JP2022547098A - Novel micropeptide HMMW and its application - Google Patents

Novel micropeptide HMMW and its application Download PDF

Info

Publication number
JP2022547098A
JP2022547098A JP2022514793A JP2022514793A JP2022547098A JP 2022547098 A JP2022547098 A JP 2022547098A JP 2022514793 A JP2022514793 A JP 2022514793A JP 2022514793 A JP2022514793 A JP 2022514793A JP 2022547098 A JP2022547098 A JP 2022547098A
Authority
JP
Japan
Prior art keywords
hmmw
micropeptide
cancer
cells
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022514793A
Other languages
Japanese (ja)
Other versions
JP7376960B2 (en
Inventor
シュイ、ハンメイ
リー、モンウェイ
Original Assignee
ナンチン アンチー バイオテクノロジー カンパニー、リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナンチン アンチー バイオテクノロジー カンパニー、リミテッド filed Critical ナンチン アンチー バイオテクノロジー カンパニー、リミテッド
Publication of JP2022547098A publication Critical patent/JP2022547098A/en
Application granted granted Critical
Publication of JP7376960B2 publication Critical patent/JP7376960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/5743Specifically defined cancers of skin, e.g. melanoma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)

Abstract

本発明は、生物医薬研究開発の分野に属する、真新しい構造を有するマイクロペプチドHMMWおよびその応用を開示している。マイクロペプチドHMMWはヒトlncRNAによってコードされ、組換えベクターは、標的細胞がマイクロペプチドHMMWを高度に発現するように構築され、ヒトの頭頸部癌、甲状腺癌、肺癌、食道扁平上皮癌、胃癌、乳癌、腎癌、および皮膚癌などを含む様々な固形腫瘍の増殖、遊走、およびインビボでの腫瘍成長が抑制でき、潜在的な新薬開発の価値、重要な腫瘍の検出および治療の価値を持っている。The present invention discloses a micropeptide HMMW with a brand new structure and its application belonging to the field of biomedical research and development. The micropeptide HMMW is encoded by a human lncRNA, the recombinant vector is constructed such that the target cells highly express the micropeptide HMMW, and is used for human head and neck cancer, thyroid cancer, lung cancer, esophageal squamous cell carcinoma, gastric cancer and breast cancer. It can inhibit the growth, migration, and in vivo tumor growth of a variety of solid tumors, including , renal, and skin cancers, and has potential drug development value, important tumor detection and therapeutic value. .

Description

本発明は、生物医学研究開発の分野に関わり、より具体的には、腫瘍の検出および治療における新規マイクロペプチドHMMWの適用に関わる。 The present invention relates to the field of biomedical research and development, and more specifically to the application of novel micropeptide HMMW in tumor detection and therapy.

トランスクリプトミクス、プロテオミクス、およびバイオインフォマティック分析法の発展により、科学者は、過去に定義された非コーディングRNA分子(IncRNA、circRNA、miRNAなど)が実際にコーディング能力を備えた小さなオープンリーディングフレーム(sORF、small Open Reading Frame、ヌクレオチド配列は300bpを超えない)を含むことを発見し、sORFによってコードされるポリペプチド(sORF-encoded peptides,SEPs)はマイクロペプチド(micropeptides、長さは100アミノ酸を超えない)と呼ばれる。2015年のジャーナルCellでは、科学者がバイオインフォマティクス法によってポリペプチドMyoregulin(MLN)をコードする骨格筋特異性のlncRNAをスクリーニングし、そしてMLNが骨格筋生理学の重要な調節因子であると確認できたことを発表した。過去2年間、世界でマイクロペプチドをコードできるIncRNAに関する報告は多くなく、研究分野は主に筋肉の分化と骨格筋の発育に焦点を当てている。したがって、lncRNAによってコードされる新しいマイクロペプチドに対する発見と識別、及び新しい応用分野に対する探索は、非コーディングRNAのコーディングドアを開くことにとって非常に重要となっている。 Advances in transcriptomics, proteomics, and bioinformatic analytical methods have enabled scientists to discover that previously defined non-coding RNA molecules (IncRNAs, circRNAs, miRNAs, etc.) are actually small open reading frames with coding capacity ( sORF, small Open Reading Frame, nucleotide sequence does not exceed 300 bp), and the polypeptides encoded by sORF (sORF-encoded peptides, SEPs) consist of micropeptides, exceeding 100 amino acids in length. no). In the 2015 journal Cell, scientists screened skeletal muscle-specific lncRNAs encoding the polypeptide Myoregulin (MLN) by bioinformatics and were able to identify MLN as a key regulator of skeletal muscle physiology. announced that In the past two years, there are not many reports on IncRNAs that can encode micropeptides in the world, and the research fields are mainly focused on muscle differentiation and skeletal muscle development. Therefore, the discovery and identification of new micropeptides encoded by lncRNAs and the search for new applications are of great importance for opening the coding door of non-coding RNAs.

腫瘍(Tumor)は、人間の生命と健康を深刻に危険にさらす悪性疾患の一種で、無制限の成長、浸潤および転移は腫瘍の悪性徴候であり、治療の失敗や死亡の主な原因でもある。現在、癌患者に対する主な臨床治療法には手術と化学療法(化学療法/薬物療法)がある。ほとんどの腫瘍にとっては、手術療法は初期、中期、限局性腫瘍の根治的治療、および進行腫瘍の緩和治療に適しており、手術療法には化学療法抵抗性や放射線抵抗性はないが、外傷性が大きく、ある部分での手術が困難であり、無症候性転移には効果がないという問題がある。ほとんどの腫瘍にとっては、化学療法は中期および進行腫瘍に適し、全身療法として、化学療法は原発腫瘍、転移腫瘍、および無症候性転移腫瘍に対して治療効果があるが、化学療法薬の選択性は低く、治療効果を達成しながら、さまざまな程度の毒性と副作用がしばしば発生する。また、化学療法を長期間受けている癌患者は、免疫抑制と直接的な発癌により、新たな悪性腫瘍を発症する可能性がある。 Tumors are a class of malignant diseases that seriously endanger human life and health.Uncontrolled growth, invasion and metastasis are the malignant manifestations of tumors and are also the leading causes of treatment failure and death. Currently, the main clinical treatments for cancer patients are surgery and chemotherapy (chemotherapy/drug therapy). For most tumors, surgery is suitable for definitive treatment of early-stage, intermediate-stage, and localized tumors, and palliative treatment of advanced tumors; The problem is that it is large, difficult to operate in some areas, and ineffective for asymptomatic metastasis. For most tumors, chemotherapy is suitable for intermediate and advanced tumors, and as a systemic therapy, chemotherapy is effective against primary tumors, metastases, and asymptomatic metastases; are low, and while achieving therapeutic efficacy, varying degrees of toxicity and side effects often occur. In addition, cancer patients undergoing long-term chemotherapy may develop new malignancies due to immunosuppression and direct carcinogenesis.

ポリペプチド薬は、特異性が高く、毒性や副作用が少なく、作用機序が明確で、正常な細胞や組織、臓器に害を及ぼさないという利点を持っているため、癌、心血管疾患、免疫関連疾患、代謝性疾患、感染症の治療において徐々に開発されてきた。現在、世界では80種類以上のポリペプチド薬が発売されており、年間総売上高は200億米ドルを超え、中国のポリペプチド薬の市場売上高は急速な成長の勢いを続けているが、そのほとんどが模倣類ポリペプチド薬となっている。 Polypeptide drugs have the advantages of high specificity, low toxicity and side effects, clear mechanism of action, and no harm to normal cells, tissues and organs. It has been gradually developed in the treatment of related diseases, metabolic diseases and infectious diseases. At present, more than 80 kinds of polypeptide drugs have been launched in the world, with a total annual sales of more than 20 billion US dollars, and China's polypeptide drug market sales continue its rapid growth momentum, but its Most have become mimetic polypeptide drugs.

現在、頭頸部癌、甲状腺癌、肺癌、食道扁平上皮癌などの悪性腫瘍の検出と治療におけるマイクロペプチドの研究はまだ空白で、本特許は、バイオインフォマティクス分析と実験的検証によって腫瘍内の新しいマイクロペプチドを発見し、腫瘍の検出と治療におけるその応用について検討して、腫瘍の検出と治療のための新しいソリューションを提供する。 Currently, the research of micropeptides in the detection and treatment of malignant tumors such as head and neck cancer, thyroid cancer, lung cancer, esophageal squamous cell carcinoma is still blank, and this patent is a novel micro-micropeptide in tumors through bioinformatics analysis and experimental validation. Discover peptides and explore their applications in tumor detection and therapy to provide new solutions for tumor detection and therapy.

本発明の第1の目的は、新規マイクロペプチドHMMWおよびそのアミノ酸配列を提供するためで、マイクロペプチドHMMWは、初めて発見された新しいヒト内因性ポリペプチドとなっている。 A first object of the present invention is to provide a novel micropeptide HMMW and its amino acid sequence, the micropeptide HMMW being the first novel human endogenous polypeptide discovered.

本発明の第2の目的は、ヌクレオチドを提供するためで、前記ヌクレオチド配列は前記マイクロペプチドHMMWをコードすることで取得できる。 A second object of the present invention is to provide a nucleotide sequence, said nucleotide sequence obtainable by encoding said micropeptide HMMW.

本発明の第3の目的は、マイクロペプチドHMMWをコードするヌクレオチド配列を含む組換えベクターを提供するためとなっている。 A third object of the present invention is to provide a recombinant vector containing a nucleotide sequence encoding the micropeptide HMMW.

本発明の第4の目的は、マイクロペプチドHMMWまたは前記マイクロペプチドHMMWをコードするヌクレオチドを腫瘍検出用試薬および腫瘍治療薬の調製に適用するためで、具体的には、ヒトの頭頸部癌、甲状腺癌、肺癌、食道扁平上皮細胞、胃癌、乳癌、腎癌、皮膚癌における検出と治療効果を含む。 A fourth object of the present invention is to apply the micropeptide HMMW or a nucleotide encoding said micropeptide HMMW to the preparation of tumor detection reagents and tumor therapeutic agents, specifically human head and neck cancer, thyroid cancer. Including detection and therapeutic effects in cancer, lung cancer, esophageal squamous cell, gastric cancer, breast cancer, renal cancer and skin cancer.

