example 1 using the Bi-based inoculant and Comparative Example 1 using the Sr-based inoculant, the number of granular or spherical graphite particles having a particle size of 1 μm or more increases toward the inner peripheral surface. showed a trend. In particular, it gradually increased from a position at a distance of 2.0 mm from the base surface toward the inner peripheral surface. Among them, the number of graphite particles in Example 1 using a Bi-based inoculant was directed from a position at a distance of 3.0 mm to a position at a distance of 3.5 mm from the base surface, which is likely to be the sliding surface of the cylinder sleeve. increased significantly.

Bi系接種剤を用いた実施例1の黒鉛球状化率の測定結果を図13に示す。図13に示すグラフでは、基底面の直下、並びに基底面から1.0mm、2.0mm、3.0mm、および3.5mmの距離の各位置において、黒鉛の最小粒子サイズ毎の黒鉛球状化率を示した。図13に示すように、基底面の直下から、基底面から3.5mmの距離の位置までの領域において、粒子サイズが5μm以上の黒鉛の黒鉛球状化率は50%以上であった。また、同領域において、粒子サイズが15μm以上の黒鉛の黒鉛球状化率は10~20%であった。 FIG. 13 shows the measurement results of the graphite spheroidization rate of Example 1 using the Bi-based inoculant. In the graph shown in FIG. 13, the graphite spheroidization rate for each of the minimum graphite particle sizes is shown at positions immediately below the basal plane and at distances of 1.0 mm, 2.0 mm, 3.0 mm, and 3.5 mm from the basal plane. showed that. As shown in FIG. 13 , the graphite spheroidization rate of graphite with a particle size of 5 μm or more was 50% or more in the region from immediately below the base surface to a position at a distance of 3.5 mm from the base surface. Further, in the same region, the graphite spheroidization ratio of graphite having a particle size of 15 μm or more was 10 to 20%.

比較例1、実施例1、比較例2の各鋳鉄製円筒摺動部材(粗材)について、基底面からの距離に対して、黒鉛面積率の変化を表わしたグラフを図14に示す。黒鉛面積率は、粒子サイズが1μm以上の粒状または球状の黒鉛の面積が部材断面の面積に占める割合である。図14に示すように、Bi系接種剤を用いた実施例1では、基底面の直下から、基底面から3.5mmの距離の位置までの領域において、黒鉛面積率は5%以上であった。また、Bi系接種剤を用いた実施例1およびSr系接種剤を用いた比較例1では、黒鉛面積率が、内周面に向けて増加する傾向を示した。特に、Bi系接種剤を用いた実施例1では、基底面から3.0mmの距離の位置から内周面に向けて、漸次、増加し、Sr系接種剤を使用した比較例1では、基底面から2.0mmの距離の位置から内周面に向けて、漸次、増加した。これは、Bi系接種剤を用いた実施例1では、Sr系接種剤を使用した比較例1と比べて冷却時間が長かったため、漸次増加の変曲点がより粗材の内周面よりにシフトしたものと考えられる。 FIG. 14 shows a graph showing the change in the graphite area ratio with respect to the distance from the base surface for the cast iron cylindrical sliding members (rough materials) of Comparative Example 1, Example 1, and Comparative Example 2. The graphite area ratio is the ratio of the area of granular or spherical graphite having a particle size of 1 μm or more to the cross-sectional area of the member. As shown in FIG. 14, in Example 1 using the Bi-based inoculant, the graphite area ratio was 5% or more in the region from directly below the base surface to a position at a distance of 3.5 mm from the base surface. . Moreover, in Example 1 using the Bi-based inoculant and Comparative Example 1 using the Sr-based inoculant, the graphite area ratio tended to increase toward the inner peripheral surface. In particular, in Example 1 using a Bi-based inoculant, it gradually increased from a position at a distance of 3.0 mm from the base surface toward the inner peripheral surface, and in Comparative Example 1 using an Sr-based inoculant, the It gradually increased from a position 2.0 mm away from the surface toward the inner peripheral surface. This is because in Example 1 using the Bi-based inoculant, the cooling time was longer than in Comparative Example 1 using the Sr-based inoculant, so the inflection point of gradual increase was closer to the inner peripheral surface of the coarse material. presumably shifted.

