JP2022550750A - 質量分析システムおよび方法における使用のための内部サンプリング伴うサンプリングプローブ - Google Patents

質量分析システムおよび方法における使用のための内部サンプリング伴うサンプリングプローブ Download PDF

Info

Publication number
JP2022550750A
JP2022550750A JP2022519467A JP2022519467A JP2022550750A JP 2022550750 A JP2022550750 A JP 2022550750A JP 2022519467 A JP2022519467 A JP 2022519467A JP 2022519467 A JP2022519467 A JP 2022519467A JP 2022550750 A JP2022550750 A JP 2022550750A
Authority
JP
Japan
Prior art keywords
sampling
conduit
solvent
substrate
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022519467A
Other languages
English (en)
Inventor
トーマス アール. コービー,
チャン リウ,
Original Assignee
ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド filed Critical ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド
Publication of JP2022550750A publication Critical patent/JP2022550750A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/624Differential mobility spectrometry [DMS]; Field asymmetric-waveform ion mobility spectrometry [FAIMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0459Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for solid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/383Diluting, dispersing or mixing samples collecting and diluting in a flow of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/385Diluting, dispersing or mixing samples diluting by adsorbing a fraction of the sample

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

MSベースの方法およびシステムが、本明細書に提供され、脱離溶媒が、後続質量分光分析のためにイオン源に流体的に結合されるサンプリング界面内のSPMEデバイスから1つまたはそれを上回る分析物種を脱離させる。本出願人の教示の種々の側面によると、サンプリング界面は、脱離溶媒とサンプリング基質との間の増加された相互作用を提供し、それによって、質量伝達を改良する(例えば、抽出または脱離速度の増加)、内部サンプリング導管を含む。