添付図1は、マイクロペプチドHMMWを過剰発現しているpcDNA3.1プラスミドマップとなっている。Attached Figure 1 is a pcDNA3.1 plasmid map overexpressing the micropeptide HMMW. 添付図2は、western blotで検出されたターゲットバンドの発現状況となっている。Attached Fig. 2 shows the expression status of the target band detected by western blot. 添付図3は、ヒトの頭頸部癌SCC4細胞の増殖に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 3 shows the inhibitory effect of the micropeptide HMMW on the proliferation of human head and neck cancer SCC4 cells. 添付図4は、ヒト甲状腺癌SW579細胞の増殖に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 4 shows the inhibitory effect of the micropeptide HMMW on the proliferation of human thyroid cancer SW579 cells. 添付図5は、ヒト肺癌A549細胞の増殖に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 5 shows the inhibitory effect of the micropeptide HMMW on the proliferation of human lung cancer A549 cells. 添付図6は、ヒト食道扁平上皮癌TE13細胞の増殖に対するマイクロペプチドHMMWの抑制効果となっている。Attached FIG. 6 shows the inhibitory effect of the micropeptide HMMW on the proliferation of human esophageal squamous cell carcinoma TE13 cells. 添付図7は、ヒト胃癌MGC803細胞の増殖に対するマイクロペプチドHMMWの抑制効果となっている。Attached FIG. 7 shows the inhibitory effect of the micropeptide HMMW on the proliferation of human gastric cancer MGC803 cells. 添付図8は、ヒト乳癌MDA-MB-231細胞の増殖に対するマイクロペプチドHMMWの抑制効果となっている。Attached FIG. 8 shows the inhibitory effect of the micropeptide HMMW on the proliferation of human breast cancer MDA-MB-231 cells. 添付図9は、ヒト腎癌UOK262細胞の増殖に対するマイクロペプチドHMMWの抑制効果となっている。Attached FIG. 9 shows the inhibitory effect of the micropeptide HMMW on the proliferation of human kidney cancer UOK262 cells. 添付図10は、ヒト皮膚癌A431細胞の増殖に対するマイクロペプチドHMMWの抑制効果となっている。Attached FIG. 10 shows the inhibitory effect of the micropeptide HMMW on the proliferation of human skin cancer A431 cells. 添付図11は、インビボでのヒト頭頸部癌SCC4細胞の腫瘍成長に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 11 is the inhibitory effect of the micropeptide HMMW on tumor growth of human head and neck cancer SCC4 cells in vivo. 添付図12は、インビボでのヒト甲状腺癌SW579細胞の腫瘍成長に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 12 is the inhibitory effect of the micropeptide HMMW on tumor growth of human thyroid carcinoma SW579 cells in vivo. 添付図13は、インビボでのヒト肺癌A549細胞の腫瘍成長に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 13 is the inhibitory effect of the micropeptide HMMW on tumor growth of human lung cancer A549 cells in vivo. 添付図14は、インビボでのヒト食道扁平上皮癌TE13細胞の腫瘍成長に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 14 shows the inhibitory effect of the micropeptide HMMW on tumor growth of human esophageal squamous cell carcinoma TE13 cells in vivo. 添付図15は、インビボでのヒト胃癌MGC803細胞の腫瘍成長に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 15 is the inhibitory effect of the micropeptide HMMW on tumor growth of human gastric cancer MGC803 cells in vivo. 添付図16は、インビボでのヒト乳癌MDA-MB-231細胞の腫瘍成長に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 16 is the inhibitory effect of the micropeptide HMMW on tumor growth of human breast cancer MDA-MB-231 cells in vivo. 添付図17は、インビボでのヒト腎癌UOK262細胞の腫瘍成長に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 17 shows the inhibitory effect of the micropeptide HMMW on tumor growth of human renal carcinoma UOK262 cells in vivo. 添付図18は、インビボでのヒト皮膚癌A431細胞の腫瘍成長に対するマイクロペプチドHMMWの抑制効果となっている。Attached Figure 18 is the inhibitory effect of the micropeptide HMMW on tumor growth of human skin cancer A431 cells in vivo. 添付図19は、qPCR法による癌組織/正常組織におけるマイクロペプチドHMMWの発現レベルの検出となっている。Attached FIG. 19 shows the detection of the expression level of the micropeptide HMMW in cancer tissue/normal tissue by qPCR.

本発明で採用された技術的な解決策は以下の通りとなっている。 The technical solutions adopted in the present invention are as follows.

腫瘍検出用試薬および/または腫瘍治療薬の調製における新規マイクロペプチドHMMWの適用で、前記マイクロペプチドHMMWのアミノ酸配列にはSEQ ID NO. 2の通りの配列を含む。 Application of the novel micropeptide HMMW in the preparation of tumor detection reagents and/or tumor therapeutic agents, wherein the amino acid sequence of said micropeptide HMMW comprises the sequence as shown in SEQ ID NO.2.

腫瘍検出用試薬または腫瘍治療薬の調製における新規マイクロペプチドHMMWの適用で、前記マイクロペプチドHMMWのアミノ酸配列はSEQ ID NO. 1(マイクロペプチドHMMW I)の通りのアミノ酸配列と少なくとも85%以上の相同性を有する(SEQ ID NO. 2およびSEQ ID NO. 3の通り、対応するマイクロペプチドはHMMW IIおよびHMMW IIIと名付けられている)、または90%の相同性を有する(SEQ ID NO. 4およびSEQ ID NO. 5の通り、対応するマイクロペプチドはHMMW IVおよびHMMW Vと名付けられている)、または95%の相同性を有する(SEQ ID NO. 6およびSEQ ID NO. 7の通り、対応するマイクロペプチドはHMMW VIおよびHMMW VIIと名付けられている)、または98%の相同性を有する(SEQ ID NO. 8およびSEQ ID NO. 9の通り、対応するマイクロペプチドはHMMW VIIIおよびHMMW IXと名付けられている)、そして、SEQ ID NO. 1と相同性を有するこれらの配列は腫瘍細胞の成長、増殖、浸潤または遊走を抑制する同様の機能を保持し、腫瘍検出用試薬または腫瘍治療薬の調製に使用できる。 The application of the novel micropeptide HMMW in the preparation of a reagent for detecting tumors or therapeutic agents for tumors, wherein the amino acid sequence of said micropeptide HMMW is at least 85% or more homologous to the amino acid sequence as per SEQ ID NO. 1 (micropeptide HMMW I) (the corresponding micropeptides have been named HMMW II and HMMW III, as per SEQ ID NO. 2 and SEQ ID NO. 3), or have 90% homology (SEQ ID NO. 4 and The corresponding micropeptides are named HMMW IV and HMMW V, as per SEQ ID NO. 5) or have 95% homology (as per SEQ ID NO. 6 and SEQ ID NO. 7, the corresponding The micropeptides are named HMMW VI and HMMW VII), or have 98% homology (as per SEQ ID NO. 8 and SEQ ID NO. 9, the corresponding micropeptides are named HMMW VIII and HMMW IX). ), and those sequences with homology to SEQ ID NO. 1 retain similar functions of inhibiting tumor cell growth, proliferation, invasion or migration, and may be used as tumor detection reagents or tumor therapeutic agents. Can be used for preparation.

本特許に記載されている「相同性」とは、2つ以上のアミノ酸配列の比較における同一または類似の配列のパーセンテージを指す。相同性パーセントは、MEGALIGNプログラム(Lasergene software package,DNASTAR,Inc.,Madison Wis.)などの電子的方法によって測定でき、MEGALIGNプログラムは、Cluster法などのさまざまな方法に従って2つ以上の配列(Higgins,D.G.およびP.M.Sharp(1988)Gene 73:237-244)を比較できる。Cluster法は、すべてのペア間の距離を調べることにより、各グループの配列をクラスターに配置する。そして、各クラスターをペアまたはグループで割り当てる。配列Aと配列Bなどの2つのアミノ酸配列間の相同性パーセントは、次の式によって計算される。 As used in this patent, "homology" refers to the percentage of identical or similar sequences in the comparison of two or more amino acid sequences. Percent homology can be measured by electronic methods such as the MEGALIGN program (Lasergene software package, DNASTAR, Inc., Madison Wis.), which can measure two or more sequences according to various methods such as the Cluster method (Higgins, D.G. and P.M.Sharp (1988) Gene 73:237-244) can be compared. The Cluster method arranges the sequences in each group into clusters by examining the distances between all pairs. Then assign each cluster in pairs or groups. The percent homology between two amino acid sequences, such as sequence A and sequence B, is calculated by the following formula.

(配列Aと配列B の間で一致する残基の数×100)/(配列Aの残基の数-配列Aのスペーサー残基の数-配列Bのスペーサー残基の数)。 (Number of residues matched between sequence A and sequence B×100)/(number of residues in sequence A−number of spacer residues in sequence A−number of spacer residues in sequence B).

腫瘍検出用試薬または腫瘍治療薬の調製における新規マイクロペプチドHMMWの適用、前記新規マイクロペプチドHMMWは、SEQ ID NO. 1の通りのアミノ酸配列となっている。 Application of the novel micropeptide HMMW in the preparation of tumor detection reagents or tumor therapeutic agents, said novel micropeptide HMMW having an amino acid sequence as per SEQ ID NO.

ヌクレオチドはaまたはbまたはcのいずれかである前記ヌクレオチド: Said nucleotide is either a or b or c:

(a) SEQ ID NO. 1の通りのアミノ酸配列を含むマイクロペプチドHMMWをコードするヌクレオチド。 (a) Nucleotides encoding the micropeptide HMMW comprising the amino acid sequence as per SEQ ID NO.1.

