JP2023000264A - Sewerage conduit inspection method and inspection system - Google Patents

Sewerage conduit inspection method and inspection system Download PDF

Info

Publication number
JP2023000264A
JP2023000264A JP2021100979A JP2021100979A JP2023000264A JP 2023000264 A JP2023000264 A JP 2023000264A JP 2021100979 A JP2021100979 A JP 2021100979A JP 2021100979 A JP2021100979 A JP 2021100979A JP 2023000264 A JP2023000264 A JP 2023000264A
Authority
JP
Japan
Prior art keywords
float
thread
sewer pipe
image
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021100979A
Other languages
Japanese (ja)
Other versions
JP7140889B1 (en
Inventor
明彦 山中
Akihiko Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Consultants Co Ltd
Original Assignee
Pacific Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Consultants Co Ltd filed Critical Pacific Consultants Co Ltd
Priority to JP2021100979A priority Critical patent/JP7140889B1/en
Application granted granted Critical
Publication of JP7140889B1 publication Critical patent/JP7140889B1/en
Publication of JP2023000264A publication Critical patent/JP2023000264A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To obtain accurate information on the location of a degradation or the degree of the degradation.SOLUTION: A sewage conduit inspection method of the present invention is a method for inspecting a sewage conduit. In the sewage conduit inspection method, a float arranging step or a float moving step, and a deterioration determination step are executed. In the float arrangement step, a float with a string attached is flowed from a manhole on the upstream side of the sewage conduit while continuously acquiring images inside the sewage conduit, and the float is stopped when it reaches the position where it is to be arranged. In the float moving step, the string-attached float is flowed from the manhole on the upstream side of the sewage conduit while continuously acquiring images inside the sewage conduit. In the deterioration determination step, a deterioration is determined on the basis of the images of the sewage conduit, and the position of the deterioration is determined on the basis of the length of the string attached to the float.SELECTED DRAWING: Figure 1

Description

本発明は下水道管渠を点検するための下水道管渠点検方法および下水道管渠点検システムに関する。 The present invention relates to a sewer pipe inspection method and a sewer pipe inspection system for inspecting sewer pipes.

下水道管渠などの地中に埋設された管渠を点検する従来技術として、特許文献1~4,非特許文献1,2などが知られている。特許文献1~4に示された技術では、管渠内に自走式の装置を侵入させるなど、複雑な構造の装置を用いることで、管渠内を点検、修理している。一方、非特許文献1,2に示された技術では、マンホール内から撮影した映像に基づいて管渠内の状態を点検している。 Patent Documents 1 to 4, Non-Patent Documents 1 and 2, etc. are known as conventional techniques for inspecting underground pipes such as sewage pipes. In the techniques disclosed in Patent Documents 1 to 4, the inside of a pipe is inspected and repaired by using a device with a complicated structure such as a self-propelled device that penetrates into the pipe. On the other hand, in the techniques disclosed in Non-Patent Documents 1 and 2, the condition inside the pipe is inspected based on the image taken from inside the manhole.

特開平8-220002号公報JP-A-8-220002 特開2003-302219号公報Japanese Patent Application Laid-Open No. 2003-302219 特開2007-113240号公報Japanese Patent Application Laid-Open No. 2007-113240 特表2015-519570号公報Japanese translation of PCT publication No. 2015-519570

静岡県富士市上下水道部、“官民連携によるストックマネジメント導入への取組み”,平成29年6月,[令和3年4月2日検索]、インターネット<https://www.mlit.go.jp/common/001194078.pdf>.Water and Sewerage Department, Fuji City, Shizuoka Prefecture, “Efforts to introduce stock management through public-private partnership”, June 2017, [searched on April 2, 2021], Internet <https://www.mlit.go. jp/common/001194078.pdf>. 山中明彦、「包括的民間委託による下水道管渠の維持管理」,建設機械施工 Vol.73,No.3,March 2021.Akihiko Yamanaka, "Maintenance and Management of Sewer Pipes by Comprehensive Private Outsourcing", Construction Machinery Construction Vol.73, No.3, March 2021.

しかしながら、特許文献1~4に示された従来技術は、コストが高くなりやすく、車両が入れないような路地の下に配置された管渠の点検は難しい。したがって、膨大な設備の点検に適用することは難しい。一方で、非特許文献1,2に示された技術は、地上部において点検用マンホール内に立ち入らずに簡易な装置のみで実施できるので膨大な設備の点検に適用しやすい。しかし、劣化の位置あるいは劣化の程度を点検用マンホール内に立ち入らずに正確に測定することが難しい。本発明は、非特許文献1,2に示された技術に基づきながら、劣化の位置あるいは劣化の程度の正確な情報を得ることを目的とする。 However, the conventional techniques disclosed in Patent Documents 1 to 4 tend to be costly, and it is difficult to inspect pipes and culverts located under alleys where vehicles cannot enter. Therefore, it is difficult to apply it to inspection of a huge amount of equipment. On the other hand, the techniques disclosed in Non-Patent Documents 1 and 2 can be easily applied to the inspection of a huge amount of equipment because they can be carried out using only simple equipment without entering the inspection manhole on the ground. However, it is difficult to accurately measure the position of deterioration or the degree of deterioration without entering the inspection manhole. An object of the present invention is to obtain accurate information on the position of deterioration or the degree of deterioration based on the techniques disclosed in Non-Patent Documents 1 and 2.