Description

(米国関連出願)
本願は、その全内容が、参照することによって本明細書に組み込まれる、2019年9月30日に出願された、米国仮出願第62/908,012号からの優先権の利益を主張する。
本教示は、概して、質量分析に関し、より具体的には、質量分析システムおよび方法のためのサンプリング界面に関する。
緒言
質量分析(MS)は、定性的および定量的用途の両方で試験物質の元素組成を決定するための分析技法である。MSは、未知の化合物を同定し、分子中の元素の同位体組成を決定し、その断片化を観察することによって特定の化合物の構造を決定し、サンプル中の特定の化合物の量を定量化するために有用であり得る。その感度および選択性を前提として、MSは、生命科学用途において特に重要である。
複雑なサンプルマトリクス(例えば、生物学的、環境、および食物サンプル)の分析では、多くの現在のMS技法は、着目分析物のMS検出/分析に先立って、広範な前処理ステップがサンプルに対して実施されることを要求する。そのような分析前ステップは、サンプリング(すなわち、サンプル収集)およびサンプル調製(マトリクスからの分離、濃縮、分画、および必要に応じて、誘導体化)を含むことができる。例えば、分析プロセス全体の80%超が、MSを介した分析物の検出を可能にするために、またはサンプルマトリクス内に含有される潜在的な干渉の源を除去するために、サンプル収集および調製に費やされ得るが、それにもかかわらず、各サンプル調製段階において、希釈および/またはエラーの潜在的な源を増加させていると推定されている。
理想的には、MSのためのサンプル調製技法は、高速であり、信頼性があり、再現可能であり、安価であり、いくつかの側面では、自動化に適しているべきである。改良されたサンプル調製技法の1つの最近の実施例は、固相マイクロ抽出(SPME)であり、これは、本質的に、サンプリング、サンプル調製、および抽出を単一の無溶媒ステップに統合する。概して、SPMEデバイスは、デバイスがサンプルの中に挿入されると、それにサンプル内の分析物が優先的に吸着され得る抽出相を用いてコーティングされる繊維または他の表面(例えば、ブレード、マイクロ先端、ピン、もしくはメッシュ)を利用する。抽出は、短い時間周期にわたって生体適合性デバイスを組織、血液、または他の生物学的マトリクスの中に直接挿入することによって原位置で行われ得るため、SPMEデバイスは、いかなるサンプル収集も要求しない場合がある。代替として、SPMEデバイスは、少量の収集されたサンプル(例えば、サンプルアリコート)を使用して、生体外分析のために使用されることができる。
SPMEは、概して、正確かつ単純であると見なされ、減少されたサンプル調製時間および廃棄費用をもたらし得るが、SPME調製サンプルの質量分光ベースの分析は、それにもかかわらず、質量分析(MS)のために要求されるように、SPMEデバイスから分析物を直接イオン化するために、またはイオン化に先立ってSPMEデバイスから分析物を脱離させるために、付加的機器および/または時間のかかるステップを要求し得る。実施例として、サンプル取扱を殆ど伴わない凝縮相サンプルから分析物を脱離/イオン化し得る、種々のイオン化方法(例えば、ガスまたはエアロゾル等のイオン化媒体にそれらの表面を暴露することによってサンプルから分析物を「拭き取る」、脱離エレクトロスプレーイオン化(DESI)およびリアルタイムの直接分析(DART))が、開発された。しかしながら、そのような技法もまた、洗練された高価な機器を要求し得る。
代替として、付加的脱離ステップが、DESIまたはDART以外のイオン化技法を介して、イオン化に先立ってSPMEデバイスから分析物を抽出するために利用されている。例えば、エレクトロスプレーイオン化(ESI)は、最も一般的なイオン化方法のうちの1つであり、分析物が溶液中にあることを要求するため、一部のユーザは、MS分析に先立って、液体脱離および高速液体クロマトグラフィ(HPLC)を介した抽出/富化された分析物の後続精製/分離を利用している。しかしながら、HPLCに先立つ液体脱離は、HPLC移動相に課された要件(弱い溶媒強度)に起因して、分析物をSPMEコーティングから液相に移行させるために数分を要求し得る。典型的には、高有機溶媒が、最良の溶出効率を有するが、これは、典型的に使用される逆相LCカラムに直接注入されることができない。補償するために、より低い有効性を有する溶出溶媒(例えば、有機溶媒および水の混合物)が、典型的には、利用されるか、またはLC注入に先立つ水を用いたフォローアップ希釈ステップが、代替として、提供されるかのいずれかである。しかしながら、両方の選択肢が、感度を低減させ得る。溶出およびLC-MS射出のそのような従来のワークフローはまた、概して、比較的に大量の液体が溶出ステップにおいて使用されることを要求し、これは、付加的希釈につながる。また、上記に議論されるように、これらの増加されたサンプル調製/分離ステップは、処理能力を減少させ、エラーの潜在的源を導入し、希釈を増加させ得、容易に自動化されることができない。
代替として、いくつかのグループは、標準的エレクトロスプレーイオン源の実質的な修正を提案した。典型的には、ESIでは、液体サンプルが、導電性毛細管内からイオン化チャンバの中に連続的に排出される一方、毛細管と対電極との間の電位差は、イオン化チャンバ内に強い電場を発生させ、これは、液体サンプルを荷電させる。本電場は、液体の表面上に付与される電荷が、液体の表面張力を克服するほど十分に強い(すなわち、粒子が電荷を分散させ、より低いエネルギー状態に戻ろうとする)場合、毛細管から排出される液体を、対電極に向かって引き込まれる複数の荷電微小液滴に分散させる。微小液滴内の溶媒が、イオン化チャンバ内での脱溶媒和の間に蒸発するにつれて、荷電分析物イオンは、次いで、後続質量分光分析のために対電極のサンプリングオリフィスに入射することができる。例えば、「A Probe For Extraction Of Molecules Of Interest From A Sample」と題された、PCT公開第WO2015188282号(参照することによってその全体として本明細書に組み込まれる)は、したがって、イオンが湿潤した基質の縁から直接発生されるように、イオン化電位を伝導性SPMEデバイス自体(それに離散量の脱離溶液が適用される)に印加することによってSPMEデバイスからエレクトロスプレーイオン化を提供することを主張している。
Rapid Communications in Mass Spectrometry, 29(19):1749-1756(その教示は、その全体として組み込まれる)における「An open port sampling interface for liquid introduction atmospheric pressure ionization mass spectrometry」と題された論文に例示されるように、Van Berkel et al.は、溶媒の中への未処理のサンプルの導入を可能にし、これが、それによって、イオン化のためにイオン源に送達され得る、同軸管を備えるサンプリング界面を導入した。複雑なサンプル調製を潜在的に低減させるが、そのようなサンプリング界面は、従来のSPME基質(例えば、ng/mL範囲内のLOD)に関する比較的に高い検出限界および/または分析物吸着に関する増加された面積を提供する、比較的により大きい基質についての不良な質量伝達ならびに不十分な流率に悩まされ得る。
感度、単純さ、選択性、速度、および処理能力を維持しながら、フロンドエンドの改変を殆ど伴わずにMSシステムへのSPMEデバイスの高速結合を可能にする、改良および/または費用削減されたシステムの必要性が、依然として存在する。
国際公開第2015188282号
イオンの発生および質量分析による後続分析のためにイオン源に液体サンプルを送達するための方法ならびにシステムが、本明細書に提供される。本教示の種々の側面によると、MSベースのシステムおよび方法が、提供され、脱離溶媒が、後続質量分光分析のために(例えば、サンプリング界面とイオン源との間の液体クロマトグラフィ(LC)カラムを伴わずに)イオン源に流体的に結合されるサンプリング界面内のサンプル基質(例えば、SPMEデバイス)から1つまたはそれを上回る分析物種を脱離させる。種々の側面では、サンプリング界面は、脱離溶媒が、外側管の中から、大気に開放し、その中にサンプル基質が流体チャンバの開放端を通して受容され得る、流体チャンバを通して内側管の中に流動し得るように、外側管と、その中に配置される内側管とを有する、基質サンプリングプローブを備える。本明細書に説明される方法およびシステムの種々の側面によると、サンプリング界面は、脱離溶媒とサンプル基質との間の増加された相互作用を提供し、それによって、質量伝達を改良する(例えば、抽出または脱離速度の増加)、ならびに/もしくは脱離のための溶出勾配の提供を可能にするように、流体チャンバを通して延在するサンプル基質の一部を受容するように構成される、内側管内の内部サンプリング容積を有するように構成されることができる。ある側面では、サンプリングプローブの内部サンプリング容積の幾何学形状は、サンプル基質についての一貫した溶媒流動を維持しながら、流体体積死空間を低減させるように最適化されてもよい。実施例として、サンプリングプローブの外側管のボア内に配置される、内側管のサンプル基質受容端は、それに分析物が吸着されるサンプル基質の一部が、内側管内の脱離溶媒内に配置され得るように、(例えば、イオン源に結合され得る内側管の出口に向かって)内側管の近位端を上回る断面積を呈することができる。(Van Berkel(2015)によって提案されたもの等の公知の開放ポートサンプリング界面におけるような内側管に遠位の流体チャンバ内と対照的に)内側管内に配置されるサンプル基質から分析物を脱離させることによって、本教示によるサンプリングプローブは、サンプル基質についての実質的に停滞した流動を低減させ、それによって、改良された溶出、より鋭いピーク、および/または改良された感度につながることができる。いくつかの側面では、内側管のサンプル基質受容端の形状および/または最大内側寸法は、例えば、死空間を低減させ、内側管のサンプリング容積内の脱離溶媒と接触して配置されるサンプル基質のコーティング部分の表面積を最適化するように、具体的に成形されたおよび/またはサイズにされたサンプル基質(例えば、SPME繊維、SPMEブレード)を受容するように構成されることができる。このように、脱離された分析物は、脱離溶媒の最小体積内に含有され、それによって、希釈および/またはサンプル損失を減少させ、器具応答ならびに感度を改良することができる。本教示に照らして当業者によって理解されるであろうように、(例えば、流体流動速度に基づいて)脱離の動力学を改良するための考慮事項は、開示されるデバイス、システム、および方法の感度を最適化するように、死空間の容積を低減させる(例えば、脱離溶媒の体積を減少させる)ための考慮事項と平衡化されることができる。本明細書に使用されるように、「流体速度」は、概して、線形流体速度(例えば、m/秒の単位)を指す一方、「流率」は、概して、体積流率(例えば、L/分、m/秒の単位)を指す。
本教示の種々の側面によると、試料の化学組成を分析するためのシステムが、提供され、本システムは、近位端から遠位端まで延在する、内側管であって、内側管は、質量分析計のサンプリングオリフィスと流体連通するイオン化チャンバ内に脱離溶媒を排出するためにイオン源プローブに流体的に結合するように構成される、遠位入口から近位出口まで延在する、サンプリング導管を画定する、内側管を有する、基質サンプリングプローブを備える。外側管が、内側管のまわりに配置され、また、内側管の遠位端が、内側管の遠位端から液体/空気界面まで遠位に延在する流体チャンバを画定するように、外側管の遠位端に対して配置されるように、近位端から遠位端まで延在する(例えば、流体チャンバ内の脱離溶媒は、大気に開放する)。外側管は、脱離溶媒源と流体連通するように構成される、近位入口から延在し、脱離溶媒導管の遠位出口を通して流体チャンバの中に流動する、脱離溶媒導管を画定する。流体チャンバはまた、サンプリング導管の遠位入口と流体連通する。流体チャンバに隣接する内側管の遠位端内で、サンプリング導管の近位部分の断面積を上回る断面積を呈する、サンプリング容積が、提供される。サンプリング容積は、脱離溶媒が、脱離溶媒導管の入口から、流体チャンバを通して、サンプリング導管の出口に流動する際、コーティング面が、内側管の内部のサンプリング容積内の脱離溶媒と接触するように、1つまたはそれを上回る分析物種がそれに吸着されたサンプル基質のコーティング面を受容するように構成される。いくつかの側面では、内側管の遠位端は、流体チャンバがまた、内側管の遠位端と外側管の遠位端との間にある容積を備えるように、外側管の遠位端に対して陥凹されてもよい。