(b) SEQ ID NO. 1の通りのアミノ酸配列と少なくとも85%の相同性を有するマイクロペプチドHMMWをコードするヌクレオチド。 (b) a nucleotide encoding the micropeptide HMMW having at least 85% homology with the amino acid sequence as per SEQ ID NO.1;

(c) 請求項3に記載のアミノ酸をコードするヌクレオチド配列、具体的には、SEQ ID NO. 10-NO. 18の通りのヌクレオチド配列(Nは、A/T/G/Cのいずれかとなっている)。 (c) a nucleotide sequence encoding the amino acid of claim 3, specifically a nucleotide sequence according to SEQ ID NO. 10-NO. 18, where N is A/T/G/C; ing).

組換えベクターに前記ヌクレオチドのいずれかを含む前記組換えベクター。 Said recombinant vector comprising any of said nucleotides in said recombinant vector.

腫瘍検出用試薬および/または腫瘍治療薬の調製における前記ヌクレオチドのいずれかの適用。 Application of any of the foregoing nucleotides in the preparation of tumor detection reagents and/or tumor therapeutic agents.

試薬テストキットには前記ヌクレオチド配列のいずれかに対する特異性プライマーペアを含む前記腫瘍検出用試薬テストキット。 Said reagent test kit for tumor detection, wherein said reagent test kit contains a specific primer pair for any of said nucleotide sequences.

好ましくは、前記特異性プライマーペアの配列は、SEQ ID NO. 19およびSEQ ID NO. 20の通りとなっている。 Preferably, the sequences of said specific primer pair are as shown in SEQ ID NO.19 and SEQ ID NO.20.

薬剤は、少なくとも前記マイクロペプチドHMMWのいずれかまたは前記ヌクレオチドのいずれかまたは前記組換えベクター、および薬学的に許容されるベクターを含む前記腫瘍治療用薬剤。 The agent is the above-mentioned agent for treating tumors, which comprises at least any of the micropeptides HMMW or any of the nucleotides or the recombinant vector, and a pharmaceutically acceptable vector.

好ましくは、前記薬物は、(a1)~(a4)などの機能を有する薬物であり、その中では:
(a1)腫瘍成長を抑制するため。
(a2)腫瘍細胞の増殖を抑制するため。
(a3)腫瘍細胞の浸潤を抑制するため。
(a4)腫瘍細胞の遊走を抑制するため。
Preferably, said drug is a drug having functions such as (a1)-(a4), in which:
(a1) to inhibit tumor growth;
(a2) to inhibit the growth of tumor cells;
(a3) to suppress tumor cell invasion;
(a4) to inhibit tumor cell migration;

好ましくは、前記腫瘍は、ヒトの頭頸部癌、甲状腺癌、肺癌、食道扁平上皮癌、胃癌、乳癌、腎癌、または皮膚癌を含む。 Preferably, said tumor comprises human head and neck cancer, thyroid cancer, lung cancer, esophageal squamous cell carcinoma, stomach cancer, breast cancer, renal cancer or skin cancer.

従来技術と比較して、本発明の有益な効果は次のとおりとなっている。 The beneficial effects of the present invention compared with the prior art are as follows.

(1)本発明は、真新しいアミノ酸配列を有するマイクロペプチドHMMWを提供し、データベース(BLAST、UniProt)および文献を検索した結果、マイクロペプチドHMMWと配列相同性を有するタンパク質またはポリペプチドフラグメントは見出されなかった。 (1) The present invention provides a micropeptide HMMW having a novel amino acid sequence, and as a result of searching databases (BLAST, UniProt) and literature, no protein or polypeptide fragment having sequence homology with the micropeptide HMMW was found. I didn't.

前記マイクロペプチドHMMWは51のアミノ酸で構成されており、腫瘍の検出と治療に重要な役割を果たし、ヒトの頭頸部癌、甲状腺癌、肺癌、食道扁平上皮癌、胃癌、乳癌、腎癌、および皮膚癌を含む腫瘍の腫瘍マーカーとして使用でき、すなわち、前記腫瘍におけるHMMWマイクロペプチドは低い発現となっている。 The micropeptide HMMW is composed of 51 amino acids and plays an important role in the detection and treatment of tumors, including human head and neck cancer, thyroid cancer, lung cancer, esophageal squamous cell carcinoma, gastric cancer, breast cancer, renal cancer, and It can be used as a tumor marker for tumors, including skin cancers, ie the HMMW micropeptide is low expressed in said tumors.

(2)本発明は、真新しいアミノ酸配列を有するマイクロペプチドHMMWを提供し、前記マイクロペプチドHMMWは、インビボでヒトの頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎癌UOK262細胞、皮膚癌A431細胞の増殖、遊走および浸潤を有意に抑制することができる。 (2) The present invention provides a micropeptide HMMW with a brand new amino acid sequence, said micropeptide HMMW can be used in human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, esophageal squamous cell carcinoma TE13 cells in vivo. , can significantly inhibit the proliferation, migration and invasion of gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, kidney cancer UOK262 cells, and skin cancer A431 cells.

前記マイクロペプチドHMMWは、インビボでヒトの頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎癌UOK262細胞、皮膚癌A431細胞の主要成長を有意に抑制することができる。 Said micropeptide HMMW was used in vivo for human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, esophageal squamous cell carcinoma TE13 cells, gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, renal cancer UOK262 cells, skin It can significantly suppress the primary growth of cancer A431 cells.

また、マイクロペプチドHMMWは、悪性腫瘍の検出および治療薬として使用でき、そのマイクロペプチドの治療スペクトルを大幅に拡大し、悪性腫瘍薬の開発に新しいアイデアを提供した。 In addition, the micropeptide HMMW can be used as a detection and therapeutic agent for malignant tumors, greatly expanding the therapeutic spectrum of the micropeptides and providing new ideas for the development of drugs for malignant tumors.

具体的な実施形態
次は、本発明について特定の実施例を参照して詳しく説明する。
Specific Embodiments The invention will now be described in detail with reference to specific embodiments.

実施例1
本実施例では、HMMWマイクロペプチドのコーディング能力を検出する。
Example 1
In this example, the coding ability of HMMW micropeptides is detected.

インビトロで構築されたFlagタグ付き、cDNA(そのヌクレオチド配列はSEQ ID NO. 10の通りとなっている)を含む過剰発現ベクターはpcDNA-HMMWであり、そのブランクプラスミドpcDNA3.1のマップは図1の通りとなっている。前記プラスミドをlipo3000リポソームトランスフェクション試薬によって293T細胞に導入し、トランスフェクションの48時間後に細胞を収集し、遠心分離後、上清を捨ててペレット細胞を収集して、ペレット細胞をPBSで2回リンスし、遠心分離によって上清を捨ててペレット細胞を収集する。収集されたペレット細胞にRIPA溶解液を加え、氷上で20分間溶解した後、12,000gで10分間遠心分離して上清を収集する。次に、1XSDSローディングバッファーを加え、ピペッティングにより均一に混合させてから、変性のために5分間煮沸する。全タンパク質を10%SDS-PAGEゲルで分離した後、PVDFメンブレンに転写し、5%脱脂粉乳で室温下に2時間ブロックし、Flag一次抗体(abeam)と4℃で一晩インキュベートし、TBSTで3回洗浄する。二次抗体を室温下に1時間インキュベートし、TBSTで3回洗浄する。ECL超高感度化学発光溶液によって現像させ、Tannonイメージングシステムによってターゲットバンドの有無を検出する。 The flag-tagged cDNA (nucleotide sequence of which is shown in SEQ ID NO. 10) constructed in vitro is an overexpression vector pcDNA-HMMW, and the map of the blank plasmid pcDNA3.1 is shown in FIG. It is as follows. The plasmid was introduced into 293T cells by lipo3000 liposomal transfection reagent, the cells were harvested 48 hours after transfection, centrifuged, the supernatant was discarded, the pelleted cells were collected, and the pelleted cells were rinsed twice with PBS. and collect the pelleted cells by centrifugation and discarding the supernatant. RIPA lysate is added to the collected pelleted cells and lysed on ice for 20 minutes, followed by centrifugation at 12,000 g for 10 minutes to collect the supernatant. Then add 1X SDS loading buffer, mix evenly by pipetting, and boil for 5 minutes for denaturation. Total proteins were separated on a 10% SDS-PAGE gel, transferred to a PVDF membrane, blocked with 5% non-fat dry milk at room temperature for 2 hours, incubated with Flag primary antibody (abeam) overnight at 4°C, and washed with TBST. Wash 3 times. Secondary antibody is incubated for 1 hour at room temperature and washed 3 times with TBST. Develop with ECL ultrasensitive chemiluminescent solution and detect the presence or absence of the target band with a Tannon imaging system.

結果は図2に示し、Western blot(イムノブロッティング)により、組換えプラスミドのトランスフェクション後にマイクロペプチドHMMWのターゲットバンドが出現したことが検出され、マイクロペプチドHMMWタンパク質がコードする能力を持っていることをさらに示している。 The results are shown in Figure 2 and Western blotting detected the appearance of the target band of the micropeptide HMMW after transfection of the recombinant plasmid, demonstrating that the micropeptide HMMW protein has the ability to encode. shows further.

実施例2
本実施例では、マイクロペプチドHMMW I-IXが固相合成法によって得られ、得られたマイクロペプチドHMMWI-IXをチェックする。
Example 2
In this example, the micropeptide HMMW I-IX was obtained by solid phase synthesis and the resulting micropeptide HMMWI-IX is checked.