本発明の下水道管渠点検方法は、点検用マンホール内に立ち入らずに下水道管渠を点検するため方法である。下水道管渠点検方法は、浮き配置ステップまたは浮き移動ステップ、および、劣化判断ステップを実行する。浮き配置ステップは、下水道管渠内の映像を連続的に取得しながら、下水道管渠の上流側のマンホールから糸を取り付けた浮きを流し、配置したい位置に到達したときに浮きを止める。浮き移動ステップは、下水道管渠内の映像を連続的に取得しながら、下水道管渠の上流側のマンホールから糸を取り付けた浮きを流す。劣化判断ステップは、映像内の下水道管渠の映像に基づいて劣化を判断し、浮きに取り付けた糸の長さに基づいて劣化の位置を判断する。 The sewer pipe inspection method of the present invention is a method for inspecting a sewer pipe without entering an inspection manhole. The sewer pipe inspection method executes a floating arrangement step or a floating movement step and a deterioration determination step. In the float arrangement step, the float attached with the thread is made to flow from the manhole on the upstream side of the sewer culvert while continuously acquiring images inside the sewer culvert, and the float is stopped when the position to be arranged is reached. In the float movement step, a float attached with a thread is caused to flow from a manhole on the upstream side of the sewer culvert while continuously acquiring images inside the sewer culvert. The deterioration determination step determines deterioration based on the image of the sewer pipe in the image, and determines the position of deterioration based on the length of the thread attached to the float.

本発明の下水道管渠点検システムは、浮き、糸、糸巻装置、記録装置を備える。浮きは、発光部と連続的に映像を取得する映像取得部とを有する。糸は、浮きに一端が取り付けられている。糸巻装置は、糸の他端側が巻かれ、送り出した糸の長さを計測する機能を有する。記録装置は、映像を、取得したときの送り出した糸の長さと関連付けて記録する。 The sewer pipe inspection system of the present invention includes a float, a thread, a thread winding device, and a recording device. The float has a light-emitting section and an image acquisition section that continuously acquires images. The thread is attached at one end to the float. The thread winding device has a function of measuring the length of the thread that has been wound on the other end side of the thread and sent out. The recording device records the image in association with the length of the thread that was sent out when the image was acquired.

本発明の下水道管渠点検方法によれば、浮きの位置が劣化している位置に存在するときの糸の長さに基づいて劣化の位置を判断できるので、点検用マンホール内に立ち入らずに簡易な装置のみで劣化の位置を正確に測定できる。本発明の下水道管渠点検システムによれば、映像内の下水道管渠の映像に基づいて劣化を判断する際に、浮きに取り付けた糸の長さに基づいて劣化の位置が分かる。 According to the sewer pipe inspection method of the present invention, the position of deterioration can be determined based on the length of the thread when the position of the float is at the deteriorated position. Only a simple device can accurately measure the position of deterioration. According to the sewer pipe inspection system of the present invention, when judging the deterioration based on the image of the sewer pipe in the image, the position of the deterioration can be found based on the length of the thread attached to the float.

下水道管渠点検方法の第1の処理フローを示す図。The figure which shows the 1st processing flow of the sewer culvert inspection method. 下水道管渠点検方法の第2の処理フローを示す図。The figure which shows the 2nd processing flow of the sewer culvert inspection method. 管口カメラから下水道管渠内の映像を取得する場合の縦断面図。FIG. 4 is a vertical cross-sectional view when acquiring an image inside a sewage pipe from a pipe mouth camera. 糸を取り付けた浮きを下水道管渠内に配置したとき、もしくは流しているときの縦断面図。FIG. 11 is a vertical cross-sectional view of the float attached with the thread when it is placed in the sewage pipe or when it is flowing. 糸に取り付けられた浮きの構成を示す図。Fig. 3 shows the configuration of the float attached to the thread; 発光部を備えた浮き部の構成を示す図。FIG. 4 is a diagram showing the configuration of a floating portion having a light emitting portion; 発光部と映像取得部を備えた浮き部の構成を示す図。FIG. 4 is a diagram showing a configuration of a floating section including a light emitting section and an image acquisition section; 発光部を備えた浮き部の例を示す平面図。FIG. 4 is a plan view showing an example of a floating portion having a light emitting portion; 発光部を備えた浮き部の例を示す側面図。FIG. 10 is a side view showing an example of a floating portion provided with a light emitting portion; 管口から40mの位置に浮きを配置したときの下水道管渠内の映像の例を示す図。The figure which shows the example of the image|video in a sewer pipe when a float is arrange|positioned in the position of 40m from a pipe mouth. 下水道管渠点検システムの機能構成例を示す図。The figure which shows the functional structural example of a sewer pipe inspection system.