種々の側面では、サンプリング容積内の体積流率は、サンプル基質が、サンプリング容積内に配置されていないとき、サンプリング容積を通した最大流体速度が、サンプリング導管の近位部分を通した最大流体速度よりも低くあり得るように、低減された断面積を有するサンプリング導管の近位部分と同等であってもよい。しかしながら、いくつかの側面では、基質サンプリングプローブは、サンプリング容積内に配置されるとき、基質のコーティング部分のまわりに種々の相対的流体速度を提供するように構成されてもよい。実施例として、いくつかの側面では、サンプリング容積の断面積は、例えば、サンプリング容積およびサンプリング導管の近位部分の相対的断面積ならびにサンプル基質のコーティング部分の断面積に応じて、サンプル基質のコーティング面が、サンプリング容積内に配置されるとき、サンプリング容積を通した最大流体速度が、サンプリング導管の近位部分を通した最大流体速度を上回る、それを下回る、またはそれに等しいように構成されてもよい。
上記のように、いくつかの側面では、サンプル基質は、当技術分野で公知である、または今後開発される、SPME基質を備えてもよく、基質サンプリングプローブは、いくつかの側面では、サンプリング容積内に特定のサンプル基質を収容するように構成されてもよい。実施例として、SPME基質は、繊維を含んでもよく、サンプリング容積は、そのような繊維のために成形されてもよいおよび/またはサイズにされてもよい。いくつかの側面では、例えば、サンプリング容積の断面積は、繊維と類似する断面形状(例えば、円形繊維のために円形)を有してもよいが、コーティング面において繊維の断面積を上回る。代替として、いくつかの側面では、SPME基質は、ブレードを含んでもよい。そのような側面では、サンプリング容積の断面積は、種々の形状(例えば、円形、長方形等)を備えてもよいが、サンプリング容積の断面の最も大きい線形寸法は、ブレードが、サンプリング容積内に配置され得るように、コーティング面においてブレードの幅を上回ってもよい。いくつかの側面では、例えば、サンプリング容積は、サンプル基質のコーティング面全体(分析物がそれに吸着されたコーティング面の長さ、幅、および高さ全体)が、サンプリング容積内に配置され得るようなサイズにされてもよい。しかしながら、ある側面では、サンプリング導管は、サンプル基質のコーティング面が、サンプリング導管の近位部分内に配置され得ないようなサイズにされてもよい。
サンプリング容積は、種々の構成を有することができ、いくつかの側面では、特定のサイズおよび/または形状の基質を収容するように特別に構成されてもよい。いくつかの側面では、サンプリング容積は、非限定的実施例として、円形断面形状または長方形形状を呈してもよい。サンプリング容積の断面形状はまた、外側管の断面形状と同一である、または異なってもよい。加えて、または代替として、サンプリング容積およびサンプリング導管の近位部分は、異なる断面形状を呈してもよい。異なるサンプル基質を収容するために、いくつかの側面では、内側管は、最適なサンプリング容積が、例えば、種々のサンプル基質幾何学形状のために選択され得るように、交換可能であってもよい。実施例として、サンプリング容積を備える内側管の遠位部分は、元の内側管内のサンプリング容積と形状および断面積のうちの少なくとも1つにおいて異なる第2のサンプリング容積を呈する第2の遠位部分と交換されるように構成されてもよい。内側管の遠位および近位部分は、種々の様式(例えば、圧縮嵌合、螺着等)で相互に結合されることができる。内側管によって画定されるサンプリング容積のサイズおよび形状が、その分析の感度を増加させるために、脱離動力学を改良し、脱離されたサンプルの希釈を低減させるように最適化され得ることが、本教示に照らして理解されるであろう。いくつかの側面では、本システムは、例えば、分析物の1つまたはそれを上回る種を吸着するように構成される抽出相を用いてコーティングされる表面を有する、サンプル基質を含むことができ、コーティング面の少なくとも一部は、該分析物種がそれに吸着されたコーティング面が、サンプリング容積内の脱離溶媒と接触するように、外側管の遠位端および流体チャンバを通して挿入されるように構成される。
種々の側面では、本システムはさらに、脱離溶媒導管の入口に流体的に結合される、1つまたはそれを上回る脱離溶媒源と、脱離溶媒を脱離溶媒源から脱離溶媒導管の入口に送達するためのポンプ機構とを含んでもよい。加えて、または代替として、本システムはさらに、脱離溶媒導管、サンプリング導管、およびイオン源プローブのうちの1つまたはそれを上回るものを通して流動する脱離溶媒の流率を調節するためのコントローラを備えてもよい。種々の側面では、脱離溶媒源は、それにサンプリング容積内に配置されたサンプル基質が暴露される脱離溶媒の組成が、経時的に変化するように、溶出勾配を提供するように構成されてもよい。
いくつかの側面では、別様に本明細書に議論されるような基質サンプリングプローブを備えるシステムは、イオン源プローブ、イオン化チャンバ、および質量分析計システムをさらに含むように統合されてもよく、イオン源プローブは、サンプリング導管の出口と流体連通し、脱離溶媒中に含有される分析物が、脱離溶媒が、イオン化チャンバの中に排出される際、イオン化され得るように、イオン化チャンバ内に配置される、末端を備える。
ある側面では、本システムはまた、基質サンプリングプローブの中への挿入の間にサンプル基質を支持するように構成される、試料保持器を含むことができる。試料保持器に結合される作動機構が、該サンプル基質のコーティング面が、脱離溶媒と接触するように、外側毛細管の遠位端の中にサンプル基質を挿入するように構成されることができる。そのような実施例では、本明細書に説明される例示的システムによって実施される化学分析手順の種々のステップは、自動化されることができる(例えば、ロボットシステムによって実施される)。いくつかの側面では、例えば、本システムは、複数のサンプル基質を支持するように構成される、試料ステージを備えることができ、作動機構は、該複数のサンプル基質のそれぞれのコーティング面が、サンプリング容積内の脱離溶媒と接触するように、外側管の遠位端の中に該複数のサンプル基質のそれぞれを順次挿入するように構成される。いくつかの関連する側面では、脱離プロセスおよびMSサンプリングは、順次実施されてもよいが、作動機構は、複数のサンプル基質を同時に前処理し、処理能力を増加させるように構成されることができる(例えば、SPME基質の事前調整、サンプリング、および濯ぎステップ)。
化学分析を実施するための方法もまた、本明細書に提供される。いくつかの側面では、例えば、本教示による方法は、基質サンプリングプローブの開放端の中にサンプル基質の少なくとも一部を挿入するステップであって、該サンプル基質は、それに1つまたはそれを上回る分析物種が吸着される、抽出相を用いてコーティングされる表面を有し、該基質サンプリングプローブは、近位端から遠位端まで延在する、内側管であって、該内側管は、遠位入口から近位出口まで延在する、サンプリング導管を画定する、内側管と、近位端から遠位端まで延在し、該内側管のまわりに配置される、外側管であって、該外側管は、脱離溶媒源と流体連通するように構成される、近位入口から延在する、脱離溶媒導管を画定する、外側管とを備える、ステップを含むことができる。内側管の遠位端は、内側管の遠位端から液体/空気界面まで遠位に延在する流体チャンバを画定するように、外側管の遠位端に対して配置され、流体チャンバは、脱離溶媒導管の遠位出口およびサンプリング導管の遠位入口と流体連通する。さらに、サンプリング導管は、流体チャンバに隣接する内側管の遠位端内のサンプリング容積を備え、サンプリング容積は、サンプリング導管の近位部分の断面積を上回る断面積を呈する。脱離溶媒は、該1つまたはそれを上回る分析物種の少なくとも一部が、コーティング面から脱離され、脱離溶媒内のイオン源プローブに送達されるように、脱離溶媒導管の入口から、流体チャンバを通して、サンプリング導管の出口に流動される。1つまたはそれを上回る分析物種の部分を含有する脱離溶媒は、次いで、1つまたはそれを上回るイオン化された分析物種を形成するように、イオン源プローブから(例えば、イオン化チャンバの中に)排出されることができ、質量分光分析が、1つまたはそれを上回るイオン化された分析物種に対して実施されることができる。
種々の側面では、サンプル基質の少なくとも一部を挿入するステップは、内側管内のサンプリング容積の中にコーティング面を配置するステップを含んでもよい。例えば、1つまたはそれを上回る分析物種がそれに吸着されたコーティング面は、脱離溶媒が、脱離溶媒導管の入口から、流体チャンバを通して、サンプリング導管の出口に流動する際、サンプリング容積内の脱離溶媒と接触してもよい。
種々の側面では、本方法はさらに、例えば、サンプル中への挿入に先立って、サンプル基質を調整するステップと、サンプル内に含有される1つまたはそれを上回る分析物種をコーティング面に吸着させるように、サンプルの中にSPME基質を挿入するステップと、サンプルから1つまたはそれを上回る分析物種を抽出するステップと、基質サンプリングプローブの中にサンプル基質を挿入するステップに先立って、サンプル基質を(例えば、水を用いて)濯ぐステップとを含む、1つまたはそれを上回るステップを含むことができる。いくつかの関連する側面では、1つまたはそれを上回る分析物種が、コーティング面に吸着された後、サンプル基質は、液体クロマトグラフィを実施するステップを伴わずに、基質サンプリングプローブの中に挿入される。本教示の種々の側面によると、上記のステップのうちの1つまたはそれを上回るものは、自動化されることができる(例えば、ロボットシステムによって実施される)。
ある側面では、本方法は、サンプル基質からの吸着された分析物の脱離およびそのイオン化に続けて、化学分析を実施するための1つまたはそれを上回るステップを含むことができる。例えば、質量分光分析を実施するステップは、MRM定量化を実施するステップを含んでもよい。加えて、または代替として、1つまたはそれを上回るイオン化された分析物種は、質量分光分析を実施するステップに先立って、微分移動度分光計を通して伝達されてもよい。
ある側面では、基質サンプリングプローブは、特定のサイズおよび/または形状のサンプル基質を収容するように調節されてもよい。実施例として、種々の側面では、サンプリング容積を備える内側管の遠位部分は、元の内側管内のサンプリング容積と形状および断面積のうちの少なくとも1つにおいて異なる第2のサンプリング容積を呈する第2の遠位部分と交換されてもよい。
本教示による、ある基質サンプリングプローブによって提供される改良された動力学はまた、溶出勾配の提供を可能にし得る。実施例として、改良された質量伝達は、サンプル基質からのより迅速な分析物脱離を可能にし、それによって、溶出勾配の提供を可能にし得る。そのような側面では、脱離溶媒を流動させるステップは、サンプル基質が、サンプリング容積内に配置される間、サンプリング容積に溶出勾配を提供するステップを含んでもよい。いくつかの側面では、例えば、サンプリング容積内に配置されるとき、それに基質が暴露される脱離溶媒の組成は、経時的に調節されてもよい。
本出願人の教示のこれらおよび他の特徴が、本明細書に記載される。
当業者は、下記に説明される図面が、例証のみを目的とすることを理解するであろう。図面は、本出願人の教示の範囲をいかようにも限定することを意図していない。
図1は、本出願人の教示の種々の側面による、質量分析計システムのエレクトロスプレーイオン源に流体的に結合される、基質サンプリングプローブを備える、例示的システムを概略図において図示する。
図2A-Cは、本出願人の教示の種々の側面による、図1のシステムにおける使用のために好適な例示的基質サンプリングプローブを図式的に図示する。
図3A-Cは、本出願人の教示の種々の側面による、図1のシステムにおける使用のために好適な別の例示的基質サンプリングプローブを図式的に図示する。
図4A-Bは、本出願人の教示の種々の側面による、図1のシステムにおける使用のために好適な別の例示的基質サンプリングプローブを図式的に図示する。
図5A-Bは、本出願人の教示の種々の側面による、図1のシステムにおける使用のために好適な別の例示的基質サンプリングプローブを図式的に図示する。
図6は、本出願人の本教示の種々の側面による、サンプル分析のための例示的自動化システムを概略図において描写する。
図7は、本出願人の本教示の種々の側面による、サンプル分析のための別の例示的自動化システムを概略図において描写する。
詳細な説明
明確化のために、以下の議論が、そうすることが便宜的または適切であるときは常に、ある具体的詳細を省略しながら、本出願人の教示の実施形態の種々の側面を詳述するであろうことを理解されたい。例えば、代替実施形態における同様または類似する特徴の議論は、若干略記され得る。周知の構想または概念もまた、簡潔にするために、詳細には議論されない場合がある。当業者は、本出願人の教示のいくつかの実施形態が、実施形態の徹底的な理解を提供するためにのみ本明細書に記載される、あらゆる実装において具体的に説明される詳細のうちのあるものを要求しない場合があることを認識するであろう。同様に、説明される実施形態が、本開示の範囲から逸脱することなく、共通の一般的知識に従って、改変または変動を受けやすくあり得ることが明白となるであろう。実施形態の以下の詳細な説明は、いかなる様式でも本出願人の教示の範囲を限定すると見なされるものではない。