マイクロペプチドHMMWI-IX(そのアミノ酸配列はSEQ ID NO. 1-9の通りとなっている)をポリペプチド固相合成法により合成し、合成されたマイクロペプチドHMMWを分取HPLCにより分離精製し、マイクロペプチドHMMWの純度を分析用RP-HPLCにより測定する。ポリペプチド固相合成法は、Fmoc-wang-resinまたはFmoc-CTC-resinを出発原料として、保護アミノ酸によりジペプチドから51ペプチドまでを順次結合させ、ペプチド結合が完了後に十分洗浄してから、ペプチドを切断、後処理して血管新生抑制剤の粗生成物を得るものとなっている。粗生成物を溶解し、分取高性能液相により2回精製し、濃縮および凍結乾燥して純粋な生成物を得て、最後に3回目の精製によりマイクロペプチドの精製された製品を得る。この方法は、合成の効率を保証できるだけでなく、製品の純度を向上させることもできる。 詳細は次のとおりとなっている。 Synthesizing the micropeptide HMMWI-IX (whose amino acid sequence is as shown in SEQ ID NO. 1-9) by a solid-phase polypeptide synthesis method, and separating and purifying the synthesized micropeptide HMMW by preparative HPLC, Purity of the micropeptide HMMW is determined by analytical RP-HPLC. Polypeptide solid-phase synthesis method uses Fmoc-wang-resin or Fmoc-CTC-resin as a starting material, sequentially binds dipeptides to 51 peptides with protected amino acids, and after the completion of peptide binding, thoroughly wash the peptides. Cleavage and post-processing yield the crude product of the angiogenesis inhibitor. The crude product is dissolved and purified twice by preparative high performance liquid phase, concentrated and lyophilized to give the pure product and finally a third purification gives the micropeptide purified product. This method can not only guarantee the efficiency of the synthesis, but also improve the purity of the product. Details are as follows.

1. ペプチドの結合(ジペプチドから51ペプチドまでの結合を含む):
適量のFmoc-wang-resinまたはFmoc-CTC-resinを量り、ガラスサンドコア反応カラムに注ぎ、適量のCH2Cl2を加えて樹脂を完全に膨張させる。
1. Conjugation of peptides (including conjugation from dipeptides to 51 peptides):
Weigh an appropriate amount of Fmoc-wang-resin or Fmoc-CTC-resin, pour it into a glass sand core reaction column, add an appropriate amount of CH2Cl2 to make the resin fully swell.

a. デキャップ:適量のヘキサヒドロピリジン/N、N-ジメチルホルムアミド(DMF)デキャップ溶液を加え、一定期間反応させた後、デキャップ溶液を完全に吸出し、中間はDMFで1回洗浄してから、再度適量のデキャップ溶液を加えて反応させ、Fmoc保護基を除去する。 a. Decap: add an appropriate amount of hexahydropyridine/N,N-dimethylformamide (DMF) decap solution, react for a period of time, then suck out the decap solution completely, wash once with DMF in the middle, then repeat An appropriate amount of decap solution is added and allowed to react to remove the Fmoc protecting group.

b. 洗浄:デキャップ溶液を完全に吸出し、DMFで樹脂を洗浄して、副産物を完全に洗い流す。 b. Wash: Aspirate the decap solution completely and wash the resin with DMF to thoroughly wash away the by-products.

c. 凝縮:ペプチド結合用の保護アミノ酸と活性剤をDMFと凝縮剤に溶解して、よく振とうし、温度を約34℃に制御して、反応器内で完全に反応させる。 c. Condensation: The protected amino acid and activator for peptide binding are dissolved in DMF and condensing agent, shaken well, and the temperature is controlled at about 34°C to allow complete reaction in the reactor.

d. 洗浄:反応溶液を完全に吸出し、DMFで樹脂を完全に洗浄して、副産物を洗い流す。 d. Wash: Aspirate the reaction solution thoroughly and wash the resin thoroughly with DMF to wash away the by-products.

2. ペプチドの切断:
完全に吸出された樹脂を丸底フラスコに入れ、切断溶液で完全に溶解された36ペプチド中間体を加え、サンドコアファンネルにより樹脂をポリペプチドと分離させ、前記切断溶液の成分と各成分の体積組成は、トリフルオロ酢酸:フェノール:水:チオアニソール:EDT = 90:3:3:2:2となっている。
2. Peptide Cleavage:
Put the completely aspirated resin into a round-bottomed flask, add the 36 peptide intermediates completely dissolved in the cleavage solution, separate the resin from the polypeptide by a sand core funnel, and determine the components of the cleavage solution and the volume of each component. The composition is trifluoroacetic acid: phenol: water: thioanisole: EDT = 90:3:3:2:2.

3. 後処理:
最初に無水エーテルを切断溶液に加えてポリペプチドを分離させた後、遠心分離により、上清を捨てて、またポリペプチドを無水エーテルで洗浄し、完全に吸出してからポリペプチドの粗生成物を得る。
3. Post-processing:
Anhydrous ether is first added to the cleaving solution to separate the polypeptide, followed by centrifugation, discarding the supernatant, washing the polypeptide with anhydrous ether, and aspirating off completely before extracting the crude polypeptide. obtain.

4. 精製:
a. 溶解:粗生成物を量って5~20g/Lの溶液を調製し、孔径0.45μmの混合フィルターメンブレンでろ過する。
4. Purification:
a. Dissolution: Weigh the crude product to prepare a 5-20 g/L solution and filter through a mixed filter membrane with a pore size of 0.45 μm.

調製:セミ分取高速液体クロマトグラフィーにより1回精製、2回精製、および3回精製を行い、精製されたポリペプチドの適格な製品を得る、移動相:Aはアセトニトリル、Bは0.1%TFA水溶液となっている。 Preparation: Single, double, and triple purification by semi-preparative high-performance liquid chromatography to obtain qualified products of purified polypeptide Mobile phase: A is acetonitrile, B is 0.1% TFA in water It has become.

1回精製:平衡化分取カラムを10%~90%のアセトニトリルと20%~80%の緩衝液により、50mL/min~100mL/minの流速で、10分間すすぐ。溶解しろ過した粗生成物は輸液ポンプでサンプルをロードする。 Purify once: Rinse the equilibrated preparative column with 10%-90% acetonitrile and 20%-80% buffer at a flow rate of 50 mL/min-100 mL/min for 10 minutes. The dissolved and filtered crude product is sample loaded with an infusion pump.

Figure 2022547098000002
Figure 2022547098000002

UV波長220nmの吸収値が200mVを超える溶液を収集し、95%を超える純度の分を検出して合わせてピークトップとし、二次分離および精製に用意する。 Solutions with absorbance values greater than 200 mV at UV wavelength 220 nm are collected and those >95% pure are detected and combined as peak tops for secondary separation and purification.

2回精製:1回精製で得られたピークトップを回転蒸発させて有機溶媒を除去した後、5~95%のアセトニトリルと15~85%の緩衝液により、50~100 mL/minの流速で、輸液ポンプでサンプルをロードする。 Double Purification: After removing the organic solvent by rotary evaporation of the peak tops from the first purification, 5-95% acetonitrile and 15-85% buffer at a flow rate of 50-100 mL/min. , load the sample with the infusion pump.

Figure 2022547098000003
Figure 2022547098000003

UV波長220nmの吸収値が200mVを超える溶液を収集し、98%を超える純度の分を検出して適格品とする。 Solutions with absorption values greater than 200 mV at UV wavelength 220 nm are collected and those with greater than 98% purity are detected and qualified.

b. 濃縮、ろ過、凍結乾燥:37℃のロータリーエバポレーターで適格な溶液を減圧濃縮し、残留した溶剤と注射用の水を除去する。最後に、0.22μmのフィルターメンブレンで濾過し、濾液を凍結乾燥トレイに入れ、凍結乾燥機で凍結乾燥することにより純粋な製品を得る。 b. Concentration, filtration, and lyophilization: Concentrate the qualified solution under vacuum on a rotary evaporator at 37°C to remove residual solvent and water for injection. Finally, it is filtered through a 0.22 μm filter membrane, and the filtrate is placed in freeze-drying trays and freeze-dried in a freeze-dryer to obtain a pure product.

3回精製:2回精製で得られた98%を超える純度の適格サンプルは3回精製を行い、5~95%のアセトニトリルと10~90%の緩衝液により、50~100mL/minの流速で、ポリペプチドの精製された製品を調製する。 Triplicate Purification: Qualified samples >98% pure from duplicate purifications were purified in triplicate with 5-95% acetonitrile and 10-90% buffer at flow rates of 50-100 mL/min. , to prepare a purified product of the polypeptide.

Figure 2022547098000004
Figure 2022547098000004

UV波長220nmの吸収値が200mVを超える溶液を収集し、検出により組み合わせる99.5%を超えるサンプルが、精製された適格な製品となる。 More than 99.5% of samples collected and detectably combined with absorbance values greater than 200 mV at UV wavelength 220 nm result in purified qualifying product.

5. 純度検出
凍結乾燥後の精製された製品を収集し、ポリペプチドの純度を分析用RP-HPLCにより検出する。分析条件は、移動相:ACN(+0.1%TFA)、H2O(+0.1%TFA);アセトニトリル線形勾配:10%-100%;流速:1mL/min;運転時間:20 min;サンプルローディングボリューム: 20μL;検出波長:220nmとなっている。
5. Purity Detection The purified product is collected after lyophilization and the purity of the polypeptide is detected by analytical RP-HPLC. The analytical conditions were mobile phase: ACN (+0.1% TFA), H2O (+0.1% TFA); acetonitrile linear gradient: 10%-100%; flow rate: 1 mL/min; run time: 20 min; sample loading volume: 20 μL. ; Detection wavelength: 220 nm.

Figure 2022547098000005
Figure 2022547098000005

合成されたマイクロペプチドが逆相液体クロマトグラフィー分析によって純度を鑑定した結果、調製された9つのマイクロペプチドHMMWの純度はすべて95%を超えており、設計要件を満たしていることが分かった。 The purity of the synthesized micropeptides was assessed by reversed-phase liquid chromatography analysis, which indicated that the nine prepared micropeptides HMMW were all over 95% pure, meeting the design requirements.