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail. Components having the same function are given the same number, and redundant description is omitted.

図1に下水道管渠点検方法の第1の処理フローを、図2に下水道管渠点検方法の第2の処理フローを示す。図3に管口カメラから下水道管渠内の映像を取得する場合の縦断面図、図4に糸を取り付けた浮きを下水道管渠内に配置したとき、もしくは流しているときの縦断面図を示す。図5に糸に取り付けられた浮きの構成を示す。図6に発光部を備えた浮き部の構成を示す。図7に発光部と映像取得部を備えた浮き部の構成を示す。また、図8は発光部を備えた浮き部の例を示す平面図、図9は発光部を備えた浮き部の例を示す側面図である。図10は、管口から40mの位置に浮きを配置したときの下水道管渠内の映像の例を示す図である。(A)は管口付近から取得した映像である。(B)は(A)の映像を少し拡大した映像、(C)は(B)の映像をさらに拡大した映像である。 FIG. 1 shows a first processing flow of the sewer pipe inspection method, and FIG. 2 shows a second processing flow of the sewer pipe inspection method. Fig. 3 is a vertical cross-sectional view of when the image inside the sewer pipe is acquired from the pipe mouth camera, and Fig. 4 is a vertical cross-sectional view of when the float with the thread attached is placed inside the sewer pipe or when it is flowing. show. Figure 5 shows the configuration of the float attached to the thread. FIG. 6 shows the configuration of the floating portion provided with the light emitting portion. FIG. 7 shows the structure of the floating part provided with the light emitting part and the image acquisition part. 8 is a plan view showing an example of a floating portion provided with a light emitting portion, and FIG. 9 is a side view showing an example of a floating portion provided with a light emitting portion. FIG. 10 is a diagram showing an example of an image inside a sewer pipe when a float is placed at a position 40 m from the pipe mouth. (A) is an image acquired from the vicinity of the tube mouth. (B) is an image obtained by slightly enlarging the image of (A), and (C) is an image obtained by further enlarging the image of (B).

下水道管渠点検方法は、点検用マンホール内に立ち入らずに下水道管渠930を点検するため方法である。下水道管渠点検方法の第1の処理フローは、映像取得ステップ(S200)、浮き配置ステップ(S100)、劣化判断ステップ(S300)を実行する。下水道管渠点検方法の第2の処理フローは、映像取得ステップ(S200)、浮き移動ステップ(S110)、劣化判断ステップ(S300)を実行する。 The sewer pipe inspection method is a method for inspecting the sewer pipe 930 without entering the manhole for inspection. The first processing flow of the sewer pipe inspection method executes an image acquisition step (S200), a floating placement step (S100), and a deterioration determination step (S300). The second processing flow of the sewer pipe inspection method executes an image acquisition step (S200), a floating movement step (S110), and a deterioration determination step (S300).

映像取得ステップ(S200)では、下水道管渠930のマンホール910内から下水道管渠930の映像を取得する。図3は、管口カメラ200から下水道管渠930内の映像を取得する様子を示している。作業者は、地上から管口カメラ200をマンホール910内に挿入し、映像を取得する。管口カメラ200としては、非特許文献1に示されている管口簡易カメラまたは管口TVカメラを用いればよい。また、得られた映像は、非特許文献1に示されているタブレット端末などに格納すればよい。取得した映像から、下水道管渠930内に劣化がないことが判断できるのであれば、点検作業は映像取得ステップ(S200)で終了とすればよい。 In the image acquisition step ( S<b>200 ), an image of sewer culvert 930 is acquired from inside manhole 910 of sewer culvert 930 . FIG. 3 shows how an image inside the sewer culvert 930 is acquired from the mouth camera 200 . An operator inserts the pipe mouth camera 200 into the manhole 910 from the ground and acquires an image. As the tube mouth camera 200, a simple tube mouth camera or a tube mouth TV camera disclosed in Non-Patent Document 1 may be used. Also, the obtained video may be stored in a tablet terminal or the like disclosed in Non-Patent Document 1. If it can be determined from the acquired image that there is no deterioration inside the sewer pipe 930, the inspection work may be terminated at the image acquisition step (S200).