MSベースの方法およびシステムが、本明細書に例示され、脱離溶媒が、後続質量分光分析のために(例えば、サンプリング界面とイオン源との間の液体クロマトグラフィ(LC)カラムを伴わずに)イオン源に流体的に結合されるサンプリング界面(例えば、開放ポートプローブ)内のサンプル基質(例えば、SPMEデバイス)から1つまたはそれを上回る分析物種を脱離させる。本出願人の教示の種々の側面によると、サンプリング界面は、脱離溶媒とサンプル基質との間の増加された相互作用を提供し、それによって、質量伝達を改良する(例えば、抽出または脱離速度の増加)、内部サンプリング導管を含む。SPMEデバイスから導出される液体サンプルをイオン化するための現在の方法は、多くの場合、SPME抽出分析物が、最初にSPMEデバイスから脱離され、続けて、イオン化/質量分光分析に先立って自動化に適していない付加的サンプル処理ステップ(例えば、LCを介した濃縮/精製)を受ける、複雑なサンプル調製ステップを利用する一方、本教示の種々の側面によるシステムおよび方法は、1つまたはそれを上回る分析物がその上に吸着されたサンプル基質が、MSシステムのイオン源に直接結合され得る、簡略化されたワークフローを提供する。種々の側面では、本明細書に説明されるシステムおよび方法は、1つまたはそれを上回る時間のかかるサンプル調製ステップの必要性を排除する一方、公知のシステムのフロンドエンドの改変を殆ど伴わずにMSシステムへのサンプル基質の高速結合(およびそれからの高速脱離)を可能にし、それにもかかわらず、感度、単純さ、選択性、速度、および処理能力を維持することができる。上記のような種々の実施形態の改良された溶出速度、ピーク形状(例えば、尾引きなし、より鋭いピーク)、および感度に加えて、質量伝達の改良された動力学はまた、本教示による使用のために好適なサンプル基質に吸着された分析物の分離の付加的レベルをもたらすために、脱離溶媒の組成における勾配(本明細書では、溶出勾配とも称される)の使用を可能にし得る。また、種々の側面では、本教示は、完全または部分的自動化ワークフローを可能にし、それによって、SPME導出サンプルの分析における人的エラーの源を潜在的に排除しながら、処理能力をさらに増加させることができる。
下記に詳細に議論されるように、本教示の種々の側面による方法およびシステムは、SPMEベースのワークフローの感度を増加させるように構成される、サンプリング界面を提供する。いくつかの側面では、例えば、本教示によるサンプリング界面は、それに着目分析物が吸着され得るサンプル基質のコーティング面を中心とする最適化された液体流動を可能にし、さらに、公知の、または今後開発されるサンプル基質およびSPMEデバイス(例えば、繊維、ブレード、マイクロ先端、ピン、もしくはメッシュ)の多様な幾何学形状を考慮してもよい。所望の脱離流体速度および死空間等の考慮事項が、脱離動力学を維持し、十分に迅速な脱離(例えば、尾引きを伴わずに、MSデータにおいてより鋭いピークを提供するように)、低減された希釈(例えば、低減された体積の溶媒の中への脱離を提供することによって)を確実にするように最適化され、それによって、器具応答および感度を改良し得ることが、本教示に照らして当業者によって理解されるであろう。例えば、サンプル基質が、外側管内にあるが、内側管の遠位にある遠位流体チャンバ内に配置されることと対照的に、本教示のある側面によるシステムおよび方法は、内側管内のサンプル基質のコーティング面を収容し得る断面積を呈する、サンプリング容積を有する内側管を提供し、それによって、コーティング面を一貫した非停滞流体流動に曝すことに役立つ。また、いくつかの側面では、内側管の基質受容端の形状および/または最大内側寸法は、例えば、死空間を低減させる、および/または内側管のサンプリング容積内の流動する脱離溶媒と接触して配置されるサンプル基質のコーティング部分の表面積を増加させるように、具体的に成形されたならびに/もしくはサイズにされたサンプル基質を受容するように構成されることができる。実施例として、いくつかの側面では、サンプリング容積を含有する内側管の少なくとも一部は、挿入されるべき特定のサンプル基質が、サンプリング容積の少なくとも20パーセント(例えば、少なくとも50%、少なくとも80%)を占有するように交換されてもよい。
図1は、SPME抽出分析物をイオン化および質量分析するための、本出願人の教示の種々の側面による、例示的システム10の実施形態を図式的に描写する。図1に示されるように、例示的システム10は、概して、1つまたはそれを上回るサンプル分析物を含有する液体をイオン化チャンバ12の中に排出するためにイオン源40と流体連通する、基質サンプリングプローブ30(例えば、開放ポートプローブ)と、イオン源によって発生されるイオンの下流処理および/または検出のためにイオン化チャンバ12と流体連通する、質量分析器60とを含む。下記により詳細に議論されるであろうように、基質サンプリングプローブ30は、概して、それにサンプルからの1つまたはそれを上回る分析物が吸着される抽出相を用いてコーティングされる表面を有するサンプル基質(例えば、SPME基質20)の少なくとも一部を基質サンプリングプローブの内側管のサンプリング容積内に受容するように構成され、サンプリング容積は、脱離溶媒源31とイオン源プローブ(例えば、エレクトロスプレー電極44)との間に延在する流体経路内にある。このように、脱離溶媒によってSPME基質20のコーティング面から脱離された分析物は、それによるイオン化のために脱離溶媒内でイオン源40に直接流動する。
描写される実施形態では、イオン化チャンバ12は、大気圧に維持されることができるが、いくつかの実施形態では、イオン化チャンバ12は、大気圧よりも低い圧力まで排気されることができる。その中でSPME基質20から脱離され、エレクトロスプレー電極44から排出される脱離溶媒中に含有される分析物がイオン化され得る、イオン化チャンバ12は、カーテン板開口14bを有する板14aによってガスカーテンチャンバ14から分離される。示されるように、質量分析器60を格納する真空チャンバ16が、真空チャンバサンプリングオリフィス16bを有する板16aによってカーテンチャンバ14から分離される。カーテンチャンバ14および真空チャンバ16は、1つまたはそれを上回る真空ポンプポート18を通した排気によって、選択された圧力(例えば、同一または異なる亜大気圧、イオン化チャンバよりも低い圧力)に維持されることができる。
イオン源40は、種々の構成を有することができるが、概して、基質サンプリングプローブ30から受容される液体(例えば、脱離溶媒)内に含有される分析物からイオンを発生させるように構成される。図1に描写される例示的実施形態では、基質サンプリングプローブ20に流体的に結合される毛細管を備え得る、エレクトロスプレー電極44が、イオン化チャンバ12の中に少なくとも部分的に延在し、その中に脱離溶媒を排出する出口端部において終端する。本教示に照らして当業者によって理解されるであろうように、エレクトロスプレー電極44の出口端部は、イオン化チャンバ12の中に脱離溶媒を霧化、エアロゾル化、噴射、または別様に排出(例えば、ノズルを用いて噴霧)し、概して、カーテン板開口14bおよび真空チャンバサンプリングオリフィス16bに向かって(例えば、その近傍に)指向される複数の微小液滴を含むサンプルプルーム50を形成することができる。当技術分野で公知であるように、微小液滴内に含有される分析物は、例えば、サンプルプルーム50が発生される際、イオン源40によってイオン化(すなわち、荷電)されることができる。非限定的実施例として、エレクトロスプレー電極44の出口端部は、伝導性材料から作製され、電圧源(図示せず)のある極に電気的に結合されることができる一方、電圧源の他方の極は、接地されることができる。サンプルプルーム50内に含有される微小液滴は、したがって、液滴内の脱離溶媒がイオン化チャンバ12内での脱溶媒和の間に蒸発するにつれて、裸荷電分析物イオンが放出され、開口14b、16bに向かってそれを通して引き込まれ、質量分析器60の中に(例えば、1つまたはそれを上回るイオンレンズを介して)集束されるように、出口端部に印加される電圧によって荷電されることができる。イオン源プローブは、概して、エレクトロスプレー電極44として本明細書に説明されるが、液体サンプルをイオン化するために当技術分野で公知であり、本教示に従って修正される任意の数の異なるイオン化技法が、イオン源40として利用され得ることを理解されたい。非限定的実施例として、イオン源40は、エレクトロスプレーイオン化デバイス、ネブライザ支援エレクトロスプレーデバイス、化学イオン化デバイス、ネブライザ支援霧化デバイス、光イオン化デバイス、レーザイオン化デバイス、熱スプレーイオン化デバイス、またはソニックスプレーイオン化デバイスであり得る。
継続して図1を参照すると、質量分析計システム10は、随意に、エレクトロスプレー電極44の出口端部を囲繞し、それから排出される流体と相互作用し、例えば、高速ネブライジング流および液体サンプルの噴射の相互作用を介して、サンプルプルーム50の形成ならびに14bおよび16bによるサンプリングのためのプルーム内でのイオン放出を増進する、高速ネブライジングガス流を供給する加圧ガス(例えば、窒素、空気、または貴ガス)の源70を含むことができる。ネブライザガスは、種々の流率において、例えば、約0.1L/分~約20L/分の範囲内で供給されることができる。
また、質量分析器60が、種々の構成を有し得ることが、当業者によって、本明細書の教示に照らして理解されるであろう。概して、質量分析器60は、イオン源40によって発生されるサンプルイオンを処理(例えば、濾過、分類、解離、検出等)するように構成される。非限定的実施例として、質量分析器60は、三段四重極質量分析計、または当技術分野で公知であり、本明細書の教示に従って修正される任意の他の質量分析器であり得る。例えば、それらの質量/電荷比ではなく、ドリフトガスを通したそれらの移動度に基づいてイオンを分離するように構成されるイオン移動度分光計(例えば、微分移動度分光計)を含む、任意の数の付加的要素が、質量分析計システム内に含まれ得ることをさらに理解されたい。加えて、質量分析器60が、分析器60を通して通過するイオンを検出し得、例えば、検出される1秒あたりのイオンの数を示す信号を供給し得る、検出器を備え得ることを理解されたい。
ここで図2A-Cを参照すると、SPME基質220から1つまたはそれを上回る分析物を脱離させるための、かつ図1のシステムにおける使用のために好適な例示的基質サンプリングプローブ230(例えば、本教示の種々の側面に従って修正される開放ポートプローブ)が、図式的に描写される。図2Aに示されるように、基質サンプリングプローブ230は、近位端232aから遠位端232bまで延在する、外側管(例えば、外側毛細管232)と、外側毛細管232と同軸に配置される、内側管(例えば、内側毛細管234)とを含む。内側毛細管234もまた、近位端234aから遠位端234bまで延在する。内側毛細管234は、それを通して流体チャネルを提供する軸方向ボアを備え、これは、図2A-Cの例示的実施形態に示されるように、それを通して液体が基質サンプリングプローブ230から図1のイオン源40に伝達され得る、サンプリング導管236を画定する(すなわち、サンプリング導管236は、エレクトロスプレー電極44の内側ボアに流体的に結合される)。一方、外側毛細管232の内面と内側毛細管234の外面との間の環状空間は、脱離溶媒源231に(例えば、導管231aを介して)結合される入口端部から、(内側毛細管234の遠位端234bに隣接する)出口端部まで延在する、脱離溶媒導管238を画定することができる。本例示的実施形態に示されるように、内側毛細管234の遠位端234bは、内側毛細管234の遠位端234bから、外側毛細管232の遠位端232bと水平であるように描写される、液体-空気界面235aまで遠位に延在する遠位流体チャンバ235を画定するように、外側毛細管232の遠位端232bに対して陥凹される。したがって、遠位流体チャンバ235は、内側毛細管234の遠位端234b、外側毛細管の遠位端232bの内周面、および液体/空気界面235によって画定され、それを通して流体が脱離溶媒導管238の出口端から流動し、サンプリング導管236に進入する空間を表す。すなわち、図2の湾曲した矢印によって示されるように、脱離溶媒導管238は、本遠位流体チャンバ235を介してサンプリング導管236と流体連通する。このように、個別のチャネルの流率に応じて、脱離溶媒導管238によって遠位流体チャンバ235に送達される流体は、その出口端部への、続けて、イオン源240への伝達のために、サンプリング導管236の入口端部に進入することができる。