本実験では、マイクロペプチドHMMW I-IXが固相合成法により成功に合成され、この方法は、再現性が高く、操作性が高く、汚染が少ない方法となっている。実験では2種類の樹脂(wang resin或いはCTC resin)によりポリペプチドを合成することができる。実験用のwang resinは、他の樹脂に比べて比較的安定しており、副反応が少なく、粗生成物のピーク形状が良く、精製の相対収率が高いため、コストが比較的低くなっている。実験用のCTC resinの反応は温度の影響を受けにくく、反応速度が速い。また、逆相高速液体クロマトグラフィによりポリペプチドを精製する。アイソクラティック溶出と比較して、勾配溶出の方は分離効果が高く、分離中の保持時間は適切で、生産効率は高く、純度は高い。 In this experiment, the micropeptide HMMW I-IX was successfully synthesized by solid-phase synthesis, which makes the method highly reproducible, easy to handle, and less contaminating. In experiments, polypeptides can be synthesized with two types of resin (wang resin or CTC resin). Experimental wang resin is relatively stable compared to other resins, with fewer side reactions, better crude peak shape, and higher relative purification yields, resulting in relatively lower costs. there is The reaction of the experimental CTC resin is less affected by temperature and has a faster reaction rate. Alternatively, the polypeptide is purified by reversed phase high performance liquid chromatography. Compared to isocratic elution, gradient elution has better separation efficiency, suitable retention time during separation, higher production efficiency and higher purity.

実施例3
本実施例では、ヒト腫瘍細胞の増殖能力に対するマイクロペプチドHMMWI-IXの影響を検出する。
Example 3
This example detects the effect of the micropeptide HMMWI-IX on the proliferative capacity of human tumor cells.

ヒト頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎癌UOK262細胞、皮膚癌A431細胞を37℃、5%CO2のインキュベート内で90%の密度まで培養した際にトリプシンによって消化収集し、細胞を培地に再懸濁させ、顕微鏡でカウントし、細胞濃度を3.0×104細胞/mLに調整し、細胞懸濁液を96ウェルプレートに1ウェルあたり100μLずつ接種してから、37℃、5%CO2のインキュベーターで一晩中培養し続ける。細胞が壁に完全に貼り付けた後、異なる用量を投与したマイクロペプチドHMMW I-IXを投与群とし、タキソール(Taxol)を陽性対照群とし、薬物を含まない培地をブランク対照群として、培地によりそれぞれ所定の濃度に希釈する。各希釈液をそれぞれ96ウェルプレートに加え、ウェルあたり100μL、37℃、5%CO2のインキュベーター内で48時間培養する。20μLの5mg/mL MTTを96ウェルプレートの各ウェルに加え、4時間培養し続ける。培地を吸引し、100μLのDMSOを各ウェルに加えて溶解する。マイクロプレートリーダーにより検出波長570nm、参照波長630nmでの吸光度を測定し、成長抑制率(proliferation inhibition, PI)を算出し、式はPI(%)= 1‐投与群/陰性群となっている。実験は独立して3回繰り返され、実験によって得られた結果はmean±SDで示され、統計的T検定を実行する、*P<0.05は有意差、**P<0.01は非常に有意差となっている。 Human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, esophageal squamous cell carcinoma TE13 cells, gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, kidney cancer UOK262 cells, skin cancer A431 cells were incubated at 37°C at 5%. Harvested by trypsin when cultured to 90% confluency in CO2 incubation, cells resuspended in medium, counted microscopically, adjusted cell concentration to 3.0×10 4 cells/mL and placed in cell suspension. The suspension is inoculated into 96-well plates, 100 μL per well, and cultured overnight in a 37° C., 5% CO 2 incubator. After the cells were completely attached to the wall, different doses of the micropeptide HMMW I-IX were administered as the administration group, Taxol as the positive control group, and drug-free medium as the blank control group. Dilute each to a predetermined concentration. Add 100 μL of each dilution to a 96-well plate and incubate in an incubator at 37° C., 5% CO 2 for 48 hours. Add 20 μL of 5 mg/mL MTT to each well of the 96-well plate and continue to culture for 4 hours. Aspirate the medium and add 100 μL of DMSO to each well to dissolve. Absorbance at a detection wavelength of 570 nm and a reference wavelength of 630 nm was measured using a microplate reader to calculate the growth inhibition rate (PI). The formula is PI (%) = 1 - treatment group/negative group. The experiment was repeated three times independently, the results obtained by the experiment are shown as mean±SD, and a statistical T-test was performed, *P<0.05 for significant difference, **P<0.01 for highly significant difference. It has become.

Figure 2022547098000006
Figure 2022547098000006

Figure 2022547098000007
Figure 2022547098000007

結果は図3-10に示し、陰性対照群と比較して、1~32μMの用量で、マイクロペプチドHMMW-Iはヒト頭頸部癌SCC4細胞(図3)、甲状腺癌SW579細胞(図4)、肺癌A549細胞(図5)、食道扁平上皮癌TE13細胞(図6)、胃癌MGC803細胞(図7)、乳癌MDA-MB-231細胞(図8)、腎癌UOK262細胞(図9)、皮膚癌A431(図10)の増殖を異なる程度で有意に抑制でき、用量依存的な関係が示されている。また、結果は表5に示し、陰性対照群と比較して、1~32μMの用量で、マイクロペプチドHMMW I-IXとも、ヒト頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎癌UOK262細胞、皮膚癌A431細胞の増殖を有意に抑制でき、用量依存的な関係が示されている。元の配列HMMW Iと85%以上の相同性を持つポリペプチドがすべて腫瘍細胞の増殖を抑制する効果があることを示しており、マイクロペプチドHMMWI-IXを抗腫瘍薬の候補と見なすことができる。 The results are shown in Figures 3-10, and compared with the negative control group, at doses of 1-32 μM, micropeptide HMMW-I inhibited human head and neck cancer SCC4 cells (Figure 3), thyroid cancer SW579 cells (Figure 4), Lung cancer A549 cells (Fig. 5), esophageal squamous cell carcinoma TE13 cells (Fig. 6), gastric cancer MGC803 cells (Fig. 7), breast cancer MDA-MB-231 cells (Fig. 8), kidney cancer UOK262 cells (Fig. 9), skin cancer The proliferation of A431 (Fig. 10) could be significantly inhibited to different extents, indicating a dose-dependent relationship. The results are also shown in Table 5, and compared with the negative control group, both the micropeptide HMMW I-IX and human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, and esophageal squamous cells at doses of 1-32 μM. It can significantly suppress the proliferation of epithelial cancer TE13 cells, gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, kidney cancer UOK262 cells, and skin cancer A431 cells, indicating a dose-dependent relationship. All of the polypeptides with more than 85% homology to the original sequence HMMW I have been shown to be effective in suppressing tumor cell growth, and the micropeptide HMMWI-IX can be considered as a candidate anti-tumor drug. .

実施例4
ヒト腫瘍細胞の遊走能力に対するマイクロペプチドHMMW I-IXの影響
ヒト頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎癌UOK262細胞、皮膚癌A431細胞をtranswellチャンバーに接種し、ウェルあたり100μL、また異なる用量のマイクロペプチドHMMWI-IXを各チャンバーに加える。次に、10%FBSを含む0.6 mLの完全培地をtranswellの下部チャンバーに加えて細胞の遊走を刺激し、5%CO2、37℃で24時間培養する。ウェル内の培地を捨て、90%アルコールで室温下に30分間固定させ、0.1%クリスタルバイオレットで室温下に10分間染色し、きれいな水ですすぎ、上層の遊走していない細胞を綿棒でそっと拭き取り、顕微鏡で観察し、4つの視野を選択して写真を撮りカウントする。次の式に従って、細胞の遊走抑制率(migration inhibition rate,MIR)を算出する。
Example 4
Effect of micropeptide HMMW I-IX on migration ability of human tumor cells Human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, esophageal squamous cell carcinoma TE13 cells, gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, Renal carcinoma UOK262 cells, skin carcinoma A431 cells are seeded in transwell chambers and 100 μL per well and different doses of the micropeptide HMMWI-IX are added to each chamber. Next, 0.6 mL of complete medium containing 10% FBS is added to the lower chamber of the transwell to stimulate cell migration and cultured at 37°C, 5% CO2 for 24 hours. Discard the medium in the wells, fix with 90% alcohol at room temperature for 30 minutes, stain with 0.1% crystal violet at room temperature for 10 minutes, rinse with clean water, gently wipe off non-migrated cells on the upper layer with a cotton swab, Observe under a microscope, select four fields of view, take pictures, and count them. Calculate the migration inhibition rate (MIR) of cells according to the following formula.

Figure 2022547098000008
Figure 2022547098000008

ここで、Ntestは試験群(表の1、4、および14μMの用量の各群)の細胞遊走数であり、Ncontrolはブランク対照群(表の0μMの用量の各群)の細胞遊走数となっている。 where N test is the number of cells migrated in the test group (1, 4, and 14 µM dose groups in the table), and N control is the number of cell migration in the blank control group (0 µM dose groups in the table). It has become.

実験は独立して3回繰り返され、実験によって得られた結果はmean±SDで計算され、統計的t検定が実行される、ここで実験は独立して3回繰り返されるというのは、表内の任意種類の細胞の各用量が実験を3回繰り返した後、前記計算式によって細胞遊走数(Mean±SD)を算出し得られることを指す。P値で統計的に有意な差を表し、結果の統計的有意性は結果の真の程度(全体が代表できる)の推定方法となる、*P<0.05は有意差、**P<0.01は非常に有意差となっている。 The experiment was independently repeated three times, the results obtained by the experiment were calculated as the mean ± SD, and a statistical t-test was performed, where the experiment was independently repeated three times, as shown in the table. After repeating the experiment three times for each dose of any type of cells, the number of cell migration (Mean±SD) can be calculated according to the above formula. P values represent statistically significant differences, and statistical significance of results provides a way of estimating the true degree (representative of the whole) of the results, *P<0.05 being a significant difference, **P<0.01 The difference is very significant.

