JP2022547909A - Ct画像基盤の部位別の大脳皮質収縮率の予測方法及び装置 - Google Patents
Ct画像基盤の部位別の大脳皮質収縮率の予測方法及び装置 Download PDFInfo
- Publication number
- JP2022547909A JP2022547909A JP2022514861A JP2022514861A JP2022547909A JP 2022547909 A JP2022547909 A JP 2022547909A JP 2022514861 A JP2022514861 A JP 2022514861A JP 2022514861 A JP2022514861 A JP 2022514861A JP 2022547909 A JP2022547909 A JP 2022547909A
- Authority
- JP
- Japan
- Prior art keywords
- image
- images
- information
- region
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008602 contraction Effects 0.000 title claims abstract description 43
- 210000003710 cerebral cortex Anatomy 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims description 22
- 230000011218 segmentation Effects 0.000 claims abstract description 50
- 238000010801 machine learning Methods 0.000 claims abstract description 34
- 238000013135 deep learning Methods 0.000 claims abstract description 33
- 210000004884 grey matter Anatomy 0.000 claims description 31
- 210000004885 white matter Anatomy 0.000 claims description 31
- 238000004458 analytical method Methods 0.000 claims description 15
- 230000001054 cortical effect Effects 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 8
- 230000002490 cerebral effect Effects 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 7
- 210000003625 skull Anatomy 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 230000002861 ventricular Effects 0.000 claims description 6
- 238000007477 logistic regression Methods 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 4
- 238000013277 forecasting method Methods 0.000 claims 1
- 230000006870 function Effects 0.000 description 8
- 208000024827 Alzheimer disease Diseases 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 206010012289 Dementia Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 2
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 230000007082 Aβ accumulation Effects 0.000 description 1
- 206010051290 Central nervous system lesion Diseases 0.000 description 1
- 208000018152 Cerebral disease Diseases 0.000 description 1
- 208000027626 Neurocognitive disease Diseases 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 230000004970 emotional disturbance Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007557 neuronal destruction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000001152 parietal lobe Anatomy 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 210000003478 temporal lobe Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4088—Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/501—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the head, e.g. neuroimaging or craniography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5247—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/042—Knowledge-based neural networks; Logical representations of neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/32—Determination of transform parameters for the alignment of images, i.e. image