サンプリング導管236は、種々の構成を有することができるが、概して、その遠位のサンプル基質受容端において比較的により大きい断面を呈する。図2A-Cに示されるように、例えば、内側管234によって画定されるサンプリング導管236は、その近位部分(図2C)およびその遠位部分(図2B)の両方において円形断面形状を呈するが、遠位部分は、近位部分に対して増加された直径ならびに断面積を有する。図2Aの内側管237内の破線によって示されるように、比較的に増加された断面積を有する本遠位部分は、サンプリング基質220の少なくとも一部を収容し得る、サンプリング容積237を画定する。例えば、サンプリング容積237の断面の最も大きい最大線形寸法は、その中に挿入されるように構成されるサンプル基質220の部分の断面の最大線形寸法を上回る。図2A-Cに例示されるような本教示のいくつかの側面では、サンプリング導管の近位部分の断面(図2C)の最大線形寸法が、サンプル基質が、サンプリング導管236の近位部分に進入することを防止されるであろうように、サンプリング容積237内に挿入されるように構成されるサンプル基質220の部分の断面の最大線形寸法を下回り得ることにさらに留意されたい。
特に、図2Aに示されるように、分析物がそれに吸着されたコーティング面222を備えるSPME基質220の一部は、SPME基質220のコーティング面222が、内側管234の内部のサンプリング容積237内の脱離溶媒中に配置されるように、基質サンプリングプローブ230の開放端を通して、かつ遠位流体チャンバ235を通して挿入されることができる。したがって、図2の湾曲した矢印によって示されるように、脱離溶媒導管238は、本遠位流体チャンバ235を介して、サンプリング導管236のサンプリング容積237と流体連通する。このように、個別のチャネルの体積流率に応じて、脱離溶媒導管238によって遠位流体チャンバ235に送達される流体は、サンプリング導管236の入口に進入する。遠位流体チャンバ235内に排他的に配置されるコーティング面222は、(特に、プローブ230の最遠位端における流体/空気界面235aに隣接して、およびコーティング面が遠位流体チャンバ235を実質的に充填するとき)実質的に停滞した流動を受け得る一方、内側管234の遠位部分におけるサンプリング容積の増加された断面積は、コーティング面222が、少なくとも部分的に、サンプリング導管236内に配置されることを可能にし、それによって、湾曲した矢印によって示されるように、脱離溶媒が、遠位流体チャンバ235を介して、脱離溶媒導管238の出口からサンプリング導管236の入口までの経路を辿る際、コーティング面222の傍で、かつその周囲でより高い最大流体速度を提供することができる。
サンプリング導管236は、種々の構成を有することができるが、概して、その遠位のサンプル基質受容端において比較的に大きい断面を呈する。いずれにしても、脱離溶媒導管238から流動する全ての流体が、サンプリング導管236の中に、かつイオン源240に流動する(例えば、外側管232の遠位端から外へのいかなる越流も存在しない)と仮定して、脱離溶媒導管238およびサンプリング導管236内の体積流率が、同じであろうことを理解されたい。また、サンプリング容積237のレベルにおける(例えば、図2Bのレベルにおける)サンプリング導管236の遠位部分から流動する流体は、(例えば、図2Cのレベルにおける)サンプリング導管236の遠位部分に、かつイオン源240に流動するため、図2Bおよび図2Cの断面におけるサンプリング導管236内の体積流率は、(サンプリング容積の比較的により大きい断面積に起因して)いかなるサンプリング基質も、その中に配置されていないとき、サンプリング容積237内の比較的により緩慢な最大流体速度にもかかわらず、同じであろう。しかしながら、コーティング面222、サンプリング容積237、およびサンプリング導管236の近位部分の断面の相対的面積に応じて、図2Bの断面のレベルにおけるサンプリング導管236内の脱離溶媒の最大流体速度は、サンプリング基質が、その中に配置されるとき、図2Cの断面のレベルにおけるサンプリング導管236内の最大流体速度を上回る、それに等しい、またはそれを下回り得る。本教示に照らして、したがって、コーティング面222の周囲の、およびそれを中心とする最大流体速度が、例えば、内側管234の内面とコーティング面との間の環状空間が、図2Bに示されるものと異なる断面積を有するような構成の内側管234を提供することによって調節され得ることが当業者によって理解されるであろう。すなわち、図2Bに示される同等のサイズのコーティング面222を仮定して、かつ同一の体積流率がサンプリング導管236の入口に提供されると、サンプリング容積237の断面積を増加させることは、コーティング面222を中心とする空間(すなわち、図2Bの環)を増加させ、その断面におけるサンプリング導管を通した平均および/または最大流体速度を減少させるであろう。一方、サンプリング容積237の断面積を減少させることは、図2Bの環の面積を減少させ、それによって、前述の実施例におけるものと同一の体積流率を保存するために、その断面を通した最大流体速度を増加させるうであろう。体積流率、所望の最大脱離流体速度、およびコーティング面222を中心とする最適な死空間容積が、器具応答ならびに感度を最適化するように、分析物を過剰に希釈することなく、十分に迅速な脱離を確実にするために、脱離動力学を維持するように選択され得ることが、本教示に照らして当業者によってさらに理解されるであろう。
本教示の種々の側面によると、SPME基質220の少なくとも一部は、その上に1つまたはそれを上回る分析物種が吸着されるコーティング面が、内側管234の内部の(例えば、内部管の遠位端234bの近位の)サンプリング容積237内の脱離溶媒中に配置されるように、基質サンプリングプローブ230の開放端を通して挿入されることができる。例えば、上記のように、図2に示される例示的SPME基質220は、それから延在し、その上にSPME抽出相(例えば、層)が形成されており、それに1つまたはそれを上回る着目分析物が抽出の間に吸着されている、コーティング面222を備える。コーティング面222が、サンプリング容積237の中に挿入されることに応じて、遠位流体チャンバ235を介して、脱離溶媒導管238から、サンプリング導管236の中に流動する脱離溶媒は、脱離された分析物が、脱離溶媒とともにサンプリング導管236の入口の中に流動するように、コーティング面222上に吸着された1つまたはそれを上回る分析物の少なくとも一部を脱離させるために効果的であり得る。本教示によるシステムおよび方法における使用のためのサンプル基質は、概して、それによって提供される脱離溶媒が、サンプル基質から1つまたはそれを上回る着目分析物を脱離させるために効果的であるように、基質サンプリングプローブ230によって提供される流体経路の中に少なくとも部分的に挿入されることが可能であるが、基質構成(例えば、繊維、ブレード、マイクロ先端、ピン、またはメッシュ)ならびに/もしくはSPMEコーティング(例えば、HLB-PAN、C18-PAN、抗体等)は、特に限定されない。実際には、当技術分野で公知の、または今後開発され、本教示に従って修正される、任意の公知のサンプル基質およびコーティング化学が、本明細書に開示される方法ならびにシステムにおいて使用されることができる。本教示の種々の側面による使用のために好適な例示的SPMEデバイスが、例えば、「Method and Devise for Solid Phase Microextraction and Desorption」と題された、米国特許第5,691,205号および「A Probe for Extraction of Molecules of Interest from a Sample」と題された、PCT公開第WO2015188282号(その教示は、参照することによってその全体として本明細書に組み込まれる)に説明されている。
図2に示されるように、脱離溶媒源231は、全て非限定的実施例として、それを通して脱離溶媒が選択された体積流率において脱離溶媒のリザーバから送達され得る供給導管231aを介して(例えば、往復ポンプ、回転、ギヤ、プランジャ、ピストン、蠕動、ダイヤフラムポンプ等の容積式ポンプ、ならびに液体サンプルを圧送するために使用され得る重力、衝撃、および遠心ポンプ等の他のポンプを含む、1つまたはそれを上回る圧送機構を介して)、脱離溶媒導管238に流体的に結合されることができる。サンプル基質から分析物を脱離させるために効果的であり、イオン化プロセスに適している任意の脱離溶媒が、本教示における使用のために好適である。実際には、種々の実施形態のある側面からもたらされる改良された質量伝達および迅速な脱離のため、本教示は、サンプル基質が、サンプリング容積内に配置される間、脱離溶媒の組成が、経時的に変化する、溶出勾配の提供を可能にし得る。このように、一連の脱離溶媒が、(LC溶出勾配におけるように)コーティング面から特定の分析物を連続的に脱離させるように、1つまたはそれを上回る脱離溶媒源から提供されることができる。迅速な脱離のため、特定の化合物が、特定の時点における脱離溶媒の識別に応じて、コーティング面から溶出し、それによって、特定の化合物に対応する特定のMSピーク(限定された尾引きを呈する)の間の分解を可能にし得る。
同様に、1つまたはそれを上回る圧送機構が、サンプリング導管236および/またはエレクトロスプレー電極(図示せず)を通した体積流率を制御するために提供され、これらの体積流率が、脱離溶媒導管238を通した脱離溶媒の体積流率と同一または異なるように選択され得ることを理解されたい。いくつかの側面では、基質サンプリングプローブ230および/またはエレクトロスプレー電極244の種々のチャネルを通したこれらの異なる体積流率は、本システム全体を通した流体の移動を制御するように、(例えば、ネブライザガスの流率を調節することによって)独立して調節されることができる。非限定的実施例として、脱離溶媒導管238を通した体積流率は、遠位流体チャンバ235内の流体が、基質サンプリングプローブ230の開放端から越流し、抜去された基質によって堆積されたいかなる残留サンプルも洗浄するように、および/またはいかなる空中物質もサンプリング導管236の中に伝達されることを防止するように、(例えば、基質の抜去後に)サンプリング導管236を通した体積流率に対して一時的に増加されることができる。他の側面では、体積流率は、流体流動が、より少ない体積の脱離溶媒中に脱離された分析物を濃縮するように基質の挿入に応じて減少されるように、調節されることができる。
本教示による基質サンプリングプローブが、種々の構成およびサイズを有し、図2A-Cの基質サンプリングプローブ230の描写が、例示的描写を表し得ることを理解されたい。非限定的実施例として、内側毛細管234の内径(ID)の寸法は、約100ミクロン~約3mmの範囲内(例えば、約0.5mm、約3mm)であり、内側毛細管234の外径(OD)の例示的寸法は、約300ミクロン~約3または4センチメートルの範囲内であり得る(例えば、IDinner:ODinner組み合わせは、約0.5mm:1.5mmまたは約3mm:4mmであり得る)。また、実施例として、外側毛細管232のIDは、約400ミクロン~約3または4センチメートルの範囲内であり、外側毛細管232のODの典型的寸法は、約500ミクロン~約3または4センチメートルの範囲内であり得る(例えば、IDouter:ODouter組み合わせは、約2mm:3mmまたは約5mm:6mmであり得る)。加えて、図2A-Cに円形として描写されるが、内側毛細管234および/または外側毛細管232の断面形状は、円形、楕円形、スーパー楕円形(すなわち、スーパー楕円のような形状)、またはさらには多角形(例えば、正方形)であり得る。また、内側または外側毛細管234、232の断面積の形状は、毛細管の長さに沿って一定である必要はない。実施例として、サンプリング容積237のレベルにおけるサンプリング導管236の遠位部分は、第1の形状(例えば、長方形基質を収容するための多角形)を有することができる一方、サンプリング導管の近位部分は、本明細書に別様に議論されるように、より小さい断面積であるが、第2の形状(例えば、円形)であり得る。図1のシステムにおける使用のために好適であり、本教示に従って修正されるSPMEサンプリングプローブに関する付加的詳細が、例えば、上記のVan Berkelの論文参照、「Surface Sampling Concentration and Reaction Probe」と題された、米国公開第20130294971号、「Method and System for formation and Withdrawal of a Sample From a Surface to be Analyzed」と題された、米国公開第20140216177号、および「Sampling Interface for Mass Spectrometry Systems and Methods」と題された、米国公開第2017316926号(その教示は、参照することによってその全体として本明細書に組み込まれる)に見出されることができる。