Figure 2022547098000009
Figure 2022547098000009

結果は表6に示し、陰性対照群と比較して、1~16μMの用量で、マイクロペプチドHMMW I-IXとも、ヒト頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎癌UOK262細胞、皮膚癌A431の遊走を異なる程度で有意に抑制でき、用量依存的な関係が示されている。元の配列HMMW Iと85%以上の相同性を持つポリペプチドがすべて腫瘍細胞の遊走を抑制する効果があり、悪性腫瘍細胞の遊走能力を抑制するための治療薬として使用できることを示している。 The results are shown in Table 6, and both the micropeptide HMMW I-IX and human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, and esophageal squamous cell carcinoma at doses of 1-16 μM compared to the negative control group. The migration of TE13 cells, gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, renal cancer UOK262 cells, and skin cancer A431 cells can be significantly suppressed at different degrees, indicating a dose-dependent relationship. All polypeptides with more than 85% homology to the original sequence HMMW I are effective in inhibiting tumor cell migration, indicating that they can be used as therapeutic agents to inhibit the migratory capacity of malignant tumor cells.

実施例5
ヒト腫瘍細胞の浸潤能力に対するマイクロペプチドHMMW I-IXの影響。
10 mg/mL Matrigelを培地で1:3に希釈し、transwellチャンバーメンブレンに塗布し、室温下に風乾させる。対数成長期まで培養されたヒト頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎癌UOK262細胞、皮膚癌A431細胞をトリプシンにより消化、収集し、PBSで2回洗浄してから、ブランク培地で再懸濁させる。細胞濃度を1×105細胞/ mLに調整する。細胞をtranswellチャンバーに1ウェルあたり100μLで接種しながら、異なる用量のマイクロペプチドHMMW I-IXを各チャンバーに加える。transwellの下部チャンバーに、10%FBSを含む0.6 mLの完全培地を加えて細胞の浸潤を刺激し、5%CO2、37℃で24時間培養する。ウェル内の培地を捨て、90%アルコールで室温下に30分間固定させ、0.1%クリスタルバイオレットで室温下に10分間染色し、きれいな水ですすぎ、上層の浸潤していない細胞を綿棒でそっと拭き取り、顕微鏡で観察し、4つの視野を選択して写真を撮りカウントする。次の式に従って、浸潤抑制率(Invasion inhibition rate,IIR)を算出する。
Example 5
Effect of the micropeptide HMMW I-IX on the invasive capacity of human tumor cells.
10 mg/mL Matrigel is diluted 1:3 with medium, applied to transwell chamber membranes and allowed to air dry at room temperature. Human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, esophageal squamous cell carcinoma TE13 cells, gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, kidney cancer UOK262 cells, skin cancer A431 cells cultured to log phase Cells are digested with trypsin, harvested, washed twice with PBS, and resuspended in blank medium. Adjust the cell concentration to 1 x 105 cells/mL. Different doses of the micropeptide HMMW I-IX are added to each chamber while cells are seeded in transwell chambers at 100 μL per well. Add 0.6 mL of complete medium containing 10% FBS to the lower chamber of the transwell to stimulate cell invasion and incubate at 37°C, 5% CO2 for 24 hours. Discard the medium in the wells, fix with 90% alcohol at room temperature for 30 minutes, stain with 0.1% crystal violet at room temperature for 10 minutes, rinse with clean water, gently wipe off non-infiltrated cells on the upper layer with a cotton swab, Observe under a microscope, select four fields of view, take pictures, and count them. Calculate the invasion inhibition rate (IIR) according to the following formula.

Figure 2022547098000010
Figure 2022547098000010

ここで、Ntestは試験群(表の1、4、および16μMの用量の各群)の細胞浸潤数であり、Ncontrolはブランク対照群(表の0μMの用量の各群)の細胞浸潤数となっている。実験は独立して3回繰り返され、実験によって得られた結果はmean±SDで計算され、統計的t検定が実行される。P値で統計的に有意な差を表し、結果の統計的有意性は結果の真の程度(全体が代表できる)の推定方法となる、*P<0.05は有意差、**P<0.01は非常に有意差となっている。 Here, N test is the number of cell infiltration in the test group (1, 4, and 16 μM dose groups in the table), and N control is the number of cell infiltration in the blank control group (0 μM dose group in the table). It has become. Experiments are repeated three times independently, experimental results are calculated as mean±SD, and statistical t-tests are performed. P values represent statistically significant differences, and statistical significance of results provides a way of estimating the true degree (representative of the whole) of the results, *P<0.05 being a significant difference, **P<0.01 The difference is very significant.

Figure 2022547098000011
Figure 2022547098000011

結果は表7に示し、マイクロペプチドHMMW I-IXとも、ヒト頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎癌UOK262細胞、皮膚癌A431細胞の遊走を異なる程度で有意に抑制でき、用量依存的な関係が示されている。元の配列HMMW Iと85%以上の相同性を持つポリペプチドがすべて腫瘍細胞の浸潤を抑制する効果があり、悪性腫瘍細胞の浸潤能力を抑制するための治療薬として使用できるることを示している。 The results are shown in Table 7, and both the micropeptide HMMW I-IX and human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, esophageal squamous cell carcinoma TE13 cells, gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, It can significantly suppress the migration of kidney cancer UOK262 cells and skin cancer A431 cells to different extents, indicating a dose-dependent relationship. All of the polypeptides with more than 85% homology to the original sequence HMMW I have the effect of suppressing tumor cell invasion and can be used as therapeutic agents to suppress the invasion ability of malignant tumor cells. there is

実施例6
インビボでのヒト腫瘍細胞の成長に対するマイクロペプチドHMMWの影響。
(1) ヒト頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎臓癌UOK262細胞を大量に培養し、0.25%トリプシン溶液によって消化し、消化終了後に、細胞懸濁液を1000rpmで5分間遠心分離し、細胞を無血清DMEM培地に再懸濁させてからカウントし、細胞濃度を5×107細胞/mlに調整する。
Example 6
Effect of the micropeptide HMMW on human tumor cell growth in vivo.
(1) Human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, esophageal squamous cell carcinoma TE13 cells, gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, renal cancer UOK262 cells were cultured in large amounts and 0.25% Digestion with trypsin solution, after completion of digestion, cell suspension was centrifuged at 1000 rpm for 5 minutes, cells were resuspended in serum-free DMEM medium, counted, and cell concentration was adjusted to 5×10 7 cells/ml. adjust.

(2) 各ヌードマウス(4~6週齢、体重14~16 gの雌ネズミを購入し、SPFクラスの動物飼育室で1週間適応飼育する)の左脇の下に対応する群別の細胞懸濁液を100μl接種し、細胞の注射量は5×106細胞となっている。 (2) Group-specific cell suspensions corresponding to the left armpit of each nude mouse (purchased female mice weighing 14-16 g, 4-6 weeks old, and adapted for 1 week in an SPF class animal breeding room) 100 μl of the liquid was inoculated, and the injection amount of cells was 5×10 6 cells.

(3) 接種後、ヌードマウスの接種部位での腫瘍成長を注意深く観察し、接種後の7日目に、接種部位に白い結節が現れ、触ると皮下を移動し、腫瘍組織とともに成長でき、接種部位に徐々に硬い腫瘍塊が形成され、約14日間で腫瘍組織の平均体積が100 mm3に達し、BALB/cヌードマウスをランダムに3群(生理食塩水群はブランク対照群、10 mg/kgのマイクロペプチドHMMW投与量は低用量群、15 mg/kgのマイクロペプチドHMMW投与量は高用量群とする)に分け、各群には6匹で、投与開始時の動物の体重は16~18gとなっている。 (3) After inoculation, the nude mice were carefully observed for tumor growth at the inoculation site. Seven days after inoculation, white nodules appeared at the inoculation site. A hard tumor mass gradually formed at the site, and the average volume of tumor tissue reached 100 mm3 in about 14 days . 15 mg/kg micropeptide HMMW dose is divided into a low dose group and 15 mg/kg micropeptide HMMW dose is a high dose group), each group has 6 animals, and the animals weighed between 16 and 16 at the start of dosing. It is 18g.

(4) 移植された腫瘍の体積は、2日ごとに測定および記録し、腫瘍体積(Tumor volume,TV)の計算式は次のとおりとなっている。
腫瘍体積= 0.5×a×b ^ 2
ここで、aは移植腫瘍の長さ(mm)、bは移植腫瘍の幅(mm)となっている。
(4) The volume of the implanted tumor was measured and recorded every 2 days, and the formula for calculating tumor volume (TV) is as follows.
Tumor volume = 0.5 × a × b^2
Here, a is the length (mm) of the transplanted tumor, and b is the width (mm) of the transplanted tumor.

結果は表11~18に示し、生理食塩水対照群と比較して、マイクロペプチドHMMWは、ヒト頭頸部癌SCC4細胞(図11)、甲状腺癌SW579細胞(図12)、肺癌A549細胞(図13)、食道扁平上皮癌TE13細胞(図14)、胃癌MGC803細胞(図15)、乳癌MDA-MB-231細胞(図16)、腎癌UOK262細胞(図17) 、皮膚癌A431(図18)細胞のインビボでの腫瘍形成能力を異なる程度で有意に抑制でき、用量依存的な関係が示され、マイクロペプチドHMMWは新規の抗腫瘍ポリペプチドと見なすことができる。 The results are shown in Tables 11-18, and compared with the saline control group, the micropeptide HMMW increased human head and neck cancer SCC4 cells (Fig. 11), thyroid cancer SW579 cells (Fig. 12), lung cancer A549 cells (Fig. 13). ), esophageal squamous cell carcinoma TE13 cells (Fig. 14), gastric cancer MGC803 cells (Fig. 15), breast cancer MDA-MB-231 cells (Fig. 16), kidney cancer UOK262 cells (Fig. 17), skin cancer A431 cells (Fig. 18) The in vivo tumorigenic potential of HMMW can be significantly suppressed to different extents, demonstrating a dose-dependent relationship, and the micropeptide HMMW can be regarded as a novel anti-tumor polypeptide.