映像取得ステップ(S200)で劣化を確認した場合、映像取得ステップ(S200)で取得した映像では下水道管渠930の奥の状態が判断できない場合、のように映像取得ステップ(S200)では劣化がないと判断できないときは、浮き配置ステップ(S100)または浮き移動ステップ(S110)に進む。浮き配置ステップ(S100)は、下水道管渠930内の映像を連続的に取得しながら、下水道管渠930の上流側のマンホール910から糸100を取り付けた浮き110を流し、配置したい位置に到達したときに浮き110を止める。浮き移動ステップ(S110)は、下水道管渠930内の映像を連続的に取得しながら、下水道管渠930の上流側のマンホール910から糸100を取り付けた浮き110を流す。「映像を連続的に取得」とは、動画のように1秒間に数十枚の画像を取得することだけでなく、1秒に1回の静止した映像を取得するような場合も含んでいる。映像を取得する間隔は、浮き110のスピードを考慮して決めればよい。映像の取得は、管口カメラ200で行えばよいが、下水道管渠930が長い場合などは、後述する浮き110に備えられた映像取得部116で取得してもよい。浮き110は、管渠内水面950上に浮く構造であり、管渠内水面950上を流れる。浮き110が流れるスピードは、水流よりも速くはできないが、糸100を繰り出すスピードを制御することで、ゆっくり流すことは可能である。 If deterioration is confirmed in the image acquisition step (S200), and if the image acquired in the image acquisition step (S200) cannot determine the state of the inner part of the sewer culvert 930, there is no deterioration in the image acquisition step (S200). If it cannot be determined, the process proceeds to the floating arrangement step (S100) or the floating movement step (S110). In the float placement step (S100), the float 110 attached with the string 100 is allowed to flow from the manhole 910 on the upstream side of the sewer culvert 930 while continuously acquiring images of the interior of the sewer culvert 930, and the float 110 reaches the desired placement position. Sometimes the float 110 is stopped. The float movement step (S110) causes the float 110 attached with the thread 100 to flow from the manhole 910 on the upstream side of the sewer culvert 930 while continuously acquiring images inside the sewer culvert 930. FIG. "Continuous acquisition of images" includes not only acquisition of dozens of images per second like a moving image, but also acquisition of still images once per second. . The interval at which images are acquired may be determined in consideration of the speed of the float 110 . The image may be acquired by the mouth camera 200, but when the sewer culvert 930 is long, the image may be acquired by the image acquisition unit 116 provided in the float 110, which will be described later. The float 110 has a structure that floats on the inner water surface 950 of the culvert and flows on the inner water surface 950 of the culvert. The speed at which the float 110 flows cannot be made faster than the water flow, but it is possible to make it flow slowly by controlling the speed at which the thread 100 is let out.

浮き配置ステップ(S100)と浮き移動ステップ(S110)の違いは、浮き110を止めるか止めないかの違いである。浮き110を止めれば、糸100の長さを計測する時間を確保できる。浮き110を流すスピードがゆっくりであれば止める必要はない。また、糸100を、送り出した糸100の長さを計測する機能を有する糸巻装置210に巻いている場合など、瞬時に糸100の長さを計測できるときは止める必要はない。糸巻装置210には、釣り用のリールを利用してもよいし、数十m計測可能な巻尺を利用してもよい。例えば、糸巻装置210に一度ボタンを押すと計測した長さの表示を維持し、もう一度ボタンを押すと計測中の長さをリアルタイムで表示する機能を持たせれば、糸の長さを計測するために浮き110を止める必要はない。浮き配置ステップ(S100)を選択するか、浮き移動ステップ(S110)を選択するかは、浮き110が流れるスピードと糸100の長さの計測に必要な時間、距離測定に求められる精度などを総合的に考慮して決めればよい。なお、管口920から浮き110までの距離が分かるように、浮き110が管口920の位置に存在する時の糸100の長さを初期値として記録しておけばよい。なお、糸100には、送り出した糸の長さを認識できる印(マーカなど)を付けてもよいし、一定の距離ごとに色を変更するなど、作業者に距離が分かりやすくなる工夫を施してもよい。 The difference between the float arrangement step (S100) and the float movement step (S110) is whether or not the float 110 is stopped. By stopping the float 110, time for measuring the length of the thread 100 can be secured. If the speed at which the float 110 is allowed to flow is slow, there is no need to stop it. Further, when the length of the thread 100 can be measured instantaneously, such as when the thread 100 is wound on the thread winding device 210 having the function of measuring the length of the thread 100 sent out, there is no need to stop the thread. A reel for fishing may be used as the line winding device 210, or a tape measure capable of measuring several tens of meters may be used. For example, if the thread winding device 210 has a function of maintaining the display of the measured length when the button is pressed once, and displaying the length being measured in real time when the button is pressed again, the length of the thread can be measured. There is no need to stop the float 110 at this point. Whether the float arrangement step (S100) or the float movement step (S110) is selected depends on the speed of the float 110 flowing, the time required to measure the length of the thread 100, the accuracy required for distance measurement, and the like. It should be decided after careful consideration. In order to know the distance from the pipe mouth 920 to the float 110, the length of the thread 100 when the float 110 exists at the pipe mouth 920 may be recorded as an initial value. Note that the thread 100 may be marked with a mark (such as a marker) for recognizing the length of the thread that has been sent out, or may be devised to make it easier for the operator to understand the distance, such as changing the color for each fixed distance. may