ここで図3A-Cを参照すると、本教示の種々の側面による、別の例示的基質サンプリングプローブ330が、描写される。示されるように、プローブ330は、プローブ330が、例えば、サンプルから分析物を抽出するために利用された特定のSPME基質320のサイズおよび/または形状に応じて、プローブ230の代わりに使用され得るように、図2A-Cのプローブ230と同一のイオン源240ならびに/もしくは脱離溶媒源231に代替として結合されるように構成される。例えば、プローブ330は、プローブ330が、同軸内側および外側管334、332を備え、内側管334が、サンプリング導管336(図3C)の近位部分に対して拡大された断面積(図3B)を伴う遠位部分を有するサンプリング導管336を画定する点において、図2A-Cのものに類似する。しかしながら、プローブ330は、内側管334が、内側管334の最遠位端334bが、(図2Aにおけるように陥凹されるのではなく)外側管332の最遠位端332bと同一平面であるように、外側管332内に配置される点において、プローブ230と異なる。脱離溶媒導管338およびサンプリング導管336を通した体積流率を制御することによって、遠位流体チャンバ335が、それにもかかわらず、脱離溶媒分子の凝集に起因して形成される液体/空気界面335aの例示的凸状メニスカスによって示されるように、内側管334の遠位端334bの間に形成されることができる。したがって、内側および外側管334、332の遠位端は、同一平面であるが、流体は、依然として、流体チャンバ335を介して、脱離溶媒導管338から内側管内のサンプリング容積337に流動し得る。実際には、体積流率が、液体/空気界面の少なくとも一部が、例えば、脱離溶媒導管およびサンプリング導管内の脱離溶媒の相対的体積流率ならびに脱離溶媒導管の粘度に応じて、(そこからの越流の有無を問わず)外側管の遠位端の近位または遠位にあり得るように、図2Aおよび3Aのいずれかの例示的実施形態において制御され得ることを理解されたい。重要なこととして、本教示の種々の側面によるサンプルプローブは、(例えば、サンプリング導管内の体積流率を上回るように脱離溶媒導管内の体積流率を十分に増加させることによって)サンプリングの間であっても意図的に越流されることができる。公知の開放大気サンプリング界面からの越流は、サンプルの損失(したがって、減少された感度)をもたらし得る一方、本教示によるサンプリング界面は、サンプリングの間に(例えば、汚染を低減させるように)流体チャンバ235、335を意図的に越流させることができ、それに分析物が吸着されるコーティング面が、内側管の内部サンプリング容積内に配置され得るため、感度の低減を伴わない。したがって、コーティング面と接触する脱離溶媒は、越流する流体チャンバを通してすでに輸送されており、したがって、越流および潜在的サンプル損失を受けない。
また、図3A-Cのプローブ330はまた、サンプリング界面337(図3B参照)のレベルにおけるサンプリング導管336の遠位部分が、(例えば、正方形断面積を有するコーティング面322を収容するために)略正方形断面積を呈する一方、サンプリング導管336の近位部分が、(プローブ230におけるように)円形のままである点において、プローブ230と異なる。加えて、例示的プローブ330はまた、サンプリング導管337の断面積が、プローブ230のものよりも小さい点において、プローブ230と異なる。プローブ320のコーティング面322は、プローブ230のサンプリング容積237内に嵌合することが可能であり得るが、図3A-Cのもののようなサンプリング容積237の異なる断面積および/またはより小さい断面積が、本明細書に別様に議論されるように、特定の基質320から分析物を最適に脱離させるために(例えば、過剰な希釈を回避するために)、ならびに器具応答および感度を最適化するように所望され得ることを理解されたい。
プローブ230、330のサンプリング容積237、337は、相互とほぼ同一の長さであるように見えるが、また、サンプリング容積の長さもまた、異なり、本教示によるある実施形態が、分析物がそれに吸着されたSPME基質の全体的部分をその中に受容するための十分な長さを有するサンプリング容積を呈し得ることを理解されたい。図3Aに示されるように、例えば、コーティング面322の全体が、サンプリング容積337内に配置されてもよい。コーティング面322の全体が、サンプリング容積337内に配置されることを確実にすることに役立つために、本教示の種々の側面はまた、サンプリング容積内のサンプル基質のコーティング部分の相対的位置を決定することに役立つための1つまたはそれを上回るセンサを提供する。実施例として、図3Aに示されるように、プローブ330は、サンプル基質320が、流体チャンバ335を通してサンプリング容積337の中に、コーティング面322全体がサンプリング容積337内に配置されるように十分な距離だけ挿入されたことを示す信号を提供するように構成され得る、第1のセンサ323aを備える。加えて、または代替として、センサ323bの第2のセットが、例えば、コーティング面322がサンプリング容積337を近位に越えて内側管334と接触しないように回避するために、サンプル基質320の過剰挿入を防止するための信号を提供するように構成されてもよい。センサ323aまたはセンサ323bのいずれかによって提供される信号は、非限定的実施例として、サンプル基質をサンプリングプローブの中に導入するための、または挿入されたプローブの位置に関してユーザにアラートするための自動化システムを制御するように構成されてもよい。センサが、非限定的実施例として、光学または超音波手段を通して等、サンプル基質が特定のレベルに挿入されたときを決定するための種々の機構を備え得ることを理解されたい。例えば、センサ323aは、サンプリング容積337を横断して超音波エネルギーを放出する超音波トランスデューサを備えることができ、反射された超音波のタイミングは、センサ323aのレベルにおいてサンプリング導管336内に物体が存在するかどうかをシグナリングする。また、実施例として、センサ323bは、信号が、光源によって透過される光ビームがもはや光学検出器によって検出されないときに提供され得るように、サンプリング導管336の片側上に光源を備え、他側上に光学検出器を備えることができる。
本教示に照らして、あるサイズ、幾何学形状、および構成の単一のサンプリング容積が、全ての基質に関して最適化され得るわけではないため、複数の異なるプローブが、単一のMSベースのシステムとの併用のために提供され得ることを理解されたい。しかしながら、プローブ全体を交換するのではなく、一部のユーザは、代わりに、例えば、プローブの種々の部分を交換することによって、分析されるべき特定の基質に応じて、プローブを再構成することを所望し得る。例えば、ここで図4A-Bを参照すると、本教示の種々の側面による、別の例示的サンプリングプローブ430が、描写される。図4Aに示されるように、プローブ430は、図2Aのプローブ230に類似するが、(拡大されたサンプリング容積を含む)内側管434の遠位部分434dが、内側管424の近位部分434cに可撤式に結合される点において異なる。そのような側面では、あるサイズ、形状、および/または長さの第1のサンプリング容積を備える遠位部分434dは、除去(例えば、螺合解除)され、代わりに、例えば、それに分析物が吸着される基質のサイズ、形状、ならびに/もしくは長さに応じて、あるサイズ、形状、および/または長さの第2のサンプリング容積を画定する別の遠位部分434eと交換されることができる。結合機構は、種々の構成を有することができるが、概して、連続的流体チャネルを維持しながら、部分をともに固着させるように構成される。図4A-Bに示されるように、例えば、遠位部分434d、eはそれぞれ、近位部分434cの対応するボアの中に螺着され得る、ねじ山439を備えることができる。
ここで図5A-Bを参照すると、内側管534の遠位部分534d、eが、代わりに、圧入結合539を介して内側管524の近位部分534cに交換可能に結合される、別の例示的サンプリングプローブ530が、描写される。ある実施形態による基質サンプリングプローブの内側管は、円形である必要はないため、非円形外部形状を有する内側管が、円形もしくは異なる非円形外部形状を有する1つまたはそれを上回る他の内側管と交換可能であり得るように、そのような非回転結合機構を利用することが、好ましくあり得る。このように、本教示はまた、いくつかの実施形態では、種々のサイズ/形状の1つまたはそれを上回るSPME基質と、対応する基質のために最適化されるサンプリング容積内に特定のSPME基質を受容するように構成される、1つまたはそれを上回るサンプリングプローブ(もしくはその交換可能部分)とを備えるキットを提供してもよい。
ここで図6を参照すると、本教示の種々の側面による、例示的自動化サンプル分析システム610が、描写される。図6に示され、本明細書に別様に議論されるように、本教示は、液体クロマトグラフィ等の複雑かつ時間のかかるサンプル調製ステップの必要性を低減および/または排除し、したがって、自動化方式におけるSPME-MS分析を可能にし得る。示されるように、例示的システム610は、SPME基質622を握持する、保持する、または別様にそれに結合するように構成されるサンプル保持器602に結合される、作動機構604(例えば、ロボットアーム、ステージ、電気機械的トランスレータ、ステップモータ等)を含む。本教示による使用のために好適な一例示的ロボットシステムは、PAS Technologiesによって販売されるConcept-96オートサンプラである。コントローラ(図示せず)の制御下で、人間介入を伴わずに、例えば、作動機構604は、基質622を、例えば、要素605内で基質622を調整するステップ(例えば、着目分析物の抽出を可能にするために表面をコーティングまたは別様に官能化するステップ)、要素606内でのサンプルからの分析物の抽出/富化(例えば、攪拌の有無を問わず、サンプル中にコーティング面を浸漬させることによって)、要素607内で抽出されたサンプルを濯ぐステップ(例えば、一部の干渉分子、塩、タンパク質等を除去するように、分析物がそれに吸着されたSPME基質をHO中に浸漬させることによって)、および濯がれたSPME基質を基質サンプリングプローブ630の内側管のサンプリング容積の中に挿入するステップを含む、完全なサンプル調製ワークフローを通して移送するように構成されることができる。本明細書に別様に議論されるように、基質サンプリングプローブ630は、SPME基質のコーティング部分と流動する流体で接触する脱離溶媒を利用してSPME基質から分析物を脱離させ、該脱離された分析物を含有する脱離溶媒をイオン化/質量分光分析のためにイオン源640/質量分析計システム660に直接送達するように構成される。種々の側面では、脱離溶媒は、基質サンプリングプローブ630を通して連続的に圧送されることができる、または代替として、例えば、抽出ステップの間にスタンバイモードに設定されることができる。また、これらのステップのうちの1つまたはそれを上回るものが、自動化サンプルプロトコルにおいて除外され得ることを理解されたい。非限定的実施例として、システム610を用いて流れ作業の基質調整および脱離を実施するのではなく、これらのステップは、例えば、遠隔場所において「流れ作業から離れて」実施され、分析物がそれに吸着されたSPME基質は、脱離およびMS分析のために実験室に送られてもよい。
ここで図7を参照すると、本教示の種々の側面による、別の例示的自動化システム710が、描写される。システム710は、これが作動機構704およびサンプル保持器702を含む点において図6に描写されるものに類似するが、システム710が、複数のSPME基質722を支持するように構成される試料ステージを含む点において異なる。そのようなシステムでは、例えば、コントローラ(図示せず)が、それから分析物を脱離させ、脱離された分析物をイオン化/質量分光分析のために流体結合を介してイオン源740/質量分析計システム760に直接送達するために、SPME繊維のそれぞれを基質サンプリングプローブ730(もしくはそのそれぞれが、特定の基質のために最適化されるサンプリング容積を画定する、1つまたはそれを上回るサンプリングプローブのうちの1つ)に順次移送することができる。加えて、図6のシステム610のように、システム710は、段階的プロトコル(例えば、ステップ605、606、607…)を利用することができる。そのようなステップは、高処理能力のために複数のSPMEデバイスのために同時に達成されることができる。図7のシステム710のように、図6のシステムが、加えて、1つまたはそれを上回る異なるサンプルの分析のために、複数のSPMEデバイスを支持するように構成される試料ステージを含み得ることに留意されたい。
本明細書に使用される節の見出しは、編成目的のみのためのものであり、限定として解釈されるものではない。本出願人の教示は、種々の実施形態と併せて説明されるが、本出願人の教示が、そのような実施形態に限定されることを意図していない。対照的に、本出願人の教示は、当業者によって理解されるであろうように、種々の代替物、修正、および均等物を包含する。