実施例7
インビボでのヒト腫瘍細胞の成長に対するマイクロペプチドHMMW I-IXの影響。
(1) ヒト頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎臓癌UOK262細胞を大量に培養し、0.25%トリプシン溶液によって消化し、消化終了後に、細胞懸濁液を1000rpmで5分間遠心分離し、細胞を無血清DMEM培地に再懸濁させてからカウントし、細胞濃度を5×107細胞/mlに調整する。
Example 7
Effect of the micropeptide HMMW I-IX on human tumor cell growth in vivo.
(1) Human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, esophageal squamous cell carcinoma TE13 cells, gastric cancer MGC803 cells, breast cancer MDA-MB-231 cells, renal cancer UOK262 cells were cultured in large amounts and 0.25% Digestion with trypsin solution, after completion of digestion, cell suspension was centrifuged at 1000 rpm for 5 minutes, cells were resuspended in serum-free DMEM medium, counted, and cell concentration was adjusted to 5×10 7 cells/ml. adjust.

(2) 各ヌードマウス(4~6週齢、体重14~16 gの雌ネズミを購入し、SPFクラスの動物飼育室で1週間適応飼育する)の左脇の下に対応する群別の細胞懸濁液を100μl接種し、細胞の注射量は5×106細胞となっている。 (2) Group-specific cell suspensions corresponding to the left armpit of each nude mouse (purchased female mice weighing 14-16 g, 4-6 weeks old, and adapted for 1 week in an SPF class animal breeding room) 100 μl of the liquid was inoculated, and the injection amount of cells was 5×10 6 cells.

(3) 接種後、ヌードマウスの接種部位での腫瘍成長を注意深く観察し、接種後の7日目に、接種部位に白い結節が現れ、触ると皮下を移動し、腫瘍組織とともに成長でき、接種部位に徐々に硬い腫瘍塊が形成され、約14日間で腫瘍組織の平均体積が100 mm3に達し、BALB/cヌードマウスをランダムに10群(生理食塩水群はブランク対照群、マイクロペプチドHMMW I-IXはそれぞれ1群、投与量はいずれも15 mg/kgとなる)に分け、各群には6匹で、投与開始時の動物の体重は16~18gとなっている。 (3) After inoculation, the nude mice were carefully observed for tumor growth at the inoculation site. Seven days after inoculation, white nodules appeared at the inoculation site. A hard tumor mass gradually formed at the site, and the average volume of tumor tissue reached 100 mm3 in about 14 days . I-IX were divided into one group, each with a dose of 15 mg/kg), each group had 6 animals, and the animals weighed 16-18 g at the start of administration.

(4) 移植された腫瘍の体積は、2日ごとに測定および記録し、腫瘍体積(Tumor volume,TV)の計算式は次のとおりとなっている。
腫瘍体積= 0.5×a×b ^ 2
ここで、aは移植腫瘍の長さ(mm)、bは移植腫瘍の幅(mm)となっている。
(4) The volume of the implanted tumor was measured and recorded every 2 days, and the formula for calculating tumor volume (TV) is as follows.
Tumor volume = 0.5 × a × b^2
Here, a is the length (mm) of the transplanted tumor, and b is the width (mm) of the transplanted tumor.

Figure 2022547098000012
Figure 2022547098000012

結果は表8に示し、生理食塩水対照群と比較して、マイクロペプチドHMMW I-IXは、ヒト頭頸部癌SCC4細胞、甲状腺癌SW579細胞、肺癌A549細胞、食道扁平上皮癌TE13細胞、胃癌MGC803細胞、乳癌MDA-MB-231細胞、腎癌UOK262細胞、皮膚癌A431細胞のインビボでの腫瘍形成能力を有意に抑制でき、用量依存的な関係が示されている。元の配列HMMW Iと85%以上の相同性を持つポリペプチドがすべて腫瘍細胞の成長を抑制する効果があるため、マイクロペプチドHMMW I-IXを新規の抗腫瘍ポリペプチドと見なすことができる。 The results are shown in Table 8, and compared with the saline control group, the micropeptide HMMW I-IX reduced human head and neck cancer SCC4 cells, thyroid cancer SW579 cells, lung cancer A549 cells, esophageal squamous cell carcinoma TE13 cells, and gastric cancer MGC803 cells. It can significantly inhibit the in vivo tumorigenicity of cells, breast cancer MDA-MB-231 cells, kidney cancer UOK262 cells, and skin cancer A431 cells, indicating a dose-dependent relationship. The micropeptide HMMW I-IX can be regarded as a novel anti-tumor polypeptide, since all polypeptides with more than 85% homology with the original sequence HMMW I are effective in inhibiting tumor cell growth.

実施例8
腫瘍患者および正常な傍癌性組織におけるHMMWの発現。
TCGA標準法により頭頸部癌、脳神経膠腫、甲状腺癌、食道扁平上皮癌、肺癌、肝臓癌、胃癌、腎癌、乳癌、卵巣癌、子宮頸癌、膀胱癌、結腸直腸癌、膵臓癌、骨肉腫、皮膚癌を含む16種類の腫瘍の癌組織と正常組織のRNA-seqシーケンスファイルと臨床情報をダウンロードし、マイクロペプチドHMMWの差次的発現(判断基準:(1) |癌/傍癌の発現量|>2、(2) P<0.05)を分析する。
Example 8
Expression of HMMW in tumor patients and normal paracancerous tissues.
Head and neck cancer, brain glioma, thyroid cancer, esophageal squamous cell carcinoma, lung cancer, liver cancer, stomach cancer, kidney cancer, breast cancer, ovarian cancer, cervical cancer, bladder cancer, colorectal cancer, pancreatic cancer, bone cancer by TCGA standard method We downloaded the RNA-seq sequence files and clinical information of cancer and normal tissues from 16 types of tumors, including sarcoma and skin cancer, and analyzed differential expression of the micropeptide HMMW (criteria: (1) | cancer/paracancerous). Analyze the expression level|>2, (2) P<0.05).

Figure 2022547098000013
Figure 2022547098000013

表9に示すように、正常組織と比較して、ヒト頭頸部癌、甲状腺癌、肺癌、食道扁平上皮癌、胃癌、乳癌、腎癌、皮膚癌の8つの腫瘍組織におけるマイクロペプチドHMMWの発現レベルは有意に減少されている。マイクロペプチドHMMWの発現が様々な腫瘍の発生と有意に負の相関関係にあることを示した。 As shown in Table 9, the expression levels of the micropeptide HMMW in eight tumor tissues of human head and neck cancer, thyroid cancer, lung cancer, esophageal squamous cell carcinoma, gastric cancer, breast cancer, renal cancer and skin cancer compared with normal tissues. is significantly reduced. We showed that the expression of the micropeptide HMMW was significantly negatively correlated with the development of various tumors.

実施例9
頭頸部癌の臨床患者および正常な傍癌性組織におけるHMMWの発現。
(1) 標本の収集
患者のインフォームドコンセントを得て、手術中に頭頸部癌および傍癌性組織の標本を収集し、生理食塩水で洗浄した後、将来の使用のために液体窒素または-80℃の冷蔵庫に保管する。
Example 9
Expression of HMMW in clinical patients with head and neck cancer and normal paracancerous tissues.
(1) Specimen Collection With informed consent of the patient, specimens of head and neck cancer and paracancerous tissue were collected during surgery and washed with saline followed by liquid nitrogen or - Store in a refrigerator at 80°C.

(2) プライマー設計 (2) Primer design

マイクロペプチドHMMWに対応するヌクレオチド配列に従ってPrimer Premier5.0でプライマーを設計し、配列は次のとおりとなっている。
上流プライマー(SEQ ID NO. 3に示される配列)
下流プライマー(SEQ ID NO. 4に示される配列)
Primers were designed with Primer Premier 5.0 according to the nucleotide sequence corresponding to the micropeptide HMMW, and the sequences are as follows.
Upstream primer (sequence shown in SEQ ID NO. 3)
Downstream primer (sequence shown in SEQ ID NO. 4)

(3) 頭頸部癌患者および正常な傍癌性組織におけるHMMWの発現をリアルタイム定量PCRによって検出する。 (3) Detect the expression of HMMW in head and neck cancer patients and normal paracancerous tissues by real-time quantitative PCR.

life社のTrizol説明書に従って、収集されたサンプルのトータルRNAを抽出してから、NanoDrop ND-1000核酸定量装置によって抽出されたRNAの純度と濃度を定量化し、アガロースの品質チェックにより抽出されたRNAの完全性を保証する。TaKaRa試薬テストキットPrimeScriptTM RT reagent Kit with gDNA Eraser(Perfect Real Time)によって、抽出されたトータルRNAを逆転写してcDNAを合成する。TaKaRa試薬テストキットSYBR(登録商標) Premix Ex TaqTM II(TliRNaseH Plus)によってqPCR反応を行う。反応系は下表の通りとなっている。 Extract total RNA of the collected samples according to life's Trizol instructions, then quantify the purity and concentration of the extracted RNA with a NanoDrop ND-1000 Nucleic Acid Quantitator, and then quantify the extracted RNA with an agarose quality check. ensure the integrity of The extracted total RNA is reverse transcribed into cDNA using the TaKaRa reagent test kit PrimeScriptTM RT reagent Kit with gDNA Eraser (Perfect Real Time). qPCR reactions are performed with the TaKaRa Reagent Test Kit SYBR® Premix Ex Taq II (TliRNaseH Plus). The reaction system is shown in the table below.

Figure 2022547098000014
Figure 2022547098000014

上記成分を均一に混合した後、次の手順に従って実行する:95℃で30s前変性、40サイクル、95℃で5s、60℃で30s。反応の特異性は融解曲線に従って判断され、HMMWの相対的発現量は2-△△Ct法により計算する。結果は図19に示し、約75%の頭頸部癌サンプルでは、HMMWの発現レベルは正常な傍癌性組織よりも有意に減少されている。 After uniformly mixing the above components, the following procedure is followed: predenaturation at 95°C for 30s, 40 cycles, 95°C for 5s, 60°C for 30s. The specificity of the reaction is judged according to the melting curve and the relative expression level of HMMW is calculated by the 2- ΔΔCt method. The results are shown in Figure 19 and show that in about 75% of head and neck cancer samples, HMMW expression levels are significantly reduced compared to normal paracancerous tissue.