registration using correlation-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/70—Labelling scene content, e.g. deriving syntactic or semantic representations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Theoretical Computer Science (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Neurology (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Neurosurgery (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Epidemiology (AREA)
- Physiology (AREA)
- Primary Health Care (AREA)
- Pulmonology (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
Abstract
Description
Claims (11)
- 多数患者のCT画像とセグメンテーション情報とを選択及び用いて、ディープラーニングネットワークにCT画像とセグメンテーション情報との相関関係を学習させるディープラーニング段階と、
CT画像のそれぞれに対応するセマンティック特徴情報をセグメンテーション情報のそれぞれに基づいて抽出する特徴抽出段階と、
セマンティック特徴情報のそれぞれに対応する多数の部位別の大脳皮質収縮率を追加獲得した後、マシンラーニングモデルにセマンティック特徴情報と部位別の大脳皮質収縮率との相関関係を学習させるマシンラーニング段階と、
分析対象画像が入力されれば、前記ディープラーニングネットワークを通じて分析対象画像に対応するセグメンテーション情報を獲得するセグメンテーション段階と、
セグメンテーション情報に基づいて分析対象画像に対応するセマンティック特徴情報を抽出した後、前記マシンラーニングモデルを通じてセマンティック特徴情報に対応する部位別の大脳皮質収縮率を予測及び通報する予測段階と、
を含む、CT画像基盤の部位別の大脳皮質収縮率の予測方法。 - 前記ディープラーニングネットワークは、ユーネットモデルとして具現されることを特徴とする、請求項1に記載のCT画像基盤の部位別の大脳皮質収縮率の予測方法。
- 前記セグメンテーション情報は、MRI画像基盤として抽出され、白質領域情報、灰白質領域情報、及び脳室領域情報を含むことを特徴とする、請求項1に記載のCT画像基盤の部位別の大脳皮質収縮率の予測方法。
- 前記セマンティック特徴情報は、白質の3次元体積比、灰白質の3次元体積比、白質と灰白質との3次元体積比の総和、脳室の3次元体積、白質の2次元面積比、灰白質の2次元面積比、白質と灰白質との2次元面積比の総和、脳室の2次元面積を含むことを特徴とする、請求項1に記載のCT画像基盤の部位別の大脳皮質収縮率の予測方法。
- 前記マシンラーニングモデルは、正規化されたロジスティック回帰モデル、線形判別分析モデル、ガウスナイーブベイズモデルのうち少なくとも1つを用いて間接多数決投票モデルとして具現されることを特徴とする、請求項1に記載のCT画像基盤の部位別の大脳皮質収縮率の予測方法。
- 多数患者のCT画像または分析対象画像が入力されれば、剛体変換を通じて画像整合した後、頭蓋骨画像を除去する画像前処理動作を行う段階をさらに含むことを特徴とする、請求項1に記載のCT画像基盤の部位別の大脳皮質収縮率の予測方法。
- 多数患者のCT画像または分析対象画像が入力されれば、剛体変換を通じて画像整合した後、頭蓋骨画像を除去するCT画像前処理部と、
CT画像のそれぞれに対応するセグメンテーション情報のそれぞれを追加獲得した後、ディープラーニングネットワークにCT画像とセグメンテーション情報との相関関係を学習させるディープラーニング部と、
分析対象画像に対応するセグメンテーション情報を前記ディープラーニングネットワークを獲得及び出力するセグメンテーション部と、
CT画像または分析対象画像に対応するセマンティック特徴情報をセグメンテーション情報のそれぞれに基づいて抽出する特徴抽出部と、
CT画像のセマンティック特徴情報のそれぞれに対応する多数の部位別の大脳皮質収縮率を追加獲得した後、マシンラーニングモデルにセマンティック特徴情報と部位別の大脳皮質収縮率との相関関係を学習させるマシンラーニング部と、
前記マシンラーニングモデルを通じて分析対象画像のセマンティック特徴情報に対応する部位別の大脳皮質収縮率を予測及び通報する予測部と、
を含む、CT画像基盤の部位別の大脳皮質収縮率の予測装置。 - 前記ディープラーニングネットワークは、ユーネットモデルとして具現されることを特徴とする、請求項7に記載のCT画像基盤の部位別の大脳皮質収縮率の予測装置。
- 前記セグメンテーション情報は、白質領域情報、灰白質領域情報、及び脳室領域情報を含むことを特徴とする、請求項7に記載のCT画像基盤の部位別の大脳皮質収縮率の予測装置。
- 前記セマンティック特徴情報は、白質の3次元体積比、灰白質の3次元体積比、白質と灰白質との3次元体積比の総和、脳室の3次元体積、白質の2次元面積比、灰白質の2次元面積比、白質と灰白質との2次元面積比の総和、脳室の2次元面積を含むことを特徴とする、請求項7に記載のCT画像基盤の部位別の大脳皮質収縮率の予測装置。
- 前記マシンラーニングモデルは、正規化されたロジスティック回帰モデル、線形判別分析モデル、ガウスナイーブベイズモデルのうち少なくとも1つを用いて間接多数決投票モデルとして具現されることを特徴とする、請求項7に記載のCT画像基盤の部位別の大脳皮質収縮率の予測装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0109863 | 2019-09-05 | ||
KR1020190109863A KR102276545B1 (ko) | 2019-09-05 | 2019-09-05 | Ct 영상 기반 부위별 대뇌 피질 수축율 예측 방법 및 장치 |
PCT/KR2020/011790 WO2021045507A2 (ko) | 2019-09-05 | 2020-09-02 | Ct 영상 기반 부위별 대뇌 피질 수축율 예측 방법 및 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022547909A true JP2022547909A (ja) | 2022-11-16 |