Claims (31)

  1. 試料の化学組成を分析するためのシステムであって、前記システムは、
    基質サンプリングプローブであって、前記基質サンプリングプローブは、
    近位端から遠位端まで延在する内側管であって、前記内側管は、質量分析計のサンプリングオリフィスと流体連通するイオン化チャンバ内に脱離溶媒を排出するためにイオン源プローブに流体的に結合するように構成される遠位入口から近位出口まで延在するサンプリング導管を画定する、内側管と、
    近位端から遠位端まで延在し、前記内側管のまわりに配置される外側管であって、前記外側管は、脱離溶媒源と流体連通するように構成される近位入口から遠位出口まで延在する脱離溶媒導管を画定し、前記内側管の遠位端は、前記内側管の遠位端から液体/空気界面まで遠位に延在する流体チャンバを画定するように、前記外側管の遠位端に対して配置され、前記流体チャンバは、前記脱離溶媒導管の遠位出口および前記サンプリング導管の遠位入口と流体連通する、外側管と
    を備え、
    前記サンプリング導管は、前記流体チャンバに隣接する前記内側管の遠位端内のサンプリング容積を備え、前記サンプリング容積は、前記サンプリング導管の近位部分の断面積を上回る断面積を呈し、前記サンプリング容積は、前記脱離溶媒が、前記脱離溶媒導管の入口から、前記流体チャンバを通して、前記サンプリング導管の出口に流動する際、コーティング面が、前記サンプリング容積内の前記脱離溶媒と接触するように、1つまたはそれを上回る分析物種がそれに吸着されたサンプル基質の前記コーティング面を受容するように構成される、基質サンプリングプローブ
    を備える、システム。
  2. 前記サンプリング容積を通した最大流体速度は、前記サンプル基質のコーティング面が前記サンプリング容積内に配置されていないとき、前記サンプリング導管の近位部分を通した最大流体速度よりも低い、請求項1に記載のシステム。
  3. 前記サンプリング容積の断面積は、前記サンプリング容積を通した最大流体速度が、前記サンプル基質のコーティング面が前記サンプリング容積内に配置されるとき、前記サンプリング導管の近位部分を通した最大流体速度を上回るように構成される、請求項2に記載のシステム。
  4. 前記サンプリング容積の断面積は、前記サンプリング容積を通した最大流体速度が、前記サンプル基質のコーティング面が前記サンプリング容積内に配置されるとき、前記サンプリング導管の近位部分を通した最大流体速度を下回るように構成される、請求項2に記載のシステム。
  5. 前記内側管の遠位端は、前記流体チャンバが、前記内側管の遠位端と前記外側管の遠位端との間にある容積を備えるように、前記外側管の遠位端に対して陥凹される、請求項1に記載のシステム。
  6. 前記サンプル基質は、SPME基質を備える、請求項1に記載のシステム。
  7. 前記SPME基質は、繊維を含み、前記サンプリング容積の断面積は、前記コーティング面において前記繊維の断面積を上回る、請求項6に記載のシステム。
  8. 前記SPME基質は、ブレードを含み、前記サンプリング容積の断面の最も大きい線形寸法は、前記コーティング面において前記ブレードの幅を上回る、請求項6に記載のシステム。
  9. 前記サンプリング容積は、前記サンプル基質のコーティング面全体が、前記サンプリング容積内に配置され得るようなサイズにされる、請求項1に記載のシステム。
  10. 前記サンプリング導管は、前記サンプル基質のコーティング面が、前記サンプリング導管の近位部分内に配置され得ないようなサイズにされる、請求項9に記載のシステム。
  11. 前記サンプリング容積は、円形断面形状を呈する、請求項1に記載のシステム。
  12. 前記サンプリング容積は、長方形断面形状を呈する、請求項1に記載のシステム。
  13. 前記サンプリング容積および前記サンプリング導管の近位部分は、異なる断面形状を呈する、請求項1に記載のシステム。
  14. 前記サンプリング容積を備える前記内側管の遠位部分は、前記サンプリング容積と形状および断面積のうちの少なくとも1つにおいて異なる第2のサンプリング容積を呈する第2の遠位部分と交換されるように構成される、請求項1に記載のシステム。
  15. 分析物の1つまたはそれを上回る種を吸着するように構成される抽出相を用いてコーティングされる表面を有するサンプル基質をさらに備え、前記コーティング面の少なくとも一部は、前記分析物種がそれに吸着された前記コーティング面が、前記サンプリング容積内の前記脱離溶媒と接触するように、前記外側管の遠位端および前記流体チャンバを通して挿入されるように構成される、請求項14に記載のシステム。
  16. 前記脱離溶媒導管の入口に流体的に結合される少なくとも1つの脱離溶媒源と、
    前記脱離溶媒を前記少なくとも1つの脱離溶媒源から前記脱離溶媒導管の入口に送達するためのポンプ機構と
    をさらに備える、請求項1に記載のシステム。
  17. 前記脱離溶媒導管、前記サンプリング導管、および前記イオン源プローブのうちの1つまたはそれを上回るものを通して流動する前記脱離溶媒の流率を調節するためのコントローラをさらに備える、請求項16に記載のシステム。
  18. 前記少なくとも1つの脱離溶媒源は、前記サンプリング容積に供給され、前記サンプリング容積の中に配置された前記サンプル基質がそれに暴露される、前記脱離溶媒の組成が、経時的に変化するように、溶出勾配を提供するように構成される、請求項16に記載のシステム。
  19. イオン源プローブ、イオン化チャンバ、および質量分析計システムをさらに備え、前記イオン源プローブは、前記サンプリング導管の出口と流体連通し、前記イオン化チャンバ内に配置される末端を備え、前記脱離溶媒内に含有される分析物は、前記脱離溶媒が、前記イオン化チャンバの中に排出される際、イオン化するように構成される、請求項1に記載のシステム。
  20. 前記サンプル基質を支持するように構成される試料保持器と、
    作動機構であって、前記作動機構は、前記試料保持器に結合され、前記サンプル基質のコーティング面が、前記サンプリング容積内の前記脱離溶媒と接触するように、前記外側管の遠位端の中に前記サンプル基質を挿入するように構成される、作動機構と
    をさらに備える、請求項1に記載のシステム。
  21. 複数のサンプル基質を支持するように構成される試料ステージをさらに備え、
    前記作動機構は、前記複数のサンプル基質のそれぞれの前記コーティング面が、前記サンプリング容積内の前記脱離溶媒と接触するように、前記外側管の遠位端の中に前記複数のサンプル基質のそれぞれを順次挿入するように構成される、請求項20に記載のシステム。
  22. 化学分析を実施するための方法であって、
    基質サンプリングプローブの開放端の中にサンプル基質の少なくとも一部を挿入するステップであって、前記サンプル基質は、それに1つまたはそれを上回る分析物種が吸着される抽出相を用いてコーティングされる表面を有し、前記基質サンプリングプローブは、
    近位端から遠位端まで延在する内側管であって、前記内側管は、遠位入口から近位出口まで延在するサンプリング導管を画定する、内側管と、
    近位端から遠位端まで延在し、前記内側管のまわりに配置される外側管であって、前記外側管は、脱離溶媒源と流体連通するように構成される近位入口から延在する脱離溶媒導管を画定する、外側管と
    を備え、
    前記内側管の遠位端は、前記内側管の遠位端から液体/空気界面まで遠位に延在する流体チャンバを画定するように、前記外側管の遠位端に対して配置され、前記流体チャンバは、前記脱離溶媒導管の遠位出口および前記サンプリング導管の遠位入口と流体連通し、
    前記サンプリング導管は、前記流体チャンバに隣接する前記内側管の遠位端内のサンプリング容積を備え、前記サンプリング容積は、前記サンプリング導管の近位部分の断面積を上回る断面積を呈する、ステップと、
    前記1つまたはそれを上回る分析物種の少なくとも一部が、前記コーティング面から脱離され、前記脱離溶媒内のイオン源プローブに送達されるように、前記脱離溶媒導管の入口から、前記流体チャンバを通して、前記サンプリング導管の出口に前記脱離溶媒を流動させるステップと、
    前記1つまたはそれを上回る分析物種をイオン化するように、前記イオン源プローブから前記1つまたはそれを上回る分析物種の前記一部を含有する前記脱離溶媒を排出するステップと、
    前記1つまたはそれを上回るイオン化された分析物種に対して質量分光分析を実施するステップと
    を含む、方法。
  23. 前記サンプル基質の少なくとも一部を挿入するステップは、前記内側管内の前記サンプリング容積の中に前記コーティング面を配置するステップを含む、請求項22に記載の方法。
  24. 前記サンプル内に含有される前記1つまたはそれを上回る分析物種を前記コーティング面に吸着させるように、サンプルの中に前記サンプル基質を挿入するステップをさらに含む、請求項22に記載の方法。
  25. 前記1つまたはそれを上回る分析物種が、前記コーティング面に吸着された後、前記サンプル基質は、液体クロマトグラフィを実施するステップを伴わずに、前記基質サンプリングプローブの中に挿入される、請求項24に記載の方法。
  26. 質量分光分析を実施するステップはさらに、MRM定量化を実施するステップを含む、請求項22に記載の方法。
  27. 質量分光分析を実施するステップに先立って、微分移動度分光計を通して前記1つまたはそれを上回るイオン化された分析物種を伝達するステップをさらに含む、請求項22に記載の方法。
  28. 前記内側管の遠位部分を、形状および断面積のうちの少なくとも1つにおいて異なる第2のサンプリング容積を備える第2の遠位部分と交換するステップをさらに含む、請求項22に記載の方法。
  29. 前記脱離溶媒を流動させるステップは、前記サンプル基質が、前記サンプリング容積内に配置される間、前記サンプリング容積に溶出勾配を提供するステップを含む、請求項22に記載の方法。
  30. 前記脱離溶媒を流動させるステップは、前記サンプリング容積内に配置されるとき、前記サンプル基質がそれに暴露される前記脱離溶媒の組成を調節するステップを含む、請求項22に記載の方法。
  31. 脱離溶媒導管体積流率は、前記サンプル基質が、前記基質サンプリングプローブの開放端の中に挿入されるとき、前記脱離溶媒の少なくとも一部が、前記外側導管の遠位端から越流するように、サンプリング容積体積流率を上回る、請求項22に記載の方法。
JP2022519467A 2019-09-30 2020-09-29 質量分析システムおよび方法における使用のための内部サンプリング伴うサンプリングプローブ Pending JP2022550750A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962908012P 2019-09-30 2019-09-30
US62/908,012 2019-09-30
PCT/IB2020/059070 WO2021064559A1 (en) 2019-09-30 2020-09-29 Sampling probe with internal sampling for use in mass spectrometry systems and methods