浮き110は、浮き部111、固定部112、接続部113で構成すればよい(図5参照)。固定部112および接続部113は釣り用の浮きと同様の形状とすればよい。浮き110は、糸100に固定されるが、釣り用の浮きと同様に位置を人手で変更してもよい。ただし、糸100のどの位置に浮き110を取り付けたかは、管口920から浮き110までの距離の測定に影響を与えるので、あらかじめ定めた位置に取り付けるのが望ましい。 The float 110 may be composed of a float portion 111, a fixed portion 112, and a connection portion 113 (see FIG. 5). The fixing portion 112 and the connecting portion 113 may have the same shape as a fishing float. The float 110 is fixed to the line 100, but may be repositioned manually similar to fishing floats. However, since the location of the float 110 on the thread 100 affects the measurement of the distance from the pipe mouth 920 to the float 110, it is desirable to attach the float 110 to a predetermined location.

また、浮き部111内に発光部114と電池115を備えてもよい(図6参照)。図6の場合は、浮き部111は半透明とし、発光部114の光を拡散させる材料を用いればよい。例えば、半透明な乳白色の材質を用いればよい。発光部114にはLED(発光ダイオード)などを利用すればよい。また、電池115などの重い物の反対側に発光部114を配置することで、発光部114が上になるように配置すればよい。浮き部111が発光部114を備えれば、下水道管渠930内を明るくできるので、映像を取得しやすくなり、後述の劣化判断ステップ(S300)でも劣化を判断しやすくなる。 Also, the light-emitting portion 114 and the battery 115 may be provided in the floating portion 111 (see FIG. 6). In the case of FIG. 6, the floating portion 111 is translucent, and a material that diffuses the light from the light emitting portion 114 may be used. For example, a translucent milky white material may be used. An LED (light emitting diode) or the like may be used for the light emitting unit 114 . Also, by arranging the light emitting unit 114 on the opposite side of a heavy object such as the battery 115, the light emitting unit 114 may be placed upward. If the floating part 111 is provided with the light emitting part 114, the inside of the sewer culvert 930 can be brightened, so that it becomes easier to obtain an image, and it becomes easier to judge deterioration in the later-described deterioration judgment step (S300).

さらに、浮き部111内に映像取得部116を備えてもよい(図7参照)。図7の浮き部111の場合は、少なくとも映像取得部116が配置されている部分は無色透明である。その他の部分は乳白色などの光を散乱する材質とすればよい。映像取得部116としては、小型のCCDカメラなどを利用すればよい。また、映像取得部116の制御、取得した映像の送受信は無線により行ってもよいし、糸100に通信用の心線を添わせてもよい。なお、映像取得部116で映像を取得する際も、管口カメラ200でも映像を取得すればよい。 Further, an image acquisition section 116 may be provided inside the floating section 111 (see FIG. 7). In the case of the floating portion 111 in FIG. 7, at least the portion where the image acquisition portion 116 is arranged is colorless and transparent. Other parts may be made of a material that scatters light such as milky white. A small CCD camera or the like may be used as the image acquisition unit 116 . Further, control of the image acquisition unit 116 and transmission/reception of the acquired image may be performed wirelessly, or a core wire for communication may be attached to the thread 100 . It should be noted that when the image acquisition unit 116 acquires the image, the tube mouth camera 200 may also acquire the image.

図8と図9は、図6に示した浮き部111内に発光部114を備えた具体例である。浮き部111の中心には固定部117が配置され、発光部114は固定部117に取り付けられる。固定部117の表面は、鏡面仕上げすればよい。また、輝度を調整するための輝度調整部118も備えてもよい。 FIGS. 8 and 9 are specific examples in which a light-emitting portion 114 is provided inside the floating portion 111 shown in FIG. A fixed portion 117 is arranged in the center of the floating portion 111 , and the light emitting portion 114 is attached to the fixed portion 117 . The surface of the fixed portion 117 may be mirror-finished. A luminance adjustment unit 118 for adjusting luminance may also be provided.

劣化判断ステップ(S300)では、映像内の下水道管渠930の映像に基づいて劣化を判断し、浮き110に取り付けた糸100の長さに基づいて劣化の位置を判断する。下水道管渠930の映像に基づく劣化(例えば、非特許文献1に記載されている「侵入水」、「目地ずれ」、「腐食」など)の判断は、人が目視により行えばよい。その際、人は、糸100の長さに基づいて位置を判断すればよい。図4に示されたように、糸100の長さに基づいて浮き110と管口920との距離を判断できる。劣化判断の結果は、非特許文献1に示されたような集計処理に利用すればよい。 In the deterioration determination step (S300), deterioration is determined based on the image of the sewer culvert 930 in the image, and the position of deterioration is determined based on the length of the thread 100 attached to the float 110. FIG. Deterioration based on the image of the sewer culvert 930 (for example, “intrusion water”, “joint displacement”, “corrosion”, etc. described in Non-Patent Document 1) may be judged by human eyes. At that time, a person can judge the position based on the length of the thread 100 . As shown in FIG. 4, the distance between the float 110 and the tube mouth 920 can be determined based on the length of the thread 100 . The result of the deterioration determination may be used for total processing as shown in Non-Patent Document 1.