10 シリンダブロック
11 シリンダスリーブ(鋳鉄製円筒摺動部材)
12 シリンダバレル
13 外周面
14 内周面
15 凸状突起
20 シリンダヘッド
21 燃焼室
31 溶解炉(または保持炉)
32 誘導コイル
34 小型取鍋
35 円筒金型
36 塗型
41 溶湯(元湯)
42 黒鉛球状化剤
43 接種剤
44 溶湯(処理後)
10 cylinder block 11 cylinder sleeve (cylindrical sliding member made of cast iron)
12 cylinder barrel 13 outer peripheral surface 14 inner peripheral surface 15 convex projection 20 cylinder head 21 combustion chamber 31 melting furnace (or holding furnace)
32 Induction coil 34 Small ladle 35 Cylindrical mold 36 Coating mold 41 Molten metal (original hot water)
42 Graphite spheroidizing agent 43 Inoculant 44 Molten metal (after treatment)

Claims (6)

質量%で、C:3.5~3.85%、Si:2.3~2.7%、Mn:0.5~1.5%、S:0.005~0.015%を含有し、残部がFe及び不可避的不純物からなり、以下の式1で規定される炭素当量(以下、「CE値」という)が4.45~4.70である鋳鉄製円筒部材であって、
CE値=トータルカーボン+(Si含有量+P含有量)/3・・・(式1)
当該鋳鉄製円筒部材の断面において、粒子サイズが1μm以上、50μm未満の粒状または球状の黒鉛の黒鉛粒子数が1mm当たり1000個以上存在し、且つ前記黒鉛粒子数が当該鋳鉄製円筒部材の外周面から内周面に向かって増加しており、
当該鋳鉄製円筒部材の断面において、粒子サイズが1μm以上、50μm未満の粒状または球状の黒鉛の黒鉛面積率が5%以上であり、且つ前記黒鉛面積率が当該鋳鉄製円筒部材の外周面から内周面に向かって増加している鋳鉄製円筒部材。
C: 3.5 to 3.85%, Si: 2.3 to 2.7%, Mn: 0.5 to 1.5%, S: 0.005 to 0.015% by mass% , the balance being Fe and unavoidable impurities, and a cast iron cylindrical member having a carbon equivalent (hereinafter referred to as "CE value") defined by the following formula 1 of 4.45 to 4.70,
CE value = total carbon + (Si content + P content) / 3 (Formula 1)
In the cross section of the cast iron cylindrical member, the number of graphite particles of granular or spherical graphite with a particle size of 1 μm or more and less than 50 μm is 1000 or more per 1 mm 2 , and the number of graphite particles is the outer circumference of the cast iron cylindrical member. It increases from the surface to the inner peripheral surface,
In the cross section of the cast iron cylindrical member, granular or spherical graphite with a particle size of 1 μm or more and less than 50 μm has a graphite area ratio of 5% or more, and the graphite area ratio is inward from the outer peripheral surface of the cast iron cylindrical member. Cast iron cylindrical member increasing towards the circumference.
当該鋳鉄製円筒部材の断面において、粒子サイズが5μm以上の黒鉛の黒鉛球状化率が50%以上であり、且つ粒子サイズが15μm以上の黒鉛の黒鉛球状化率が10%以上である請求項1に記載の鋳鉄製円筒部材。 1. In the cross section of the cast iron cylindrical member, graphite having a particle size of 5 μm or more has a graphite spheroidization rate of 50% or more, and graphite having a particle size of 15 μm or more has a graphite spheroidization rate of 10% or more. The cast iron cylindrical member according to . 前記不可避的不純物として、Biを0.1~30ppm含有する請求項1または2に記載の鋳鉄製円筒部材。 The cast iron cylindrical member according to claim 1 or 2, which contains 0.1 to 30 ppm of Bi as the unavoidable impurity. 前記不可避的不純物として、Mgを0.005~0.04%含有する請求項1~3のいずれか一項に記載の鋳鉄製円筒部材。 The cast iron cylindrical member according to any one of claims 1 to 3, containing 0.005 to 0.04% Mg as the unavoidable impurity. 遠心鋳造による鋳鉄製円筒部材の製造方法であって、
質量%で、C:3.5~3.85%、Si:2.3~2.7%、Mn:0.5~1.5%、S:0.005~0.015%を含有し、残部がFe及び不可避的不純物からなり、以下の式1で規定される炭素当量(以下、「CE値」という)が4.45~4.70である溶湯を準備するステップと、
CE値=トータルカーボン+(Si含有量+P含有量)/3・・・(式1)
前記溶湯に、質量%で、Mg:2.0~4.0%と希土類金属(以下、「RE」という):4.0~6.0%を含有するFe-Si-Mg-RE系合金からなる黒鉛球状化剤を添加するステップと、
前記溶湯に、Fe-Si-Bi系接種剤を添加するステップと、
前記黒鉛球状化剤および前記接種剤を添加した前記溶湯を、遠心力鋳造用金型に注湯するステップと、
前記注湯から共晶温度まで冷却して固相を析出させる第一の冷却を行うステップと、
前記第一の冷却よりも小さい冷却速度で、前記固相を共晶温度から共析温度まで冷却する第二の冷却を行い、鋳鉄製円筒部材の粗材を成形するステップと、
前記粗材の内周面を切削加工して内周加工面を形成するステップと
を含む鋳鉄製円筒部材の製造方法。
A method for manufacturing a cast iron cylindrical member by centrifugal casting,
C: 3.5 to 3.85%, Si: 2.3 to 2.7%, Mn: 0.5 to 1.5%, S: 0.005 to 0.015% by mass% , the balance being Fe and unavoidable impurities, and preparing a molten metal having a carbon equivalent (hereinafter referred to as "CE value") defined by the following formula 1 of 4.45 to 4.70;
CE value = total carbon + (Si content + P content) / 3 (Formula 1)
Fe—Si—Mg—RE alloy containing 2.0 to 4.0% by mass of Mg and 4.0 to 6.0% by mass of rare earth metal (hereinafter referred to as “RE”) in the molten metal adding a graphite spheroidizing agent consisting of
adding an Fe—Si—Bi based inoculant to the molten metal;
pouring the molten metal containing the graphite spheroidizing agent and the inoculant into a centrifugal casting mold;
A first cooling step of cooling from the pouring to the eutectic temperature to precipitate a solid phase;
a step of performing a second cooling of cooling the solid phase from the eutectic temperature to the eutectoid temperature at a cooling rate lower than that of the first cooling to form a rough material for a cast iron cylindrical member;
A method of manufacturing a cast iron cylindrical member, comprising: cutting the inner peripheral surface of the rough material to form an inner peripheral machined surface.
前記鋳鉄製円筒部材の前記内周加工面にレーザ照射を施すことで、前記内周加工面から露出した黒鉛を分解除去し、微小な凹部を形成する工程を更に含む請求項5に記載の鋳鉄製円筒部材の製造方法。 The cast iron according to claim 5, further comprising a step of decomposing and removing graphite exposed from the inner peripheral processed surface by applying laser irradiation to the inner peripheral processed surface of the cast iron cylindrical member to form a minute recess. A manufacturing method for cylindrical members.
JP2021102555A 2021-06-21 2021-06-21 Cast iron-made cylindrical member and method for producing the same Pending JP2023001684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021102555A JP2023001684A (en) 2021-06-21 2021-06-21 Cast iron-made cylindrical member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021102555A JP2023001684A (en) 2021-06-21 2021-06-21 Cast iron-made cylindrical member and method for producing the same