Publications (1)

Publication Number Publication Date
JP2022550750A true JP2022550750A (ja) 2022-12-05

Family

ID=72811910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022519467A Pending JP2022550750A (ja) 2019-09-30 2020-09-29 質量分析システムおよび方法における使用のための内部サンプリング伴うサンプリングプローブ

Country Status (5)

Country Link
US (1) US20230349858A1 (ja)
EP (1) EP4038361B1 (ja)
JP (1) JP2022550750A (ja)
CN (1) CN114502942A (ja)
WO (1) WO2021064559A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607865A (zh) * 2021-08-06 2021-11-05 深圳德谱仪器有限公司 一种多用途的离子色谱仪的进样嘴

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691205A (en) 1994-06-23 1997-11-25 Canon Kabushiki Kaisha Fluorometric analysis of chloride ion and chemical sensor therefor
US6803566B2 (en) * 2002-04-16 2004-10-12 Ut-Battelle, Llc Sampling probe for microarray read out using electrospray mass spectrometry
US20100224013A1 (en) 2009-03-05 2010-09-09 Van Berkel Gary J Method and system for formation and withdrawal of a sample from a surface to be analyzed
US8486703B2 (en) 2010-09-30 2013-07-16 Ut-Battelle, Llc Surface sampling concentration and reaction probe
WO2015188282A1 (en) 2014-06-13 2015-12-17 Pawliszyn Janusz B A probe for extraction of molecules of interest from a sample
US10103015B2 (en) 2016-04-29 2018-10-16 Dh Technologies Development Pte. Ltd. Sampling interface for mass spectrometry systems and methods

Also Published As

Publication number Publication date
EP4038361B1 (en) 2024-06-19
WO2021064559A1 (en) 2021-04-08
EP4038361A1 (en) 2022-08-10
US20230349858A1 (en) 2023-11-02
CN114502942A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US11476106B2 (en) Methods and systems for increasing sensitivity of direct sampling interfaces for mass spectrometric analysis
US10103015B2 (en) Sampling interface for mass spectrometry systems and methods
US8546752B2 (en) Solid-phase extraction (SPE) tips and methods of use
CN112272859B (zh) 用于质谱法的取样探针和取样界面
US11348780B2 (en) Methods and systems utilizing ultrasound-assisted sampling interfaces for mass spectrometric analysis
EP2545581A1 (en) Analyte spray emission apparatus and process for mass spectrometric analysis
EP4038361B1 (en) Sampling probe with internal sampling for use in mass spectrometry systems and methods
CN111373506A (zh) 用于质谱分析的直接采样界面的反馈控制的方法和系统
US11450519B2 (en) Sampling interface for a mass spectrometer
JP2005259477A (ja) エレクトロスプレイイオン化質量分析装置
US20230377867A1 (en) Exhaust Flow Boosting for Sampling Probe for Use in Mass Spectrometry Systems and Methods
Abu‐Rabie Direct analysis of dried blood spot samples
US20230197428A1 (en) High flowrate flushing for open port sampling probe
WO2023026186A1 (en) Methods and systems for extracting analytes from a sample

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230929