上述の下水道管渠点検方法によれば、浮きの位置が劣化している位置に存在するときの糸の長さに基づいて劣化の位置を判断できるので、点検用マンホール内に立ち入らずに簡易な装置のみで劣化の位置を正確に測定できる。下水道管渠930の長さが短いときは、浮き110には、発光部114、映像取得部116は必要なく、管口カメラ200で映像を連続的に取得すれば十分である。下水道管渠930の長さが長くなると、暗くなるため発光部114が必要になる。図10は、管口から40mの位置に浮きを配置したときの下水道管渠内の映像の例を示す図である。(A)は管口付近から取得した映像である。(A)では浮きを認識できない。(B)は(A)の映像を少し拡大した映像である。中央付近にある白い点が浮き110だが、認識しにくい。(C)は(B)の映像をさらに拡大した映像である。浮き110は認識できるが、管口カメラ200では劣化を認識することは難しくなる。このような場合は、浮き110に、発光部114と映像取得部116を備える必要がある。 According to the sewer pipe inspection method described above, the position of deterioration can be determined based on the length of the thread when the position of the float is at the deteriorated position. The position of deterioration can be accurately measured only with the device. When the length of the sewer culvert 930 is short, the float 110 does not need the light emitting unit 114 and the image acquiring unit 116, and it is sufficient to continuously acquire images with the mouth camera 200. FIG. As the length of the sewer culvert 930 becomes longer, it becomes darker and thus the light emitting section 114 is required. FIG. 10 is a diagram showing an example of an image inside a sewer pipe when a float is placed at a position 40 m from the pipe mouth. (A) is an image acquired from the vicinity of the tube mouth. Float cannot be recognized in (A). (B) is an image obtained by slightly enlarging the image of (A). A white dot near the center is floating 110, but it is difficult to recognize. (C) is an enlarged image of the image of (B). Although the float 110 can be recognized, it becomes difficult to recognize deterioration with the mouth camera 200 . In such a case, the float 110 needs to be provided with the light emitting section 114 and the image acquisition section 116 .

図11に本発明の下水道管渠点検システムの構成例を示す。下水道管渠点検システム10は、浮き110、糸100、糸巻装置210、記録装置300、管口カメラ200を備える。浮き110は、発光部114と連続的に映像を取得する映像取得部116とを有する。糸100は、浮き110に一端が取り付けられている。糸巻装置210は、糸100の他端側が巻かれ、送り出した糸100の長さを計測する機能を有する。記録装置300は、映像を、取得したときの送り出した糸の長さと関連付けて記録する。映像取得部116と記録装置300、および糸巻き装置210と記録装置300は、通信回線で接続されることで、映像を取得したタイミングと糸の長さを関連付けて記録できるようにすればよい。また、管口カメラ200と記録装置300とも通信回線で接続し、映像を記録装置300に記録してもよい。記録装置300には、例えば、非特許文献1に示されているタブレット端末などを用いればよい。下水道管渠点検システム10によれば、映像内の下水道管渠930の映像に基づいて劣化を判断する際に、浮き110に取り付けた糸100の長さに基づいて劣化の位置が分かる。つまり、下水道管渠点検システム10によれば、上述の下水道管渠点検方法を容易に実行できる。また、下水道管渠点検システム10を使用するのであれば、図2に示した下水道管渠点検方法の第2の処理フローを使用すればよい。 FIG. 11 shows a configuration example of the sewer pipe inspection system of the present invention. The sewer pipe inspection system 10 includes a float 110 , a thread 100 , a thread winding device 210 , a recording device 300 and a pipe mouth camera 200 . The float 110 has a light emitting unit 114 and an image acquisition unit 116 that continuously acquires images. Thread 100 has one end attached to float 110 . The thread winding device 210 has a function of measuring the length of the thread 100 wound on the other end of the thread 100 and sent out. The recording device 300 records the image in association with the length of the thread that was sent out when the image was acquired. The image acquisition unit 116 and the recording device 300, and the thread winding device 210 and the recording device 300 are connected by a communication line so that the image acquisition timing and the thread length can be recorded in association with each other. Also, the tube mouth camera 200 and the recording device 300 may be connected by a communication line, and images may be recorded in the recording device 300 . For the recording device 300, for example, a tablet terminal disclosed in Non-Patent Document 1 may be used. According to the sewer culvert inspection system 10, when judging deterioration based on the image of the sewer culvert 930 in the image, the position of deterioration can be found based on the length of the thread 100 attached to the float 110. That is, according to the sewer pipe inspection system 10, the sewer pipe inspection method described above can be easily executed. Also, if the sewer pipe inspection system 10 is used, the second processing flow of the sewer pipe inspection method shown in FIG. 2 may be used.