Publications (1)

Publication Number Publication Date
JP2023001684A true JP2023001684A (en) 2023-01-06

Family

ID=84688683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021102555A Pending JP2023001684A (en) 2021-06-21 2021-06-21 Cast iron-made cylindrical member and method for producing the same

Country Status (1)

Country Link
JP (1) JP2023001684A (en)

Similar Documents

Publication Publication Date Title
JP3435162B2 (en) Method for producing alloy which is high chromium hypereutectic white cast iron
US10077488B2 (en) High-strength, high-damping-capacity cast iron
US9850846B1 (en) Cylinder liner and method of forming the same
Al-Helal et al. Simultaneous primary Si refinement and eutectic modification in hypereutectic Al–Si alloys
US20120152413A1 (en) Method of producing large components from austempered ductile iron alloys
EP1404887A1 (en) High temperature oxidation resistant ductile iron
US10371085B2 (en) Cylinder liner and method of forming the same
CN103602935A (en) Good-wear-resistance hypereutectic Al-Si alloy heat treatment method
Larrañaga et al. Effect of antimony and cerium on the formation of chunky graphite during solidification of heavy-section castings of near-eutectic spheroidal graphite irons
JP2012041571A (en) Flake graphite cast iron for large-sized casting product and method for producing the same
JP2023001684A (en) Cast iron-made cylindrical member and method for producing the same
JP2007119869A (en) Differential gear case and manufacturing method therefor
CN112210708A (en) Nodular cast iron and method for preparing nodular cast iron by using lost foam
JPH1096041A (en) Spheroidal graphite cast iron with high rigidity and high fatigue strength, and its production
Colin-García et al. Influence of nickel addition and casting modulus on the properties of hypo-eutectic ductile cast iron
JP3964675B2 (en) Non-austempered spheroidal graphite cast iron
JPH0118981B2 (en)
JP3971217B2 (en) Ductile cast iron pipe by centrifugal casting method and manufacturing method thereof
JP4565301B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
van gen Hassend et al. Study on the austemperability of thin-wall ductile cast iron produced by high-pressure die-casting
Saka et al. CHILLING EFFECT OF IRON POWDER ON THE MICROSTRUCTURE AND HARDNESS PROPERTY OF STRONGLY HYPEREUTECTIC GREY CAST IRON
JP2000001731A (en) Hypereutectic aluminum-silicon alloy diecast member and its production
JPS60204843A (en) Manufacture of wear-resistant and lightweight rocker arm
JPH0256401B2 (en)
Seidu et al. CHILLING TENDENCY OF IRON POWDER TREATED GREY CAST IRON

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240416