Claims (10)

マイクロペプチドHMMWのアミノ酸配列は、SEQ ID NO. 1の通りのアミノ酸配列と少なくとも85%の相同性を有するアミノ酸配列となっていることを特徴とする腫瘍検出試薬または腫瘍治療薬の調製における前記新規マイクロペプチドHMMWの適用。 Amino acid sequence of the micropeptide HMMW is an amino acid sequence having at least 85% homology with the amino acid sequence as shown in SEQ ID NO. 1. Application of micropeptide HMMW. マイクロペプチドHMMWのアミノ酸配列がSEQ ID NO. 1の通りのアミノ酸配列を含むことを特徴とする請求項1に記載の腫瘍検出試薬または腫瘍治療薬の調製における前記新規マイクロペプチドHMMWの適用。 Application of said novel micropeptide HMMW in the preparation of tumor detection reagents or tumor therapeutic agents according to claim 1, characterized in that the amino acid sequence of the micropeptide HMMW comprises the amino acid sequence as per SEQ ID NO.1. 新規マイクロペプチドHMMWがSEQ ID NO. 1~NO. 9の通りのアミノ酸配列のいずれか1つとなっていることを特徴とする請求項1に記載の腫瘍検出試薬または腫瘍治療薬の調製における前記新規マイクロペプチドHMMWの適用。 2. The novel micropeptide HMMW in the preparation of a tumor detection reagent or tumor therapeutic agent according to claim 1, wherein the novel micropeptide HMMW has any one of the amino acid sequences shown in SEQ ID NOs. 1 to 9. Application of micropeptide HMMW. ヌクレオチドは(a)または(b)または(c)のいずれか1つとなっていることを特徴とする前記ヌクレオチド。
(a) SEQ ID NO. 2を含む前記アミノ酸配列をコードするヌクレオチド配列。
(b) 請求項2に記載のマイクロペプチドHMMWをコードするヌクレオチド。
(c) 請求項3に記載のアミノ酸をコードするヌクレオチド配列、具体的にはSEQ ID NO. 10~NO. 18の通りのヌクレオチド配列で、NはA/T/G/Cのいずれかとなっている。
The nucleotide, wherein the nucleotide is any one of (a) or (b) or (c).
(a) a nucleotide sequence encoding said amino acid sequence comprising SEQ ID NO.2;
(b) a nucleotide encoding the micropeptide HMMW of claim 2;
(c) a nucleotide sequence encoding the amino acid of claim 3, specifically a nucleotide sequence as per SEQ ID NO. 10 to NO. 18, where N is any of A/T/G/C; there is
組換えベクターは請求項4に記載のヌクレオチドを含むことを特徴とする前記組換えベクター。 Said recombinant vector, characterized in that said recombinant vector comprises a nucleotide according to claim 4. 腫瘍検出試薬または腫瘍治療薬の調製における、請求項4に記載のヌクレオチドまたは請求項5に記載の組換えベクターの適用。 Application of a nucleotide according to claim 4 or a recombinant vector according to claim 5 in the preparation of a tumor detection reagent or tumor therapeutic. 試薬テストキットは、請求項4に記載のヌクレオチド配列によって設計された特異性プライマーペアを含むことを特徴とする前記腫瘍検出用試薬テストキット。 The reagent test kit for tumor detection, wherein the reagent test kit comprises a specific primer pair designed by the nucleotide sequence of claim 4. 特異性プライマーペアがSEQ ID NO. 19およびSEQ ID NO. 20の通りとなっていることを特徴とする請求項7に記載の前記腫瘍検出用試薬テストキット。 8. The tumor detection reagent test kit according to claim 7, wherein the specific primer pair is as shown in SEQ ID NO.19 and SEQ ID NO.20. 腫瘍が、ヒト頭頸部癌、甲状腺癌、肺癌、食道扁平上皮癌、胃癌、乳癌、腎癌、および皮膚癌を含むことを特徴とする請求項7に記載の前記腫瘍検出用試薬テストキット。 8. The tumor detection reagent test kit according to claim 7, wherein the tumor includes human head and neck cancer, thyroid cancer, lung cancer, esophageal squamous cell carcinoma, stomach cancer, breast cancer, renal cancer, and skin cancer. 医薬組成物は、少なくともSEQ ID NO. 1のアミノ酸配列を含むマイクロペプチドHMMW、または請求項4に記載のヌクレオチド、または請求項5に記載の組換えベクターを含むことを特徴とする腫瘍治療のための前記医薬組成物。
A pharmaceutical composition for tumor therapy, characterized in that it comprises the micropeptide HMMW comprising at least the amino acid sequence of SEQ ID NO. 1, or the nucleotide according to claim 4, or the recombinant vector according to claim 5. The pharmaceutical composition of
JP2022514793A 2019-09-05 2020-11-03 Novel micropeptide HMMW and its application Active JP7376960B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910850262.XA CN112442116B (en) 2019-09-05 2019-09-05 Novel micro-peptide HMMW and application thereof
PCT/CN2020/126072 WO2021043341A2 (en) 2019-09-05 2020-11-03 Novel micropeptide hmmw and application thereof

Publications (2)

Publication Number Publication Date
JP2022547098A true JP2022547098A (en) 2022-11-10
JP7376960B2 JP7376960B2 (en) 2023-11-09

Family

ID=74733555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022514793A Active JP7376960B2 (en) 2019-09-05 2020-11-03 Novel micropeptide HMMW and its application

Country Status (7)

Country Link
US (1) US20220340623A1 (en)
EP (1) EP4006048A4 (en)
JP (1) JP7376960B2 (en)
CN (1) CN112442116B (en)
AU (1) AU2020342139B2 (en)
CA (1) CA3169796A1 (en)
WO (1) WO2021043341A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014928B (en) * 2021-10-27 2023-05-12 南京安吉生物科技有限公司 anti-HMMW antibodies, compositions comprising the antibodies, nucleic acid molecules encoding the antibodies, and uses thereof
CN115490754B (en) * 2022-10-13 2024-04-26 河南科技大学 Anti-tumor active polypeptide derivative and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103275982A (en) * 2011-04-25 2013-09-04 北京大学 Long non-coding RNA (Ribonucleic Acid) and applications thereof
CN102433326A (en) * 2011-04-25 2012-05-02 北京大学 Long non-coding RNA and application thereof
CN106167822A (en) * 2016-06-22 2016-11-30 湖州市中心医院 A kind of long-chain non-coding RNA and application thereof
CN108531596B (en) * 2018-04-25 2022-03-25 成都望路医药技术有限公司 Application of lncRNA as biomarker in diagnosis and treatment of gastric cancer
CN109266616A (en) * 2018-08-21 2019-01-25 山西省人民医院 A kind of humanization mouse podocytes model of stable expression AQP2 albumen and its construction method and application
CN110064045B (en) * 2019-05-15 2022-12-23 苏州大学 Application of micro-peptide CIP2A-BP in treating cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 142, JPN6023009083, 16 March 2020 (2020-03-16), pages 6708 - 6716, ISSN: 0005008710 *

Also Published As

Publication number Publication date
CA3169796A1 (en) 2021-03-11
AU2020342139B2 (en) 2023-12-21
AU2020342139A1 (en) 2022-03-17
CN112442116B (en) 2021-09-17
US20220340623A1 (en) 2022-10-27
CN112442116A (en) 2021-03-05
WO2021043341A2 (en) 2021-03-11
EP4006048A4 (en) 2024-03-06
EP4006048A2 (en) 2022-06-01
JP7376960B2 (en) 2023-11-09
WO2021043341A3 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP7376960B2 (en) Novel micropeptide HMMW and its application
WO2016197592A1 (en) Application of long noncoding rna, hnf1a-as1, in preparing drug for treating human malignant solid tumor
US20200062811A1 (en) Yap protein inhibiting polypeptide and application thereof
CN112538118B (en) Affinity maturation binding protein of tumor stem cell marker molecule EpCAM and application thereof
WO2013097709A1 (en) Integrin blocker polypeptide and use thereof
CN106699850B (en) RBBP4 targeting polypeptide and anti-tumor polypeptide and application thereof
CN109371130B (en) Application of RIPOR3 in preparation of biological products for breast cancer detection and treatment
KR101123130B1 (en) Inhibitors of cell migration, invasion, or angiogenesis by blocking the function of PTK7 protein
CN108864258A (en) With the PEGylated polypeptide and the preparation method and application thereof for inhibiting tumour function
CN110964726B (en) Recombinant siMACF1 and production method and application thereof
Kong et al. Design, synthesis and antitumor activity of Ascaphin-8 derived stapled peptides based on halogen–sulfhydryl click chemical reactions
CN105884876B (en) Earthworm polypeptide, its coding sequence and application
CN111118143A (en) Reagent for detecting and targeting RP11-754B17.1 and application thereof in arthritis
CN113559123B (en) Combined medicine for treating leukemia
CN113683664B (en) FOXM1 targeted degradation small molecule FOXM1-PROTAC and derivative and application thereof
CN114042160B (en) CTD-2256P15.2 and application of encoded micro-peptide thereof as target in development of tumor treatment drugs
WO2022253340A1 (en) Peptide translated by circular rna circ-ace2 and application thereof
CN107723369B (en) Application of SETD1B protein and coding gene thereof in diagnosis and treatment of liver cancer
CN112646884B (en) Application of circRNA-EIF6 as breast cancer prognosis and treatment marker
CN110042160B (en) Digestive system malignant tumor marker and method for preparing medicine for inhibiting digestive system malignant tumor
CN110642931B (en) Polypeptide and application thereof
CN111732631B (en) Polypeptide and application thereof in preparation of medicines for treating and preventing tumors
JP5390397B2 (en) Hepatopoietin and use thereof
CN114159549A (en) Application of secretory Clusterin in preparation of medicine for myocardial cell regeneration after myocardial infarction
JP2022547097A (en) AQUAPORIN 2 protein, a kind of tumor marker, and its application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231020

R150 Certificate of patent or registration of utility model

Ref document number: 7376960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150