JP7317306B2 JP7317306B2 (ja) | 2023-07-31 |
Family
ID=74852120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022514861A Active JP7317306B2 (ja) | 2019-09-05 | 2020-09-02 | Ct画像基盤の部位別の大脳皮質収縮率の予測方法及び装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220335611A1 (ja) |
EP (1) | EP4026498B1 (ja) |
JP (1) | JP7317306B2 (ja) |
KR (1) | KR102276545B1 (ja) |
WO (1) | WO2021045507A2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020163539A1 (en) * | 2019-02-05 | 2020-08-13 | University Of Virginia Patent Foundation | System and method for fully automatic lv segmentation of myocardial first-pass perfusion images |
US11640552B2 (en) * | 2019-10-01 | 2023-05-02 | International Business Machines Corporation | Two stage training to obtain a best deep learning model with efficient use of computing resources |
WO2023153839A1 (ko) * | 2022-02-09 | 2023-08-17 | 사회복지법인 삼성생명공익재단 | 2차원 mri를 이용한 치매 정보 산출 방법 및 분석장치 |
KR102608203B1 (ko) * | 2022-02-09 | 2023-11-30 | 사회복지법인 삼성생명공익재단 | 2차원 mri를 이용한 치매 예측 방법 및 분석장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007114238A1 (ja) * | 2006-03-30 | 2007-10-11 | National University Corporation Shizuoka University | 脳萎縮判定装置、脳萎縮判定方法及び脳萎縮判定プログラム |
WO2012032940A1 (ja) * | 2010-09-07 | 2012-03-15 | 株式会社 日立メディコ | 認知症診断支援装置及び認知症診断支援方法 |
WO2019044089A1 (ja) * | 2017-08-29 | 2019-03-07 | 富士フイルム株式会社 | 医用情報表示装置、方法及びプログラム |
KR102001398B1 (ko) * | 2018-01-25 | 2019-07-18 | 재단법인 아산사회복지재단 | 기계학습을 통한 뇌질환 상태변화 예측방법, 장치 및 프로그램 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8066993B2 (en) | 2010-04-13 | 2011-11-29 | Norman R Relkin | Use of ventricular enlargement rate in intravenous immunoglobulin treatment of Alzheimer's disease |
EP2994160B1 (en) * | 2013-05-06 | 2019-07-03 | Baxalta Incorporated | Treatment of alzheimer's disease subpopulations with pooled immunoglobulin g |
KR101944069B1 (ko) * | 2016-12-29 | 2019-01-30 | 주식회사 마이다스아이티 | 기계 학습을 기반으로 한 알츠하이머 병 결정 방법 및 장치 |
KR101916347B1 (ko) | 2017-10-13 | 2018-11-08 | 주식회사 수아랩 | 딥러닝 기반 이미지 비교 장치, 방법 및 컴퓨터 판독가능매체에 저장된 컴퓨터 프로그램 |
KR102064811B1 (ko) * | 2018-01-19 | 2020-01-13 | 사회복지법인 삼성생명공익재단 | 아밀로이드 양성 경도인지장애 환자의 치매 진행을 예측하여 분류하는 방법 및 장치 |
KR101936302B1 (ko) | 2018-06-29 | 2019-01-08 | 이채영 | 딥러닝 네트워크에 기반한 퇴행성 신경질환 진단 방법 및 진단 장치 |
-
2019
- 2019-09-05 KR KR1020190109863A patent/KR102276545B1/ko active IP Right Grant
-
2020
- 2020-09-02 EP EP20861207.7A patent/EP4026498B1/en active Active
- 2020-09-02 US US17/640,593 patent/US20220335611A1/en active Pending
- 2020-09-02 JP JP2022514861A patent/JP7317306B2/ja active Active
- 2020-09-02 WO PCT/KR2020/011790 patent/WO2021045507A2/ko unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007114238A1 (ja) * | 2006-03-30 | 2007-10-11 | National University Corporation Shizuoka University | 脳萎縮判定装置、脳萎縮判定方法及び脳萎縮判定プログラム |
WO2012032940A1 (ja) * | 2010-09-07 | 2012-03-15 | 株式会社 日立メディコ | 認知症診断支援装置及び認知症診断支援方法 |
WO2019044089A1 (ja) * | 2017-08-29 | 2019-03-07 | 富士フイルム株式会社 | 医用情報表示装置、方法及びプログラム |