100 糸 110 浮き
111 浮き部 112 固定部
113 接続部 114 発光部
115 電池 116 映像取得部
117 固定部 118 輝度調節部
200 管口カメラ 210 糸巻装置
300 記録装置 910 マンホール
920 管口 930 下水道管渠
950 管渠内水面

100 Thread 110 Float 111 Floating Part 112 Fixing Part 113 Connecting Part 114 Light Emitting Part 115 Battery 116 Image Acquisition Part 117 Fixing Part 118 Luminance Control Part 200 Pipe Orifice Camera 210 Thread Winding Device 300 Recording Device 910 Manhole 920 Pipe Orifice 930 Sewer Pipe 950 Pipe water surface in the ditch

Claims (8)

下水道管渠を点検するための下水道管渠点検方法であって、
前記下水道管渠内の映像を連続的に取得しながら、前記下水道管渠の上流側のマンホールから糸を取り付けた浮きを流し、配置したい位置に到達したときに前記浮きを止める浮き配置ステップと、
前記映像内の前記下水道管渠の映像に基づいて劣化を判断し、前記浮きに取り付けた糸の長さに基づいて前記劣化の位置を判断する劣化判断ステップと、
を実行する下水道管渠点検方法。
A sewer pipe inspection method for inspecting a sewer pipe, comprising:
A float arrangement step in which a float attached with a thread is caused to flow from a manhole on the upstream side of the sewer culvert while continuously acquiring images inside the sewer culvert, and the float is stopped when it reaches a position to be arranged;
a degradation determination step of determining deterioration based on the image of the sewer pipe in the image, and determining the position of the deterioration based on the length of the thread attached to the float;
A sewer pipe inspection method to implement.
下水道管渠を点検するための下水道管渠点検方法であって、
前記下水道管渠内の映像を連続的に取得しながら、前記下水道管渠の上流側のマンホールから糸を取り付けた浮きを流す浮き移動ステップと、
前記映像内の前記下水道管渠の映像に基づいて劣化を判断し、前記浮きに取り付けた糸の長さに基づいて前記劣化の位置を判断する劣化判断ステップと、
を実行する下水道管渠点検方法。
A sewer pipe inspection method for inspecting a sewer pipe, comprising:
a floating moving step of flowing a float attached with a thread from a manhole on the upstream side of the sewer culvert while continuously acquiring images inside the sewer culvert;
a degradation determination step of determining deterioration based on the image of the sewer pipe in the image, and determining the position of the deterioration based on the length of the thread attached to the float;
A sewer pipe inspection method to implement.
請求項1または2記載の下水道管渠点検方法であって、
前記浮きは、発光部を備えている
ことを特徴とする下水道管渠点検方法。
The sewer pipe inspection method according to claim 1 or 2,
The sewer pipe inspection method, wherein the float includes a light emitting part.
請求項1~3のいずれかに記載の下水道管渠点検方法であって、
前記糸は、送り出した糸の長さを計測する機能を有する糸巻装置に巻かれている
ことを特徴とする下水道管渠点検方法。
The sewer pipe inspection method according to any one of claims 1 to 3,
A sewer pipe inspection method, wherein the thread is wound on a thread winding device having a function of measuring the length of the sent thread.
請求項1~3のいずれかに記載の下水道管渠点検方法であって、
前記糸は、あらかじめ定めた長さごとに、送り出した糸の長さを認識できる印が付されている
ことを特徴とする下水道管渠点検方法。
The sewer pipe inspection method according to any one of claims 1 to 3,
A method for inspecting a sewer pipe, wherein the thread is provided with a mark for recognizing the length of the thread sent out for each predetermined length.
請求項1~5のいずれかに記載下水道管渠点検方法であって、
連続的に取得する前記映像は、浮きを流す上流側のマンホールで取得した映像である
ことを特徴とする下水道管渠点検方法。
The sewer pipe inspection method according to any one of claims 1 to 5,
A method of inspecting a sewage pipe, wherein the continuously acquired images are images acquired at a manhole on the upstream side through which a float flows.
請求項3~5のいずれかに記載の下水道管渠点検方法であって、
前記浮きは、映像取得部も備えており、
連続的に取得する前記映像は、前記映像取得部で取得した映像である
ことを特徴とする下水道管渠点検方法。
The sewer pipe inspection method according to any one of claims 3 to 5,
The float also includes an image acquisition unit,
The sewer pipe inspection method, wherein the continuously acquired images are images acquired by the image acquiring unit.
下水道管渠を点検するための下水道管渠点検システムであって、
発光部と連続的に映像を取得する映像取得部とを有する浮きと、
前記浮きに一端が取り付けられた糸と、
前記糸の他端側が巻かれ、送り出した糸の長さを計測する機能を有する糸巻装置と、
前記映像を、取得したときの送り出した糸の長さと関連付けて記録する記録装置と
を備える下水道管渠点検システム。
A sewer pipe inspection system for inspecting a sewer pipe, comprising:
a float having a light emitting unit and an image acquiring unit for continuously acquiring images;
a thread having one end attached to the float;
a thread winding device having a function of measuring the length of the thread that is wound on the other end side of the thread and sent out;
A sewer pipe inspection system, comprising: a recording device that records the image in association with the length of the thread sent out when the image is acquired.
JP2021100979A 2021-06-17 2021-06-17 sewer pipe inspection method, sewer pipe inspection system Active JP7140889B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021100979A JP7140889B1 (en) 2021-06-17 2021-06-17 sewer pipe inspection method, sewer pipe inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021100979A JP7140889B1 (en) 2021-06-17 2021-06-17 sewer pipe inspection method, sewer pipe inspection system

Publications (2)

Publication Number Publication Date
JP7140889B1 JP7140889B1 (en) 2022-09-21
JP2023000264A true JP2023000264A (en) 2023-01-04

Family

ID=83354816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021100979A Active JP7140889B1 (en) 2021-06-17 2021-06-17 sewer pipe inspection method, sewer pipe inspection system

Country Status (1)

Country Link
JP (1) JP7140889B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337412U (en) * 1989-08-22 1991-04-11
JPH10221257A (en) * 1997-02-05 1998-08-21 Kubota Corp Intra-tube inspection device
JP2009235880A (en) * 2008-03-28 2009-10-15 Mitsui Eng & Shipbuild Co Ltd Pipe inside investigation system and pipe inside investigation method
JP2009237498A (en) * 2008-03-28 2009-10-15 Mitsui Eng & Shipbuild Co Ltd In-pipe investigation device, in-pipe investigation system, method for adjusting buoyancy and posture of in-pipe investigation device and in-pipe investigation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337412U (en) * 1989-08-22 1991-04-11
JPH10221257A (en) * 1997-02-05 1998-08-21 Kubota Corp Intra-tube inspection device
JP2009235880A (en) * 2008-03-28 2009-10-15 Mitsui Eng & Shipbuild Co Ltd Pipe inside investigation system and pipe inside investigation method
JP2009237498A (en) * 2008-03-28 2009-10-15 Mitsui Eng & Shipbuild Co Ltd In-pipe investigation device, in-pipe investigation system, method for adjusting buoyancy and posture of in-pipe investigation device and in-pipe investigation method

Also Published As

Publication number Publication date
JP7140889B1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
US10557772B2 (en) Multi-sensor inspection for identification of pressurized pipe defects that leak
US20120257042A1 (en) System for scanning, mapping and measuring conduits
JPWO2003076916A1 (en) Embedded pipe inspection device and method, and buried pipe concrete deterioration inspection method
KR101604050B1 (en) Road tunnel inspection device
JP7140889B1 (en) sewer pipe inspection method, sewer pipe inspection system
CN110319862A (en) A kind of helical structure device for distributing optical fiber sensing in civil engineering
EP3755880A1 (en) Estimating inspection tool velocity and depth
KR102421133B1 (en) Pipeline inspection system including an intelligent pipeline inspection robot equipped with an infrared sensor and a gyroscope sensor
JP6899499B1 (en) Sewer pipe inspection method, sewer pipe measurement method
JP5688058B2 (en) Detection method for abnormal locations in low water pressure water flow facilities
US5822057A (en) System and method for inspecting a cast structure
CA2905492C (en) Multi-sensor inspection for identification of pressurized pipe defects that leak
CA2736826C (en) System for scanning, mapping and measuring conduits
JP4757316B2 (en) Method for predicting cable entry status in pipelines
KR101607667B1 (en) An underground subsidence position detection system using fiber optic
JP2012163498A (en) Separation distance measuring apparatus
CN112922049A (en) Wall integrity detection device and method for underground continuous wall
CN107192484B (en) Device and method for detecting post-tensioned beam prestressed pipeline
JP4427420B2 (en) State measuring method and state measuring device for existing pipeline
KR100339634B1 (en) Measuring method and device with optical fiber
CN214372416U (en) Deep soil layer compression deformation testing arrangement
CN218524640U (en) Auxiliary detection combination device
KR102364861B1 (en) System for measuring pipe diameter by adjusting length of extend based on tracking information
CN209894102U (en) Detachable rain sewage pipeline measurement auxiliary rod
JPH1138283A (en) Optical fiber cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220908

R150 Certificate of patent or registration of utility model

Ref document number: 7140889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150