KR102001398B1 (ko) * | 2018-01-25 | 2019-07-18 | 재단법인 아산사회복지재단 | 기계학습을 통한 뇌질환 상태변화 예측방법, 장치 및 프로그램 |
Also Published As
Publication number | Publication date |
---|---|
EP4026498A4 (en) | 2023-03-29 |
KR102276545B1 (ko) | 2021-07-15 |
US20220335611A1 (en) | 2022-10-20 |
EP4026498B1 (en) | 2024-05-01 |
KR20210029318A (ko) | 2021-03-16 |
EP4026498A2 (en) | 2022-07-13 |
JP7317306B2 (ja) | 2023-07-31 |
WO2021045507A3 (ko) | 2021-04-29 |
WO2021045507A2 (ko) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7317306B2 (ja) | Ct画像基盤の部位別の大脳皮質収縮率の予測方法及び装置 | |
Costa et al. | Towards adversarial retinal image synthesis | |
JP6998959B2 (ja) | 神経生理学的信号を使用する反復分類のためのシステムと方法 | |
KR102058884B1 (ko) | 치매를 진단을 하기 위해 홍채 영상을 인공지능으로 분석하는 방법 | |
US20220051801A1 (en) | Classifying neurological disease status using deep learning | |
Alghamdi et al. | A comparative study of deep learning models for diagnosing glaucoma from fundus images | |
JP2020042598A (ja) | 生体信号データからの個体特徴分離による状態予測方法および装置 | |
Qin et al. | 3D convolutional neural networks with hybrid attention mechanism for early diagnosis of Alzheimer’s disease | |
WO2019172181A1 (ja) | 診断支援装置、プログラム、学習済みモデル、および学習装置 | |
Shahin et al. | An accurate and fast cardio-views classification system based on fused deep features and LSTM | |
Kakade et al. | Identification of nerve in ultrasound images using U-net architecture | |
CN115272295A (zh) | 基于时域-空域联合状态的动态脑功能网络分析方法及系统 | |
Zhu et al. | Diabetic Retinopathy Classification With Deep Learning via Fundus Images: A Short Survey | |
Saraswathi et al. | Brain tumor segmentation and classification using self organizing map | |
Basu | Analyzing Alzheimer's disease progression from sequential magnetic resonance imaging scans using deep convolutional neural networks | |
KR102521303B1 (ko) | 약물의 작용 기전을 예측하는 신경망의 기계학습 방법 및 신경망을 이용한 약물의 작용 기전 예측 방법 | |
Varghese et al. | Discrimination between Alzheimer’s disease, mild cognitive impairment and normal aging using ANN based MR brain image segmentation | |
Paul et al. | Computer-Aided Diagnosis Using Hybrid Technique for Fastened and Accurate Analysis of Tuberculosis Detection with Adaboost and Learning Vector Quantization | |
CN112992340A (zh) | 基于行为识别的疾病预警方法、装置、设备及存储介质 | |
Sandya et al. | Deep learning based brain tumor detection with internet of things | |
Agrawal et al. | Classification of Vitiligo using CNN Autoencoder | |
Raj et al. | A deep approach to quantify iron accumulation in the DGM structures of the brain in degenerative Parkinsonian disorders using automated segmentation algorithm | |
Lin et al. | Attention-based Efficient Classification for 3D MRI Image of Alzheimer's Disease | |
Devisri et al. | Fetal growth analysis from ultrasound videos based on different biometrics using optimal segmentation and hybrid classifier | |
CN118152819B (zh) | 一种视听刺激下的大脑编码方法、装置及介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230707 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7317306 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |